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Abstract. Let 0 be a group and rn(0) the number of its n-dimensional irreducible com-
plex representations. We define and study the associated representation zeta function Z0(s) =∑
∞
n=1 rn(0)n

−s . When 0 is an arithmetic group satisfying the congruence subgroup property then
Z0(s) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta
function” counting the rational representations of an algebraic group. For these we determine pre-
cisely the abscissa of convergence. The local factor at a finite place counts the finite representations
of suitable open subgroups U of the associated simple group G over the associated local field K .
Here we show a surprising dichotomy: if G(K) is compact (i.e. G anisotropic over K) the abscissa
of convergence goes to 0 when dimG goes to infinity, but for isotropic groups it is bounded away
from 0. As a consequence, there is an unconditional positive lower bound for the abscissa for ar-
bitrary finitely generated linear groups. We end with some observations and conjectures regarding
the global abscissa.

1. Introduction

Let 0 be a finitely generated group and let sn(0) denote the number of its subgroups of
index at most n. The behavior of the sequence {sn(0)}∞n=1 and its relation to the algebraic
structure of 0 has been the focus of intensive research over the last two decades under the
rubric “Subgroup Growth”—see [LS] and the references therein.

Counting subgroups is essentially the same as counting permutation representations.
In this paper we take a wider perspective: we count linear representations. So, let rn(0)
be the number of n-dimensional irreducible complex representations of 0. This number is
not necessarily finite, in general (see §4 below) but we consider only groups 0 for which
this is the case. In particular, it is so for the interesting family of irreducible lattices in
higher-rank semisimple groups which will be our main cases of interest. By Margulis’
arithmeticity theorem [Ma, p. 2], any such 0 is commensurable to G(OS) where G is
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an OS-subgroup scheme of GLd with absolutely almost simple generic fiber. Here k is
a global field, O its ring of integers, S a finite subset of V , the set of valuations of k,
containing V∞, the set of archimedean valuations, and OS the ring of S-integers.

The (finite-dimensional complex) representation theory of 0 is captured by the group
A(0), the proalgebraic completion of 0. In §2, we present some background and basic
results onA(0). If 0 = G(OS) as before and if in addition 0 has the congruence subgroup
property (CSP, for short), i.e.

C(0) := ker(Ĝ(OS)→ G(ÔS))

is finite, then A(0) can be described quite precisely:

Proposition 1.1. Let 0 = G(OS) as before and assume 0 has the congruence sub-
group property. Then A(0) has a finite normal subgroup C isomorphic to C(0) =
ker(Ĝ(OS)→ G(ÔS)) such that

A(0)/C ∼= G(C)r ×
∏

v∈Vf \S

G(Ov)

where r is the number of archimedean valuations of k, Vf = V \ V∞, and Ov is the
completion of O with respect to a finite valuation v.

Note that A(0) is a direct product of its identity component G(C)r and 0̂, the profi-
nite completion of 0. Moreover, 0 is embedded in G(C)r via the diagonal map: 0 =
G(OS)→

∏
v∈V∞

G(kv) ≤ G(C)r .
Implicit in the proposition is the fact that the CSP implies super-rigidity: If ρ is a

finite-dimensional complex representation of 0 then it can be extended on some finite
index subgroup to a rational representation of G(C)r .

Recall now that Serre’s conjecture [Se] asserts that if G is simply connected and∑
v∈S rkkv (G) ≥ 2 then 0 has the CSP. In most cases this has been proved (see [PR,

§9.5] and the references therein). Moreover, in [LuMr] it is shown that if 0 has the CSP
then rn(0) is polynomially bounded when n→∞. (It is further shown that if char(k) = 0
this property is equivalent to the CSP and it is conjectured that the same is true in general).
Let us now define:

Definition 1.2. The representation zeta function of 0 is defined to be

Z0(s) =
∞∑
n=1

rn(0)n
−s .

Its abscissa of convergence is

ρ(0) = lim sup
n→∞

logRn(0)
log n

where Rn(0) =
∑n
i=1 ri(0), the number of irreducible representations of degree at

most n.
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Our main goal in this paper is to initiate the study of representation zeta functions of
arithmetic groups 0, in analogy with the theory of subgroup zeta functions of nilpotent
groups (cf. [DG] and [LS, Chapters 15 and 16]).

So, if 0 has the CSP then ρ(0) < ∞. The study of ρ(0) will be one of our main
goals. This makes sense for any finitely generated group. If Rn(0) is not polynomially
bounded (in particular, if Rn(0) is infinite for some n) we simply write ρ(0) = ∞.

Assume for simplicity now that 0 has the CSP and the congruence kernel C(0) is
trivial. Proposition 1.1 then implies the important “Euler factorization” of Z0(s).

Proposition 1.3. If 0 = G(OS), 0 has the CSP and C(0) = {e} then

Z0(s) = ZG(C)(s)
r
×

∏
v∈Vf \S

ZG(Ov)(s).

Of course, here we are using the notation ZH (s) for groups H which are not discrete.
When H is a profinite group (resp. the group of real or complex points of an algebraic
group), we count only continuous (resp. rational) representations.

A concrete example to think about is 0 = SL3(Z) for which

ZSL3(Z)(s) = ZSL3(C)(s)×
∏
p

ZSL3(Zp)(s).

So, we have an Euler factorization with p-adic factors as well as a factor at infinity.
We note here that the pth local factor is not quite a power series in p−s , i.e., it does not
count the irreducible representations of p-power degrees, but this is not too far from the
truth as SL3(Zp) is a virtually pro-p group (see §4 and §6). Anyway, we can define ρ∞(0)
to be the abscissa of convergence of the identity component of A(0), i.e. of G(C)r . But
as ZG(C)r (s) = (ZG(C)(s))r this is equal to ρ(G(C)). The factor of infinite ZG(C)(s), the
so-called “Witten zeta function”, is discussed in §5 below.

Similarly for every v ∈ Vf we have ρv(0) = ρ(G(Ov)), the v-local abscissa of
convergence.

Theorem 5.1. For G as before,

ρ(G(C)) = r/κ

where r = rk G =(absolute) rank of G and κ = |8+| where 8+ is the set of positive
roots in the absolute root system associated to G.

Note that κ = |8+| = 1
2 (dim G − rk G) and r/κ = 2/h where h is the Coxeter number

of 8.
The expression r/κ has already appeared in an analogous context in the work of

Liebeck and Shalev:

Theorem 1.4 (Liebeck–Shalev [LiSh2]). Let G be a Chevalley group scheme over Z.
Then

lim sup
n,q→∞

logRn(G(Fq))
log n

=
r

κ
.
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For G(Ov) as above, we prove:

Proposition 6.6. ρ(G(Ov)) ≥ r/κ .

In the anisotropic case in characteristic zero, we can prove equality:

Theorem 7.1. If G(K) = SL1(D) whereD is a division algebra of degree d over a local
field K of characteristic 0, then G(K) is a compact virtually pro-p group and

ρ(G(K)) =
r

κ
=

2
d
.

Jaikin-Zapirain [Ja2] computed the v-adic local zeta function of SL2(Ov). From his
result one sees that ρ = 1 = r/κ for all such groups.

All these examples suggested to us that ρ (G(Ov)) would always be equal to r/κ . The
truth, however, is quite different:

Theorem 8.1. IfK is a non-archimedean local field, G an isotropic simpleK-group, and
U an open compact subgroup of G(K), then ρ(U) ≥ 1

15 .

We remark that 1/15 is probably not the best possible constant. It is dictated by the
fact that for E8 (and for other exceptional groups with smaller Coxeter number), we do
not know how to improve on the bound of Proposition 6.6. We also note that for non-
archimedean local fields K , the only anisotropic groups are those of the type G(K) =
SL1(D) described in Theorem 7.1. For these, r/κ goes to zero when dimD goes to
infinity. So Theorems 8.1 and 7.1 give a dichotomy between isotropic and anisotropic
groups. The latter case we understand well: we can estimate the number of representa-
tions of given degree by counting coadjoint orbits. In the former case, there is a distinc-
tion between G(K)-orbits and G(Ov)-orbits, which appears to be controlled by the rate
of growth of balls in the Bruhat–Tits building of G over K . When this rate of growth is
high enough, it dominates the estimates of representation growth. Unfortunately, we still
do not know how to compute the precise rates of growth in this case. (See §11 below
for more on this point of view, which suggested the computations of §8 but is not made
explicit there.)

An unexpected consequence of Theorem 8.1 is

Theorem 9.1. If 0 is a finitely generated group with some linear representation ϕ : 0→
GLn(F ), with F a field, such that ϕ(0) is infinite (e.g. 0 an infinite linear group) then
ρ(0) ≥ 1/15.

On the other hand, we show in §9 that there exist infinite, finitely generated, residually
finite groups 0 with ρ(0) = 0.

In §10, we analyze ρ(0) for arithmetic lattices in semisimple groups of a very special
type, namely, powers of SL2. These are very special cases (and, as we saw above, in this
problem special cases can be quite misleading.) We still believe in the conjecture these
examples suggest:

Conjecture 1.5. Let H be a higher rank semisimple group (i.e. H is a product∏`
i=1Gi(Ki) where each Ki is a local field, each Gi is an absolutely almost simple

Ki-group, and
∑`
i=1 rkKi (Gi) ≥ 2). Then for any two irreducible lattices 01 and 02

in H , ρ(01) = ρ(02).
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This last conjecture should be compared with [LuNi, Theorem 11] concerning the growth
of sn(0), the number of subgroups of index less than or equal to n, in an irreducible lattice
of a higher rank semisimple group:

Theorem 1.6 (Lubotzky–Nikolov [LuNi]). Let H be a higher rank semisimple group.
Assuming the GRH (generalized Riemann hypothesis) and Serre’s conjecture, for every
irreducible lattice 0 in H , the limit

lim
n→∞

log sn(0)
(log n)2/log log n

exists and equals τ(H), an invariant of H which is given explicitly in [LuNi].

See [LuNi] for further information, including many cases for which the theorem is proved
unconditionally.

Theorem 1.6 says that the subgroup growth (i.e., the permutation representation rate
of growth) is very similar for different irreducible lattices in H . Conjecture 1.5 makes a
similar statement regarding their finite-dimensional complex representations.

There is still a significant difference. While in [LuNi] a precise formula is given for
τ(H), so far we do not even have a guess what will be the common value predicted by
Conjecture 1.5. It seems likely that one needs first to understand the local abscissas of
convergence, but even knowing them in full does not necessarily give the global abscissa.

The paper is organized as follows: in §2 we describe A(0), the proalgebraic com-
pletion, and B(0), the Bohr compactification, of a higher rank arithmetic group 0. In
§3 and §4 we show how the congruence subgroup property gives the precise structure
of A(0) and out of this an Euler factorization is deduced for Z0(s). The factor at in-
finity is studied in §5 where a precise formula is given for its abscissa of convergence
(Theorem 5.1). The finite local factors are studied in §6 (generalities), §7 (the anisotropic
case—Theorem 7.1), and in §8 (the isotropic case—Theorem 8.1). The applications to
discrete groups are derived in §9. In §10, we give some evidence for Conjecture 1.5. We
end in §11 with remarks and suggestions for further research. It seems that our results
reveal only the tip of the iceberg of Z0(s).

Conventions. In this paper representations always mean complex finite-dimensional rep-
resentations.

We study representation theory of various discrete groups 0 which are always as-
sumed to be finitely generated.

2. The proalgebraic completion and Bohr compactification of arithmetic groups

Let 0 be a finitely generated group. A useful tool for studying the finite-dimensional
representation theory of 0 over C is the proalgebraic completion A(0) of 0, known also
as the Hochschild–Mostow group of 0. (See [HM], [LuMg] and [BLMM] for a systematic
description.) The group A(0) together with the structure homomorphism

i : 0→ A(0) (2.1)



356 Michael Larsen, Alexander Lubotzky

is uniquely characterized by the following property: For every representation ρ of 0 there
is a unique rational representation ρ̄ of A(0) such that ρ̄ ◦ i = ρ.

This implies that the representation theory of 0 is equivalent to the rational represen-
tation theory of A(0). The image ρ̄(A(0)) is always the Zariski closure of ρ(0) and in
fact, A(0) is the inverse limit of these closures over all representations of 0. In particular,
A(0) is mapped onto the profinite completion 0̂ of 0 (which can be thought as the inverse
limit over the representations with finite image). The kernel A(0)◦ of the exact sequence

1→ A(0)◦→ A(0)→ 0̂→ 1 (2.2)

is the connected component of A(0). It is a simply connected proaffine algebraic group
[BLMM, Theorem 1]

The group 0 is called super-rigid if A(0) is finite-dimensional (i.e., A(0)◦ is finite-
dimensional). It is shown in [BLMM, Theorem 5] that if 0 is linear over C and super-rigid
then it has a finite index normal subgroup 00 such that A(00) ' A(00)

◦
× 0̂0.

It can be easily seen that 00 can be chosen so that 00 → A(00)
◦ is injective and every

representation of 0 can be extended, on a finite index subgroup 01 of 00 (and therefore
of 0), to a rational representation of A(00)

◦
= A(0)◦. (Note that for a finite-dimensional

rational representation of A(00), the image of 0̂0 is finite). So, super-rigidity for a linear
group 0 implies, and in fact is equivalent to, the existence of a finite-dimensional con-
nected, simply connected, algebraic group G containing a finite index subgroup 00 of 0,
such that every representation of 0 can be extended to G on some finite index subgroup
of 00.

As is well known, Margulis’ super-rigidity theorem [Ma, p. 2] says that irreducible
lattices 0 in higher rank semisimple groupsH are super-rigid. (This has now been supple-
mented ([Co], [GS]) for lattices in Sp(n, 1), n ≥ 1, and F (−20)

4 .) Margulis’ arithmeticity
theorem [Ma, p. 2] (which is deduced from the super-rigidity) says that every such 0 is
(S-) arithmetic.

Let us now spell out the precise meaning of this regarding A(0). So let H be a
semisimple (locally compact) group. By this we mean

H =
∏̀
i=1

Gi(Ki) (2.3)

where eachKi is a local field andGi is an absolutely almost simple group defined overKi .
We assume that no Gi(Ki) is compact, i.e., rkKi (Gi) ≥ 1.

If
∑`
i=1 rkKi (Gi) ≥ 2; or if ` = 1, K1 = R, and G1(R) is locally isomorphic to

one of the real rank one groups Sp(n, 1) or F (−20)
4 , then every irreducible lattice of H

is arithmetic. This means that there exists a global field k, a finite set S of valuations
of k containing all the archimedean ones, with OS = {x ∈ k | v(x) ≥ 0 ∀v /∈ S}, and a
group scheme G/OS of finite type whose generic fiber is connected, simply connected and
semisimple, with a continuous map ψ :

∏
v∈S G(kv) → H whose kernel and cokernel

are compact and such that ψ (G(OS)) is commensurable to 0. (We note that the scheme
can be chosen to be flat—see [BLR, 1.1].)
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This in particular implies that if an irreducible lattice inH exists, then all the fieldsKi
are of the same characteristic, and all the algebraic groupsGi are forms of the same group.
It also says that such a lattice 0 is isomorphic, up to finite index, to G(OS).

We can now describe the pro-algebraic completion of G(OS):

Theorem 2.1. With the notation of G(OS) as above (including the assumption∑
v∈S rkkv (G) ≥ 2; or ` = 1, K1 = R, and G1(K1) is either Sp(n, 1) or F (−20)

4 ) we
have

A(G(OS)) = G(C)#S∞ × Ĝ(OS) (2.4)

where S∞ is the set of archimedean valuations of k.

Proof. If k is of positive characteristic then by [Ma, Theorem 3, p. 3], A(G(OS)) =
Ĝ(OS) and we are done. Assume char(k) = 0 and then by the same theorem, for every
complex representation of 0 = G(OS), the identity component 0◦ of the Zariski closure
of 0 is semisimple. By [Ma, Theorem 5, p. 5] every such representation of 0, or of a finite
index subgroup thereof, into a simple algebraic C-group is obtained (up to finite index
subgroup) by embeddingOS into C and then composing with an algebraic representation
of G(C).

We can therefore deduce that with 0 embedded diagonally in M =
∏
v∈S∞

G(C),
every complex representation of 0 can be extended, on a finite index subgroup of 0, to a
representation of M . This proves that A(0)◦ ∼= M .

We have a direct product decompositionA(0) = A(0)◦×0̂ since 0 is indeed densely
embedded in M = A(0)◦ and hence there is a map A(0) � A(0)◦. ut

So super-rigidity gives the complete description of A(0)◦. We should now concentrate on
0̂ = Ĝ(OS). Here we need the congruence subgroup property to be discussed in the next
section. We mention here in passing that super-rigidity also gives the complete description
of the Bohr compactification of 0. Let us first recall:

Definition 2.2. For a finitely generated group 0 we denote by B(0) its Bohr compactifi-
cation. This is a compact group together with a homomorphism j : 0 → B(0) with the
following universal property: If ϕ is a homomorphism of 0 into some compact group K ,
there exists a unique continuous extension ϕ̃ : B(0)→ K with ϕ̃ ◦ j = ϕ.

The existence of such B(0) (and j ) is easy to establish: Let {Cα, ψα} be the family of
all possible homomorphisms ψα : 0 → Kα where Kα is a compact group. Take C =∏
α Kα . Then B(0) is the closure of the image of 0 in C under the diagonal map γ 7→

(ψα(γ ))α for γ ∈ 0. The Bohr compactification is of importance in the theory of almost
periodic functions ([Cd, Chapter VII]).

Proposition 2.3. Let 0 = G(OS) be as in Theorem 2.1. Then

B(0) =
∏
σ∈T

σG(R)× Ĝ(OS)

where T is the set of all real embeddings of k for which σG(R) is compact, where σG =
G×σ R. Note that T can be considered as a subset of S∞.
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Proof. By the Peter–Weyl theorem every compact group is an inverse limit of finite-
dimensional compact Lie groups. Let L =

∏
σ∈T

σG(R). To prove that B(0)◦ = L

means proving that if ψ : 0 → K is a homomorphism of 0 into a dense subgroup of
a compact Lie group K , then ψ can be extended, up to a finite index subgroup, to a
continuous homomorphism from L to K .

AsK is compact, its identity component is the group of real points of a real connected
algebraic group, K◦ = H(R). Again, as in the proof of Theorem 2.1, if char(k) > 0,
then ψ has finite image and B(0) = 0̂. If char(k) = 0, H is semisimple and each one
of its almost simple factors is absolutely almost simple over R (otherwise, it would be
a restriction of scalars of a complex group and hence not compact). We can use [Ma,
Theorem 5, p. 5] again to deduce that the connected component of B(0) is indeed L. As
before, it is a direct factor since we have a dense map from 0 to L. ut

3. The congruence subgroup property

We continue with the notation of the previous section. So G is a group scheme of finite
type over OS , the ring of S-integers in a global field k, whose generic fiber is connected,
simply connected, and absolutely almost simple, and 0 = G(OS).

Definition 3.1. The group 0 is said to have the congruence subgroup property (CSP for
short) if ker(Ĝ(OS)

π
→G(ÔS)) is finite.

Now by the strong approximation theorem (cf. [PR, Theorem 7.12] and [Pr]) π is onto.
Moreover, G(ÔS) =

∏
v /∈S G(Ov). Note that if 0 has the CSP then by replacing 0 with

a suitable finite index subgroup 00, we have 0̂0 =
∏
v /∈S Lv , where Lv is open in G(Ov)

for every v and equal to it for almost every v.
Before continuing, let us recall (see [BMS, §16], [Se, §2.7], and [Ra, Theorem 7.2])

that the CSP implies super-rigidity. In our language this means

Theorem 3.2. If 0 = G(OS) has the CSP then A(0)◦ is finite-dimensional.

Sketch of proof. First consider a representation ρ : 0 → GLn(Q). Unless 0 is a lattice
in a rank one group over a positive characteristic field, in which case 0 does not have the
CSP (see [Lu2, Theorem D]), 0 is finitely generated and hence the entries of ρ(0) are
p-adic integers for almost every prime p. Choose such a prime p (which is not char(k)).
Thus we have a representation into GLn(Zp). This last group has a finite index torsion-
free pro-p subgroup H . Now, if 0 has CSP, then after passing to a finite index subgroup
00 of 0, 0̂0 =

∏
v /∈S Lv where Lv is open in G(Ov). If char(k) = ` > 0 then Lv is a

virtually pro-` group and so its image in H is finite and hence trivial. This proves that
ρ(0) was finite to start with. If char(k) = 0 then for every v which does not lie over p,
ρ(Lv) is finite and again trivial. So we get a map from

∏
v|p Lv to GLn(Zp). This is a

map between two p-adic analytic virtually pro-p groups, which must be analytic and in
fact algebraic as G is semisimple. Thus altogether, ρ can be extended, on a finite index
subgroup, to an algebraic representation of G.
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The above proof works word for word also for representations over number fields and
hence also with regard to representations into GLn(Q), where Q is an algebraic closure
of Q. This implies in particular that 0 has only finitely many irreducible n-dimensional
Q-representations. Indeed, if 0 has the CSP then it has FAb, i.e., |1/[1,1]| <∞ for ev-
ery finite index subgroup 1 of 0. It follows now from Jordan’s theorem (cf. [LS, p. 376];
see also [BLMM, Cor. 8]) that 0 has only finitely many n-dimensional representations
with finite image. The same also applies to algebraic representations of G. By the Null-
stellensatz the same applies to representations over C. So the character variety is finite
(see [LuMg]) and all the representations can be conjugated into GLn(Q). ut

Note also that if 0 has the CSP then by replacing 0 by a suitable finite index 00 as before,
0̂0 =

∏
v Lv , and combining this with the proof of Theorem 2.1 above we get:

Theorem 3.3. If 0 = G(OS) has the CSP then for a suitable finite index subgroup 00 of
0 (with 00 = 0 if ker(Ĝ(OS)→ G(ÔS)) = {e}),

A(00) = G(C)#S∞ ×
∏
v /∈S

Lv

where Lv is open in G(Ov) and equal to it for almost all v.

Finally, we mention the main result of [LuMr]:

Theorem 3.4 (Lubotzky–Martin [LuMr]). If 0 = G(OS) has the CSP then rn(0) is
polynomially bounded. If char(k) = 0 then the converse is also true.

It is conjectured in [LuMr] that the converse also holds if char(k) > 0, and some steps in
this direction are taken there.

4. The representation zeta function

Let 0 be a finitely generated group and rn(0) the number of its n-dimensional irreducible
complex representations. This may not be a finite number. Similarly, denote by r̂n(0) the
number of n-dimensional irreducible representations of 0 with finite image.

Proposition 4.1 ([BLMM, Proposition 2]). We have r̂n(0) < ∞ for every n if and only
if 0 has (FAb), i.e. |1/[1,1]| <∞ for every finite index subgroup 1 of 0.

On the other hand, there is no known intrinsic characterization of groups 0 for which
rn(0) <∞ for every n. Such a group is called rigid.

Problem 4.2. Characterize rigid groups.

Anyway, we assume from now on that 0 is rigid and define:
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Definition 4.3. (a) The representation zeta function of 0 is

Z0(s) =
∞∑
n=1

rn(0)n
−s,

and the finite representation zeta function is

Ẑ0(s) =
∞∑
n=1

r̂n(0)n
−s .

(b) Let ρ(0) = lim logRn(0)
log n where Rn(0) =

∑n
i=1 ri(0). It is called the abscissa of

convergence of Z0(s).

The following easy result is given in [LuMr, Lemma 2.2]:

Proposition 4.4. If 00 is a subgroup of index m in 0 then

Rn(00) ≤ mRmn(0) and Rn(0) ≤ mRn(00).

Corollary 4.5. ρ(00) = ρ(0).

Now, if ρ(0) < ∞ then Z0(s) indeed defines a holomorphic function on the half-plane
{s ∈ C | Re s > ρ(0)} and rn(0) is polynomially bounded.

Let now 0 = G(OS) as in Section 3. Assume further that 0 has the CSP. Then
by Theorem 3.4, ρ(0) < ∞ and Z0(s) is indeed a well defined function on the half-
plane. Moreover, let 00 be a finite index subgroup of 0, as in §3, for which A(00) =

G(C)#S∞ ×
∏
v /∈S Lv with Lv open in G(Ov) for every v and Lv = G(Ov) for almost

every v. (We can take 00 = 0 if ker(Ĝ(OS) → G(ÔS)) = {e}.) Since there is a one-
to-one correspondence between representations of 0 and rational representations of A(0)
and since every irreducible representation of a product of groups decomposes in a unique
way as a tensor product of irreducible representations of the factor groups, we get an
“Euler factorization”:

Proposition 4.6.
Z00(s) = ZG(C)(s)

#S∞ ·
∏
v /∈S

ZLv (s)

whereZG(C)(s) (resp.ZLv (s)) is the representation zeta function counting the irreducible
rational (resp. continuous) representations of G(C) (resp. Lv).

Now if we look at V (p) = {v | v /∈ S, v |p}, i.e. all the valuations of k (outside S) which
lie over a prime p, then

∏
v∈V (p)ZLv (s) will be called the p-factor of Z0(s) and it will

be denoted Zp0 (s). Similarly, ZG(C)(s)#S∞ is the infinite (or archimedean) factor of the
“Euler factorization”.

It should be noted that unlike the classical Euler factorization, Zp0 (s) does not exactly
encode the representations of p-power dimension.
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Example 4.7. Let 0 = SL3(Z), so

A(0) = SL3(C)×
∏
p

SL3(Zp)

and Z0(s) = ZSL3(C) ×
∏
p ZSL3(Zp)(s). The degrees of the irreducible representations

of the pro-finite group SL3(Zp) divide its order (which is a super-natural number—see
[Ri, §1.4]). As SL3(Zp) is a virtually pro-p group the set of these degrees is contained in
a finite union of type

⋃`(p)

j=1 qj (p)p
N.

The picture for the general case is similar.
In the next three sections we look more carefully at the local factors.

5. The local factors of the zeta function: the factor at infinity

Let G be a connected, simply connected, complex almost simple algebraic group and
G = G(C). As before ZG(s) is the zeta function counting the rational representations
ofG. For example ZSL2(C)(s) = ζ(s), the Riemann zeta function, since SL2 has a unique
irreducible rational representation of each degree.

In general, the irreducible representations of G are parametrized by their highest
weights as follows: Let 8 be the root system of G and $1, . . . ,$r the fundamental
weights. Write N = {0, 1, 2, . . . }, and for each (a1, . . . , ar) ∈ Nr consider λ =

∑
ai$i .

The irreducible representations Vλ are parametrized by these weights λ. The Weyl dimen-
sion formula gives

dimVλ =
∏
α∈8+

α∨(λ+ ρ)

α∨(ρ)

where 8+ is the set of positive roots, ρ is half the sum of the roots in 8+, and α∨ is the
dual root to α ∈ 8+. Note that

∏
α∈8+ 1/α∨(ρ) is a constant depending only on G and

not on λ, while the numerator
∏
α∈8+ α

∨(λ+ρ) is a product of κ = |8+| linear functions
in a1, . . . , ar .

Theorem 5.1. The abscissa of convergence of ZG(C)(s) is equal to r/κ , where r = rk G
and κ = |8+| is the number of positive roots.

Proof. The description above implies that

ZG(s) =
∞∑
a1=0

· · ·

∞∑
ar=0

(dimVa1$1+···+ar$r )
−s .

Thus we have a question of the following type: Given an r× κ matrix bij of non-negative
integers and a vector cj of positive integers, what is the abscissa of convergence of the
Dirichlet series

∞∑
a1=0

· · ·

∞∑
ar=0

{ κ∏
j=1

(b1ja1 + · · · + brjar + cj )
}−s

.
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If we focus attention on the cube

{(a1, . . . , ar) | 0 ≤ a1, . . . , ar < N},

we see that a typical term in this part of the sum is of size O((Nκ)−s). Since there are
N r such terms, one might guess that the abscissa of convergence corresponds to the real
value s for which (Nu)−s is comparable to the reciprocal of N r , i.e. s = r/κ . For generic
choices of the matrix bij , this turns out to be right. On the other hand, there may be subsets
of the cube of substantial size for which the product of the sums b1ja1 + · · · + br,j + cj
is much smaller than Nκ . This happens if (a1, . . . , ar) lies near many of the hyperplanes
Hj : b1jx1 + · · · + brjxj = 0. (In our examples, these Hj are precisely the walls of the
Weyl chambers.)

To see how this can work, consider the series

∞∑
a=0

∞∑
b=0

∞∑
c=0

((a + 1)(a + b + 1)(a + 2b + 1)(c + 1))−s .

If we consider only the N terms with a = b = 0, we obtain the Riemann zeta function,
which diverges at s = 1, where our naive guess gave convergence for <(s) > 3/4. The
problem is that three of the four rows of our matrix of coefficients lie in a two-dimensional
subspace. In order to compute the abscissa of convergence in any particular case, we need
to examine both the generic behavior on cubes [0, N − 1]r and also behavior near theHj .
In fact, we may need to consider cases in which the index is near several Hj but much
nearer to some than to others. In the proof below, all of this is handled by a combinatorial
strategy that breaks up [0, N − 1]r into subsets according, roughly, to an integer vector
which approximates the vector of the logarithms of the distances of an index (a1, . . . , ar)

from each of the Hj .
We begin, though, with the easy direction, proving that ZG(s) diverges for s = r/κ .

If for λ = (a1, . . . , ar) and m > 0, we have ai ≤ m for every i = 1, . . . , r , then
dimVλ ≤ c0m

κ for some absolute constant c0 depending only on G (since, as mentioned
above, the numerator of dimVλ is a product of κ linear functions of the coefficients ai).
Thus (dimVλ)

−r/κ
≥ c1m

−r for some constant c1 > 0. Look now at the partial sums Sj
taken over all λ = (a1, . . . , ar) with 2j < ai ≤ 2j+1. As there are (2j+1

− 2j )r = 2jr

summands, and each of them contributes at least c1(2j+1)−r , we have Sj ≥ c1/2r . The
sets Sj are disjoint so ZG(r/κ) ≥

∑
∞

j=1 c1/2r = ∞.
We have now to prove that for every s > r/κ , ZG(s) converges. For each j ∈ N, let

9j (λ) := 8 ∩ SpanR{α ∈ 8 | |α
∨(λ+ ρ)| < ej }.

It is not difficult to check that 9j (λ) is itself a root system (reduced but not necessarily
irreducible). Moreover, we clearly have

91(λ) ⊆ 92(λ) ⊆ · · ·

and the sequence stabilizes at 8.
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Now, if α ∈ 9j+1(λ)\9j (λ) then log |α∨(λ+ ρ)| = j +O(1) and so

log dimVλ =
∑
α∈8+

logα∨(λ+ ρ)+O(1)

=

∑
α∈8+

∞∑
j=1

η(α, j)+O(1) where η(α, j) =

{
1, α /∈ 9j (λ),

0, α ∈ 9j (λ).
(5.1)

The last sum is equal (up to a constant depending on 8 but not on λ) to∑
∞

i=1(|8
+
| − |9i(λ)

+
|)+O(1).

Let us now evaluate ZG(s) for s = r/κ + ε, for a fixed ε > 0. Every λ gives rise to a
sequence of root subsystems

91(λ) ⊆ · · · ⊆ 9`(λ) = 8. (5.2)

This is an increasing sequence but with possible repetitions. We will sum on λ (and hence
on these sequences) according to the subsequence which omits the repetitions. So we sum
over all possible strictly increasing sequences of subsystems

81 ( · · · ( 8k = 8. (5.3)

Note that k ≤ r (since dim Span8 = r). A sequence of type (5.2) determines (and is
determined by) a sequence of type (5.3) together with a sequence of positive integers
b1 < · · · < bk such that 

91(λ) = · · · = 9b1−1(λ) = ∅,

9b1(λ) = · · · = 9b2−1(λ) = 81,

9b2(λ) = · · · = 9b3−1(λ) = 82,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(5.4)

Choose now a basis {α1, . . . , αr} for 8 such that the first c1 vectors span the space
Span(81), the first c2 span Span(82) etc. This implies that for some constant δ1 ≥ 1,

0 < α∨i (λ+ ρ) ≤ δ1e
bj ∀i ≤ cj , i = 1, . . . , k. (5.5)

Now, given 81 ( · · · ( 8k we will sum over all possible sequences 1 ≤ b1 < · · ·

< bk . We claim next that the number of dominant weights giving rise to a particular pair
of sequences 81 ( · · · ( 8k and b1 < · · · < bk is bounded above by a constant δ2 times

exp(b1 rk81 + b2(rk82 − rk81)+ · · · + bk(rk8k − rk8k−1)). (5.6)

To see this, observe that the map

D : λ 7→ (α∨1 (λ), . . . , α
∨
r (λ)) (5.7)

is an injective linear transformation from Nr (identified with the set of dominant weights
via the map (a1, . . . , ar) 7→ λ =

∑r
i=1 ai$i) to Nr . The map

λ 7→ (α∨1 (λ+ ρ), . . . , α
∨
r (λ+ ρ))



364 Michael Larsen, Alexander Lubotzky

is therefore an injective affine map. We need to bound the size of the set of all λ in Nr
which give rise to 81 ( · · · ( 8k and b1 < · · · < bk . Each such λ satisfies all the in-
equalities of (5.5). Since detD is a constant, their number is indeed bounded by a constant
δ2 times (5.6).

Finally, for each λ the contribution of Vλ to ZG(r/κ + ε) is bounded above by some
constant δ3 times

exp
(
−

(
r

κ
+ ε

)
(b1|8

+

1 | + b2(|8
+

2 | − |8
+

1 |)+ · · · + bk(|8
+

k | − |8
+

k−1|))

)
. (5.8)

To see this, note that (5.1) implies that log dimVλ =
∑k
i=1 bi(|8

+

i | − |8
+

i−1|) + O(1)
where 8+0 = ∅.

Thus, for a suitable constant δ4 > 0, writing
∑
=
∑
∅=80⊂81⊂···⊂8k=8

∑
1≤b1<···<bk

,
we have

ZG
(
r

κ
+ ε

)
≤ δ4

∑
exp

( k∑
i=1

bi(rk8i − rk8i−1)
)

exp
(
−

(
r

κ
+ ε

) k∑
i=1

bi(|8
+

i | − |8
+

i−1|)

)

= δ4
∑

exp
( k∑
i=1

bi

[
(rk8i − rk8i−1)−

(
r

κ
+ ε

)
(|8+i | − |8

+

i−1|)

])
. (5.9)

To evaluate this sum we will use the following elementary convergence lemma:

Lemma. For constants a1, . . . , ak ∈ R the series

Fk(a1, . . . , ak) :=
∑

1≤b1<···<bk

exp
( k∑
i=1

aibi

)
converges if and only if

ak < 0, ak−1 + ak < 0, . . . , a1 + · · · + ak < 0. (5.10)

Proof. We have

Fk(a1, . . . , ak) =

∞∑
b1=1

exp(a1b1)
∑

1+b1≤b2<···<bk

exp(a2b2 + · · · + akbk)

=

∞∑
b1=1

exp ((a1 + · · · + ak)b1)
∑

1≤c2<···<ck

exp(a2c2 + · · · + akck)

=
exp(a1 + · · · + ak)

1− exp(a1 + · · · + ak)
Fk−1(a2, . . . , ak)

=

k∏
n=1

exp(an + · · · + ak)
1− exp(an + · · · + ak)

,

and the lemma follows. ut
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In our application ai = (rk8i − rk8i−1) − (r/κ + ε)(|8
+

i | − |8
+

i−1|) and hence for
i = 1, . . . , k,

ak + ak−1 + · · · + ai = (rk8− rk8i−1)−

(
r

κ
+ ε

)
(|8+| − |8+i−1|) (5.11)

(where 80 = ∅).
We need to prove that (5.11) is less than 0 or equivalently

rk8− rk8i−1

|8+| − |8+i−1|
<
r

κ
+ ε. (5.12)

By inspection of all the pairs of irreducible root systems 8i−1 ⊂ 8, one sees that

rk8i−1

|8+i−1|
≥

rk8
|8+|

=
r

κ
. (5.13)

One can also give a conceptual proof of this inequality based on the observation that
r/κ = 2/h where h is the Coxeter number. Now, if 8i−1 ⊂ 8, the Coxeter numbers
satisfy hi−1 ≤ h. This can be seen, for example, from the fact that the Coxeter number
minus one is the largest exponent of the irreducible root system, and the fact that this is
non-decreasing for inclusions of root systems can be deduced by comparing the orders of
the corresponding Chevalley groups.

Now, if 8i−1 is reducible, say 8i−1 = 8
′

i−1 q8
′′

i−1, then

rk8i−1

|8+i−1|
=

rk8′i−1 + rk8′′i−1

|8
′+

i−1| + |8
′′+

i−1|
≥ min

{ rk8′i−1

|8+i−1|
,

rk8′′i−1

|8′′i−1|

}
. (5.14)

The last inequality of (5.14) follows from the fact that if a, b, c, d ∈ N then we have
(a + c)/(b + d) ≥ min{a/b, c/d}. It now follows that (5.13) is true also if 8i−1 is not
necessarily irreducible.

Another elementary property of a, b, c, d ∈ N is that if a ≤ c, b ≤ d and a/b ≥ c/d
then (c − a)/(d − b) ≤ c/d . Applying this for a = rk8i−1, b = |8+i−1|, c = rk8 and
d = |8+| and using (5.13), we deduce that

rk8− rk8i−1

|8+| − |8+i−1|
≤
r

κ

and hence (5.12) holds. This finishes the proof of Theorem 5.1. ut

Remarks. (i) We have proved Theorem 5.1 in the simply connected case because this is
the only case we need for the intended application, and because the parametrization of
irreducible representations is slightly simpler in this case than in general. The theorem is
true without this hypothesis, however, and the argument is unchanged except that instead
of summing over Nr , we sum over its intersection with some finite index subgroup of Zr .

(ii) As far as we know, the function ζG(s) first appeared in the literature in a paper
of Witten [Wi], which discussed its values at positive even integers. If 6 is a compact
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orientable surface of genus g ≥ 2, Gc is a compact form of G, and E is a principal Gc-
bundle over 6, then ζG(s) arises in the computation of the volume of the moduli space
M of flat connections on E up to gauge transformations. More precisely, M has a natural
symplectic structure ω and a natural volume form θ = ωn/n!, where 2n = dimM =

(2g− 2)κ , κ = |8+|, and8 is the root system of G. As ω represents the first Chern class
of a natural line bundle over M , the volume of M with respect to θ is rational.

On the other hand, the same integral can be computed by means of a decomposition
of 6 into 2g − 2 pairs of pants, and from this description it can be shown that up to a
rational normalizing factor,

∫
M
θ is

(2π)− dimM
∑
λ

(dimVλ)
2−2g.

This shows that ZG(s) =
∑
λ(dimVλ)

−s has the “zeta property” that its value at every
positive even integer is a rational number times a suitable (integral) power of π .

We have no reason to believe this property is shared by our “global” zeta functions of
arithmetic groups, but neither can we disprove it.

6. The p-local factor

We now shift our attention to the local factors at the finite primes, i.e., to ZLv (s) in the
notation of Proposition 4.6. This is the representation zeta function of the group Lv which
is open in G(Ov) and equal to G(Ov) for almost all v.

When char(k) = 0, Lv has an open uniform pro-p subgroup (cf. [DDMS, Chapter 4]).
An important result of A. Jaikin-Zapirain asserts:

Theorem 6.1 (Jaikin-Zapirain [Ja2]). Assume char(k) = 0 and p > 2, or if p = 2, as-
sume Lv is uniform. Then ZLv (s) is a rational function in p−s . More precisely, there exist
natural numbers k1, . . . , kt and functions f1(p

−s), . . . , ft (p
−s) rational (with rational

coefficients) in p−s such that

ZLv (s) =
t∑
i=1

k−si fi(p
−s).

Problem 6.2. Does a similar result hold when char(k) > 0?

Theorem 6.1 is quite deep. It is proved by using Howe’s interpretation of the Kirillov orbit
method for uniform pro-p groups [Ho]. This enabled Jaikin-Zapirain to presentZLv (s) as
a p-adic integral and then to appeal to the work of Denef [De] on the rationality of such
integrals.

Jaikin-Zapirain also made some explicit calculations. His main example is:
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Theorem 6.3. LetOv be the ring of integers of a local field. LetM be its maximal ideal,
Fq = Ov/M and Lv = SL2(Ov). If q is odd, then

ZLv (s) = 1+ q−s +
q − 3

2
(q + 1)−s + 2

(
q + 1

2

)−s
+
q − 1

2
(q − 1)−s

+ 2
(
q − 1

2

)−s
+

4q( q
2
−1
2 )−s +

q2
−1
2 (q2

− q)−s +
(q−1)2

2 (q2
+ q)−s

1− q−s+1 .

The reader can immediately see that the function depends only on q and not onOv and the
abscissa of convergence of Lv is always ρ(Lv) = 1 independently of q and Ov (see also
Proposition 10.2 below). This is especially interesting since for G = SL2, r = rk G = 1
and |8+| = 1, so r/κ = 1.

Now we consider the general situation. LetK be a non-archimedean local field and G
an absolutely almost simple algebraic group overK . Fix aK-embedding of G in GLn for
some n, and let U = G(K) ∩ GLn(O) where O is the ring of integers of K . We consider
what can be said in general about ρ(U).

Let π be a uniformizer of O, q = |O/πO|, and

Uk = ker(U → GLn(O/πkO)).

Definition 6.4. (i) For a finite groupH we denote by γ (H) the number of its conjugacy
classes.

(ii) We define γ (U) (which may, a priori, depend on the embedding of U in GLn(O)) as
follows:

γ = γ (U) = lim sup
k→∞

logq γ (U/Uk)

k
. (6.1)

Proposition 6.5. Let δ = dim(G). Then

ρ(U) ≥
2γ
δ − γ

.

In other words: if µ = γ /δ then ρ(U) ≥ 2µ/(1− µ).

Proof. The quotient U/Uk is of order approximately (up to a multiplicative constant) qδk

and has approximately qγ k representations. If qak is the median value of the degrees of
these representations, then 1

2q
γ k
· (qak)2 ≤ qδk . Hence γ +2a ≤ δ+o(1) as k→∞, i.e.

a ≤ (δ− γ )/2. This means that U has at least 1
2q
γ k irreducible representations of degree

at most q
1
2 (δ−γ )k . Hence ρ(U) ≥ 2γ /(δ − γ ) as claimed. ut

Proposition 6.6. Let K be a non-archimedean local field, G an almost K-simple alge-
braic group and U an open compact subgroup of G(K). Then ρ(U) ≥ r/κ where r is
the absolute rank of G, κ = |8+|, and 8+ is the set of positive roots in the absolute root
system of G.
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Proof. Fix an embedding G ↪→ GLn. Then U (⊂ G(K) ⊂ GLn(K)) is commensurable
with G(O) := G(K)∩GLn(O)whereO is the ring of integers ofK . By Corollary 4.5, we
can replace U by G(O). Let Uk = ker(U → GLr(O/πkO)), where π is a uniformizer
of O. Now, [U : Uk], is of order approximately (up to a bounded multiplicative constant)
qk dim G where q = [O : πO]. Let T be a maximal torus of G. Then T(K)∩U is a compact
open subgroup of T(K) of dimension r . Its projection in U/Uk , denoted T(O/πkO), is
of order approximately qkr . Fix a maximal torus in GLn and let L be a finite extension
of K over which this torus splits; let OL denote the ring of integers in L. We can regard
U/Uk and its subgroup T(O/πkO) as subgroups of GLn(OL/πkOL), and as such, the
latter group can be conjugated into a diagonal subgroup.

We claim that for any local ring (A,m), two diagonal elements of GLn(A) are conju-
gate if and only if their entries are the same up to order. To prove this, we give a basis-
independent characterization of the multiplicity of an “eigenvalue” λ ∈ A of a diagonal-
izable A-linear map T from a rank-n free A-module to itself. Namely, the multiplicity of
λ is the (A/m)-dimension of the image of ker(T −λId) ⊂ An in (A/m)n. We remark that
this property is not true for general commutative rings. For instance, if e is an idempotent,
then (

e e − 1
1− e e

)(
1 0
0 0

)(
e e − 1

1− e e

)−1

=

(
e 0
0 1− e

)
.

As OL/πkOL is local, it follows that an element x ∈ T(O/πkO) is conjugate to at
most n! elements of T(O/πkO) within GLn(OL/πkOL) and therefore, a fortiori, within
U/Uk . This shows that U/Uk has at least cqkr different conjugacy classes, for some
c > 0 which does not depend on k, and hence this number of different representations.
By Proposition 6.5, ρ(U) ≥ r/κ as claimed. ut

7. The p-local factor: anisotropic groups

In this section we consider another class of examples for which ρ = r/κ , namely the
anisotropic groups over local fields K in characteristic zero. Let D be a division algebra
over K of degree d and G′ = SL1(D) the K-algebraic group of elements of D of norm
one. Thus G′(K) is a compact virtually pro-p group. This is a K-form of G = SLd , i.e.
over K , the algebraic group SL1(D) is isomorphic to SLd . Thus while rkK(G′) = 0, the
absolute rank of G′ is d − 1 and the absolute root system is that of SLd . In particular,

|8+| =
d2
− d

2
and

r

κ
=

d − 1
(d2 − d)/2

=
2
d
.

Theorem 7.1. If char(K) = 0, then ρ(G′(K)) = 2/d .

Remark. We cannot prove this in positive characteristic but see Theorem 7.3 below.

Before starting the proof of Theorem 7.1, let us give a “linear algebra” lemma to be
used in the proof.
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Lemma 7.2. Let K ⊂ L be an extension of local fields with rings of integers OK and
OL. Let π be a uniformizer of K and r ∈ N.

(i) If T : OnK → OnK is an injective OK -linear map, then

|ker T ⊗ (OL/π rOL)| = |cok T ⊗ (OL/π rOL)|
= |ker T ⊗ (OK/π rOK)|[L:K]

= |cok T ⊗ (OK/π rOK)|[L : K].

(ii) If U : OnL→ OnL is an injective OL-linear map and

3 = {x ∈ OnK | x ⊗ 1 ∈ imU},

then

|kerU ⊗ (OL/π rOL)| = |cokU ⊗ (OL/π rOL)|
≤ |ker(3⊗ (OK/π rOK)→ (OK/π rOK)n)|[L:K]

= |cok(3⊗ (OK/π rOK)→ (OK/π rOK)n)|[L:K].

Proof. IfD and C denote the kernel and cokernel of T ⊗ (OK/π rOK), respectively, then
|D| = |C| since the two middle terms in

0→ D→ (OK/π rOK)n→ (OK/π rOK)n→ C → 0

have equal order.
Now, as OL is free of rank [L : K] over OK , it follows that OL/π rOL is free over

OK/π rOK , and tensoring with it we obtain

0→ D ⊗ (OL/π rOL)→ (OL/π rOL)n→ (OL/π rOL)n→ C ⊗ (OL/π rOL)→ 0.

So,
|D ⊗ (OL/π rOL)| = |D|[L:K]

= |C|[L:K]
= |C ⊗ (OL/π rOL)|,

which gives (i).
For (ii), let I denote the image of U . Let S and T denote the inclusion maps I ↪→ OnL

and 3 ↪→ OnK . As T ⊗OK OL factors through S, the image of T ⊗OK (OL/π rOL) is
contained in the image of S ⊗OL (OL/π rOL). It follows that

|cok T ⊗OK (OL/π
rOL)| ≥ |cok S ⊗OL (OL/π

rOL)|.

We conclude by applying part (i) to T . ut

Proof of Theorem 7.1. By Proposition 6.6, ρ(G′(K)) ≥ 2/d . It suffices, therefore, to
prove only the upper bound.

Let us start by reviewing the “orbit method” classifying the representations of uni-
form pro-p groups. Recall that a torsion-free pro-p group U is called uniform if Up ⊇
[U,U ] (U4

⊃ [U,U ] if p = 2). If L is the Lie Zp-ring of U (see [DDMS, §8.2]) then
the irreducible representations of U are in one-to-one correspondence with the orbits of
homomorphisms ϕ : (L,+)→ µp∞ (where µp∞ is the group of p-power roots of unity).
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By orbits here we mean orbits under the adjoint action of U on L. Given such an ϕ, with
orbit [ϕ], the dimension of the corresponding representation is |[ϕ]|1/2. (For a detailed
description see [Ho] and [Ja2].)

We can be more concrete in the setting of interest for the theorem. LetO be the ring of
integers ofK,π a uniformizer ofO,D0 the maximalO-order ofD (which consists of all
the elements ofD whose reduced norm is inO), and L the subspace of all the elements of
D0 of reduced trace 0. The map x 7→ exp(px) from L to D takes L into a uniform open
subgroup of SL1(D) which we will call U , whose Lie ring is L. Our goal is to prove that
ρ(U) ≤ r/κ = 2/d .

By the orbit method described above, we have to classify the characters of L. Let

L∗ = {x ∈ D | TrdD/K(x) = 0 and TrK/Qp
TrdD/K(xL) ⊆ Zp}.

Given a pair (x, k) with x ∈ L∗ and k ∈ N, the map

L→ Zp → Zp/pkZp → µpk → µp∞ ,

y 7→ m = TrK/Qp
(TrdD/K(xy)) 7→ m (modpk) 7→ e2πim/pk ,

is a character of L. As the Killing form is non-degenerate all characters are obtained in
this way. There are, though, two types of repetition:

(i) The pairs (x, k) and (px, k + 1) induce the same character.
(ii) If x1 ≡ x2 (modpk) in L∗ then (x1, k) and (x2, k) induce the same character.

We should also consider a third kind of equivalence among pairs (x, k):

(iii) For every u ∈ U , (x, k) ∼ (xu, k), where xu is the image of x under the conjugation
action of u.

We will denote the equivalence class of (x, k) by [x, k]. So, there is a one-to-one cor-
respondence between the irreducible representations of U and the equivalence classes
[x, k]. The representation space associated to [x, k] will be denoted by V[x,k]. Note that
the equivalences (i) and (ii) preserve character, while (iii) varies character within an equiv-
alence class. We will denote by |[x, k]| the number of characters associated with the
equivalence class [x, k]. The orbit method implies that

dimV[x,k] = |[x, k]|1/2. (7.1)

Note that L∗ contains L as a subgroup of finite index, so by equivalence (i) we can
always assume that x ∈ L. The size of the orbit |[x, k]| is equal to the index of the
centralizer of exp(px) in U/U(pk) where U(pk) = exp(pk+1L).

The division algebra D has finitely many maximal subfields F1, . . . , Fc such that
every x ∈ D is conjugate to one of them in D. This implies by (iii) and by the fact that U
is mapped onto a finite index subgroup ofD∗/Z(D∗), that we can sum up only on x ∈ Fi ,
i = 1, . . . , c. It therefore suffices to treat the contribution of a single F = Fi .
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The intersection F ∩D0 is an order in F , and in establishing an upper bound, we may
count all x ∈ OF with TrF/K(x) = 0, where OF is the ring of integers of F . Denote by
π a uniformizer of OF .

Let ι1, . . . , ιd denote the embeddings of F into Qp, a fixed algebraic closure of Qp.
Let us denote by8 the root system of type Ad−1 given via the standard basis {e1, . . . , ed}

of Rd as
8 = {es − et | 1 ≤ s, t ≤ d, s 6= t}.

Given the pair (x, k) as before, let

9i(x, k) = {es − et ∈ 8 | p
k
|π i(ιs(x)− ιt (x))}.

One can check that 9i(x, k) depends only on the equivalence class [x, k], so we will
denote it 9i[x, k]. This is an increasing sequence

91[x, k] ⊆ · · · ⊆ 9`[x, k] = 8

of root subsystems of 8, where ` = ke and e is the ramification degree of K over Qp.
The formal similarity with (5.2) deserves explanation or at least comment. The key

is surely to be found in comparing the way in which the orbit method works in the two
settings, p-adic analytic and compact real Lie groups. In the latter case, we can view
dominant weights as integral W -orbits in t∗, where t is a Cartan subalgebra of the Lie
algebra. In each setting, the chain of root systems 9i characterizes the distances of a
linear functional on a Cartan subalgebra to the walls of the Weyl chambers. To say more,
we would need a unified way of viewing the Weyl dimension formula and (7.1). We do
not know of such a way, but the similarities between the two proofs cry out for a unified
treatment.

Claim 1. We have

dimV[x,k] = expq
((∑̀

i=1

|8+ \9i[x, k]|
)
− |8+|

)
where for y ∈ R, expq(y) = q

y .

Proof. We have

dimV[x,k] = (index of centralizer of x acting on U/U(pk))1/2

(1)
= expq

1
2

( ∑
1≤s 6=t≤d

(min{i | es − et ∈ 9i[x, k]} − 1)
)

(2)
= expq

1
2

((∑̀
i=1

|8 \9i[x, k]|
)
− |8|

)
(3)
= expq

((∑̀
i=1

|8+ \9+i [x, k]|
)
− |8+|

)
.
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Let us justify these equalities: (2) just reverses the order of summation between i and
(s, t), while (3) follows from the central symmetry of all root systems involved. Equality
(1) needs two remarks: First, as x-set: U/U(pk) is isomorphic to L/pkL via the map
λ ∈ L 7→ exp(pλ) which satisfies exp(x−1(pλ)x) = x−1 exp(pλ)x.

Secondly, the size of the centralizer of x acting on U/U(pk) is therefore the same
as the kernel of ad(x) − Id acting on L/pkL. Lemma 7.2 implies that this kernel can be
computed in a suitable extension which contains all the eigenvalues ιs(x), 1 ≤ s ≤ d.
Then equality (1) becomes clear. ut

We now turn to the question of how many representations (i.e., equivalence classes [x, k])
give rise to a specified sequence (91 ≤ · · · ≤ 9` = 8). The reader may note here that
the structure of the proof is similar to that of Theorem 5.1. There is, however, a minor
difference at this point. In the former proof every increasing chain actually occurs for
some λ. Here, typically, many chains will not occur at all. This does not matter because
at this point we are interested only in upper bounds.

Claim 2. The number of equivalence classes [x, k] giving rise to a sequence 91 ≤ · · · ≤

9` = 8 is bounded above by expq(
∑`
i=1((d − 1)− rk9i)).

Proof. By Lemma 7.2 we may assume that all the eigenvalues of x are in O.
We know that 9`[x, k] = 8 and the question is for how many x’s (counted mod pk),

9`−1[x, k] = 9`−1 etc.
For a fixed reduction of x (modπ i−1) we would like to count the number of possibil-

ities modulo π i . This means counting vectors (ι1(x), . . . , ιd(x)) subject to two additional
conditions:

(i) trace =
∑d
j=1 ιj (x) = 0,

(ii) ιs(x) ≡ ιt (x) (modπ i) for all (s, t) such that es − et ∈ 9`−i .

The dimension of the affine space of solutions to (ii) compatible with the specified
reduction of x (mod π i−1) equals d− rk9`−i and condition (i) leads to (d−1)− rk9`−i .
This proves Claim 2.

Theorem 7.1 follows now from Claims 1 and 2 by a computation identical to that
carried out in the proof of Theorem 5.1. ut

We can prove Theorem 7.1 only for characteristic 0 where the orbit method is available.
For quaternion algebras, however, we can prove the analogous theorem in odd character-
istic as well.

Theorem 7.3. LetK be a non-archimedean local field not of characteristic 2,D a central
simple algebra over K of degree 2, D0 a maximal order of K , and Nrd: D× → K× the
reduced norm. Then

ρ(D×0 ∩ ker Nrd) = 1.
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Proof. As in the proof of Theorem 7.1, we only need to establish the upper bound. Lack-
ing both a logarithm map and a satisfactory version of the orbit method in general, we
develop a crude substitute for each.

Let O be the ring of integers in K , π a uniformizer, and q the order of the residue
field of O. Let

Ui = 1+ π iO ⊂ O×, Hi = 1+ π iD0 ⊂ D
×

0 , Gi = kerNi,

where Ni : Hi → Ui is the restriction of Nrd. If m < n ≤ 2m, there are natural isomor-
phisms

eOm,n : O/πn−mO→ Um/Un and eDm,n : D0/π
n−mD0 → Hm/Hn

defined by

eOm,n(a + π
n−mO) = (1+ aπm)Un and eDm,n(a + π

n−mD0) = (1+ aπm)Hn.

In particular, |Um/Um+1| = q and |Hm/Hm+1| = q
4 and therefore

|Um/Un| = q
n−m, |Hm/Hn| = q

4(n−m).

The identity
Nrd(1+ a) = (1+ a)(1+ ā) = 1+ Trd(a)+ Nrd(a)

implies that the diagram

D0/π
n−mD0

Tn−m

��

eDm,n // Hm/Hn

Nm,n

��
O/πn−mO

eOm,n // Um/Un

(7.2)

commutes, where Tn−m and Nm,n denote the maps induced by Trd and Nrd respectively.
Let F ⊂ D be a separable quadratic extension of K . Then

Trd(F ) = TrF/K(F ) = K,

and D0 ∩ F is an open subring of F , so Trd(D0) ⊃ Trd(D0 ∩ F) contains an open
subgroup of O. If πc1O ⊂ Trd(D0), then π r+c1O ⊂ Trd(π rD0) for all non-negative
integers r . This implies that if r > c1, then

(Nrd(1+ π rD0) ∩ Ur+c1)Ur+c1+1 = Ur+c1

and therefore by the completeness of K ,

Nrd(Hr) ⊃ Ur+c1 (7.3)

for all r > c1. This implies |cokNr | < c2 for some constant c2 independent of r .
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Let L denote the Lie ring of elements of reduced trace 0 in D0. Applying the snake
lemma to

0 // πn−mD0
//

��

D0 //

��

D0/π
n−mD0 //

Tn−m

��

0

0 // πn−mO // O // O/πn−mO // 0

we see that
|ker Tn−m|
|L/πn−mL|

≤ c3 and |cok Tn−m| ≤ c3

for some constant c3. When m ≤ n ≤ 2m, we therefore find that

|cokNm,n| ≤ c3.

This inequality allows us to estimate |G1/Gn|. Indeed,

q3(n−m)
≤ |kerNm,n| =

|Hm/Hn| |cokNm,n|
|Um/Un|

≤ c3q
3(n−m).

The snake lemma gives

1→ Gm/Gn→ kerNm,n→ cokNn

and therefore

|kerNm,n|
|cokNn|

≤ |Gm/Gn| = |kerNm/kerNn| ≤ |kerNm,n| ≤ c3q
3(n−m).

Applying this for m = dn/2e and iterating, we get

log |G1/Gm| = 3m log q +O(logm). (7.4)

Next we directly compare Gm/Gn and L/πn−mL for c1 ≤ m < n ≤ 2m. The diagram
(7.2) determines an H1-equivariant isomorphism

ker Tn−m→̃ kerNm,n.

We know that L/πn−mL andGm/Gn can each be realized as a subgroup of index≤ c3 in
kerNm,n. There is a natural relation between characters on the two subgroups according
to which a character on the first group corresponds to a character on the second if each
is the restriction of a common character on kerNm,n. Each character on either subgroup
extends to at least 1 and at most c3 characters on kerNm,n. Each subgroup has a natural
filtration, one arising from the filtration of Gm by Gm+i and the other from the filtration
of L by π iL. These can be compared. For our purposes it is enough to note that the image
of Gn−1/Gn in kerNm,n is contained in the image of πn−m−1L/πn−mL in ker Tn−m. It
suffices to check that for every a ∈ L, we have Nrd(1+πn−1a) ∈ Nrd(Hn). This follows
immediately from (7.3) since Nrd(1+ πn−1a) ∈ U2n−2.
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Every continuous irreducible complex representation of G1 is a representation of
G1/Gn for some minimal n which we call the level of the representation. We would
like to find lower bounds for the dimensions of representations V of level n ≥ 2c1. Let
m = dn/2e, and consider the restriction of V to the normal abelian subgroup Gm/Gn
of G1/Gn. As VGn−1/Gn is a G1/Gn-subrepresentation of V , it must be trivial, since V
is of level n. Let χ0 denote a character of Gm/Gn appearing in the restriction of V to
Gm/Gn. Every character in the G1/Gn-orbit of χ0 in Hom(Gm/Gn,C×) appears in this
restriction, so the dimension of V is at least as large as the orbit of χ0, which is a character
non-trivial on Gn−1/Gn. To find a lower bound for the size of this set, we need an upper
bound on the size of the stabilizer of χ0.

Let φ0 denote a character of L/πn−mL which corresponds to χ0. The orbit size of φ0
differs from that of χ0 by at most a factor of c3. As χ0 is non-trivial on Gn−1/Gn, φ0 is
non-trivial on πn−m−1L/πn−mL. We therefore proceed by setting r = n−m and finding
a lower bound for the size of the orbit of

φ0 ∈ Hom(L/π rL,C×) \ Hom(L/π r−1L,C×).

To get this, we fix a character χ : K/O → C× such that χ(π−1) 6= 1. This gives a
pairing

〈a, b〉 = χ(Trd(ab))

on L ⊗ K . Let L∗ denote the kernel of L, i.e., the set of b such that 〈a, b〉 = 1 for all
a ∈ L. Thus L∗ is an O-lattice in L⊗K , and L ⊂ L∗. The map

a 7→ 〈π−ra, x〉

gives an isomorphism
L∗/π rL∗→ Hom(L/π rL,C×).

As L and L∗ are commensurable, the minimum orbit size of an element of L∗/π rL∗ not
divisible by π and an element of L/π rL not divisible by π differ by a bounded factor.

We are therefore led to the question of estimating the size of the stabilizer in G1/Gr
of x0 ∈ L/π

rL under the hypothesis π - x0. We begin by analyzing the set

Cx,r = {y ∈ D0 | xy − yx ∈ π
rD0}

for a fixed x. We see that the set

S = {(x, y) | x ∈ L \ πL, y ∈ D0, y /∈ SpanK{1, x} + πD0}

= {(x, y) | x ∈ L \ πL, y ∈ D0, y /∈ SpanO{1, x} + πD0}

is compact and contains no pair of commuting elements. This is because in characteristic
6= 2, any trace-zero element of M2(K̄) ⊃ D ⊃ D0 commutes only with linear combina-
tions of itself and the identity. By compactness, there exists c4 such that xy−yx /∈ πc4D0
for all (x, y) ∈ S. It follows that every y ∈ Bx,r is congruent (mod π r−c4 ) to an ele-
ment of SpanK{1, x} and therefore congruent (mod π r−c4 ) to an element of SpanO{1, x}.
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We count the number of elements of y ∈ Bx0,r such that Nrd(y) = 1 up to congru-
ence (mod π r−c4 ). Without loss of generality, we may assume that y = u + vx0, where
u, v ∈ O. The norm condition asserts

Nrd(u+ vx0) = u
2
+ Nrd(x0)v

2
= 1,

so we count the number of solutions (u, v) of this equation in the ring O/π r−c4O. The
solution set is the union of solutions where π - u and solutions where π - v. If (u1, v)

and (u2, v) are solutions of the first kind, then

(u1 + u2)(u1 − u2) = 0, and (u1 + u2)+ (u1 − u2) = 2u1.

As u1 is a unit, this implies that the g.c.d. of u1 + u2 and u1 − u2 divides 2. If 2 is πc5

times a unit, then

u1 ≡ ±u2 (modπ r−c4−c5).

This gives at most 2qc5qr−c4 solutions where π - u. The same argument applies when
π - v as long as π |Nrd(x0). If π - Nrd(x0), the same argument applies with the roles of u
and v exchanged.

We conclude that

|StabG1/Gr (x0| ≤ q
2c4(4qr+c5−c4) = c6q

r .

From this bound and (7.4), we can estimate the size of the orbit O(x0):

log |O(x0)| = 2r log q +O(log r).

Thus, for all representations V of level n,

log dimV ≥ 2r log q +O(log r). (7.5)

As r = n−m = [n/2],

|G1/Gn| = 6r log q +O(log r).

Since the sum of the squares of dimensions of all the representations of G1/Gn is
|G1/Gn|, the number of representations of level n satisfies

log |{V | level(V ) = n}| ≤ 2r log q +O(log r). (7.6)

Together, (7.5) and (7.6) imply the theorem. ut
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8. The p-local factor: isotropic groups

Theorems 5.1, 7.1, 7.3, and 6.3 and Proposition 6.6 strongly suggest that r/κ is always
the abscissa of convergence. Our work on the subject was dominated for quite a long time
by an effort to prove this. It turns out though that all these examples were misleading and
in fact we have:

Theorem 8.1. If K is a local non-archimedean field, G an isotropic almost simple K-
group (i.e., rkK(G) ≥ 1) and U an open compact subgroup of G(K), then ρ(U) ≥ 1/15.

Remarks. (i) If r = rk G goes to infinity then r/κ → 0, thus Theorem 8.1 shows that
r/κ is usually not the abscissa of convergence. It still may be the right answer for
groups of low K-rank.

(ii) The difference between isotropic and anisotropic groups is expressed by the fact that
the first have non-trivial Bruhat–Tits building. The proof we give below does not refer
to the buildings, but it seems that a better combinatorial understanding of them may
lead to a more precise estimate on ρ(U) (see §11 for more).

Proof. It suffices to treat the case of absolutely almost simple groups overK . Moreover, it
suffices to treat one representative from every isogeny class. Tits [Ti] gives a full descrip-
tion of the classical absolutely simple groups over K . Note that in proving our theorem
we may ignore the groups of typeG2, F4, E6, E7 and E8 as for these groups r/κ ≥ 1/15,
so our theorem follows from Proposition 6.6. Similarly, we can ignore forms of 3D4 and
6D4. All the rest are given in [Ti, Table II] up to isogeny as groups of one of the following
classical forms:

(a) SLm(D) where D is a central division algebra over K of degree d. These are inner
forms ofAn for n = md−1 (and we can assumem ≥ 2 as we consider only isotropic
groups).

(b) SUm(L, f ) where L is a quadratic extension of K and f is a non-degenerate hermi-
tian form of index x ≥ m/2− 1. These are outer forms of Am−1.

(c) SOm(K, f ), where f is a quadratic form of index x ≥ m/2 − 2. These are inner
forms of B(m−1)/2 ifm is odd, and they are forms ofDm/2 ifm is even, outer or inner
according to whether m/2− x is odd or even.

(d) Spm(K), where m is even. These are the groups of type Cm/2 and have index x =
m/2.

(e) SUm(D, f ), where D is the quaternion algebra over K and f is a non-degenerate
antihermitian form of index x ≥ (m− 1)/2. These are inner forms of Cm.

(f) SUm(D, f ), where D is the quaternion algebra over K and f is a non-degenerate
hermitian form of index x ≥ (m − 3)/2. These are forms of Dm, outer or inner
depending on m− 2x.

We will start with case (a). For simplicity we will assume first that D = K and m is
even. We later remark how to modify the proof for the general case.

Let X and Z be diagonal m/2×m/2 matrices such that
(
X 0
0 Z

)
is a diagonal matrix in

SLm(O) which is regular and has trace 0. For some t , all the diagonal entries are distinct
(mod π t ).
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We will consider the matrices MY obtained by reducing I + πk
(
X 0
0 Z

)
+
(0 Y

0 0

)
modulo

π3k+2t , where X and Z are fixed and Y varies over the qm
2(3k+2t)/4 possibilities (mod

π3k+2t ). Such matrices have determinant 1 (mod π2k), so assuming that k > t , without
sacrificing (mod π t ) regularity, we can always modify Z (mod πk) to arrange that MY ∈

SLm(O/π3k+2tO) for all Y .
Assume two such matrices MY and MY ′ are conjugate. This means that there is an

m×m matrix
(
A B
C D

)
, where A,B,C,D ∈ Mm/2(O/π3k+2tO), det

(
A B
C D

)
= 1 and(

A B

C D

)(
πkX Y

0 πkZ

)
=

(
πkX Y ′

0 πkZ

)(
A B

C D

)
. (8.1)

From (8.1) we can deduce:

(i) Considering the lower left block,

CX ≡ ZC (modπ2k+2t ),

which implies C ≡ 0 (modπ2k+t ) since the difference of any diagonal entry of X
and any diagonal entry of Z cannot be divisible by π t+1.

(ii) Considering the upper left block,

πkAX ≡ πkXA+ Y ′C (modπ3k+2t ).

From (i) we know that C ≡ 0 (modπ2k+t ), so we get

AX ≡ XA (modπk+t ),

which implies that A is diagonal (mod πk) since the difference between two distinct
diagonal entries of A cannot be divisible by π t+1.

(iii) Considering the lower right block,

CY + πkDZ ≡ πkZD (modπ3k),

and hence by (i),
DZ ≡ ZD (modπk+t )

and so D is diagonal (mod πk).
(iv) From (ii) and (iii) and det

(
A B
C D

)
= 1, we deduce thatA andD are invertible (mod π )

(since C ≡ 0 (modπ)) and hence also (mod πk).
(v) The upper right corner now gives

AY ≡ Y ′D (modπk).

So,
AYD−1

≡ Y ′ (modπk).
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Let now
M̃ = {MY | Y ∈ Mm/2(O/π3k+2tO)}.

Choose out of M̃ a set M of qm
2k/4 representatives for the different possible images of Y

(mod πk).
Assertions (ii)–(v) imply that for a given such MY ∈ M , there are at most q(2·m/2−1)k

= q(m−1)k other elements of M which are in the same conjugacy class. This implies that
M has representatives of at least q(m

2/4−m+1)k different conjugacy classes. In particular,
SLm(O/π3k+2tO) has at least q(m

2/4−m+1)k conjugacy classes. So we have proved that

γ (SLm(O)) ≥
1
3

(
m2

4
−m+ 1

)
=

1
12
(m2
− 4m+ 4).

Proposition 6.5 now implies that

ρ (SLm(O)) ≥
1
6 (m

2
− 4m+ 4)

m2 − 1− 1
12 (m

2 − 4m+ 4)
.

This proves the theorem for every m ≥ 6 even. For m = 4 we can use Proposition 6.6.
If we replace K by D (and m is still even) the proof works as it stands (recall that

SLm(D) means the set of all m × m matrices over D whose determinant, considered as
an md × md matrix over K̄ , is one.) The only modification needed is when computing
dimensions: the number of elements of M is qm

2d2k/4 and every element there can be
conjugated to at most q(md−1)k other elements of M (since rk(SLm(D)) = md − 1.)

We deduce that for an open subgroup U of SLm(D), γ (U) ≥ 1
3

( 1
4m

2d2
− md + 1

)
and since dimk(SLm(D)) = m2d2

− 1 we have

ρ(U) ≥

2
3

( 1
4m

2d2
−md + 1

)
m2d2 − 1− 1

3

( 1
4m

2d2 −md + 1
) .

This proves the theorem for md ≥ 6. For md ≤ 4, we can use Proposition 6.6.
Finally, for general m we will write m as m =

[
m+1

2

]
+
[
m
2

]
and in the proof we

will work with blocks of sizes
[
m+1

2

]
and

[
m
2

]
. E.g., X is an

[
m+1

2

]
×
[
m+1

2

]
matrix, Y

is
[
m+1

2

]
×
[
m
2

]
, Z is

[
m
2

]
×
[
m
2

]
etc. The proof (for K or D) carries over without any

difficulty. The size of M is then q
[m+1

2
][
m
2
]
d2k , and every element of it is conjugate to at

most q(md−1)k elements, so

γ (U) ≥
1
3

([
m+ 1

2

][
m

2

]
d2
−md + 1

)
,

and

ρ(U) ≥

2
3

([
m+1

2

][
m
2

]
d2
−md + 1

)
m2d2 − 1− 1

3

( 1
4m

2d2 −md + 1
) .
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This time we can assume m ≥ 3. For m ≥ 3 odd, the only pairs (m, d) for which
this quantity is less than 1/15 are (3, 1), (3, 2), and (5, 1). For these cases we can use
Proposition 6.6.

We now turn to groups of type (b)–(f), i.e. SUm(D, f ) where D is either K,L or the
quaternion algebra over K and f is a Hermitian or skew-Hermitian form on W = Dm.
By definition of index, we can choose a basis

e1, . . . , ex, f1, . . . , fx, g1, . . . , gs

with respect to which our form can be written in blocks of sizes x, x, and m − 2x as
follows:  0 I 0

±I 0 0
0 0 N

 .
(Note that if m = 2x, the third block size is zero, so in fact we will have a 2 × 2 block
matrix.)

For fixed x × x matrices X and Z, we consider matrices of the form

MY = Im +

πkX Y 0
0 πkZ 0
0 0 0

 .
If X = Z = 0, the condition on Y for this matrix to lie in SUm(D, f ) is Y ± σ(Y ) = 0,
where σ is the involution (possibly trivial) defining the group. The number of distinct
possibilities for Y (mod πk) is qx

2k , q(x
2
−x)k/2, q(x

2
+x)k/2, q(2x

2
+x)k , and q(2x

2
−x)k for

cases (b), (c), (d), (e), and (f) respectively. By conjugation, we see that whenever X and
Z are chosen so that M0 ∈ SUm(D, f ), the number of possible values of Y (mod πk)
for which MY ∈ SUm(D, f ) is the same. We will fix X,Z to be diagonal matrices which
have all 2x entries distinct (mod π t ). For some value of t depending only on m and the
order q of the residue field of K , we can always do this.

If MY and MY ′ are conjugate, we have a (mod π3k+2t ) equality:

A B C

D E F

G H J

Ix +X Y 0
0 Ix + Z 0
0 0 Is

 =
Ix +X Y ′ 0

0 Ix + Z 0
0 0 Is

A B C

D E F

G H J

 .
Imitating steps (i)–(v) above, we prove first that D ≡ 0 (mod π2k+t ) and next that A

andE are diagonal (mod πk). Finally, we conclude that there are at least qn distinct conju-
gacy classes, where n is x2k−2xk, (x2

−x)k/2−xk, (x2
+x)k/2−xk, (2x2

+ x)k − 4xk,
and (2x2

− x)k − 4xk for cases (b) through (f) respectively. Using the relation between
m and x, we conclude that
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ρ(U) ≥



2x2
− 4x

(2x + 2)2 − 1− (x2 − 2x)
in case (b),

x2
− 3x

(2x + 4)(2x + 3)/2− (x2 − 3x)/2
in case (c),

x2
− x

2x(2x + 1)/2− (x2 − x)/2
in case (d),

4x2
+ 2x

(4x + 2)(4x + 1)/2− (2x2 + x)
in case (e),

4x2
− 2x

(4x + 6)(4x + 5)/2− (2x2 − x)
in case (f).

In all cases, therefore,

ρ(U) ≥
2x2
− 6x

3x2 + 17x + 12
,

so ρ(U) > 1/15 for x ≥ 5. For x ≤ 4, we have rank ≤ 11, and therefore Coxeter number
≤ 30. Thus, Proposition 6.6 covers all these cases. ut

Remarks. Theorems 7.1 and 8.1 show a dichotomy in the asymptotic behavior of ρ(U)
between isotropic and anisotropic groups. It should be noted, however, that the number
ρ(U) itself cannot distinguish between the two: For example, for a quaternion algebra D
overK of characteristic zero, ρ(SL1(D)) = 1 and at the same time ρ(SL2(O)) = 1 when
O is the ring of integers of K .

9. Applications to general groups

We can now apply the results of the previous section to prove the following theorem:

Theorem 9.1. If 0 is a finitely generated infinite linear group over some field F (or more
generally, if 0 is a finitely generated group with some homomorphism ϕ : 0→ GLn(F )
with ϕ(0) infinite) then ρ(0) ≥ 1/15.

Proof. If 0 is a quotient of 01 then 0 ≤ ρ(0) ≤ ρ(01), so it suffices to prove the
result for the case of a linear group 0. Moreover, we can replace F by the ring generated
by the entries of the generators of 0 to deduce that 0 is inside GLn(A) for some finitely
generated subringA of F . Let now G be the Zariski closure of 0. If G is virtually solvable
then 0 has a finite index subgroup with an infinite abelianization. This implies that for
some `, 0 has infinitely many `-dimensional irreducible representations and so ρ(0)
= ∞ and we are done. So assume G is not virtually solvable and we can then replace G
by its quotient modulo the solvable radical and replace 0 by a finite index subgroup (using
Corollary 4.5) to assume that G is semisimple, or even simple by taking a (non-trivial)
simple quotient.
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Now, we specializeA into a global field k, keeping 0 non-virtually solvable. In fact, it
was shown in [LaLu, Theorem 4.1] that this can be done keeping G as the Zariski closure.

So, altogether we can assume 0 is a Zariski dense subgroup in G(k), where G is a
simple k-group. Let Uv denote the closure, in the v-adic topology, of 0 in G(kv) for some
non-archimedean place v for which G is isotropic over kv and that closure is compact.
Note that all but finitely many v satisfy each condition, so there is no difficulty in fix-
ing v satisfying both. By Pink’s characterization of Zariski dense compact subgroups of
semisimple groups over local fields [Pi], there exists a finite extension k′v of kv , a sim-
ply connected, almost simple algebraic group G′ over k′v , and a compact open subgroup
U ′v ⊂ G′(k′v) such that Uv is topologically isomorphic to the quotient of U ′v by its inter-
section with the center of G′(k′v). Replacing U ′v with an open subgroup which meets that
center only in the identity, we see that Uv has an open subgroup which is topologically
isomorphic to an open subgroup of the k′v points of the almost simple algebraic group G′.
Hence ρ(0) ≥ ρ(Uv) ≥ 1/15 by Theorem 8.1. ut

We now show that Theorem 9.1 is not valid in general for finitely generated, residually
finite groups. In fact, we can even prove:

Theorem 9.2. There exists a finitely generated, residually finite, infinite group 0 with
ρ(0) = 0.

Proof. Let us recall first the result of Liebeck and Shalev counting representations of the
alternating groups Ak .

Theorem 9.3 (Liebeck–Shalev [LiSh1]). For every s > 0, limk→∞ZAk (s) = 1 where
as before ZAk (s) =

∑
∞

i=1 ri(Ak)i
−s .

This theorem can be converted to an explicit upper bound on representation growth, via
the following lemma:

Lemma 9.4. IfG is a perfect finite group, 0 < s < 1, and ZG(s) < 1+ c, then for every
n ∈ N, we have Rn(G) ≤ cns + 1.

Proof. As G is perfect, r1(G) = 1. Then

(Rn(G)− 1)n−s =
n∑
i=2

ri(G)n
−s
≤

n∑
i=2

ri(G)i
−s
≤ c,

which implies the lemma. ut

Let us now recall some results of Segal [S]: Let `0, `1, `2, . . . be a sequence of positive
integers. We construct, by induction, a sequence of finite groups Wr as follows:

W0 = A`0 , W1 = A
`0
`1

oW0, W2 = A
`0`1
`2

oW1, . . . , Wr = A
`0...`r−1
`r

oWr−1, . . . .

These are wreath products obtained as natural subgroups of the automorphism group of
the rooted tree with degree `0 at the origin and degree `i + 1 for all the vertices of level
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i > 0 (i.e. of distance i from the origin). See [S] for the detailed description. Let W
be the profinite group W = lim

←−
rWr with the obvious morphisms. It is also shown in

[S] that W contains a finitely generated dense subgroup 0 whose profinite completion
is isomorphic to W via the natural map 0̂ → W extending the embedding 0 ↪→ W .
It is easy to deduce that 0 is not a linear group. Moreover, every representation of it
factors through one of the Wr . Indeed, if 0 had had an infinite non-virtually solvable
representation then (by an application of strong approximation for linear groups [LS,
pp. 389–407]) there would have been infinitely many simple groups of Lie type among
the composition factors of 0̂ = W . But as we know, all the composition factors of W are
alternating groups. Moreover, W (and hence 0) has the (FAb) property (i.e., every finite
index subgroup has a finite abelianization) and so 0 has no infinite virtually-solvable
quotients either. Thus every representation factors through some Wr . Moreover, as the
kernels ker(W → Wr) are the only finite index normal subgroups of W , a representation
of Wr which does not factor through Wr−1 must be faithful.

Let us now choose a sequence `0, `1, `2, . . . which grows sufficiently fast. More
specifically, we want

log |Wr−1|

log `r
<

1
r

(9.1)

and

ZA`r

(
1
r

)
< 1+

1
Lr−1

(9.2)

where Lr−1 = `0`1 · · · `r−1.
Note that since |Wr−1| =

( 1
2`r−1!

)`0···`r−2
|Wr−2|, the order ofWr−1 depends only on

`0, . . . , `r−1, so we can choose `r large enough to satisfy (9.1). Also as ZAk (1/r) → 1
as k→∞, we can make sure that `r also satisfies (9.2).

Given the sequence `0, `1, `2, . . . let W and 0 be the groups as defined before with
respect to this sequence. We have to bound rn(0).

So given n ∈ N, let r be the unique natural number for which `r − 1 ≤ n < `r+1− 1.
As A`r+1 is a subgroup ofWr+1 and every non-trivial representation of A`r+1 is of dimen-
sion at least `r+1 − 1, all the n-dimensional representations of 0 factor through Wr for
this r . By Proposition 4.4,

Rn(Wr) ≤ |Wr−1|Rn(A
`0...`r−1
`r

)

where Rn is the number of all irreducible representations of dimension at most n. Thus

lim
n→∞

logRn(0)
log n

= lim
n→∞

logRn(Wr)

log n
≤ lim
n→∞

log |Wr−1|

log n
+ lim
n→∞

logRn(A
`0...`r−1
`r

)

log n
.

As n ≥ `r − 1, (9.1) implies the first summand is zero.
For the second summand, note that for Lr−1 = `0 · · · `r−1,

Z
A
Lr−1
`r

(s) = ZA`r (s)
Lr−1 .
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Thus by (9.2) we get

Z
A
Lr−1
`r

(
1
r

)
<

(
1+

1
Lr−1

)Lr−1

< e < 3.

This means by Lemma 9.4 that

Rn(A
Lr−1
`r

) ≤ 2n1/r
+ 1.

Thus

lim
n→∞

logRn(A
Lr−1
`r

)

log n
= 0 and so ρ(0) = lim

n→∞

logRn(0)
log n

= 0

as promised. ut

10. Lattices in the same semisimple group

The following theorem gives some support to our Conjecture 1.5 which predicts the same
abscissa of convergence for lattices in the same semisimple locally compact group.

Let H =
∏`
i=1 SL2(Ki) where each Ki is a local field. Recall that rkH = `, and

when ` ≥ 2, every irreducible lattice 0 in H is (S-)arithmetic. In this case, Serre’s con-
jecture [Se] predicts that 0 has the CSP. This has been proved in the case of non-uniform
lattices. On the other hand, when ` = 1, there are non-arithmetic lattices, and even the
arithmetic ones do not satisfy the CSP (see [LS, Chapter 7] for an overview and refer-
ences). Here we prove

Theorem 10.1. Let H =
∏`
i=1 SL2(Ki) where the Ki are local fields not of characteris-

tic 2. Let 0 be an irreducible lattice of H . Then:

(a) If ` = 1, then ρ(0) = ∞.
(b) If ` ≥ 2 and 0 has the CSP, then ρ(0) = 2.

Before proving the theorem, let us make a few observations on the connection between
representation growth and subgroup growth of a finitely generated pro-p group L. As be-
fore, let an(L) (resp. sn(L)) be the number of subgroups of L of index n (resp. at most n)
and rn(L) (resp. Rn(L)) the number of irreducible representations of L of degree n (resp.
at most n). For a finite index subgroup M of L, define

d(M) = dimFp (M/[M,M]Mp) = logp(|M/[M,M]Mp
|),

e(M) = logp(|M/[M,M]|).

Let

dj (L) = sup{d(M) | [L : M] = pj }, ej (L) = sup{e(M) | [L : M] = pj },

d∗j (L) =

j∑
i=0

di(L).
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Proposition 10.2. Let L be a finitely generated pro-p group and j ∈ N. Then:

(a) pdj−1(L)−1
≤ apj (L) ≤ p

d∗
j−1(L).

(b) Rpj (L) ≥
1
pj
pdj (L).

(c) logRpj (L) ≥
1
j

log apj (L)−
j − 1

2
.

(d) rpj (L) ≤ apj (L) · ej (L).

Proof. (a) follows from [LS, Proposition 1.6.2] while (b) follows from Proposition 4.4
above. Now, by applying (a) and then (b) we have

apj (L) ≤

j−1∏
i=0

pdi (L) ≤

j−1∏
i=0

piRpi (L),

which gives (c). Finally, (d) follows from the fact that a finite p-group is anM-group ([I]),
i.e. every irreducible representation of it of degree pj is induced from a one-dimensional
character of some subgroup of index pj . ut

Corollary 10.3. If the subgroup growth rate of L is faster than nlog n (i.e.
lim sup log sn(L)/(log n)2 = ∞) thenL does not have polynomial representation growth,
i.e. ρ(L) = ∞.

The corollary follows from Proposition 10.2(c). We should remark that this corollary is
the best possible: it is shown in [LuMr] that SLd(Fp[[t]]) (which is a virtually pro-p
group) has polynomial representation growth, while its subgroup growth is nlog n (see
[LS, Chapter 4]).

Let us now use the above observations to treat the special case of Theorem 10.1(a)
whenH = SL2(C) and 0 is a cocompact lattice inH . A well known conjecture, attributed
to Thurston, asserts that in this case, 0 has a finite index subgroup1 which maps onto Z.
This would give our claim immediately. However, the conjecture remains wide open. Still,
it was shown in [Lu1] that such 0 has a finite index subgroup whose pro-p completion L
is a Golod–Shafarevich group (i.e. d(L) ≥ 4 while r(L) < d(L)2/4 where r(L) is the
minimal number of pro-p relations of L, i.e. r(L) = dimH 2(L,Fp)). For such groups,
Shalev (cf. [LS, Theorem 4.6.4]) proved that for every ε > 0, an(L) ≥ n(log n)2−ε for
infinitely many integers n. Thus Corollary 10.3 implies that ρ(0) ≥ ρ(L) = ∞.

We mention in passing that Shalen and Wagreich (see [SW, Lemma 1.3]) proved a
slightly better estimate on dj (0) (and hence on an(0)). A much better estimate was given
recently by Lackenby [Ly].

Now, to complete the proof of (a) of the theorem, we recall that in all other cases, the
analogue of Thurston’s conjecture is true. In fact, it is even known (by several different
methods of proof; see discussion in [LS, §7.3]) that in all these cases 0 has a finite index
subgroup which is mapped onto a non-abelian free group. Thus, clearly, ρ(0) = ∞.
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For (b), by Corollary 4.5 and Proposition 4.6, we may assume without loss of gener-
ality that

Z0(s) = ZG(C)(s)
#S∞ ·

∏
v /∈S

ZLv (s) (10.1)

where G(C) = SL2(C) and all but finitely many Lv are of the form SL2(Ov) where
Ov is the ring of integers of the completion of the global field k at v, and the remaining
Lv are compact open subgroups of groups which are either of the form SL2 of a local
field, or SL1 of a quaternion algebra over a local field. The Euler factors corresponding
to these remaining factors have abscissa of convergence 1 by Theorems 6.3, 7.1 and 7.3.
In determining whether Z0(s) does or does not have abscissa of convergence 2, they
may therefore be omitted from the Euler product. Likewise, ZG(C)(s) has abscissa of
convergence 1 by Theorem 5.1, so the first factor on the right hand side of (10.1) may be
omitted from the Euler product. It remains to consider the abscissa of convergence of∏

v /∈T

ZSL2(Ov)(s) (10.2)

for some finite set T of places of k.
As the Ki are not of characteristic 2, the same is true for k and therefore for the kv .

For s in the interval [2, 3], we have 2s ≤ 8, and

(q + 1)−s < q−s < (q − 1)−s ≤ 8q−s .

By Theorem 6.3, for q odd,

ZSL2(Ov)(s) > 1+
(
q−s +

q − 1
2

(q − 1)−s
)
+

4q
( q2
−1
2

)−s
+

q2
−1
2 (q2

− q)−s

1− q1−s

> 1+
q

2
q−s +

q2

2 (q
2)−s

1− q1−s

= 1+
1
2
q1−s
+

1
2
(q1−s)2(1− q1−s)−1 > (1− q1−s)−1/2.

In the other direction, we have

ZSL2(Ov)(s) < 1+ q−s + q1−s
+ 16q−s + 4q1−s

+ 128q−s

+
256q1−2s

+ 4q2−2s
+ q2−2s

1− q1−s

< 1+ 100q1−s
+

1000q2−2s

1− q1−s < (1− q1−s)−100.

There are finitely many Euler factors for which q is even (and none at all if k is of positive
characteristic). We may therefore assume q is odd for all Euler factors and prove that
Z0(s) converges for s > 2 and diverges for s = 2 by comparing the product (10.2) with
ζk,T (s − 1)1/2 and ζk,T (s − 1)100, where ζk,T (s) is the usual Dedekind ζ -function of k
with the Euler factors at T removed (which is analytic for <(s) > 1 and has a simple pole
at s = 1). ut
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11. Remarks and suggestions for further research

Clearly, we are still at the qualitative stage in our understanding of the abscissa of con-
vergence for representation zeta functions. We mention some of the questions left open
by this paper.

For general finitely generated groups 0, are there any positive values which cannot be
achieved? For infinite linear groups, 1/15 is probably not optimal. A better understanding
of ρ(U) where U is a compact open subgroup of E8(kv) seems likely to improve that
value. We do not even have a conjecture regarding the greatest lower bound.

For arithmetic groups 0 satisfying the congruence subgroup property, we still lack a
plausible conjecture for the value of ρ(0). It is conceivable that without determining the
actual value, one can prove that ρ(0) is always rational in this setting. We do not know if
the values ρ(0) as 0 ranges over arithmetic groups satisfying the CSP are bounded above.
By combining the results of [LiSh2] with upper bound estimates of the kind developed in
Theorem 7.3 it is likely that one can prove

ρ(0) ≤ c + sup
v
ρ(0v),

where 0v denotes the v-adic completion of 0 and c is an absolute constant.
This raises the question as to whether one can find reasonable upper bounds for ρ(U)

for compact open subgroups U ⊂ G(K) of almost simple algebraic groups over non-
archimedean local fields. For instance, is there an absolute constant which works for all
G and allK? In a different direction, can one prove equality for the values of ρ for groups
of fixed type (SLn for example), as K ranges over local fields? (Compare Theorem 6.3,
Theorem 7.1, and [LuNi].) It is conceivable that one could do so without being able
to compute the common value. As a step toward computing ρ(SLn(Zp)), it would be
interesting to estimate the number of conjugacy classes in SLn(Z/prZ), for instance when
n and p are fixed and r is allowed to grow.

One approach to these problems would be to try to imitate the method of Theorem 7.1.
Let G be a group scheme of finite type over the ring OK of integers in a local field
K with almost simple generic fiber. Let U = G(OK) and let Ur denote the kernel of
U → G(OK/π rK). Every element of U/Ur lifts to a regular semisimple element of U .
Up to G(K)-conjugacy, there are finitely many maximal tori Ti in the generic fiber of G,
and any regular semisimple conjugacy class meets exactly one such maximal torus, and
meets it in finitely many points. The conjugacy classes of U up to G(K)-conjugacy are
what gives rise to the general lower bound of Proposition 6.6.

Describing the regular semisimple conjugacy classes in U (rather than G(K)) brings
the Bruhat–Tits building B of G overK into the picture. (Note that for anisotropic groups,
where the building is trivial, Theorem 7.1 says that Proposition 6.6 is sharp.) For simplic-
ity, let us suppose that U is exactly the stabilizer of a vertex x0 of the building. If, for
example, g ∈ Ur , then it fixes all the vertices in Bx0(r), the ball of radius r centered at
x0 in B. Now, if hi ∈ G(K), i = 1, 2, and hi(x0) ∈ Bx0(r), then h−1

i ghi fixes x0 and
therefore lies in U . But h−1

1 gh1 and h−1
2 gh2 are not necessarily conjugate to each other

in U . If g is regular semisimple, then
u−1(h−1

1 gh1)u = h
−1
2 gh2
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is equivalent to h2u
−1h−1

1 ∈ ZG(K)(g) = T(K), where T is the unique maximal torus
containing g. In other words, h2 belongs to the double coset T(K)h1U , or, yet again,
h2(x0) lies in the T(K)-orbit of h1(x0). Thus, counting torus orbits in balls in the building
is closely connected with the problem of classifying conjugacy classes in U and thereby
with the problem of counting conjugacy classes in U/Ur .

This strongly suggests that when the building B is “larger”, there are more conjugacy
classes in U (and U/Ur) and ρ(U) tends to be larger. As mentioned above, it is still not
clear if ρ(U) can be arbitrarily large. A good test case: is ρ(SLn(Zp)) bounded above
independently of n?

Added in proof. Kassabov and Nikolov [KN] have improved on Theorem 9.2, giving a positive
answer to the question in §11 as to whether every real number is the abscissa of convergence of the
representation zeta function of some finitely generated group.
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