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Abstract. Let X be an arbitrary hyperbolic geodesic metric space and let 0 be a countable sub-
group of the isometry group Iso(X) of X. We show that if 0 is non-elementary and weakly acylin-
drical (this is a weak properness condition) then the second bounded cohomology groupsH 2

b
(0,R),

H 2
b
(0, `p(0)) (1 < p < ∞) are infinite-dimensional. Our result holds for example for any sub-

group of the mapping class group of a non-exceptional surface of finite type not containing a normal
subgroup which virtually splits as a direct product.

1. Introduction

A Banach module for a countable group 0 is a Banach space E together with a homomor-
phism of 0 into the group of linear isometries of E. For every such Banach module E for
0 and every i ≥ 1, the group 0 naturally acts on the vector space L∞(0i, E) of bounded
functions 0i → E. If we denote by L∞(0i, E)0 ⊂ L∞(0i, E) the linear subspace of all
0-invariant such functions, then the second bounded cohomology group H 2

b (0,E) of 0
with coefficients E is defined as the second cohomology group of the complex

0→ L∞(0,E)0
d
−→ L∞(02, E)0

d
−→ · · ·

with the usual homogeneous coboundary operator d (see [M01]). There is a natural ho-
momorphism of H 2

b (0,E) into the ordinary second cohomology group H 2(0,E) of 0
with coefficients E which in general is neither injective nor surjective.

In this paper we are only interested in the case that E = R with the trivial 0-action or
that E = `p(0) for some p ∈ (1,∞) with the natural 0-action by right translation which
assigns to a p-summable function f and an element g ∈ 0 the function gf : h 7→ f (hg).

Since every homomorphism ρ of 0 into a countable group G induces a homomor-
phism ρ∗ : H 2

b (G,R) → H 2
b (0,R), second bounded cohomology with real coefficients

can be used to find obstructions to the existence of interesting homomorphisms 0 → G.
The underlying idea is to find conditions on G and ρ which ensure that the image of the
map ρ∗ is “large” (e.g. infinite-dimensional) and conclude that this imposes restrictions
on the group 0.
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Two countable groups 0,G are called measure equivalent [G93] if 0,G admit com-
muting measure preserving actions on a standard infinite measure Borel space with finite
measure fundamental domains. Measure equivalence defines an equivalence relation for
countable groups [Fu99a]. Monod and Shalom [MS06] showed that for countable groups,
vanishing of the second bounded cohomology group with coefficients in the regular rep-
resentation is preserved under measure equivalence. Thus second bounded cohomology
with coefficients in the regular representation provides an obstruction to the existence of
a measure equivalence between two given countable groups.

For the application of these ideas it is necessary to obtain information on these
bounded cohomology groups. The first and easiest result in this direction is due to
B. Johnson (see [I87] for a discussion and references) who showed that the bounded co-
homology of amenable groups with real coefficients is trivial. Later Brooks [Br81] found
a combinatorial method for the construction of non-trivial real second bounded cohomol-
ogy classes and used it to show that the second bounded cohomology group of a finitely
generated free group is infinite-dimensional.

Fujiwara [F98] investigated the second real bounded cohomology group of a group
of isometries of a hyperbolic geodesic metric space. Such a space X admits a geometric
boundary ∂X. Each isometry of X acts as a homeomorphism on ∂X. The limit set of
a group 0 of isometries of X is the closed 0-invariant subset of ∂X of all accumulation
points of a fixed 0-orbit inX. The group 0 is called non-elementary if its limit set contains
at least three points; then the limit set of 0 is in fact uncountable. Using a refinement and
an extension of Brooks’ method, Fujiwara showed that for a countable non-elementary
group 0 of isometries of X acting properly discontinuously on X in a metric sense, the
kernel of the map H 2

b (0,R) → H 2(0,R) is infinite-dimensional [F98]. Bestvina and
Fujiwara extended this result further to countable subgroups of Iso(X) whose actions
on X satisfy some weaker properness assumption [BF02]. Their result is for example
valid for non-elementary subgroups of the mapping class group of an oriented surface S
of finite type and negative Euler characteristic, i.e. for subgroups of the group of isotopy
classes of orientation preserving diffeomorphisms of S which are not virtually abelian. As
a consequence, the second bounded cohomology group of every non-elementary subgroup
of such a mapping class group is infinite-dimensional.

On the other hand, by a result of Burger and Monod [BM99, BM02], for every ir-
reducible lattice 0 in a connected semisimple Lie group with finite center, no compact
factors and of rank at least 2 the kernel of the natural map H 2

b (0,R) → H 2(0,R) van-
ishes. Together with the results of Fujiwara [F98] and Bestvina and Fujiwara [BF02] it
follows easily that the image of every homomorphism of 0 into a finitely generated word
hyperbolic group or into the mapping class group of an oriented surface of finite type and
negative Euler characteristic is finite [BM02, BF02]. The latter result was earlier derived
with different methods by Farb and Masur [FM98] building on the work of Kaimanovich
and Masur [KM96].

The goal of this note is to present a new method for constructing nontrivial second
bounded cohomology classes for a countable group 0 from dynamical properties of suit-
able actions of 0. We use it to give a common proof of extensions of the above mentioned
results of Fujiwara [F98] and of Bestvina and Fujiwara [BF02], which among other things
answers a question raised by Monod and Shalom [MS04, MS06].
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For the formulation of these results, call a countable group 0 of isometries of a (not
necessarily proper) hyperbolic geodesic metric space X weakly acylindrical if for every
point x0 ∈ X and everym > 0 there are numbersR(x0, m) > 0 and c(x0, m) > 0 with the
following property. If x, y ∈ X are such that a geodesic γ connecting x to y meets them-
neighborhood of x0 and if d(x, y) ≥ R(x0, m) then there are at most c(x0, m) elements
g ∈ 0 such that d(x, gx) ≤ m and d(y, gy) ≤ m (compare with the definition of an
acylindrical isometry group in [B03]). We show in Section 4 (see [F98, BF02, MMS04]
for earlier results)

Theorem A. Let 0 be a non-elementary weakly acylindrical countable group of isome-
tries of an arbitrary hyperbolic geodesic metric space. Then the kernels of the maps
H 2
b (0,R)→ H 2(0,R) and H 2

b (0, `
p(0))→ H 2(0, `p(0)) (1 < p <∞) are infinite-

dimensional.

As an easy corollary of Theorem A and a result of Bowditch [B03] we obtain an extension
of the result of Bestvina and Fujiwara [BF02]. For its formulation, we say that a group
0 virtually splits as a direct product if 0 has a finite index subgroup 0′ which splits as a
direct product of two infinite groups. We show

Corollary B. Let 0 be a subgroup of the mapping class group of an oriented surface of
finite type and negative Euler characteristic. If 0 is not virtually abelian then the kernel of
the map H 2

b (0,R) → H 2(0,R) is infinite-dimensional. If moreover 0 does not contain
a normal subgroup which virtually splits as a direct product then the kernel of each of the
maps H 2

b (0, `
p(0))→ H 2(0, `p(0)) (1 < p <∞) is infinite-dimensional.

The following corollary is an immediate consequence of Corollary B and the work of
Burger–Monod and Monod–Shalom [BM99, BM02, MS06]. For its formulation, call a
lattice3 in a productG = G1×G2 of two locally compact σ -compact and non-compact
topological groups irreducible if the projection of 3 to each of the factors is dense.

Corollary C. Let 0 be a subgroup of the mapping class group of an oriented surface of
finite type and negative Euler characteristic. Assume that 0 does not contain a normal
subgroup which virtually splits as a direct product. Then 0 is not measure equivalent
to an irreducible lattice in a product of two locally compact σ -compact non-compact
topological groups.

For lattices in semisimple Lie groups of higher rank, Corollary C follows from [FM98]
and the beautiful work of Furman [Fu99a]. The earlier result of Zimmer [Z91] suffices
to deduce Corollary C for the full mapping class group which admits a linear represen-
tation with infinite image. Recently, Kida [K06] derived a much stronger rigidity result.
Namely, he showed that for every countable group 3 which is measure equivalent to the
mapping class group M of a non-exceptional oriented surface of finite type, there is a
homomorphism 3→M with finite kernel and finite index image.

The organization of the paper is as follows. In Section 2, we introduce our method
for the construction of second bounded cohomology classes in the concrete example of
the fundamental group 0 of a convex cocompact complete Riemannian manifold M of
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bounded negative curvature. Such a manifoldM contains a compact convex subset C(M),
the so-called convex core, as a strong deformation retract. The group0 is word hyperbolic,
and the convex core C(M) of M is a K(0, 1)-space. Therefore, if 0 is non-elementary,
i.e. if 0 is not abelian, then the dimension of the cohomology group H 2(0,R) is finite,
and by Fujiwara’s result [F98], the group H 2

b (0,R) is infinite-dimensional.
Inspired by a result of Barge and Ghys [BG88], we relate the second bounded co-

homology group H 2
b (0,R) to the geodesic flow 8t of M which acts on the unit tangent

bundle T 1M of M . Since M is convex cocompact, T 1M admits a compact 8t -invariant
hyperbolic set W which is the closure of the union of all closed orbits of 8t . The restric-
tion of 8t to W is topologically transitive.

A cocycle for the action of 8t on W is a continuous function c : W × R → R such
that c(v, s+ t) = c(v, t)+c(8tv, s) for all v ∈ W and all s, t ∈ R. Two cocycles c, d are
cohomologous if there is a continuous function ψ : W → R such that ψ(8tv)+c(v, t) =
d(v, t)+ψ(v). The collection of all cocycles which are cohomologous to a given cocycle
c is the cohomology class of c. The flip F : v 7→ −v acts on W and on the space of
cocycles for the geodesic flow preserving cohomology classes. The cohomology class of
a cocycle c is called flip anti-invariant if F(c) is cohomologous to −c. We denote by
DC(M) the vector space of all flip anti-invariant cohomology classes of cocycles for the
geodesic flow on W which are Hölder continuous, i.e. such that for a fixed number t > 0
the function v 7→ c(v, t) is Hölder continuous.

Every smooth closed 1-form on M defines via integration along orbit segments of 8t

a Hölder continuous cocycle for 8t which is anti-invariant under the flip. Two cocycles
defined by closed 1-forms in this way are cohomologous if and only if the 1-forms define
the same de Rham cohomology class on M . Thus H 1(0,R) = H 1(M,R) is naturally a
subspace of DC(M). In Section 2 we show

Theorem D. Let 0 be the fundamental group of a convex cocompact manifold M of
bounded negative curvature. Then the quotient space DC(M)/H 1(0,R) naturally em-
beds into ker(H 2

b (0,R)→ H 2(0,R)).

Section 3 contains the main technical result of this paper. Starting from the concrete con-
struction in Section 2, we present an abstract dynamical criterion for infinite-dimensional
second bounded cohomology for a countable group 0 acting as a group of homeomor-
phisms on a metric space of bounded diameter. The coefficients of these cohomology
groups can be either R or `p(0) for some p ∈ (1,∞). Theorem 4.5 of Section 4 shows
that our criterion can be applied to countable groups which admit a non-elementary
weakly acylindrical isometric action on a hyperbolic geodesic metric space; this then
yields Theorem A. Section 5 contains the proof of Corollary B and Corollary C as well
as a short discussion of some applications which are due to Monod and Shalom.

2. Dynamical cocycles and bounded cohomology

In this section we consider an n-dimensional convex cocompact Riemannian manifold
M of bounded negative curvature. Then M = M̃/0 where M̃ is a simply connected
complete Riemannian manifold of bounded negative curvature and 0 is a group of isome-
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tries acting properly discontinuously and freely on M̃ . The manifold M̃ admits a natural
compactification by adding the geometric boundary ∂M̃ which is a topological sphere
of dimension n − 1. Every isometry of M̃ acts on ∂M̃ as a homeomorphism. The limit
set 3 of 0 is the set of accumulation points in ∂M̃ of a fixed orbit 0x (x ∈ M̃) of the
action of 0 on M̃ . We always assume that the group 0 is non-elementary, i.e. that its limit
set contains as least three points. Then 3 is the smallest nontrivial closed subset of ∂M̃
which is invariant under the action of 0.

The geodesic flow 8t acts on the unit tangent bundle T 1M̃ of M̃ and on the unit
tangent bundle T 1M of M . Let L̃ ⊂ T 1M̃ be the set of all unit tangents of all geodesics
with both end-points in3. Then L̃ is invariant under the action of8t and the action of 0.
The quotient L = L̃/0 is just the non-wandering set for the action of 8t on T 1M . Since
M is convex cocompact by assumption, L is a compact hyperbolic set for the geodesic
flow 8t on T 1M . The sets L̃ and L are moreover invariant under the flip F : v 7→ −v
which maps a unit tangent vector to its negative. The Riemannian metric on M induces a
complete Riemannian metric and hence a complete distance function d on T 1M .

A continuous real-valued cocycle for the action of 8t on L is a continuous func-
tion c : L × R → R with the property that c(v, t + s) = c(v, t) + c(8tv, s) for all
v ∈ L, all s, t ∈ R. Every continuous function f : L→ R defines such a cocycle cf by
cf (v, t) =

∫ t
0 f (8

sv) ds. Two cocycles b, c are called cohomologous if there is a con-
tinuous function ψ : L → R such that ψ(8tv) + c(v, t) − ψ(v) = b(v, t). If b, c are
cocycles which are Hölder continuous with respect to the distance d on L, i.e. if for fixed
t > 0 the maps v 7→ b(v, t) and v 7→ c(v, t) are Hölder continuous, then by Livshits’
theorem, b, c are cohomologous if and only if for every periodic point v of the geodesic
flow with period τ > 0 we have b(v, τ ) = c(v, τ ) [HK95]. Every Hölder continuous co-
cycle is cohomologous to the cocycle of a Hölder continuous function f (see e.g. [H99]),
and two Hölder functions f, g on L are cohomologous, i.e. their cocycles cf , cg are co-
homologous, if and only if

∫
γ ′
f =

∫
γ ′
g for every closed geodesic γ on M (where γ ′ is

the unit tangent field of γ ).
The flip F acts on the space of cocycles preserving cohomology classes. We call the

cohomology class of a cocycle c anti-invariant under the flip F if F(c) is cohomologous
to −c. If the cohomology class of a Hölder continuous cocycle c is anti-invariant under
the flip then there is a Hölder continuous function f which is anti-invariant under the flip,
i.e. which satisfies f (v) = −f (−v) for all v ∈ L, such that the cocycle cf defined by f
is cohomologous to c (cf. [H97]). Denote by A the vector space of all Hölder continuous
functions f on L which are anti-invariant under the flip F .

Since L is a compact invariant hyperbolic topologically transitive set for the geodesic
flow on T 1M , for every Hölder continuous function f on L and every number
ε0 > 0 which is smaller than half of the injectivity radius of M there is a number
k > 0 only depending on the Hölder norm of f with the following property. Let
v,w ∈ L and let T > 0 be such that d(8tv,8tw) ≤ ε0 for all t ∈ [0, T ]; then
|
∫ T

0 f (8tv) dt −
∫ T

0 f (8tw) dt | ≤ k.
A quasi-morphism for 0 is a function ϕ : 0→ R such that

‖ϕ‖0 = sup
g,h∈0

|ϕ(g)+ ϕ(h)− ϕ(gh)| <∞.
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The set Q of all quasi-morphisms for 0 naturally has the structure of a vector space. The
function ‖ ‖0 : Q→ [0,∞) which associates to a quasi-morphism ϕ its defect ‖ϕ‖0 is a
pseudo-norm which vanishes precisely on the subspace of morphisms.

Lemma 2.1. There is a linear map 9 : A → Q such that for every f ∈ A, the defect
‖9(f )‖0 of 9(f ) is bounded from above by a constant only depending on the curvature
bounds of M and the Hölder norm of f .

Proof. Let f ∈ A and extend f to a locally Hölder continuous flip anti-invariant func-
tion F on T 1M . Such an extension can be constructed as follows. Choose a probability
measure µ on L for which there are constants 0 < a < b such that the µ-mass of a
ball B(v, r) of radius r < 1 about a point v ∈ L is contained in [rb, ra]; for example, the
unique measure of maximal entropy for the geodesic flow on L has this property. We view
µ as a probability measure on T 1M which is supported in L. Let τ : [0,∞) → [0, 1]
be a smooth function which satisfies τ(t) = 1 for t close to 0 and τ [1,∞) = 0. Via
multiplying the restriction of µ to the metric ball B(w, r) (w ∈ T 1M) by the function
z 7→ τ(d(z,w)/r) we may assume that the measures µ|B(w, r) depend continuously on
w ∈ T 1M, r > 0 in the weak∗-topology.

For w ∈ T 1M let δ(w) ≥ 0 be the distance between w and L. For w ∈ T 1M − L

define

f0(w) =
1

µ(B(w, 2δ(w)))

∫
B(w,2δ(w))∩L

f dµ

and let f0(w) = f (w) for w ∈ L. By assumption on the measures µ|B(w, r) and since f
is Hölder continuous, the function f0 is locally Hölder continuous and its restriction to L
coincides with f . Thus we obtain a locally Hölder continuous flip anti-invariant extension
F of f to T 1M by assigning to w ∈ T 1M − L the value F(w) = 1

2 (f0(w) − f0(−w)).
For every compact subset K of T 1M the Hölder norm of the restriction of F to K only
depends onK and on the Hölder norm of f . If F,H are the extensions of f, h constructed
in this way and if a, b ∈ R then aF + bH is the extension of af + bh.

Let again 3 be the limit set of 0. The closure Conv(3) ⊂ M̃ of the convex hull of 3
in M̃ is invariant under the action of 0. The convex core C(M) = Conv(3)/0 of M is
compact. Let F̃ be the lift of F to T 1M̃ and choose a point p ∈ Conv(3). For an element
g ∈ 0 define 9(f )(g) to be the integral of F̃ over the tangent of the oriented geodesic
joining p to g(p). We claim that 9(f ) is a quasi-morphism for 0.

To prove this claim, recall that the curvature of M̃ is pinched between two negative
constants and therefore by comparison, for every ε0 > 0 there is a number k = k(ε0) > 0
only depending on ε0 and an upper curvature bound for M̃ with the following property.
Let T be a geodesic triangle in M̃ with vertices A1, A2, A3 and denote by ai the side of
T connecting Ai−1 to Ai+1. Let qi ∈ ai be the nearest point projection of the vertex Ai
to the side ai and let γi,+, γi,− be the oriented geodesic arc parametrized by arc length
which connects qi = γi,+(0) to Ai+1 = γi,+(τi,+) and qi = γi,−(0) to Ai−1 = γi,−(τi,−)

(here indices are taken modulo 3). Then ti = τi+1,+ − τi,− ∈ [−k, k] and moreover for
every t ∈ [k, τi,−] the distance between γ ′i,−(t) ∈ T

1M̃ and γ ′i+1,+(t + ti) ∈ T
1M̃ is at

most ε0.
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Now by assumption, the function F is anti-invariant under the flip and locally Hölder
continuous. Therefore the above discussion implies that the integral of F̃ over the unit
tangent field of a closed curve in Conv(3) which consists of three geodesic arcs forming
a geodesic triangle is bounded from above in absolute value by a universal constant times
the Hölder norm of the restriction of F to the compact subset T 1M|C(M) of T 1M of
all unit vectors with foot point in the convex core C(M) = Conv(3)/0. On the other
hand, by invariance of F̃ under the action of 0 and by anti-invariance of F̃ under the
flip, for g, h ∈ 0 the quantity |9(f )(g) + 9(f )(h) − 9(f )(gh)| is just the absolute
value of the integral of F̃ over the unit tangent field of the oriented geodesic triangle in
Conv(3) ⊂ M̃ with vertices p, g(p), g(h(p)). Thus 9(f ) is indeed a quasi-morphism
and the assignment f 7→ 9(f ) defines a linear map 9 : A → Q. Moreover, the defect
‖ϕ‖0 of ϕ is bounded from above by a constant only depending on the curvature bounds
of M and the Hölder norm of f . This shows the lemma. ut

Two quasi-morphisms ϕ,ψ for 0 are called equivalent if ϕ − ψ is a bounded function.
This is clearly an equivalence relation. If ϕ1 is equivalent to ϕ2 and ψ1 is equivalent to
ψ2 then for all a, b ∈ R the quasi-morphism aϕ1 + bψ1 is equivalent to aϕ2 + bψ2 and
hence the set QB of equivalence classes of quasi-morphisms of 0 has a natural structure
of a vector space. It contains as a subspace the vector space H 1(0,R) of all equivalence
classes of morphisms of 0. There is an exact sequence

0→ H 1(0,R)→ QB → H 2
b (0,R)→ H 2(0,R) (1)

and therefore the quotient space Q̃ = QB/H 1(0,R) can naturally be identified with
the kernel of the map H 2

b (0,R) → H 2(0,R) (see [M01]). In particular, an equivalence
class of quasi-morphisms can be viewed as a cohomology class of 0-invariant bounded
cocycles ϕ ∈ L∞(03,R)0 . In this interpretation, the cocycle ϕ determined by the quasi-
morphism ψ associates to a triple (g, h, u) ∈ 03 the value ϕ(g, h, u) = ψ(g−1h) +

ψ(h−1u)− ψ(g−1u).
For f ∈ A, the definition of the quasi-morphism 9(f ) in the proof of Lemma 2.1

depends on the choice of an extension of f to a locally Hölder continuous flip anti-
invariant function on T 1M and also on the choice of a basepoint p ∈ Conv(3). The next
lemma shows that the cohomology class of 9(f ) is independent of these choices.

Lemma 2.2. The cohomology class of the quasi-morphism 9(f ) does not depend on the
choice of the basepoint p nor on the extension of f to a locally Hölder continuous flip
anti-invariant function on T 1M .

Proof. Let f ∈ A and let F be a locally Hölder continuous flip anti-invariant extension of
f to T 1M . Denote by 9(f ) the quasi-morphism constructed in the proof of Lemma 2.1
using the extension F of f and the basepoint p ∈ Conv(3). We first show that a different
choice q ∈ Conv(3) of a basepoint gives rise to a quasi-morphism which is equivalent to
9(f ) in the above sense. For this we follow [BG88]. Let F̃ be the lift of F to T 1M̃ . For
g ∈ 0 define ρ(g) to be the integral of the function F̃ over the unit tangent field of the
oriented geodesic quadrangle with vertices q, g(q), g(p), p. As in the proof of Lemma
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2.1 we conclude that the function ρ : 0 → R is uniformly bounded. Since by invariance
of F̃ under the action of 0 the integral of F̃ over the oriented geodesic arc connecting
g(q) to g(p) is independent of g ∈ 0 and, in particular, it coincides with the negative of
the integral of F̃ over the oriented geodesic arc connecting p to q, the quasi-morphism
defined by F and the basepoint q just equals9(f )+ρ. Thus changing the basepoint does
not change the equivalence class of the quasi-morphism 9(f ).

Now we may also replace the point q ∈ Conv(3) by a point ξ ∈ 3. Namely, for g ∈ 0
define ρ(g) to be the oriented integral of the function F̃ over the tangent lines of the ideal
geodesic quadrangle with vertices ξ, g(ξ), g(p), p. As before, this function is uniformly
bounded. By invariance of F̃ under the action of 0 and the fact that F̃ is anti-invariant
under the flip we find that the 2-cocycle for 0 defined as above by the quasi-morphism
9(f ) + ρ is just the cocycle η ∈ L∞(03,R)0 which assigns to a triple (g, h, u) ∈ 03

the integral of F̃ over the unit tangents of the (possibly degenerate) oriented ideal triangle
with vertices g(ξ), h(ξ), u(ξ). Since these unit tangents are contained in the lift L̃ of the
non-wandering set L for the geodesic flow on T 1M , the cocycle η only depends on f
but not on an extension of f to T 1M . Thus the cohomology class defined by 9(f ) is
independent of the extension as well. ut

In the following we denote for f ∈ A by 2(f ) ∈ Q̃ = ker(H 2
b (0,R)→ H 2(0,R)) the

cohomology class of the quasi-morphism 9(f ). By Lemma 2.2, this class only depends
on f . Moreover, the assignment 2 : A → Q̃ is clearly linear. We next investigate the
kernel of the map 2.

Since 0 is convex cocompact by assumption, there is a natural correspondence be-
tween oriented closed geodesics on M and conjugacy classes in 0. For every homomor-
phism ρ : 0 → R and every g ∈ 0, the value ρ(g) of ρ on g only depends on the
conjugacy class of g. Therefore such a homomorphism defines a function on the set of
closed geodesics on M; we denote the value of ρ on such a closed geodesic γ by ρ(γ ).
We have

Lemma 2.3. 2(f ) = 0 if and only if there is a morphism ρ : 0 → R such that
∫
γ ′
f =

ρ(γ ) for every closed geodesic γ on M .

Proof. Let f ∈ A and assume that there is a morphism ρ : 0 → R such that
∫
γ ′
f =

ρ(γ ) for every closed geodesic γ on M . This morphism defines a class in H 1(M,R) and
therefore by the de Rham theorem, there is a smooth closed 1-form β onM which defines
ρ via integration. Let β̃ be the pull-back of β to a closed 1-form on M̃ . Then β̃ is exact
and hence the integral of β̃ over every piecewise smooth closed curve in M̃ vanishes.

By Livshits’ theorem [HK95] and the choice of β, there is a Hölder continuous flip
anti-invariant functionψ : L→ R such that

∫ T
0 f (8tv) dt = ψ(8T v)+

∫ T
0 β(8tv) dt−

ψ(v) for every v ∈ L and all T > 0. As in the proof of Lemma 2.1 we extend ψ to a
locally Hölder continuous flip anti-invariant function on all of T 1M which we denote
by the same symbol. Let ψ̃ be the lift of ψ to T 1M̃ . Fix a point p ∈ Conv(3) and
for g ∈ 0 let γg be the geodesic arc connecting p = γp(0) to g(p) = γp(T ). Define
α(g) = ψ̃(γ ′g(T )) +

∫ T
0 β̃(γ ′g(t)) dt − ψ̃(γ

′
g(0)). By Lemma 2.1 and Lemma 2.2, α is a
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quasi-morphism for 0 which defines the cohomology class 2(f ). On the other hand, α
differs from the quasi-morphism defined by β by a bounded function. Since the integral of
β̃ over every piecewise smooth closed curve in M̃ vanishes, the cohomology class 2(f )
of the quasi-morphism α vanishes.

On the other hand, let f ∈ A and assume that there is no morphism ρ : 0 → R
such that

∫
γ ′
f = ρ(γ ) for every closed geodesic γ on M . We have to show that the

cohomology class 2(f ) does not vanish. By the exact sequence (1) above, this is the
case if and only if a quasi-morphism 9(f ) representing 2(f ) is not equivalent to any
morphism for 0.

For this we argue as before. Namely, let ρ : 0 → R be any morphism for 0 and let
β be a smooth closed 1-form on M defining ρ. By assumption, there is a periodic point
v ∈ L of period τ > 0 for the geodesic flow 8t such that

∫ τ
0 (f − β)(8

tv) dt = c > 0.
Let ṽ be a lift of v to L̃ and let p ∈ M̃ be the foot-point of ṽ. Choose an extension of
f to a locally Hölder continuous function F on T 1M and let F̃ be the lift of F to T 1M̃ .
By definition, the quasi-morphism 9(f ) induced by F and the choice of the basepoint
p assigns to g ∈ 0 the integral

∫ T
0 F̃ (γ ′g(s)) ds where γg : [0, T ] → M̃ is the oriented

geodesic arc connecting p to g(p). Moreover, this quasi-morphism represents the class
2(f ). Now let η be the geodesic in M̃ which is tangent to ṽ. By the choice of ṽ there
is an element h ∈ 0 which preserves η and whose restriction to η is the translation
η(t) 7→ η(t + τ) with translation length τ . Hence we have 9(f )(hm) = m

∫ τ
0 f (8

tv) dt

and (9(f ) − ρ)(hm) = mc for all m ∈ Z. In particular, the function 9(f ) − ρ is
unbounded and consequently 9(f ) is not equivalent to ρ. Since ρ was arbitrary this
means that the projection of 9(f ) into Q̃ does not vanish. ut

Fix a number ε0 > 0 which is smaller than half of the injectivity radius of M and for
f ∈ A define ‖f ‖A to be the infimum of the numbers k > 0 with the property that
|
∫ T

0 f (8tv) dt −
∫ T

0 f (8tw) dt | ≤ k whenever v,w ∈ L and T > 0 are such that
d(8tv,8tw) ≤ ε0 for every t ∈ [0, T ]. We have

Lemma 2.4. ‖ ‖A is a norm on A.

Proof. We observed above that ‖f ‖A < ∞ for every Hölder continuous function f ∈
A. Moreover, we clearly have ‖af ‖A = |a|‖f ‖A for all f ∈ A and all a ∈ R and
‖f + g‖A ≤ ‖f ‖A + ‖g‖A by a simple application of the triangle inequality. Thus we
are left with showing that ‖f ‖A = 0 only if f ≡ 0. For this assume that 0 6≡ f ∈ A.
Since f is anti-invariant under the flip by assumption, f is not a constant function. Hence
by continuity there are points v,w ∈ W with d(v,w) < ε0/2 and numbers δ > 0,
T ∈ (0, ε0/2) with f (8tv) ≥ f (8tw) + δ for all t ∈ [0, T ]. Then ‖f ‖A ≥ δT by the
definition of ‖ ‖A. ut

Call two Hölder functions f, g ∈ A weakly cohomologous if f − g is cohomologous to a
closed 1-form onM , viewed as a function on T 1M . The class of f under the equivalence
relation thus defined will be called the weak cohomology class of f . The set H of weak
cohomology classes of Hölder functions is a vector space. For ψ ∈ H let ‖ψ‖ be the
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infimum of the norms ‖f ‖A where f runs through all functions in A which define the
weak cohomology class ψ . Then ‖ ‖ is a pseudo-norm on H.

The Gromov norm ‖α‖ of an element α ∈ H 2
b (0,R) is the infimum of the supremum

norms over all bounded 2-cocycles for 0 representing α [G83] (here a bounded 2-cocycle
is a bounded 0-invariant function on 03 contained in the kernel of the coboundary oper-
ator). If ϕ : 0→ R is a quasi-morphism then the Gromov norm of the cohomology class
defined by ϕ is the infimum of the defects ‖η‖0 where η runs through the collection of all
quasi-morphisms with η − ϕ equivalent to a morphism of 0.

By Lemma 2.3, the map 2 factors through an injective linear map H → Q̃ =
ker(H 2

b (0,R)→ H 2(0,R)) which we denote again by 2. The following corollary sum-
marizes our discussion and implies Theorem D from the introduction.

Corollary 2.5. The map 2 : (H, ‖ ‖)→ (Q̃, ‖ ‖) is a continuous embedding.

Proof. By Lemmas 2.1, 2.3 and 2.4 we only have to show the continuity of 2. For this
choose a point ξ ∈ 3. Let f ∈ A and let f̃ be the lift of f to T 1M̃ . For g, h, u ∈ 0
define α(g, h, u) to be the integral of f̃ over the unit tangents of the (possibly degener-
ate) oriented ideal triangle with vertices gξ, hξ, uξ . By Lemma 2.3 and its proof, α is a
cocycle which represents the class 2(f ). The considerations in the proof of Lemma 2.1
show that |α(g, h, u)| ≤ c‖f ‖A for a universal constant c > 0, in particular we have
α ∈ L∞(03,R)0 and the Gromov norm of the cohomology class defined by α is not
greater than c‖f ‖A. From this the continuity of the map 2 follows. ut

3. A dynamical criterion for infinite-dimensional second bounded cohomology

This section contains the main technical result of this note. We consider an arbitrary
countable group 0 which acts by homeomorphisms on a metric space (X, d) of finite
diameter without isolated points. Our goal is to construct bounded cohomology classes
for 0 using dynamical properties of the action of 0 onX as in Section 2. In the application
we have in mind, the space X is the Gromov boundary of a hyperbolic geodesic metric
space and 0 is a group of isometries acting on X as a group of homeomorphisms.

We begin by describing some properness condition for the action of a countable group
0 by homeomorphisms of (X, d). Namely, the metric d on the space X induces a metric
on the space X3 of triples of points in X which we denote again by d; this metric is given
by d((x1, x2, x3), (y1, y2, y3)) =

∑3
i=1 d(xi, yi). Let 1 ⊂ X3 be the closed subset of all

triples for which at least two points in the triple coincide. The diagonal action of 0 on X3

preserves the open set X3
−1 of triples of pairwise distinct points in X.

Definition. The action of 0 onX3
−1 is called metrically proper if for every ν ∈ (0, 1/2)

there are constants m(ν) > 0 and R(ν) > − log(ν/4) such that for any two open disjoint
sets U,V ⊂ X of distance at least ν and of diameter at most e−R(ν) the following is
satisfied.

(1) LetW ⊂ X be a set of diameter at most e−R(ν) whose distance to U ∪V is at least ν.
Write C = U × V ×W ⊂ X3

−1; then for all k ∈ Z and every fixed pair of points
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x0 6= y0 ∈ X with d(x0, y0) ≥ ν there are at most m(ν) elements g ∈ 0 with

g(C) ∩ {(x, y, z) ∈ X3
−1 | x = x0, y = y0,

e−k ≤ min{d(z, x0), d(z, y0)} ≤ e
−k+1
} 6= ∅.

(2) Let U ′, V ′ ⊂ X be open disjoint sets of distance at least ν and of diameter at most
e−R(ν). Let Z ⊂ X (resp. Z′ ⊂ X) be the set of all points whose distance to U ∪ V
(resp. to U ′ ∪V ′) is greater than ν. Then there are at mostm(ν) elements g ∈ 0 with

g(U × V × Z) ∩ U ′ × V ′ × Z′ 6= ∅.

If the action of 0 onX3
−1 is metrically proper, then every point inX3

−1 has a neigh-
borhoodN inX3

−1 such that g(N)∩N 6= ∅ only for finitely many g ∈ 0. Namely, for a
point (x, y, z) ∈ X3

−1 choose ν>0 sufficiently small that min{d(x, y), d(x, z), d(z, y)}
≥ 2ν. For this ν let R(ν) > 0 be as in the definition of a metrically proper action and let
N be the open e−R(ν)-neighborhood of (x, y, z) inX3; then N ∩gN 6= ∅ only for finitely
many g ∈ 0 by the second part of the above definition. Since X does not have isolated
points this implies that the quotient (X3

−1)/0 is a metrizable Hausdorff space.
For every g ∈ 0, the fixed point set Fix(g) for the action of g on X is a closed

subset of X. The boundary A(g) of the open subset X3
− Fix(g)3 of X3 is a closed

(possibly empty) nowhere dense subset of X3. By the above observation, every point
(x, y, z) ∈ X3

−1 admits a neighborhood N which intersects only finitely many of the
sets A(g) (g ∈ 0). Since X does not have isolated points, the set X3

−1 −
⋃
g∈0 A(g)

is open and dense in X3
−1. The restriction of the natural projection

π : T = X3
−1→ Y = (X3

−1)/0

to the open dense set X3
−1−

⋃
g∈0 A(g) is a local homeomorphism.

The involution ι : X3
→ X3 defined by ι(a, b, c) = (b, a, c) is an isometry with

respect to the metric d on X3 induced from the metric on X, and its fixed point set is
contained in the closed set 1 ⊂ X3. Thus the restriction of ι to T acts freely, and it
commutes with the diagonal action of 0. In particular, ι naturally acts on Y as a continuous
involution and the quotient Z = Y/ι is a metrizable Hausdorff space. There is an open
dense subset of T such that the restriction of the natural projection π0 : T → Z to this
set is a local homeomorphism.

For x ∈ X and ε > 0 denote by B(x, ε) ⊂ X the open ball of radius ε about x. We
next recall the well known notion of north-south dynamics for a homeomorphism of X.

Definition. A homeomorphism g of X has north-south dynamics with respect to an at-
tracting fixed point a ∈ X and a repelling fixed point b ∈ X − {a} if the following is
satisfied.

(1) For every ε > 0 there is a number m > 0 such that gm(X − B(b, ε)) ⊂ B(a, ε) and
g−m(X − B(a, ε)) ⊂ B(b, ε).

(2) There is a number δ > 0 such that
⋃
m∈Z g

m(X − B(a, δ)− B(b, δ)) = X − {a, b}.
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We call a the attracting and b the repelling fixed point of g, and (a, b) is the ordered pair
of fixed points for g.

The next definition formalizes the idea that the dynamics of each element of a groupG of
homeomorphisms of (X, d) is uniformly similar to north-south dynamics on a metrically
large scale.

Definition. The action of an arbitrary group G on a metric space (X, d) of finite diam-
eter is called weakly hyperbolic if for every ε > 0 there is a b = b(ε) ∈ (0, 1) with
the following property. Let x, y ∈ X with d(x, y) ≥ 2ε and let g ∈ G be such that
d(gx, gy) ≥ 2ε. Let z ∈ X − {x, y} be such that min{d(gz, gx), d(gz, gy)} ≥ ε. Then
d(gw, gx) ≤ d(z, y)b/b for every w ∈ X with d(w, x) ≤ ε.

Let again 0 be a countable group which admits an action on a metric space (X, d) of
finite diameter without isolated points by homeomorphisms such that the diagonal action
on T = X3

− 1 is metrically proper. Using the above notations, let C ⊂ T be an
open set whose closure C has positive distance to 1 and is mapped by the projection
π0 : T → Z = Y/ι homeomorphically into Z. This means that for every g ∈ 0, either g
fixes C ∪ ιC pointwise or g(C ∪ ιC) ∩ (C ∪ ιC) = ∅. We assume that C is of the form
C = U × V × W where U,V,W ⊂ X are open and pairwise of positive distance, say
the distance between any two of these sets is at least 4ν > 0. For R(ν) > 0 as in the
definition of a metrically proper action we also assume that the diameter of C is smaller
than e−R(ν). Let HC be the vector space of all Hölder continuous functions f : T → R
supported in C. This means that for every f ∈ HC there is some α ∈ (0, 1) and some
q > 0 such that |f (x)− f (y)| ≤ qd(x, y)α for all x, y ∈ C.

The following lemma is the analogue of Lemma 2.1. For its formulation, denote byQ
the vector space of all quasi-morphisms of 0.

Lemma 3.1. Let (X, d) be a metric space of finite diameter without isolated points. Let
0 be a countable group which admits a weakly hyperbolic action by homeomorphisms of
X such that the action of 0 on T = X3

− 1 is metrically proper. Then for every open
set C ⊂ T whose closure projects homeomorphically into Z = (T /0)/ι there is a linear
map 9 : HC → Q.

Proof. Using the above notations, write C = U × V ×W where U,V,W ⊂ X are open
and pairwise of distance at least 4ν > 0. Assume that the diameter of C is at most e−R(ν).
The product structure of T defines a natural foliation F on T by requiring that the leaf of
F through (a, b, c) ∈ T equals the set F(a, b) = {(a, b, d) | d ∈ X − {a, b}}. Thus a
leaf of F is determined by two distinct points in X, and the leaf F(a, b) determined by
a 6= b ∈ X can naturally be identified with X− {a, b}. The foliation F is invariant under
the action of 0 and hence it projects to a foliation F0 on Y = T/0.

Let µW be a Borel probability measure on W which is positive on open sets. Choose
a non-trivial Hölder continuous function ψ : X × X → [0, 1] supported in U × V and
let µF be the family of 0-invariant ι-invariant Borel measures on the leaves of F which
is determined by the requirement that for every (u, v) ∈ U × V the restriction of µF to
F(u, v) ∩ C ∼ (u, v)×W equals ψ(u, v)µW .
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We divide the proof of the lemma into two steps. As a notational convention, for
x ∈ X and ε > 0 denote as before by B(x, ε) the open ε-ball about x.

Step 1. In the first step we construct, for a given Hölder continuous function f ∈ HC
supported in C, a function 9(f ) : 0 → R. For this recall that by the choice of C, every
g ∈ 0 either fixes C∪ιC pointwise or we have g(C∪ιC)∩(C∪ιC) = ∅. Therefore every
function f ∈ HC uniquely determines a continuous 0-invariant ι-anti-invariant function
f̃ on T which is supported in

⋃
g∈0 g(C ∪ ιC) and whose restriction to C coincides

with f . This means that f̃ (ιx) = −f̃ (x) for all x ∈ T , f̃ (gx) = f̃ (x) for all g ∈ 0
and the restriction of f̃ to C coincides with f . We claim that for all x 6= y ∈ X and any
neighborhoods A of x and B of y we have

∫
F(x,y)−A−B

|f̃ | dµF < ∞, where as before
we identify the leaf F(x, y) of the foliation F with the set X − {x, y}.

For this consider first the case that d(x, y) ≥ 2ν where ν > 0 is as above determined
by the choice of the set C. Let k0 ≥ 1 be the smallest integer which is not smaller than
− log ν. If z ∈ X is such that d(x, z) ≤ e−k0 then d(x, z) = min{d(x, z), d(y, z)} and
hence by the first requirement in the definition of a metrically proper action, for every
k ≥ k0 the number of elements g ∈ 0 with g(C ∪ ιC) ∩ (F (x, y) ∩ (B(x, e−k) −
B(x, e−k−1))) 6= ∅ is bounded from above by a constant m(ν) > 0 only depending
on ν but not on k and (x, y). Since f̃ is invariant under the action of 0 and supported
in
⋃
g∈0 g(C ∪ ιC) and since the measures µF are invariant under the action of 0 this

implies that∫
F(x,y)∩(B(x,e−k)−B(x,e−k−1))

|f̃ | dµF ≤ m(ν) sup{|f (z)| | z ∈ C}

for every k ≥ k0. The same estimate also holds for the analogous integral over F(x, y) ∩
(B(y, e−k)− B(y, e−k−1)) provided that k ≥ k0.

Similarly, since the diameter of X is finite, the set F(x, y)−B(x, e−k0)−B(y, e−k0)

is the union of finitely many subsets of the form

{z | e−k0+m−1
≤ min{d(z, x), d(z, y)} ≤ e−k0+m} (m ≥ 1).

Using once more the definition of a metrically proper action we conclude that the number
of elements g ∈ 0 such that g(C ∪ ιC) ∩ (F (x, y) − B(x, e−k0) − B(y, e−k0)) 6= ∅

is bounded from above by a constant only depending on ν. In particular, the integral∫
F(x,y)−B(x,e−k0 )−B(y,e−k0 ) |f̃ | dµF is bounded above by a universal multiple of the supre-

mum norm of f . Together we conclude that for any neighborhoods A of x and B of y the
integral

∫
F(x,y)−A−B

|f̃ | dµF exists, i.e. the claim holds true whenever d(x, y) ≥ 2ν.

Now let x 6= y ∈ X be arbitrary points such that the support of f̃ intersects the leaf
F(x, y). Since f̃ is supported in

⋃
g∈0 g(C ∪ ιC), there is then an element g ∈ 0 with

d(gx, gy) ≥ 2ν. By invariance of f̃ and µF under the action of 0, for any neighborhoods
A of x and B of y we have∫

F(x,y)−A−B

|f̃ | dµF =
∫
F(gx,gy)−gA−gB

|f̃ | dµF
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where gA and gB are neighborhoods of gx and gy respectively. Thus indeed∫
F(x,y)−A−B

|f | dµF < ∞ for any two points x 6= y ∈ X and any neighborhoods A
of x and B of y, which shows the above claim.

Recall that C = U × V × W for open disjoint subsets U,V,W of X. Fix a point
x ∈ U and let A ⊂ U be a small closed metric ball centered at x. For f ∈ HC and g ∈ 0
such that gx 6= x define

9(f )(g) =

∫
F(x,gx)−A−g(A)

f̃ dµF (2)

and if gx = x then define 9(f )(g) = 0. By the above considerations, the integral (2)
exists and hence it defines a function 9(f ) : 0 → R. Moreover, the assignment 9 :
f ∈ HC 7→ 9(f ) is a linear map from the vector space HC into the vector space of all
functions on 0.

Step 2. In a second step, we show that for every f ∈ HC the function 9(f ) : 0 → R
is a quasi-morphism, i.e. supg,h{|9(f )(g)+9(f )(h)−9(f )(gh)|} <∞. Observe that
by invariance under 0, for g, h ∈ 0 we have

9(f )(g)+9(f )(h)−9(f )(gh) =

∫
F(x,gx)−A−gA

f̃ dµF +
∫
F(gx,ghx)−gA−ghA

f̃ dµF

−

∫
F(x,ghx)−ghA−A

f̃ dµF .

Since f is anti-invariant under the involution ι it is therefore enough to show that there
is a number c(ν, f ) only depending on ν and the Hölder norm of f with the following
property. Let (x1, x2, x3) ∈ T and let Ai be any neighborhood of xi in X (i = 1, 2, 3);
then∣∣∣∣ ∫
F(x1,x2)−A1−A2

f̃ dµF+
∫
F(x2,x3)−A2−A3

f̃ dµF+
∫
F(x3,x1)−A3−A1

f̃ dµF

∣∣∣∣ < c(ν, f ).

For this recall that for g, h ∈ 0 the sets gC, hC, g(ιC), h(ιC) either coincide or are
disjoint. Moreover, if f̃ |F(y, z) 6≡ 0 for some y 6= z ∈ X then there is some g ∈ 0 such
that d(gy, gz) ≥ 2ν. Define G = {g ∈ 0 | maxi,j≤3 d(gxi, gxj ) ≥ 2ν} and

G0 = {g ∈ G | min{d(gxi, gxj ) | i 6= j ∈ {1, 2, 3}} ≥ ν}

and for i = 1, 2, 3 define

Gi = {g ∈ G | d(gxi, gxi+1) < ν}

(indices are taken modulo 3). By the triangle inequality and the definition of the set G, the
sets Gi (i = 0, . . . , 3) are pairwise disjoint and their union equals G.

If g ∈ 0 is such that (C∪ ιC)∩gF(xi, xi+1) 6= ∅ then d(gxi, gxi+1) ≥ 2ν and there-
fore g ∈ G0 if min{d(gxi−1, gxi), d(gxi−1, gxi+1)} ≥ ν, g ∈ Gi−1 if d(gxi−1, gxi) < ν

and g ∈ Gi+1 otherwise (where indices are again taken modulo 3). Thus by invariance of
f̃ and µF under the action of 0 and by the fact that an element g ∈ 0 either fixes C point-
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wise or is such that gC ∩ C = ∅ it is enough to show that there is a number c1(ν, f ) > 0
only depending on ν and the Hölder norm of f such that for i = 0, . . . , 3 we have∑

g∈Gi

∣∣∣∣ 3∑
j=1

∫
g(F (xj ,xj+1)−Aj−Aj+1)∩(C∪ιC)

f̃ dµF

∣∣∣∣ ≤ c1(ν, f ). (3)

We first establish the estimate (3) for i = 0. The case G0 = ∅ is trivial, so assume that
there is some h ∈ G0 with the additional property that h(F (xj , xj+1)−Aj−Aj+1)∩C 6= ∅

for some j ∈ {1, 2, 3}. Recall thatC = U×V×W where the diameter of the setsU,V,W
is at most e−R(ν) < ν/4. Let Z ⊂ X be the set of all points whose distance to U ∪ V is at
least ν. Then h(xj , xj+1, xj+2) ∈ U × V × Z and therefore if u ∈ G0 is another element
with u(F (xj , xj+1)− Aj − Aj+1) ∩ C 6= ∅ then uh−1(U × V × Z) ∩ U × V × Z 6= ∅.
Using the second property in the definition of a metrically proper action we conclude
that the number of elements u ∈ G0 with this property is bounded from above by a
constant only depending on ν. The same argument also applies to elements g ∈ G0 with
g(F (xj , xj+1) − Aj − Aj+1) ∩ ιC 6= ∅ for some j ∈ {1, 2, 3}. As a consequence, for
i = 0 the number of non-zero terms in the sum (3) is bounded from above by a universal
constant and the estimate (3) holds true for i = 0. Thus by symmetry in i ∈ {1, 2, 3} and
by invariance under the action of 0 it now suffices to show the estimate (3) for i = 3.

By definition, for g ∈ G3 we have d(gx1, gx3) < ν and therefore gF(x1, x3) ∩

(C ∪ ιC) = ∅. This means that

∑
g∈G3

∣∣∣∣ 3∑
j=1

∫
g(F (xj ,xj+1)−Aj−Aj+1)∩(C∪ιC)

f̃ dµF

∣∣∣∣
=

∑
g∈G3

∣∣∣∣ ∫
g(F (x1,x2)−A2−A3)∩(C∪ιC)

f̃ dµF +
∫
g(F (x2,x3)−A3−A1)∩(C∪ιC)

f̃ dµF

∣∣∣∣. (4)

By assumption, the action of 0 on X is weakly hyperbolic. Thus there is a constant
b > 0 depending on ν such that for all (x, y) ∈ X × X with d(x, y) ≥ 2ν, for all
k ≥ − log ν and for all z ∈ X with d(z, x) ≤ ν we have d(gz, gx) ≤ e−kb/b whenever
g ∈ 0 is such that (C∪ ιC)∩g(F (x, y)∩B(y, e−k)) 6= ∅. In particular, for every w ∈ W
the distance between (gx, gy,w) and (gz, gy,w) = ι(gy, gz,w) is at most e−kb/b.

Now f̃ is a 0-invariant ι-anti-invariant function on T which is supported in⋃
g∈0 g(C ∪ ιC) and whose restriction f to C satisfies |f (v) − f (w)| ≤ qd(v,w)α

for some α, q > 0 and for all v,w ∈ C. Moreover, µF is a ι-invariant 0-invariant
family of measures on the leaves of F whose restriction to C is of the form ψµW
for a Hölder continuous function ψ supported in U × V . As a consequence of the
above discussion on the effect of weak hyperbolicity we conclude that there is a num-
ber β > 0 depending only on ν and the Hölder norm of f with the following property.
Let x, y ∈ X with d(x, y) ≥ 2ν; if for some k ≥ − log ν the element g ∈ 0 is such
that (C ∪ ιC) ∩ g(F (x, y) ∩ (B(y, e−k)− B(y, e−k−1))) 6= ∅ then for every z ∈ X with
d(z, x) ≤ ν and every neighborhood A of y we have∣∣∣∣ ∫

g(F (x,y)−A)∩(C∪ιC)

f̃ dµF +
∫
g(F (y,z)−A)∩(C∪ιC)

f̃ dµF

∣∣∣∣ ≤ e−kβ/β. (5)
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By the first property in the definition of a metrically proper action there is a constant
c > 0 only depending on ν such that for all x, y ∈ X with d(x, y) ≥ 2ν and every
k ≥ − log ν there are at most c elements g ∈ 0 with (C∪ ιC)∩g(F (x, y)∩ (B(y, e−k)−
B(y, e−k−1))) 6= ∅. Together with the estimate (5) we conclude that there is a constant
c2(ν, f ) > 0 which only depends on ν and on the Hölder norm of f with the following
property. For x, y ∈ X with d(x, y) ≥ 2ν, every z ∈ X − {x, y} with d(x, z) ≤ ν and
every neighborhood A of y we have∑

{g∈0|d(gx,gz)<ν}

∣∣∣∣ ∫
g((F (x,y)−A)∪(F (y,z)−A))∩(C∪ιC)

f̃ dµF

∣∣∣∣ < c2(ν, f ). (6)

Now if g ∈ G3 is such that gF(x1, x2) ∩ (C ∪ ιC) 6= ∅ then with yi = gxi we have
d(y1, y3) < ν, d(y1, y2) ≥ 2ν. For any other h ∈ G3 with hF(x1, x2)∩ (C ∪ ιC) 6= ∅ we
obtain d(hg−1y1, hg

−1y2) ≥ 2ν and d(hg−1y1, hg
−1y3) ≤ ν. By invariance of f̃ and

µF under the action of 0, inequality (3) above now follows from the estimate (6) and the
equation (4).

As a consequence, for every f ∈ HC the function 9(f ) on 0 is indeed a quasi-
morphism. By construction, the assignment f 7→ 9(f ) is moreover linear. This com-
pletes the proof of the lemma. ut

In Lemma 3.1 we constructed a linear map 9 from the vector space HC onto a vector
space 9(HC) ⊂ Q of quasi-morphisms for the group 0. It follows from our construction
that for a suitable choice of the set C the vector space 9(HC) is infinite-dimensional. As
in Section 2, the map 9 then induces via composition with the natural projection a linear
map 2 : HC → H 2

b (0,R). However, a priori the image of 2 may be trivial or finite-
dimensional. To establish that the subspace of H 2

b (0,R) obtained in this way as the sets
C vary is infinite-dimensional, we use an additional assumption on 0 which is motivated
by the work [BF02] of Bestvina and Fujiwara. For this recall that a homeomorphism g

of X which acts with north-south dynamics has an attracting fixed point a ∈ X and a
repelling fixed point b ∈ X − {a}. We call (a, b) the ordered pair of fixed points for g.
We show

Proposition 3.2. In the situation described in Lemma 3.1, assume in addition that the
group 0 contains a free subgroup G with two generators and the following properties.

(1) Every e 6= g ∈ G acts with north-south dynamics on X.
(2) There are infinitely many gi ∈ G (i > 0) such that the 0-orbits of the ordered pairs

of fixed points of the elements gi, g−1
j (i, j > 0) are pairwise disjoint.

Then the images of the spaces HC under the map 2 for suitable choices of C ⊂ T span
an infinite-dimensional subspace of H 2

b (0,R).

Proof. Continue to use the assumptions and notations from Lemma 3.1 and its proof.
We have to show that the bounded cohomology classes 2(f ) (f ∈ HC) defined by
the quasi-morphisms 9(f ) constructed in Lemma 3.1 for suitable choices of C span an
infinite-dimensional subspace of the kernel of the map H 2

b (0,R) → H 2(0,R). For this
letG be the free subgroup of 0 with two generators as in the statement of the proposition.
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Let g, h ∈ G − {e} be such that the 0-orbit of the ordered pair (a, b) of fixed points
for g is distinct from the 0-orbit of the ordered pair (a′, b′) of fixed points for h. Then
the leaves F(a, b), F (a′, b′) of the foliation F project to distinct leaves L,L′ of the
induced foliation F0 on Y = T/0. We claim that the closures of these leaves do not
intersect. For this denote as before by π : T → Y the natural projection. Let ε0 > 0
be sufficiently small that d({a, b}, {a′, b′}) ≥ 2ε0. Since g, h act on X with north-south
dynamics and fixed points a, b and a′, b′, there is a number ε < ε0 with the property
that the projection π maps the set {(a, b, x) | d(x, {a, b}) ≥ ε} onto L and that π maps
{(a′, b′, y) | d(y, {a′, b′}) ≥ ε} onto L′.

Assume to the contrary that the closures of the leaves L,L′ contain a common point.
By the above observation, this implies that there is a sequence (gi) ⊂ 0 of pairwise
distinct elements and there are sequences (xi) ⊂ X, (yi) ⊂ X such that

d(xi, {a, b}) ≥ ε, d(yi, {a
′, b′}) ≥ ε for all i

and that d(gi(a, b, xi), (a′, b′, yi))→ 0. In particular, for every δ > 0 there are infinitely
many distinct elements u ∈ 0 such that d(a′, ua) < δ, d(b′, ub) < δ and that u(X −
B(a, ε)− B(b, ε)) ∩X − B(a′, ε)− B(b′, ε) 6= ∅. However, this contradicts the second
requirement in the definition of a metrically proper action. As a consequence, the closures
of the leaves L,L′ in Y are disjoint.

Let g ∈ G and let a be the attracting and b be the repelling fixed point of g. Choose
the set C = U × V ×W ⊂ T as in Lemma 3.1 and its proof in such a way that a ∈ U
and b ∈ V . This is possible since the action of 0 on X is metrically proper and hence
the stabilizer of {a, b} in 0 acts freely on an open subset of X − {a, b}. Let x ∈ U − {a}
and choose a closed neighborhood A ⊂ U − {a} of x for the construction of the quasi-
morphism 9(f ). Since g acts on X with north-south dynamics there is a closed subset
D of X − {a, b} with dense interior whose distance to {a, b} is positive and which is a
fundamental domain for the action on X − {a, b} of the cyclic subgroup of G generated
by g. For the measures µF on the leaves of the foliation F as in the proof of Lemma
3.1 we may assume that the support of µF intersects F(a, b) and that the µF -mass of
the boundary of D viewed as a subset of F(a, b) vanishes. Let f ∈ HC and let f̃ be
the 0-invariant ι-anti-invariant function on T defined by f as in the proof of Lemma 3.1.
By the discussion in Step 1 of the proof of Lemma 3.1, the integral

∫
D
f̃ dµF exists. Let

9(f ) be the quasi-morphism of 0 defined by f as in (2) in the proof of Lemma 3.1. We
claim that

lim
k→∞

9(f )(gk)/k =

∫
D

f̃ dµF .

To show the claim, observe that as k→∞ the diameter of the sets gkA tends to 0 and
gkx → a ∈ X − A. Choose a small closed ball B ⊂ V about b. By the proof of Lemma
3.1, for sufficiently large k the absolute value of the difference∫

F(gkx,b)−gkA−B

f̃ dµF −
∫
F(gkx,x)−gkA−A

f̃ dµF

is bounded from above by a constant not depending on k. As a consequence, it is enough
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to show that ∫
F(gkx,b)−gkA−B

f̃ dµF/k→
∫
D

f̃ dµF (k→∞),

and this in turn is equivalent to∫
F(x,b)−A−g−kB

f̃ dµF/k→
∫
D

f̃ dµF (k→∞).

Choose in particular B = {b} ∪
⋃
j≤0 g

jD. Then B− g−kB =
⋃k−1
j=0 g

−jD for every
k > 0. Thus for every small ball E ⊂ X − B about the attracting fixed point a for g we
have

lim
k→∞

∫
F(x,b)−A−g−kB

f̃ dµF/k = lim
k→∞

∫
F(a,b)−E−g−kB

f̃ dµF/k =
∫
D

f̃ dµF . (7)

This shows the above claim.
Let again g ∈ G with attracting fixed point a ∈ X, repelling fixed point b ∈ X − {a}

and assume that the ordered pair (a, b) is not contained in the 0-orbit of the ordered pair
ι(a, b) = (b, a). By the above consideration, the closure of the projection of the leaf
F(a, b) to Y is disjoint from the closure of the projection of ιF (a, b) = F(b, a). As
before, let D ⊂ F(a, b) be a closed fundamental domain for the action on X − {a, b} ∼
F(a, b) of the cyclic group generated by g. By the second requirement in the definition
of a metrically proper action, there are only finitely many h ∈ 0 with hD ∩ D 6= ∅.
Denote by π : T → Y the canonical projection. The measures µF project to a family
of measures on the leaves of the foliation F0 = πF on Y . For f ∈ HC the function
f̃ projects to a function f0 on Y . Since hD ∩ D 6= ∅ for only finitely many h ∈ 0,
the integral

∫
D
f̃ dµF is a positive bounded multiple of

∫
πF(a,b)

f0 dµ0. By the above
considerations, the closure L of the projection of the leaf F(a, b) to Y is disjoint from the
closure of its image F(b, a) under the involution ι and therefore for any given number
q ∈ R there is a Hölder function f ∈ HC such that the quasi-morphism 9(f ) defined as
above by f satisfies limk→∞9(f )(g

k)/k = q.
By our assumption, there are infinitely many elements gi ∈ G (i > 0) which act onX

with north-south dynamics and such that the ordered pairs of fixed points of gi, g−1
j are

pairwise contained in distinct 0-orbits on X. In particular, for i 6= j the closures of the
projections to Y of the leaves of the foliation F which are determined by the fixed points
of gi, gj are disjoint. Now for any finite set {h1, . . . , hm} ⊂ {gi | i > 0} ⊂ G choose
the set C as above in such a way that it intersects each of the leaves of F determined by
the ordered pair of fixed points of hi ; this can always be achieved by allowing for our
construction a set C which consists of finitely many components satisfying each of the
above assumptions. The above discussion shows that for an arbitrarily chosen collection
{q1, . . . , qm} ⊂ R of real numbers there is a suitable choice of the function f ∈ HC so
that the quasi-morphism 9(f ) for 0 defined by f satisfies limk→∞9(f )(h

k
i )/k = qi

for 1 ≤ i ≤ k.
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For f ∈ HC the cohomology class 2(f ) ∈ H 2
b (0,R) vanishes if and only if there

is a homomorphism η ∈ H 1(0,R) such that supg∈0 |9(f )(g) − η(g)| < ∞ (cf. the
discussion in Section 2). This homomorphism then restricts to a homomorphism of the
group G. Now G is a free group with two generators and hence H 1(G,R) = R2. More
precisely, if u1, u2 are such free generators for G then every homomorphism η : G→ R
is determined by its value at u1, u2. In particular, for any finite subset {h1, . . . , hm} ⊂ G

there are two elements in this collection, say h1, h2, such that for every quasi-morphism
η for G which is equivalent to a homomorphism and every j ∈ {3, . . . , m} the quantity
limk→∞ η(h

k
j )/k is uniquely determined by limk→∞ η(h

k
i )/k (i = 1, 2). Together with

the above observation that for any finite subset {h1, . . . , hm} of {gi | i > 0} we can find
a quasi-morphism for 0 for which these limits assume arbitrarily prescribed values we
conclude that there are infinitely many quasi-morphisms for 0 whose restrictions to G
define linearly independent elements of H 2

b (G,R). This shows that the kernel of the map
H 2
b (0,R) → H 2(0,R) is infinite-dimensional and completes the proof of the proposi-

tion. ut

Remark. The above proof also shows the following. Let 0 be a countable group which
admits a weakly hyperbolic action by homeomorphisms of a metric space X of finite
diameter such that the action of 0 on T = X3

− 1 is metrically proper. Let gi ∈
0 be elements which act with north-south dynamics on X with ordered pairs of fixed
points (ai, bi) (i = 1, . . . , k). If the 0-orbits of (ai, bi), (bj , aj ) (i, j ≤ k) are all dis-
joint then for every tuple (q1, . . . , qk) ∈ Rk there is a quasi-morphism ϕ for 0 with
liml→∞ ϕ(g

l
i)/ l = qi for every i ≤ k.

The following theorem is the main technical result of this note. For its formulation,
recall that the free group G with two generators is the fundamental group of a convex
cocompact hyperbolic surface whose limit set B is just the Gromov boundary of G.

Theorem 3.3. Let (X, d) be a metric space of finite diameter without isolated points. Let
0 be a countable group which admits a weakly hyperbolic action by homeomorphisms
of X. Assume that 0 contains a free subgroup G with two generators and the following
properties.

(1) Every e 6= g ∈ G acts with north-south dynamics on X.
(2) There are infinitely many gi ∈ G (i > 0) such that the 0-orbits of the ordered pairs

of fixed points of the elements gi, g−1
j (i, j > 0) are pairwise disjoint.

(3) There is aG-equivariant continuous embedding of the Gromov boundary ofG intoX.

If the action of 0 on the space of triples of pairwise distinct points in X is metrically
proper then for every p ∈ (1,∞) the kernel of the map H 2

b (0, `
p(0))→ H 2(0, `p(0))

is infinite-dimensional.

Proof. Let 0 be a countable group acting by homeomorphisms on a metric space (X, d)
of finite diameter without isolated points. Assume that the action of 0 is weakly hyper-
bolic and that the diagonal action of 0 on the space T = X3

− 1 of triples of pair-
wise distinct points in X is metrically proper. Write Y = T/0 and denote as before by
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ι : T → T the natural involution which exchanges the first two points in a triple. Let
G be a free subgroup of 0 with two generators as in the statement of the theorem. In
particular, we assume that there is a continuous G-equivariant embedding of the Gromov
boundary B of G into X. We have to show that for every p ∈ (1,∞) the kernel of the
map H 2

b (0, `
p(0))→ H 2(0, `p(0)) is infinite-dimensional.

Denote by ‖ ‖p the norm of the Banach space `p(0). We assume that 0 acts on
`p(0) by right translation, i.e. for every g ∈ 0 and every function ψ ∈ `p(0) we
have (gψ)(h) = ψ(hg). Define an `p(0)-valued quasi-morphism for 0 to be a map
η : 0→ `p(0) such that

sup
g,h∈0

‖η(g)+ gη(h)− η(gh)‖p <∞.

Two such quasi-morphisms η, η′ are called equivalent if η − η′ is bounded as a function
from 0 to `p(0), i.e. if there is a number c > 0 such that ‖(η − η′)(g)‖p ≤ c for all
g ∈ 0.

By Corollary 7.4.7 in [M01], the cohomology groupH 2
b (0, `

p(0)) coincides with the
second cohomology group of the complex

0→ L∞(0, `p(0))0
d
−→ L∞(02, `p(0))0

d
−→ L∞(03, `p(0))0 → · · ·

with the usual homogeneous coboundary operator d . Let ψ : 02
→ `p(0) be any

(unbounded) 0-equivariant map; this means that ψ(hg1, hg2) = h(ψ(g1, g2)) for all
g1, g2, h ∈ 0. If the image dψ of ψ under the coboundary operator d is bounded, then
as in the case of real coefficients, the map ψ defines a class in the kernel of the natural
map H 2

b (0, `
p(0)) → H 2(0, `p(0)). Let e be the unit element in 0 and define a map

ϕ : 0 → `p(0) by ϕ(v) = ψ(e, v). Then for g, h, u ∈ 0 we have dψ(g, h, u) =
ψ(h, u) − ψ(g, u) + ψ(g, h) = hϕ(h−1u) − gϕ(g−1u) + gϕ(g−1h) = g(ϕ(g−1h) +

g−1hϕ(h−1u)− ϕ(g−1u)). Since 0 acts isometrically on `p(0), we conclude that dψ is
bounded if and only if ϕ defines an `p(0)-valued quasi-morphism for 0. Now by equiv-
ariance,ψ is uniquely determined by ϕ and therefore every equivalence class of an `p(0)-
valued quasi-morphism gives rise to a cohomology class in the kernel of the natural map
H 2
b (0, `

p(0))→ H 2(0, `p(0)). This cohomology class vanishes if and only if there is a
map η : 0→ `p(0) which satisfies η(gh) = η(g)+ gη(h) for all g, h ∈ 0 and such that
ϕ − η is bounded.

Let again T be the space of triples of pairwise distinct points in X. The group 0
and the involution ι act on T , and these actions commute; we denote as before by Z
the corresponding quotient. As above, let C ⊂ T be a set of positive distance to 1 and
sufficiently small diameter which is mapped homeomorphically into the quotient Z.

Let T̂ = T × 0 and define Ĥ to be the vector space of all functions f : T̂ → R
supported in C × 0 with the following property. For g ∈ 0 write fg(x) = f (x, g); we
view fg as a function C → R. We require that there is some α ∈ (0, 1) such that the
Hölder-α-norms ‖fg‖α of the functions fg (g ∈ 0) on C satisfy

∑
g∈0 ‖fg‖

p
α < ∞.

Then for each y ∈ C the function fy : g 7→ f (y, g) is contained in `p(0) and there-
fore the assignment y ∈ C 7→ fy defines a (Hölder continuous) map of C into `p(0).
The set of all such functions naturally has the structure of an infinite-dimensional vector
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space. Extend the function f ∈ Ĥ to a function f̂ on T̂ which is anti-invariant under the
involution ι : (ζ, g) = (ιζ, g) and satisfies f̂ (gz, u) = f (z, ug) for all z ∈ T and all
g, u ∈ 0.

As in the proof of Lemma 3.1 above, assume that C = U × V ×W for open subsets
U,V,W of positive distance and sufficiently small diameter. Recall from the proof of
Lemma 3.1 the definition of the foliation F of T and the measures µF . Choose a small
closed ball A ⊂ U , a point x ∈ A and for g ∈ 0 define a function 9(f )(g) : 0→ R by

9(f )(g)(u) =

∫
F(x,gx)−A−gA

f̂ (y, u) dµF (y).

It follows from the choice of f and the considerations in Step 1 of the proof of Lemma
3.1 that9(f )(g) ∈ `p(0). On the other hand, by the definition of the function f̂ we have∫

F(gx,ghx)−gA−ghA

f̂ (y, u) dµF (y) =
∫
F(x,hx)−A−hA

f̂ (y, ug) dµF (y)

= 9(f )(h)(ug)

and consequently the estimates in Step 2 of the proof of Lemma 3.1 show that the map
9(f ) is an `p(0)-valued quasi-morphism for 0. In other words, as in the case of real
coefficients we obtain a linear map 2 from the vector space Ĥ into the kernel of the
natural map H 2

b (0, `
p(0)) → H 2(0, `p(0)) which assigns to a function f ∈ Ĥ the

cohomology class of the `p(0)-valued quasi-morphism 9(f ).
Our goal is to show that the image of the map 2 is infinite-dimensional. For this

let G < 0 be the free group with two generators as in the statement of the theorem.
Then every function u ∈ `p(0) restricts to a function Ru ∈ `p(G), and for g ∈ G we
have R(gu) = g(Ru). Thus for every f ∈ Ĥ the map 9(f ) : 0 → `p(0) restricts to
an `p(G)-valued quasi-morphism R9(f ) : G → `p(G) which defines a cohomology
class R2(f ) ∈ H 2

b (G, `
p(G)). If the cohomology class 2(f ) vanishes then the same

is true for the cohomology class R2(f ). Thus it is enough to show that the subspace
{R2(f ) | f ∈ Ĥ} of H 2

b (G, `
p(G)) is infinite-dimensional.

For this let B be the Gromov boundary of the free group G; this boundary is a Cantor
set on which the groupG acts as a group of homeomorphisms with north-south dynamics.
Assume that there is a G-equivariant continuous embedding ρ0 : B → X. If we denote
by BT the space of triples of pairwise distinct points in B then the map ρ0 induces a
continuous G-equivariant embedding ρ : BT → T . In the following we identify BT
with its image under ρ, i.e. we suppress the map ρ in our notations. Let f ∈ Ĥ; for a
triple (x1, x2, x3) ∈ BT and u ∈ G define

ν(f )(x1, x2, x3)(u) =

∫
F(x1,x2)

f̂ (y, u) dµF (y)+
∫
F(x2,x3)

f̂ (y, u) dµF (y)

+

∫
F(x3,x1)

f̂ (y, u) dµF (y).

Here the sum on the right hand side of the equation is viewed as a limit of sums of finite
integrals over the complements in the leaves F(xi, xj ) of smaller and smaller neighbor-
hoods of the points xi (i = 1, 2, 3), and its existence follows as above from the con-
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tinuity properties of the function f̂ . By the choice of f , for every (x1, x2, x3) ∈ BT

the function u ∈ G 7→ ν(f )(x1, x2, x3)(u) is contained in `p(G). More precisely, the
map (x1, x2, x3) ∈ BT 7→ ν(f )(x1, x2, x3) ∈ `

p(0) is a continuous cocycle for the
action of G on B, i.e. it is continuous and equivariant under the action of G, it satisfies
ν ◦ σ = (sgn(σ ))ν for every permutation σ of the three variables and the cocycle identity

ν(f )(x2, x3, x4)− ν(f )(x1, x3, x4)+ ν(f )(x1, x2, x4)− ν(f )(x1, x2, x3) = 0.

In particular, for any fixed point x ∈ B we conclude as in Section 2 that the assign-
ment (g1, g2, g3) 7→ ν(f )(g1x, g2x, g3x) (gi ∈ G) defines a G-equivariant cocycle with
values in `p(G) whose cohomology class coincides with R2(f ).

Now by a result of Adams [A94] (see also [Ka03] for a more precise result), if σ
is the measure class of the measure of maximal entropy for the geodesic flow of any
convex cocompact hyperbolic manifold whose fundamental group is a free group with
two generators, viewed as a G-invariant measure class on the Gromov boundary B of G,
then (B, σ ) is a strong boundary for G. This means that the action of G on (B, σ ) is
amenable and doubly ergodic with respect to any separable Banach coefficient module,
i.e. for every separable Banach G-space E, every measurable G-equivariant map (B ×
B, σ × σ) → E is constant almost everywhere. As a consequence, every continuous
G-equivariant cocycle BT → `p(G) which does not vanish identically defines a non-
vanishing class in H 2

b (G, `
p(G)) (see the discussion in Section 7 of [M01]). Thus for

every f ∈ Ĥ such that ν(f ) 6= 0 the class R2(f ) does not vanish and hence the same
is true for the class 2(f ). In other words, to show that indeed H 2

b (0, `
p(0)) is infinite-

dimensional we only have to find for every m > 0 a collection of functions fi ∈ Ĥ
(1 ≤ i ≤ m) such that the cocycles ν(fi) are linearly independent.

For this recall that by Proposition 3.2 and its proof, the subspace ofH 2
b (G,R) defined

by the cohomology classes 2G(f ) ∈ H 2
b (G,R) of the quasi-morphisms 9(α) where

α ∈ HC for a suitable choice of C ⊂ T is infinite-dimensional (note that we use here
the notations from Lemma 3.1 for the map 9). On the other hand, for every α ∈ HC the
cohomology class2G(α) ∈ H 2

b (G,R) coincides with the class defined by the continuous
R-valued cocycle ν0(α) : BT → R given by

ν0(α)(x1, x2, x3) =

∫
F(x1,x2)

α̃(y) dµF (y)+
∫
F(x2,x3)

α̃(y) dµF (y)

+

∫
F(x3,x1)

α̃(y) dµF (y).

Now let C ⊂ T and let α1, . . . , αm ∈ HC be such that the cocycles ν0(αi) are linearly
independent; such functions exist by Proposition 3.2 and its proof. For every i ≤ m define
a function fi ∈ Ĥ by fi(y, e) = αi(y) and fi(y, g) ≡ 0 for g 6= e. Then

ν0(αi)(x1, x2, x3) =

∫
F(x1,x2)

∑
u∈G

f̂i(y, u) dµF (y)+
∫
F(x2,x3)

∑
u∈G

f̂i(y, u) dµF (y)

+

∫
F(x3,x1)

∑
u∈G

f̂i(y, u) dµF (y)
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and therefore since the cocycles ν0(αi) are linearly independent the same is true for the
cocycles ν(fi). As a consequence, the kernel of the map H 2

b (0, `
p(0))→ H 2(0, `p(0))

is indeed infinite-dimensional. ut

4. Groups acting isometrically on hyperbolic geodesic metric spaces

In this section we consider countable groups which admit a weakly acylindrical isometric
action on an arbitrary Gromov hyperbolic geodesic metric space X. We show that the
assumptions in Theorem 3.3 are satisfied for the action of such a group 0 on the Gromov
boundary ∂X of X. From this we deduce Theorem A from the introduction.

First recall that the Gromov boundary of a hyperbolic geodesic metric space X is
defined as follows. For a fixed point x0 ∈ X, define the Gromov product (y, z)x0 based at
x0 of two points y, z ∈ X by

(y, z)x0 =
1
2
(d(y, x0)+ d(z, x0)− d(y, z)).

Call two sequences (yi), (zj ) ⊂ X equivalent if (yi, zi)x0 → ∞ (i → ∞). By hyper-
bolicity of X, this notion of equivalence defines an equivalence relation in the collection
of all sequences (yi) ⊂ X with the additional property that (yi, yj )x0 →∞ (i, j →∞)

[BH99]. The boundary ∂X of X is the set of equivalence classes of this relation.
The Gromov product ( , )x0 for pairs of points in X can be extended to a product on

∂X by defining
(ξ, η)x0 = sup lim inf

i,j→∞
(yi, zj )x0

where the supremum is taken over all sequences (yi), (zj ) ⊂ X whose equivalence classes
define the points ξ, η ∈ ∂X. For a suitable number χ > 0 only depending on the hy-
perbolicity constant of X there is a distance δ = δx0 of bounded diameter on ∂X with
the property that the distance δ(ξ, η) between two points ξ, η ∈ ∂X is comparable to
e−χ(ξ,η)x0 (see 7.3 of [GH90]). More precisely, there is a constant θ > 0 such that

e−χθe−χ(ξ,η)x0 ≤ δ(ξ, η) ≤ e−χ(ξ,η)x0 (8)

for all ξ, η ∈ ∂X. In the following we always assume that ∂X is equipped with such a
distance δ.

There is a natural topology on X∪ ∂X which restricts to the given topology on X and
to the topology on ∂X induced by the metric δ. With respect to this topology, a sequence
(yi) ⊂ X converges to ξ ∈ ∂X if and only if we have (yi, yj )x0 →∞ and the equivalence
class of (yi) defines ξ . If X is proper, then X ∪ ∂X is compact. Every isometry of X acts
naturally onX∪∂X as a homeomorphism. We denote by Iso(X) the isometry group ofX.

Since we do not assume thatX is proper, for a given pair of distinct points ξ 6= η ∈ ∂X
there may not exist a geodesic γ in X connecting ξ to η, i.e. such that γ (t) converges to
ξ as t →−∞ and that γ (t) converges to η as t →∞. However, there is a number L > 1
only depending on the hyperbolicity constant for X such that any two points in ∂X can
be connected by an L-quasi-geodesic. Recall that for L ≥ 1, an L-quasi-geodesic in X is
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a map γ : (a, b)→ X for −∞ ≤ a < b ≤ ∞ such that

−L+ |s − t |/L ≤ d(γ (s), γ (t)) ≤ L|s − t | + L

for all s, t ∈ (a, b). Note that an L-quasi-geodesic γ need not be continuous. How-
ever, from every L-quasi-geodesic γ we can construct a continuous 4L-quasi-geodesic
γ̃ whose Hausdorff distance to γ is bounded from above by 4L by replacing for each
i ≥ 0 the arc γ [i, i + 1] by a geodesic arc γ̃ [i, i + 1] with the same endpoints. In
other words, via changing the constant L we may assume that for any two distinct points
ξ 6= η ∈ ∂X there is a continuous L-quasi-geodesic γ connecting ξ to η; we then write
γ (−∞) = ξ, γ (∞) = η (see [GH90, 5.25 and 7.6]; cf. also the discussion in [H06]).

Recall from Section 3 the definition of a weakly hyperbolic action of a group G on a
metric space of bounded diameter. We show

Lemma 4.1. Let X be an arbitrary hyperbolic geodesic metric space. Then the action of
the isometry group Iso(X) on ∂X is weakly hyperbolic.

Proof. The boundary ∂X of a hyperbolic geodesic metric space X is a metric space of
bounded diameter where the metric δ is constructed from the Gromov product ( , )x0 at a
fixed point x0 ∈ X. There are numbers χ, θ > 0 such that inequality (8) above holds for
the distance δ.

Our goal is to show that for every ν > 0 there is a constant 2 = 2(ν) > 0 with
the following property. Let a, b ∈ ∂X with δ(a, b) ≥ 2ν. Let g ∈ Iso(X) be such
that δ(ga, gb) ≥ 2ν; if v ∈ ∂X − {a, b} is such that min{δ(gv, ga), δ(gv, gb)} ≥ ν

then δ(gw, gb) ≤ 2δ(v, a) for every w ∈ ∂X with δ(w, b) ≤ ν. Note that since the
diameter of ∂X is finite, this inequality is automatically satisfied for a suitable choice of
2 whenever δ(v, a) is bounded from below by a universal constant. Thus it is enough to
show the claim under the additional assumption that δ(v, a) ≤ ε for some fixed ε > 0
which will be determined later on.

Let T ⊂ (∂X)3 be the set of all triples of pairwise distinct points in ∂X. A triple
(a, b, c) ∈ T determines (non-uniquely) an ideal L-quasi-geodesic triangle with vertices
a, b, c. The Hausdorff distance between any two such L-quasi-geodesic triangles with the
same vertices in ∂X is bounded by a universal constant. There is a number p0 > 0 such
that for every p ≥ p0 and every triple (a, b, c) ∈ T the closed set K(a, b, c;p) ⊂ X of
all points in X whose distance to each side of an L-quasi-geodesic triangle with vertices
a, b, c is at most p is non-empty. The diameter of this set is uniformly bounded by a
constant only depending on p and the hyperbolicity constant for X.

By the definition of the Gromov product and hyperbolicity, there is a number m1 > 0
with the following property. Let (a, b, c) ∈ T and let ζ be a continuous L-quasi-geodesic
connecting b to a. Then min{(a, c)ζ(0), (b, c)ζ(0)} ≤ m1 and if (b, c)ζ(0) ≤ (a, c)ζ(0) then
we have ζ(τ ) ∈ K(a, b, c;m1) for every τ ≥ 0 such that d(ζ(0), ζ(τ )) = (a, c)ζ(0).

Now let ν ∈ (0, 1) and let a, b ∈ ∂X be such that δ(a, b) ≥ 2ν. By hyperbolicity
and inequality (8) above, there is a constant m0 = m0(ν) > 0 such that every contin-
uous L-quasi-geodesic connecting two points a 6= b ∈ ∂X with δ(a, b) ≥ ν intersects
the ball B(x0, m0). Let γ be a continuous L-quasi-geodesic connecting b = γ (−∞) to
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a = γ (∞) which is parametrized in such a way that γ (0) ∈ B(x0, m0). Let θ, χ > 0
be as in inequality (8), let R0 = χ(m0 + m1 + θ) and let v ∈ ∂X − {a, b} be such
that δ(a, v) ≤ e−R0 ; then δ(a, v) = e−R for some R ≥ R0. By inequality (8) we have
R/χ − θ ≤ (a, v)x0 ≤ R/χ and hence

R/χ − θ −m0 ≤ (a, v)γ (0) ≤ R/χ +m0

since d(x0, γ (0)) ≤ m0. From the assumption on R we find that (a, v)γ (0) ≥ m1 and
hence γ (τ) ∈ K(a, b, v;m1) for all τ ≥ 0 such that d(γ (0), γ (τ )) = (a, v)γ (0).

Let g ∈ Iso(X) be such that δ(ga, gb) ≥ 2ν and min{δ(ga, gv), δ(gb, gv)} ≥ ν.
Then the L-quasi-geodesic gγ intersects B(x0, m0) and the same if true for any L-
quasi-geodesic connecting ga to gv or connecting gb to gv and consequently x0 ∈

K(ga, gb, gv;m0). If as before τ > 0 is such that d(γ (0), γ (τ )) = (a, v)γ (0) then
γ (τ) ∈ K(a, b, v;m1) and therefore

{x0, gγ (τ )} ⊂ K(ga, gb, gv;m0 +m1) = gK(a, b, v;m0 +m1).

Now the diameter of the setK(ga, gb, gv;m0+m1) is bounded from above by a constant
m2 = m2(ν) > 0 only depending on ν and hence d(gγ (τ), x0) ≤ m2.

Let w ∈ ∂X be such that δ(w, b) ≤ ν. Then δ(w, a) ≥ ν and by inequality (8) above,
the Gromov product (w, a)x0 is bounded from above by a universal constant and the same
is true for (w, a)γ (0). In particular, the L-quasi-geodesic ray γ [0,∞) connecting γ (0) to
a is contained in a uniformly bounded neighborhood of any L-quasi-geodesic connecting
w to a. With τ > 0 as above we have |d(γ (τ), γ (0)) − R/χ | ≤ m0 + θ and hence by
the definition of the Gromov product and hyperbolicity, the quantity (b,w)γ (τ)−R/χ =
(gb, gw)gγ (τ)−R/χ is bounded from below by a universal constant. But d(gγ (τ), x0) ≤

m2 and hence we have

|(gb, gw)gγ (τ) − (gb, gw)x0 | = |(b,w)γ (τ) − (gb, gw)x0 | ≤ m2.

Using once more the estimate (8) we conclude that there is a number2 > 1 only depend-
ing on ν such that δ(gb, gw) ≤ 2e−R = 2δ(a, v). This shows that the action of Iso(X)
on ∂X is weakly hyperbolic. ut

As in the introduction, we call an isometric action on X of a countable group 0 weakly
acylindrical if for every point x0 ∈ X and every m > 0 there are numbers R(x0, m) > 0
and c(x0, m) > 0 with the following property. If x, y ∈ X with d(x, y) ≥ R(x0, m) are
such that a geodesic γ connecting x to y meets the m-neighborhood of x0 then there are
at most c(x0, m) elements g ∈ 0 such that d(x, gx) ≤ m and d(y, gy) ≤ m. We have.

Lemma 4.2. Let X be a hyperbolic geodesic metric space and let 0 be a countable
subgroup of Iso(X) whose action on X is weakly acylindrical. Then the action of 0 on
the space or triples of pairwise distinct points in ∂X is metrically proper.

Proof. The group 0 acts as a group of homeomorphisms on the Gromov boundary ∂X
of X. Recall that ∂X is a metric space of bounded diameter where the metric δ is con-
structed from the Gromov product ( , )x0 at a fixed point x0 ∈ X and it satisfies the
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estimate (8) from the beginning of this section for some χ, θ > 0 and all ξ 6= η ∈ ∂X.
We have to show that the action of 0 on the space T of triples of pairwise distinct points
in ∂X is metrically proper.

For this let ν > 0 be fixed. There are numbers L ≥ 1 and m0 = m0(ν) > 0 such that
any two points x 6= y ∈ ∂X can be connected by a continuous L-quasi-geodesic, and if
δ(x, y) ≥ ν then this quasi-geodesic intersects the ball B(x0, m0).

By hyperbolicity, the Hausdorff distance between any two L-quasi-geodesics con-
necting the same points in ∂X is bounded from above by a universal constant. Moreover,
there is a universal constant m1 = m1(ν) > m0 with the following property. Let a 6= b,
x 6= y ∈ ∂X and assume that δ(a, b) ≥ 2ν and that for some R > − log(ν/2) we
have δ(a, x) ≤ e−R, δ(b, y) ≤ e−R . Let γ be a continuous L-quasi-geodesic connect-
ing b = γ (−∞) to a = γ (∞) and let η be a continuous L-quasi-geodesic connecting
y = η(−∞) to x = η(∞); then γ, η intersect the ball B(x0, m0), and the intersection of
γ with B(x0, R/χ) is contained in the m1-neighborhood of η.

As in the proof of Lemma 4.1, for p > 0 and a triple (u, v,w) ∈ T let K(u, v,w;p)
⊂ X be the set of all points whose distance to each side of an L-quasi-geodesic triangle
with vertices u, v,w is at most p. By the arguments in the proof of Lemma 4.1 there is
a constant m2 > m1 with the following property. Let x, y ∈ ∂X with δ(x, y) ≥ ν. If
z ∈ ∂X and k ≥ − log(ν/2) are such that e−k ≤ δ(x, z) ≤ e−k+1 then the distance
between x0 and K(x, y, z;m0) is contained in the interval [k/χ − m2, k/χ + m2]. The
diameter of the setsK(x′, y′, z′;m0) is bounded from above by a universal constant ρ > 0
only depending on m0 and the hyperbolicity constant of X.

Let (a, b, c) ∈ (∂X)3 be a triple of points whose pairwise distances are at least 2ν. Let
R ≥ − log(ν/2) be a number to be determined later, let U(a), U(b), U(c) be the open
e−R-neighborhood of a, b, c in ∂X and let x ∈ U(a), y ∈ U(b), z ∈ U(c). Let a′, b′ ∈
∂X be such that δ(a′, b′) ≥ 2ν and assume that there is some g ∈ 0 such that gx = a′,
gy = b′ and δ(gz, a′) ∈ [e−k, e−k+1] for some k ≥ R. Then g maps a continuous
L-quasi-geodesic η connecting y to x with η(0) ∈ K(x, y, z;m0) to a continuous L-
quasi-geodesic gη connecting b′ to a′. Since g(η(0)) ∈ K(a′, b′, gz;m0) we have

|d(gη(0), x0)− k/χ | ≤ m2 + ρ. (9)

Now let x′ ∈ U(a), y′ ∈ U(b), z′ ∈ U(c) and let g′ ∈ 0 be such that g′x′ = a′

= gx, g′y′ = b′ = gy and δ(g′z′, a′) ∈ [e−k, e−k+1]. Let η′ be a continuous L-quasi-
geodesic connecting y′ to x′, with η′(0) ∈ B(x0, m0). As above, let γ be a continuous
L-quasi-geodesic connecting b to a with γ (0) ∈ B(x0, m0) and let σ < 0 be such that
d(x0, γ (σ )) = R/χ . Then there are numbers τ, τ ′ < 0 such that d(η(τ), γ (σ )) ≤ m1,
d(η′(τ ′), γ (σ )) ≤ m1 and therefore d(η(τ), η′(τ ′)) ≤ 2m1. In particular, we have

|d(η(0), η(τ ))− d(η′(0), η′(τ ′))| ≤ 2m0 + 2m1.

The images of η, η′ under g, g′ are continuous L-quasi-geodesics connecting b′ to a′.
The estimate (9) is valid for g′ as well and hence by hyperbolicity, the distances
d(gη(0), g′(η′(0))), d(g(η(τ)), g′(η′(τ ′))) are bounded from above by a universal con-
stant m3 > 2m2. Together we conclude that

d(g−1g′(η(0)), η(0)) ≤ 2m3, d(g−1g′(η(τ )), η(τ )) ≤ 2m3.
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Now if R0 = R(x0, 2m3) is as in the definition of a weakly acylindrical action, then
for R ≥ χR0 and any k ≥ R the number of elements g, g′ ∈ 0 with this property is
bounded from above by a universal constant independent of R and k. This shows that the
action of 0 on ∂X satisfies the first property in the definition of a metrically proper action.

The second property in that definition follows from exactly the same argument.
Namely, using the above notation, there is a number κ > m0(ν) only depending on ν
such that if Z ⊂ ∂X is the set of all points whose distance to U(a), U(b) is at least ν
then there is a number τ0 > 0 such that for any x ∈ U(a), y ∈ U(b) and z ∈ Z the
set K(x, y, z) is contained in the ball of radius κ > 0 about x0. In other words, for any
element g ∈ 0 which maps a triple (x, y, z) ∈ U(a) × U(b) × Z to a triple of points
whose pairwise distances are bounded from below by ν, the distance between x0 and gx0
is at most κ . The above considerations then show that we can find a number R̃(ν) > 0
depending on ν and some m̃(ν) > 0 such that the second requirement in the definition of
a metrically proper action holds with these constants and for the action of 0 on ∂X. ut

Recall from Section 3 the definition of a homeomorphism with north-south dynamics of
a metric space of finite diameter. The statement of the next simple lemma is well known
in the case that the hyperbolic space X is proper; we include a short proof for the sake of
completeness since we have not found a suitable reference for the general case.

Lemma 4.3. Let X be a hyperbolic geodesic metric space and let g be an isometry of
X such that for some x ∈ X the map k 7→ gkx is a quasi-isometric embedding of the
integers into X. Then g acts on ∂X with north-south dynamics.

Proof. Let g be an isometry of X as in the lemma. Then the sequence (gkx)k≥0 ⊂ X

converges to a point a ∈ ∂X, and the sequence (g−kx)k≥0 ⊂ X converges to a point
b ∈ ∂X − {a}. The limit set of the infinite cyclic group G generated by g consists of the
two points a 6= b ∈ ∂X, and these are fixed points for the action of G on ∂X.

By hyperbolicity there is a number m > 0 such that for every ξ ∈ ∂X − {a, b} the
closed set K(a, b, ξ ;m) ⊂ X of all points in X whose distance to each side of an L-
quasi-geodesic triangle with vertices a, b, ξ is at most m is non-empty and its diameter
K(a, b, ξ ;m) is bounded independently of ξ . Since the assignment k 7→ gk(x) is a quasi-
isometric embedding of the integers into X, we may assume by possibly enlarging m
that each of the sets K(a, b, ξ ;m) intersects Q = {gk(x) | k ∈ Z}. Thus there is a
number l > 0 and for every ξ ∈ ∂X − {a, b} there is some κ(ξ) ∈ Z such that the set
{gκ(x) | κ(ξ) ≤ κ ≤ κ(ξ) + l} contains the intersection of K(a, b, ξ ;m) with Q. Then
|κ(gj ξ) − κ(ξ) − j | ≤ l for all j ∈ Z and hence the set D = {ξ ∈ ∂X − {a, b} | 0 ≤
κ(ξ) ≤ l} does not contain a, b in its closure and it satisfies

⋃
j∈Z g

jD = ∂X − {a, b}.
Moroever, for any neighborhoods U of a and V of b there is a number j > 0 such that
gj (X − V ) ⊂ U and g−j (X − U) ⊂ V . Hence the isometry g acts with north-south
dynamics on ∂X. ut

Call an isometry of X hyperbolic if it acts on ∂X with north-south dynamics with respect
to some fixed points a 6= b. The following corollary is immediate from Lemma 4.1,
Lemma 4.2 and the remark after Proposition 3.2 in Section 3. We refer to [PR04] for a
similar result for the group SL(2,Z).
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Corollary 4.4. Let 0 be a countable group which admits a weakly acylindrical isometric
action on a hyperbolic geodesic metric space. Let g1, . . . , gk ∈ 0 be hyperbolic elements
with ordered pairs of fixed points (ai, bi). If the 0-orbits of (ai, bi), (bi, ai) are pair-
wise disjoint then for every (q1, . . . , qk) ∈ Rk there is a quasi-morphism ϕ for 0 with
lim`→∞ ϕ(g

`
i )/` = qi for every i ≤ k.

The limit set of an isometric action of a group 0 on X is the set of accumulation points
in ∂X of an orbit 0x (x ∈ X) of 0; it does not depend on the orbit. A subgroup 0 of
Iso(X) is called elementary if its limit set contains at most two points. The next result is
Theorem A from the introduction.

Theorem 4.5. Let 0 be a countable group which admits a non-elementary weakly acylin-
drical isometric action on a Gromov hyperbolic geodesic metric space X. Then the
kernels of the natural homomorphisms H 2

b (0,R) → H 2(0,R) and H 2
b (0, `

p(0)) →

H 2(0, `p(0)) (1 < p <∞) are infinite-dimensional.

Proof. Let 0 be a countable non-elementary weakly acylindrical subgroup of Iso(X). By
assumption, the limit set 3 of 0 contains at least three points. Then this limit set is a 0-
invariant closed subset of ∂X without isolated points (see [GH90]). Our goal is to show
that the action of 0 on 3 satisfies the assumptions in Theorem 3.3.

By Lemma 4.1 and Lemma 4.2, the action of 0 on3 is weakly hyperbolic and the ac-
tion of 0 on the space of triples of pairwise distinct points in3 is metrically proper. Using
Lemma 4.3 it is enough to show that 0 contains a free subgroup G with two generators
which has the following additional properties.

(1) For some x ∈ X the orbit map g ∈ G 7→ gx ∈ X is a quasi-isometric embedding of
G into X.

(2) There are infinitely many gi ∈ G (i ≥ 0) such that the ordered pairs of fixed points
of gi, g−1

j are contained in pairwise distinct orbits of the action of 0 on 3×3.

Note that the first property guarantees that there is a continuousG-equivariant embedding
of the Gromov boundary B of G into 3.

The existence of a free group G with two generators and with property (1) above
is immediate from the ping-pong lemma and the requirement that the group 0 is non-
elementary (cf. [GH90]).

Now let e 6= g ∈ G and let (a, b) be the ordered pair of fixed points of the action
of g on ∂X. Choose a closed subset of ∂X which is contained in X − {a, b} and is a
fundamental domain D for the action on ∂X − {a, b} of the infinite cyclic subgroup of
G generated by g. Assume that there is a sequence (ai, bi) ∈ ∂X × ∂X contained in the
0-orbit of (a, b) with (ai, bi)→ (a, b). Let δ be a Gromov distance on ∂X and write ν =
min{δ(a, b), δ({a, b},D)}/4. Let R(ν) > 0 be as in the definition of a metrically proper
action for 0 and let U,V be the open e−R(ν)-neighborhoods of a, b respectively. For
sufficiently large i we have ai ∈ U and bi ∈ V . By our assumption, there are hi ∈ 0 such
that hiai = a and hibi = b. Then h−1

i ghi is a hyperbolic isometry with fixed points ai, bi .
Since a hyperbolic isometry fixes precisely two points in ∂X, the elements hi are pairwise
distinct and the same is true for their compositions with an arbitrary power of g. Namely,



Bounded cohomology and isometry groups of hyperbolic spaces 343

otherwise there are i 6= j and l ∈ Z such that gl = hih−1
j , which contradicts the fact that

(a, b) are fixed points for g, (ai, bi) 6= (aj , bj ) and hi is a homeomorphism. However, by
the choice of D there is for each i > 0 some k(i) ∈ Z such that gk(i)hiD ∩ D 6= ∅ and
hence gk(i)hi(U ×V ×D)∩U ×V ×D 6= ∅ for all sufficiently large i. This contradicts
the assumption that the action of 0 on the space of triples of pairwise distinct points in
∂X is metrically proper.

As a consequence, for every ordered pair (a, b) of fixed points of an element e 6= g ∈
G the 0-orbit of (a, b) is a discrete subset of ∂X×∂X−1 (note that this fact has already
been established in the proof of Proposition 3.2). Since on the other hand the sets of pairs
of fixed points for the elements of G are dense in B × B − 1, there are infinitely many
such pairs (ai, bi) which are pairwise contained in distinct orbits under the action of 0.
Our argument also implies that we may in addition require that the ordered pairs (ai, bi)
are not contained in the 0-orbit of (bj , aj ) for any j .

We use this fact to show that we can find infinitely many gi ∈ Gwith the property that
the 0-orbits of the ordered pairs of fixed points (ai, bi), (bj , aj ) of gi, g−1

j are all disjoint
(see the argument in [BF02]). Namely, choose two independent elements g1, g2 ∈ G

which generate a free subgroup with the property that the ordered pairs of fixed points
(a1, b1), (b1, a1) of g1, g

−1
1 are not contained in the 0-orbit of the ordered pair of fixed

points (b2, a2) of g−1
2 . We may assume that the group generated by g1, g2 equals G and

that there is an L-quasi-isometricG-equivariant embedding ρ of the Cayley graph CG of
G into X which induces an equivariant embedding of the Gromov boundary B of G into
∂X. Identify CG with its image under this embedding. For 0 � n1 � m1 � n2 � m2
consider the element f = gn1

1 g
m1
2 g

n2
1 g

m2
2 ∈ G. If γ is the axis of f in CG and if h ∈ 0

maps the ordered pair (a, b) of fixed points for f to (b, a), then it maps the inverse ρ(γ )−1

of ρ(γ ) into a uniformly bounded neighborhood of ρ(γ ). Now a fundamental domain for
the action of f on its axis γ is composed of four arcs γ1, . . . , γ4 where γ1 is the geodesic
arc in CG connecting e to gn1

1 , γ2 is the translate under gn1
1 of the geodesic arc connecting

e to gm1
2 etc. As a consequence, there is a subsegment of the axis of a conjugate of g1 in

G whose length tends to infinity as n1 →∞ and which is mapped by h into a uniformly
bounded neigborhood of a subsegment of the axis of a conjugate of g−1

2 (see [BF02]). For
sufficiently large n1 this violates the observation that the 0-orbits of (ai, b1), (b2, a2) are
discrete and disjoint.

As a consequence, property (2) above holds for G as well (cf. also the discussion in
[BF02]). Thus the theorem is a consequence of Theorem 3.1. ut

5. Applications

In this section we derive some applications of Theorem A from the introduction. We
begin with the proof of Corollary B from the introduction. For this let S be an oriented
surface of genus g ≥ 0 with m ≥ 0 punctures. We assume that S is non-exceptional,
i.e. that 3g − 3 + m ≥ 2. The complex of curves C(S) for S is the simplicial complex
whose vertices are the free homotopy classes of essential simple closed curves on S, i.e.
simple closed curves which are neither contractible nor freely homotopic into a puncture
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of S. The simplices in C(S) are spanned by collections of such curves which can be
realized disjointly. Since S is non-exceptional by assumption, the complex of curves is
connected. If we equip each simplex in C(S) with the standard euclidean metric of side-
length one, then we obtain a length metric on C(S), and this length metric defines on C(S)
the structure of a hyperbolic geodesic metric space. However, C(S) is not locally finite
and hence this geodesic metric space is not locally compact (for all this see [MM99, B02,
H07]). A description of its Gromov boundary is contained in [Kl99, H06].

The mapping class group Mg,m of S is the group of isotopy classes of orientation
preserving homeomorphisms of S. It acts as a group of isometries on the complex of
curves C(S) of S. Bowditch [B03] showed that this action is weakly acylindrical. Thus
we can apply Theorem 4.5 and deduce Corollary B from the introduction which extends
the result of Bestvina and Fujiwara [BF02].

Proposition 5.1. Let 0 be an arbitrary subgroup of Mg,m. If 0 is not virtually abelian
then the groupH 2

b (0,R) is infinite-dimensional. If moreover 0 does not contain a normal
subgroup which virtually splits as a direct product of two infinite groups then for every
p ∈ (1,∞) the group H 2

b (0, `
p(0)) is infinite-dimensional as well.

Proof. Recall from [MP89] the classification of subgroups 0 of Mg,m. There are four
cases:

(1) 0 contains two independent pseudo-Anosov elements.
(2) The limit set of the action of 0 on C(S) consists of precisely two points a 6= b.
(3) 0 is finite.
(4) 0 preserves a non-trivial system of pairwise disjoint essential simple closed mutually

not freely homotopic curves on S.

The action of the mapping class group on C(S) is weakly acylindrical [B03] and
hence the same is true for the action of an arbitrary subgroup 0 of Mg,m. If 0 is as
in case (1) above then the limit set of 0 contains at least three points and therefore 0 is
a non-elementary subgroup of the isometry group of C(S). By Theorem 4.5, the groups
H 2
b (0,R),H

2
b (0, `

p(0)) are infinite-dimensional for every p ∈ (1,∞).
In case (2) above, each element of 0 maps a quasi-geodesic connecting a to b into

a uniformly bounded neighborhood of itself. Since the action of 0 on C(S) is weakly
acylindrical, the group 0 is virtually cyclic (cf. the discussion in [BF02]).

In case (4) there is a maximal system S of pairwise disjoint essential simple closed
non-mutually freely homotopic curves preserved by 0. If we cut S open along S and
replace each boundary circle of the resulting bordered surface by a puncture then we
obtain a possibly disconnected surface S′ of finite type and of greater Euler characteristic.
There is a natural homomorphism of 0 onto a subgroup 0′ of the mapping class group
of S′. Its kernel K is a free abelian group generated by multiple Dehn twists about the
curves of this curve system. Thus by Theorem 12.4.2 of [M01] (see also Corollary 3.6 of
[MS06]), the natural map H 2

b (0
′,R)→ H 2

b (0,R) is an isomorphism.
Let S′1, . . . , S

′
p be the connected components of S′. An element g ∈ 0′ permutes the

components of S′. This means that there is a homomorphism κ of 0′ into the group of
permutations of {1, . . . , p} whose kernel is the normal subgroup G of 0 of all elements
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which fix each component S′i . Thus there is an exact sequence

0→ G→ 0′→ Q→ 0 (10)

where Q is a finite group. This sequence induces an exact sequence [M01]

· · · → H 2
b (Q,R)→ H 2

b (0
′,R)→ H 2

b (G,R)→ H 3
b (Q,R)→ · · ·

Since the groupQ is finite, its bounded cohomology with real coefficients is finite dimen-
sional and therefore we conclude thatH 2

b (0
′,R) is infinite-dimensional if and only if this

is the case for H 2
b (G,R).

For i ≤ p denote by Gi the projection of G to a subgroup of the mapping class
group of S′i . If Gi preserves a non-trivial system Si of pairwise disjoint essential simple
closed non-mutually freely homotopic curves on S′i then the 0′-translates of this system
is a 0′-invariant curve system on S′ which lifts to a 0-invariant curve system on S strictly
containing S. This contradicts the maximality of the system S.

An exceptional component S′i of S′ is either a thrice punctured sphere with finite map-
ping class group, or a once punctured torus or a four times punctured sphere with word hy-
perbolic mapping class group. Therefore either 0′ and hence 0 is virtually abelian, or after
reordering, the group G1 admits a weakly acylindrical action as a non-elementary group
of isometries on a hyperbolic geodesic metric space. In particular, if 0 is not virtually
abelian then the second bounded cohomology group H 2

b (G1,R) is infinite-dimensional.
Let R be the kernel of the homomorphismG→ G1. Then we have an exact sequence

0→ R→ G→ G1 → 0. (11)

Since necessarilyH 1
b (R,R) = 0 (see [M01]) we deduce from the induced exact sequence

of bounded cohomology groups that H 2
b (G,R) is infinite-dimensional if this is the case

for H 2
b (G1,R). In other words, either 0 is virtually abelian or the second bounded coho-

mology group H 2
b (0,R) is infinite-dimensional.

We are left with investigating the groupsH 2
b (0, `

p(0)). Assume that 0 is not virtually
abelian. Then the groupG is infinite. Thus using the above notations, if the kernelK of the
natural projection π : 0→ 0′ is non-trivial, then the normal subgroup π−1(G) of 0 splits
as a direct product of two infinite groups. Hence as before, we may assume that 0 = 0′.
Then H 2

b (0, `
p(0)) is infinite-dimensional if this is the case for H 2

b (G, `
p(G)). Namely,

if the centralizer Z0(G) of G in 0 is infinite then the center of G is infinite and hence
either G is virtually abelian or G splits as a direct product of two infinite groups. Thus
we may assume that Z0(G) is finite. Then every function f ∈ `p(G) which is invariant
under the action of the finite center of G defines a function in the G-module `p(0)Z0(G)

of Z0(G)-invariant points in `p(0) which vanishes outside of GZ0(G). It follows that
the second bounded cohomology group H 2

b (G, `
p(0)Z0(G)) is infinite-dimensional.

The finite group Q as in the exact sequence (10) admits an isometric action on
H 2
b (G, `

p(0)Z0(G)) induced from the action of Q on G by conjugation (Corollary 8.7.3
of [M01]). Unsing the explicit form of this action we conclude that the subspace of
H 2
b (G, `

p(0)Z0(G)) of elements which are fixed byQ is infinite-dimensional if this is the
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case for H 2
b (G, `

p(G)). On the other hand, since the group G is infinite by assumption,
there is no non-zeroG-invariant vector in `p(0) and hence by the Hochschild–Serre spec-
tral sequence for bounded cohomology (Theorem 12.0.3 of [M01]), the second bounded
cohomology H 2

b (0, `
p(0)) is infinite-dimensional if this is the case for H 2

b (G, `
p(G)).

LetNj be the kernel of the projection ofG into a subgroup of the mapping class group
of S′−S′j . ThenNj consists of mapping classes which act trivially on Si for all i 6= j . For
i 6= j , the groups Ni, Nj only intersect in the identity and commute. Hence if they are
infinite for some i 6= j , then G contains a normal subgroup which is the direct product
of two infinite groups. The smallest normal subgroup of 0 containing Ni, Nj contains the
direct product of Ni, Nj as a subgroup of finite index, i.e. this normal subgroup virtually
splits as a direct product. Thus for the purpose of the proposition we may assume after
reordering that Ni is finite for all i > 1.

Consider first the case that N1 is infinite. Denote as before by R the kernel of the
natural projection G → G1 into the mapping class group of S′1. The subgroup of G
generated by N1, R is normal and the direct product of N1 and R. Therefore as above,
if 0 does not contain a normal subgroup which virtually splits as a direct product of two
infinite groups then R is finite, and the quotient group G/R can naturally be identified
with the group G1.

Assume that this holds true. By Theorem 4.5 and the assumption that G is not
virtually abelian, the second bounded cohomology group H 2

b (G1, `
p(G1)) is infinite-

dimensional for every p ∈ (1,∞). Now the group R is finite and hence averaging over
the orbits of the action of R shows that `p(G1) as a G1-module can naturally be identi-
fied with the G1-module `p(G)R of all R-invariant points in `p(G). As a consequence,
the group H 2

b (G1, `
p(G)R) is infinite-dimensional, and therefore from the Hochschild–

Serre spectral sequence (Theorem 12.0.3 of [M01]) we deduce that the same is true for
H 2
b (G, `

p(G)). We deduce that if N1 is infinite and if 0 does not contain a normal sub-
group which virtually splits as a direct product thenH 2

b (G, `
p(G)) is infinite-dimensional

as claimed.
Finally, we have to consider the case that N1 is finite, i.e. that the kernel of the nat-

ural projection of G to a subgroup of the mapping class group of S′2 ∪ · · · ∪ S
′
p is finite.

By the above considerations, for every p ∈ (1,∞) the group H 2
b (G, `

p(G)) is infinite-
dimensional if this is the case for H 2

b (G/N1, `
p(G/N1)). Since 0 contains a normal sub-

group which virtually splits as a direct product if this is the case forG/N1, an application
of the above considerations to the group G/N1 yields inductively the following. Either 0
contains a normal subgroup which virtually splits as a direct product or H 2

b (0, `
p(0)) is

infinite-dimensional. This shows the proposition. ut

Following [MS06], we denote by Cgeom the class of countable groups which admit a
non-elementary weakly acylindrical isometric action on some hyperbolic metric space.
Examples of such groups include.

• Word hyperbolic groups which are not virtually abelian.
• Any subgroup of the mapping class group of an oriented surface of finite type and

negative Euler characteristic not preserving any essential multicurve, e.g. the Torelli
group.
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• Any countable group which admits a non-elementary isometric action on a (not neces-
sarily locally finite) tree which is proper on the edges.

This class also contains a large family of relatively hyperbolic groups. In fact, it seems
that all geometrically finite relatively hyperbolic groups in the sense of Bowditch (see
[Y04] for a detailed discussion of those groups) are contained in Cgeom.

For a locally compact σ -compact topological group G define a lattice in G to be a
discrete subgroup 0 of G such that G/0 admits a finite G-invariant measure. If G =
G1 × G2 is any non-trivial direct product with locally compact σ -compact and non-
compact factors then we call a lattice 0 in G irreducible if the projection of 0 into each
of the factors is dense. The following lemma is part (vi) of Proposition 7.13 in [MS06]
and follows from the work of Burger and Monod [BM02].

Lemma 5.2. Let 0 be an irreducible lattice in a productG = G1×G2 of locally compact
σ -compact non-compact groups. Then H 2

b (0, `
2(0)) = 0.

We use Lemma 5.2 and the results of Monod and Shalom [MS06] to show

Corollary 5.3. A group 0 ∈ Cgeom is not measure equivalent to any finitely generated
irreducible lattice in either a simple Lie group of higher rank or in a product of two locally
compact σ -compact and non-compact topological groups.

Proof. By Theorem 4.5, for every 0 ∈ Cgeom the groupH 2
b (0, `

2(0)) is non-trivial. Then
Corollary 7.8 of [MS06] shows that H 2

b (3, `
2(3)) 6= {0} for every countable group 3

which is measure equivalent to 0.
Now by Lemma 5.2, if 3 is an irreducible lattice in a product G1 × G2 of locally

compact σ -compact non-compact groups then H 2
b (3, `

2(3)) = {0}. If 3 is a lattice in a
simple Lie group of non-compact type and higher rank then the vanishing of the second
bounded cohomology groupH 2

b (3, `
2(3)) is due to Monod and Shalom (Theorem 1.4 in

[MS04]). Thus in both cases, the group 3 is not measure equivalent to 0. (Note however
that for lattices 3 in simple Lie groups of higher rank a much stronger result is due
to Furman [Fu99a, Fu99b]: Every countable group which is measure equivalent to 3 is
commensurable to 3.) ut

Corollary C from the introduction is now immediate from Corollary 5.3 and Proposition
5.1.

We finish the paper by mentioning two results of Monod and Shalom [MS06] which
are closely related to this work.

Theorem 5.4. A countable group containing an infinite amenable normal subgroup is
not measure equivalent to a group in Cgeom.

Another consequence is Monod and Shalom’s striking rigidity result for actions of prod-
ucts (Theorem 1.8 of [MS06]).

Theorem 5.5. Let 01, 02 be torsion free groups in Cgeom, 0 = 01 × 02 and let (X,µ)
be an irreducible probability 0-space. Let 3 be any torsion free countable group and let
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(Y, ν) be any mildly mixing probability 3-space. If the 0-action and the 3-action are
orbit equivalent, then both groups as well as the actions are commensurable.

There is also a version of Theorem A for closed groups of isometries of proper hyperbolic
spaces and their continuous bounded cohomology [H05].
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