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Abstract. The main goal of this paper is to introduce a set of conjectures on the relations in the
tautological rings. In particular, this framework gives an efficient algorithm to calculate all tautolog-
ical equations using only finite-dimensional linear algebra. Other applications include the proofs of
Witten’s conjecture on the relations between higher spin curves and Gelfand–Dickey hierarchy and
Virasoro conjecture for target manifolds with conformal semisimple quantum cohomology, both for
genus up to two.

1. Introduction

1.1. The tautological rings of moduli spaces of curves

Two basic references for tautological rings are [16] and [26].
Let Mg,n be the moduli stacks of stable curves. Mg,n are proper, irreducible, smooth

Deligne–Mumford stacks. The Chow rings A∗(Mg,n) over Q are isomorphic to the Chow
rings of their coarse moduli spaces. The tautological rings R∗(Mg,n) are subrings of
A∗(Mg,n), or subrings of H 2∗(Mg,n) via cycle maps, generated by some “geometric
classes” which will be described below.

Convention 1. All Chow/cohomology/tautological rings are over Q.

The first type of geometric classes are the boundary strata. Mg,n have natural strat-
ification by topological types. The strata can be conveniently presented by their (dual)
graphs, which can be described as follows. To each stable curve C with marked points,
one can associate a dual graph 0. Vertices of 0 correspond to irreducible components.
They are labeled by their geometric genus. Draw an edge joining two vertices each time
the two components intersect. For each marked point, one draws a half-edge incident to
the vertex, with the same label as the point. Now, the stratum corresponding to 0 is the
closure of the subset of all stable curves in Mg,n which have the same topological type
as C.
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The second type of geometric classes are the Chern classes of tautological vector
bundles. These include cotangent classes ψi , Hodge classes λk and κ-classes κl . (See
[16], [25].)

To give a precise definition of the tautological rings, some natural morphisms between
moduli stacks of curves will be used. The forgetful morphisms

fti : Mg,n+1 → Mg,n (1)

forget one of the n+ 1 marked points. The gluing morphisms

Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2 , Mg−1,n+2 → Mg,n (2)

glue two marked points to form a curve with a new node. Note that the boundary strata
are the images (of the repeated applications) of the gluing morphisms, up to factors in Q
due to automorphisms.

Definition 1. The system of tautological rings {R∗(Mg,n)}g,n is the smallest system of
Q-unital subalgebras (containing classes of type one and two, and) closed under the
forgetful and gluing morphisms.

Remarks. (i) The phrase “(containing classes of type one and two, and)” can be removed
from the definition as the type one classes can be generated by the fundamental classes
of the boundary strata (units), and the type two classes can be generated by the type one
classes under the natural morphisms.

(ii) The set of Hodge classes can be reconstructed linearly from the set of ψ-classes,
κ-classes and boundary strata. Therefore, the Hodge classes can be omitted in the discus-
sion of tautological rings.

Since the tautological rings {R∗(Mg,n)}g,n are defined by generators, this leaves us
the task of finding the relations in order to understand their structure. Mumford [24],
Getzler [7] and Faber [5] are among the pioneers in this direction.

1.2. The conjectures

Each dual graph 0 can be decorated by assigning a monomial, or more generally a poly-
nomial, ψ to each half-edge and κ-classes to each vertex. The tautological classes in
Rk(Mg,n) can be represented by Q-linear combinations of decorated graphs, which will
be called simply graphs by abusing the language.

Convention 2. The graphical notations used here are different from some authors’, e.g.
those in [8]. The edges here are considered as “gluing” two half-edges, which are all
labeled. Therefore, the consideration of automorphisms will lead to a discrepancy in con-
stant factors. For example, the cycle class represented here by a graph consisting of a
closed loop attached to a vertex is twice the class represented by the same graph in [8].
The reason for this convention is that it simplifies the splitting principle considerably in
terms of graphs.
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Define the operations rl on the spaces of decorated graphs {0}.
• Cutting edges. Cut one edge and create two new half-edges. Label two new half-edges

with i, j /∈ {1, . . . , n} in two different ways. Produce a formal sum of four graphs by
decorating with an extra ψ l the i-labeled new half-edges with coefficient 1/2 and by
decorating with an extra ψ l the j -labeled new half-edges with coefficient (−1)l−1/2.
(By “extra” decoration we mean that ψ l is multiplied by whatever decorations already
there.) Produce more graphs by repeating the above procedure on the other edges of
the original graph. Retain only the stable graphs. Take the formal sum of these final
graphs.
• Genus reduction. For each vertex, produce l graphs. Reduce the genus of the vertex

by one, add two new half-edges. Label two new half-edges i, j and decorate them with
ψ l−1−m, ψm (respectively) where 0 ≤ m ≤ l − 1. Do this for all vertices, and retain
only the stable graphs. Take the formal sum of these graphs with coefficient 1

2 (−1)m+1.
• Splitting vertices. Split one vertex in two. Add one new half-edge to each of the two

new vertices. Label them i, j and decorate them withψ l−1−m, ψm (respectively) where
0 ≤ m ≤ l − 1. Produce new graphs by splitting the genus g between the two new
vertices (g1, g2 such that g1 + g2 = g), and distributing to the two new vertices the
(old) half-edges which belong to the original vertex, in all possible ways. The κ-classes
on the given vertex are split between the two new vertices in a way similar to the half-
edges. That is, consider each monomial of the κ-classes κl1 , . . . , κlp on the split vertex
as labeled by p special half-edges. When the vertex splits, distribute the p special edges
in all possible ways. Do this for all vertices, and retain only the stable graphs. Take the
formal sum of these graphs with coefficient 1

2 (−1)m+1.

Remarks. (i) It is not difficult to see that the two new half-edges are symmetric for l odd
and anti-symmetric for l even.

(ii) The (output) graphs might be disconnected. The stable graph here mean that each
connected component is stable (and of non-negative dimension).

(iii) In Section 3.1 these operations will be expressed in another (equivalent) termi-
nology (of gwi’s).

(iv) The λ-classes do not enter the discussion as they can be reconstructed from other
classes [24], [6]. To include them explicitly, one may apply the elementary splittings of
the Hodge bundle

0→ Eg−1 → ι∗Eg → O10 → 0

to the genus-reduced vertices and

0→ Eg′ → ι∗Eg → Eg−g′ → 0

to the split vertices.

Definition 2. Define operators rl(0) from the vector spaces of decorated graphs of codi-
mension k on Mg,n to those of codimension k + l − 1 on M

•
g−1,n+2 to be the final sum

of the decorated graphs (with Q-coefficients) produced from the above three operations.
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Here • stands for possibly disconnected curves. Note that the arithmetic genus for a dis-
connected curve is defined to be

g(C) :=
d∑
i=1

g(Ci)− d + 1,

where the Ci are connected components of C, C =∐d
i=1 Ci .

Let ∑
i

ci0i = 0

be a tautological equation in codimension k classes in Mg,n. The triple (g, n, k) will be
used.

Conjecture 1.
rl

(∑
i

ci0i

)
= 0 (3)

for all l, modulo the tautological equations for (g′, n′) for which

• g′ < g, or
• g′ = g and n′ < n.

The set of equations (3) will be called the R-invariance equations. The reason for this
name comes from its relation to Gromov–Witten theory and is explained in [20]. See also
[19] for a brief account.

Remark 1. Conjecture 1 is now proved in [20].

Conjecture 2. Let E = ∑i ci0i be a given linear combination of codimension k tauto-
logical classes in Mg,n and k < 3g − 3+ n.

If rl(E) = 0 for all l, modulo tautological equations in Mg′,n′ for (g′, n′) satisfying
the above inductive conditions, then E = 0 is a tautological equation.

Remark 2. (i) By a theorem of Graber and Vakil [14], when k = 3g − 3+ n, i.e. in top
codimension,

Rtop(Mg,n) = Q.

Therefore Rtop(Mg,n) are considered well understood and used as part of inductive data.
(ii) Conjecture 1 means that the linear operators at the level of decorated graphs actu-

ally descend to operators at the level of tautological classes. That is,

rl : Rk(M
•
g,n)→ Rk+l−1(M

•
g−1,n+2) (4)

is well-defined. Conjecture 2 further asserts that the combination of these operators is
injective.

Conjecture 3. Conjecture 2 produces all tautological equations inductively.
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1.3. Results in low genus

Main Theorem ([13, 1, 2]). The Invariance Conjectures hold for genus zero, genus one,
and (g, n, k) = (2, 1, 2), (2, 2, 2), (2, 3, 2), (3, 1, 3).

The genus zero case: Rk(M0,n) = Ak(M0,n) is essentially due to S. Keel [17]. There
are two sets of tautological equations in genus zero, namely the genus zero topological
recursion relations (TRR) and WDVV equations. WDVV equations are consequences of
TRRs. A TRR is based upon the fact that ψi = 0 on M0,3. A WDVV equation is based
upon the fact that A1(M0,4) = Q.

The non-trivial known tautological equations in g ≤ 3 are

(1) (g, n, k) = (1, 4, 2), Getzler’s genus one equation ([7]).
(2) (g, n, k) = (2, 1, 2), Mumford–Getzler’s equation.
(3) (g, n, k) = (2, 2, 2), Getzler’s genus two equation ([8]).
(4) (g, n, k) = (2, 3, 2), Belorousski–Pandharipande’s equation ([3]).
(5) (g, n, k) = (3, 1, 3), a new relation ([2], [18]).

The genus one case will be discussed in Section 3.

Genus two and three. The checking of cases (2)–(4) is carried out in [1]. The calcula-
tion of (5) via Conjecture 2 is done in [2]. An equivalent form of the (3, 1, 3) equation
was independently discovered by Kimura–Liu [18] using a completely different method
(equivalent in the sense that they use different vectors in R3(M3,1).) By Getzler’s Betty
number and Hodge polynomial calculations in [8] and [9], these equations are the only
tautological equations in the above cases.

Remark 3. (i) Here the phrase “the only tautological equations” should be taken with a
grain of salt. The forgetful and gluing morphisms (1), (2) induce relations in Rk(Mg,n)

from lower (inductive) classes. For example, Getzler’s equation in (g = 1, n = 4, k = 2)
induces an equation in (2, 2, 3) by gluing two of the marked points; any equations inMg,n

will induce equations in Mg,n+m. These induced equations will be taken into inductive
data as well. The goal, of course, is to find new equations.

(ii) It is easy to see that if one equation is R-invariant, all induced equations are.

1.4. Relations to Gromov–Witten theory

This is the topic for a sequel to this paper [20], so the discussion will be brief and neces-
sarily not precise.

1.4.1. Motivation of the conjectures. The motivation of the above conjectures comes
from a study of Givental’s axiomatic Gromov–Witten theory [10]–[12]. Givental has
discovered some remarkable structures of the “moduli spaces” of semisimple axiomatic
Gromov–Witten theories (or Frobenius manifolds). The “moduli space” of a given rank
(i.e. the dimension of the Frobenius manifolds) is a “homogeneus space” of a “quantized
loop group”.
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(i) The tautological equations hold for all geometric Gromov–Witten theories due to
the fact that there is a natural stabilization morphism

st : Mg,n(X, β)→ Mg,n

from the moduli spaces of stable maps to moduli spaces of stable curves. It is natural
to expect that the tautological equations hold for all axiomatic Gromov–Witten theories.
Therefore, the tautological equations should be “invariant” under the action of the “quan-
tized loop groups”. This translates eventually to Conjecture 1.

(ii) Conversely, if all “universal equations” of (axiomatic) Gromov–Witten invari-
ants are induced from the tautological equations on moduli spaces of curves, then one
should be able to find the tautological equations from studying the universal equations
in Gromov–Witten theory. The term “universal equations” means that the equations are
valid and of the same form for all theories. Since the tautological equations in all Gromov–
Witten theories are of the same form, they are invariant under the action of the “quantized
loop groups”. This gives Conjectures 2 and 3.

1.4.2. Applications in axiomatic Gromov–Witten theory. Combining the results of this
paper with two separate papers [20], [1], the last one joint with Arcara, the following
results are proved.

Theorem 1. (i) All tautological equations discussed in Section 1.3 hold for Givental’s
axiomatic Gromov–Witten invariants.

(ii) The Virasoro Conjecture for semisimple conformal Frobenius manifolds holds up to
genus two.

(iii) The Witten conjecture on the higher spin curves and Gelfand–Dickey hierarchies
holds up to genus two.

Remarks. (i) In joint work with Givental [13], it is shown that the conformality condition
in Theorem 1(ii) can be removed for g = 1. The reason is that the uniqueness theorem
of Dubrovin and Zhang [4] can be slightly modified to work in the non-conformal case.
It was observed in [4, Section 6] that Getzler’s equation [7] can be used to uniquely
determine a genus one potential up to a linear combination of canonical coordinates ui

const+
N∑
i=1

ciui;

the Euler field then determines ci in the conformal case. In the non-conformal case, we
proved in [13] (see also Section 3) that Getzler’s equation holds for the genus one poten-
tials of any semisimple Frobenius manifold, without the conformality condition. It is not
hard to see the ci can be matched, and Virasoro constraints hold.

(ii) Theorem 1(ii) was independently proved by X. Liu [23].
(iii) The above theorems build upon many other authors’ results, and will be discussed

in [20].
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2. Algorithm of finding tautological equations

2.1. Finiteness

Assuming the Invariance Conjectures, equation (4) says that

rl : Rk(Mg,n)→ Rk+l−1(M
•
g−1,n+2)

is injective. In fact, the number of connected components in the image can go up by at
most one. Therefore, if the resulting decorated graphs are connected, the genus must be
reduced by one. If they are disconnected, then either the genus or the number of marked
points (external half-edges) is reduced.

Lemma 1. rl reduces the dimension of 0 by l.

Proof. The proof is a straightforward case-by-case study. In the first step, the dimension
remains the same after cutting an edge. Decorating with an extra ψ l reduces the dimen-
sion by l. In the second step, reducing the genus and adding two half-edges changes the
dimension by−3+2 = 1. Decorating with ψm and ψ l−1 reduces the dimension by l−1.
In the third step, vertex splitting reduces the dimension by 3. Adding two half-edges in-
creases the dimension by 2. Decoration reduces the dimension by l − 1.

Remark 4. (i) By Lemma 1, rl0 = 0 when k + l > dimMg,n. Therefore, one only has
to check a finite number of l’s.

(ii) There are only finitely many (g′, n′, k′) involved in checking the validity of the
invariance equation (3) for a given (g, n, k) and l. This observation can be easily verified
from the definition of rl . Therefore, it is a finite calculation to check (3) for any quadruple
(g, n, k, l).

From the above discussions, one deduces

Corollary 1. There is an algorithm to check Conjectures 1 and 2 for any given (g, n, k).

2.2. The algorithm

The Invariance Conjectures have been used to “re-discover” all known tautological equa-
tions and discover a new one. Our basic strategy of finding the tautological equations
for a given (g, n, k) is the following. Assume all tautological equations are known for
(g′, n′, k′) satisfying the inductive conditions in Conjecture 1.

(1) Find all tautological classes 0i in Rk(Mg,n). Remove linear dependent classes from
the induced equations as explained in Remark 3. Let {0i}i∈I be the set of remaining
vectors in the Q-linear space Rk(Mg,n). Let

E =
∑
i∈I

ci0i

be a general element in Rk(Mg,n) with unknown coefficients ci .
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(2) Apply the R-invariance condition (3) rl(E) = 0 for l = 1, . . . , 3g − 3 + n − k. For
each l, rl(0) will be a Q-linear combination of (disjoint unions of) 0′j as classes in

Rk
′
(Mg′,n′), which are known by assumption. In particular, one knows all the rela-

tions between 0′j ’s.

(3) In each (g′, n′, k′) pick a basis of Rk
′
(Mg′,n′). The part of the output of rl(E) = 0

in (g′, n′, k′) implies each component of the basis vanishes individually. Since all
operations involved are linear, the vanishing gives linear equations in ci .

(4) The above step produces enough linear equations on ci’s to determine them com-
pletely up to a few free variables, say c1 and c2. Write all other cj ’s in terms of c1
and c2. Then E =∑i∈I ci0i becomes

E = c1

(∑
j1∈J1

dj10j1

)
+ c2

(∑
j2∈J2

dj20j2

)
.

The output equations are∑
j1∈J1

dj10j1 = 0 and
∑
j2∈J2

dj20j2 = 0,

where the dj are output constants. Note that J1 and J2 are not necessarily disjoint.
(5) If all ci have to vanish after the above steps, then there are no (new) tautological

equations for (g, n, k).

Remarks. (i) Step (4) will necessarily leave at least one free variable, as any equation
E = 0 holds after multiplying by a constant.

(ii) In fact, the output of theR-invariance condition always highly over-determines the
unknown coefficients ci . To be able to solve ci is usually a sign of correct calculations.

(iii) In all cases computed, l = 1 is enough. That is, r1(E) = 0 already generates
enough linear equations for ci to determine them completely. It is not known whether this
will hold in general. In particular, one might ask whether r1(E) = 0 implies rl(E) = 0
for l ≥ 2. We do not have intuition leading to a guess.

As stated above, the above algorithm has given a uniform method of deriving all tau-
tological equations, which were originally derived using many different methods. Fur-
thermore, it is theoretically possible to program this algorithm in order to discover more
tautological equations via robots. The only ingredient in this algorithm is linear algebra
(and the efforts to obtain induced equations as explained in Remark 3). However, the di-
mension of Rk(Mg,n) and the number of elements in the set {0i}i∈I can grow. So the
finite-dimensional linear algebra problem in question is not trivial.

Remark 5. An alternative way to the above (more satisfactory) algorithm goes through
the following procedure.
• Calculate the rank of Rk(Mg,n) to see if there is any new equation.
• If there is one, then apply the invariance condition equation (3) to obtain the coefficients

of the equation.
This is actually the way which is employed to prove the derived tautological equations.
However, the first step is usually not elementary.
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3. Proof of Conjectures for g = 1

3.1. Notations

In this subsection, some notation will be introduced for future reference.
The following notions will be used to describe the same object.

(1) Tautological classes.
(2) Generic curves and Chern classes.
(3) Decorated graphs.
(4) Gwi’s (defined below).

(1)⇔(2). For each tautological class, one may draw a generic curve of the given
topological type, label marked points, and decorate the marked points and both sides of
nodes with monomials of ψ classes and the components by κ classes.

(1)⇔(3). This has been explained in Sections 1.1–1.2.
(3)⇔(4). Given a decorated graph 0.

• To the vertices of 0 of genus g1, g2, . . . , assign a product of “brackets” 〈〉g1〈〉g2 . . . .• Assign to each half-edge a symbol ∂∗. The external half-edges use numerical su-
perscripts, ∂1, . . . , ∂n, corresponding to their labeling. The two new half-edges use
∂ i, ∂j . For each pair of half-edges coming from one and the same edge, the same su-
perscript µi will be used. Otherwise, all half-edges should use different superscripts.
• For each given vertex 〈〉g with m half-edges, n external half-edges, and say two new

half-edges, an insertion is placed at the vertex 〈∂ i∂j ∏n
a=1 ∂

a
∏m
b=1 ∂

µb 〉g .
• For each decoration of a half-edge with Chern classes c, assign a subscript to the

corresponding half-edge, ∂µc .

The output is called a gwi.

Remarks.

(i) Gwi is so named for its relations to Gromov–Witten invariants. Note, however, that
gwi here stands for a vector in a Q-algebra, rather than a rational number. The actual
relation is recalled in [20]. Gwi notation is used in the proofs of this paper, mainly
for typesetting convenience.

(ii) The convention on graphs adopted in Section 1.2 is meant to match the graphical and
gwi notations. They often differ by a constant in some authors’ conventions. (See,
e.g., [8].)

Example. Let 0 be the following graph.

• •

•

g = 0 g = 0

g = 1

1 2 3 4
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The corresponding gwi is

〈∂1∂2∂µ〉〈∂3∂4∂ν〉〈∂µ∂ν〉1.
The cutting edges operation for l = 1 produces

〈∂1∂2∂ i〉〈∂3∂4∂ν〉〈∂j1 ∂ν〉1 + 〈∂1∂2∂µ〉〈∂3∂4∂ i〉〈∂µ∂j1 〉1.

Note that 〈∂1∂2∂ i1〉 has dimension −1. Therefore the corresponding graphs are removed
from the output. Also, the i, j are symmetric. Hence, a factor of 2 is placed in front of a
term instead of adding an additional term with i, j exchanged.

More generally, for any edge in an expression 〈. . . ∂µ . . . ∂µ . . .〉g , where the middle
. . . might contain edges like . . .〉h〈. . ., the cutting edge operation for rl can be written as

〈. . . ∂µ . . . ∂µ . . .〉g 7→ 1
2
(〈. . . ∂ il . . . ∂j . . .〉g + (−1)l−1〈. . . ∂ i . . . ∂jl . . .〉g)

+ 1
2
(〈. . . ∂j . . . ∂ il . . .〉g + (−1)l−1〈. . . ∂jl . . . ∂ i . . .〉g). (5)

The genus reduction for rl produces

〈∂ i1k1
∂
i2
k2
. . .〉g 7→ 1

2

l−1∑
m=0

(−1)m+1〈∂ il−1−m∂
j
m∂

i1
k1
∂
i2
k2
. . .〉g−1. (6)

The splitting vertices operation for l = 1 produces

〈∂ i1k1
∂
i2
k2
. . .〉g 7→ 1

2

l−1∑
m=0

(−1)m+1
∑

g1+g2=g
∂
i1
k1
∂
i2
k2
. . . (〈∂ il−1−m〉g1〈∂jm〉g2). (7)

The symbol ∂ ik considered as a “linear operator” on graphs is defined by the Leibniz rule:

∂ ik(〈∂ il−1−m〉g1〈∂jm〉g2) = 〈∂ ik∂ il−1−m〉g1〈∂jm〉g2 + 〈∂ il−1−m〉g1〈∂ ik∂jm〉g2 .

Convention 3. In the calculations when the κ-classes are not needed, as they are bound-
ary classes in genus less than 3, a simplified notation is used:

∂
µ
k := ∂µ

ψk
, ∂µ := ∂µ0 .

To further simplify the notations, we write

〈. . .〉 := 〈. . .〉g=0.
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3.2. Reduction to Getzler’s equation

By a result of E. Getzler (unpublished), the only (new) tautological equations in genus
one are his equation in (g = 1, n = 4, k = 2) [7] and TRR in (g = 1, n = 1, k = 1). The
g = 1 TRR expresses ψ-classes as boundary divisors

〈∂ i1〉1 =
1
24
〈∂ i∂µ∂µ〉. (8)

Since this is an equation in top codimension, it is considered as part of the inductive data
(and satisfies the invariance equation by Lemma 1). Therefore, one only has to check
Conjectures 1 and 2 for Getzler’s equation.

3.3. Getzler’s equation in (g, n, k) = (1, 4, 2)

The calculation here is reproduced from a joint work with A. Givental.

Theorem 2 ([13]). Getzler’s equation is the only (new) codimension 2 equation inM1,4
which satisfies the invariance equation (3). Furthermore, the invariance equation deter-
mines the coefficients of Getzler’s equation up to a common scaling constant.

The proof is divided into the following six steps.

3.3.1. Step 1: Enumerate all boundary strata. There are nine codimension two bound-
ary strata in M1,4, when the ordering of the four external half-edges is ignored. Equiv-
alently, one may symmetrize the four external half-edges by the S4 permutations. Let
∂1, ∂2, ∂3, ∂4 denote the four external half-edges. A general element can be written as

E =
∑

S4 permutations

(c1〈∂1∂2∂µ〉〈∂3∂4∂ν〉〈∂µ∂ν〉1
+ c2〈∂1∂2∂µ〉〈∂3∂µ∂ν〉〈∂4∂ν〉1
+ c3〈∂1∂2∂µ〉〈∂3∂4∂µ∂ν〉〈∂ν〉1
+ c4〈∂1∂2∂3∂µ〉〈∂4∂µ∂ν〉〈∂ν〉1
+ c5〈∂1∂2∂3∂µ〉〈∂4∂µ∂ν∂ν〉
+ c6〈∂1∂2∂3∂4∂µ〉〈∂µ∂ν∂ν〉
+ c7〈∂1∂2∂µ∂ν〉〈∂3∂4∂µ∂ν〉
+ c8〈∂1∂2∂µ〉〈∂3∂4∂µ∂ν∂ν〉
+ c9〈∂1∂µ∂ν〉〈∂2∂3∂4∂µ∂ν〉).
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3.3.2. Step 2: Apply the invariance equation. The invariance equation produces, after
applying a genus zero TRR,

0 = r1E =
∑
S4

Sij (2c1〈∂1∂2∂j 〉〈∂3∂4∂µ〉〈∂ i∂µ∂ν〉〈∂ν〉1
− c1〈∂1∂2∂µ〉〈∂3∂4∂ν〉〈∂ i∂ν∂µ〉〈∂j 〉1
+ c2〈∂1∂2∂µ〉〈∂3∂j∂µ〉〈∂ i∂4∂ν〉〈∂ν〉1
− c2〈∂1∂2∂µ〉〈∂3∂µ∂ν〉〈∂ i∂4∂ν〉〈∂j 〉1
+ c3〈∂1∂2∂j 〉〈∂3∂4∂ i1∂

ν〉〈∂ν〉1
+ c3〈∂1∂2∂µ〉〈∂3∂4∂ i1∂

ν〉〈∂j 〉1
− c3〈∂1∂2∂µ〉〈∂3∂4∂ i〉〈∂j∂µ∂ν〉〈∂ν〉1
− 2c3〈∂1∂2∂µ〉〈∂3∂ i∂µ〉〈∂4∂j∂ν〉〈∂ν〉1
+ c4〈∂1∂2∂3∂ i1〉〈∂4∂j∂ν〉〈∂ν〉1
− 3c4〈∂1∂2∂ i〉〈∂3∂j∂µ〉〈∂4∂µ∂ν〉〈∂ν〉1)
+ genus-zero-only terms.

Here Sij is the symmetrization operator of the indices i, j .

3.3.3. Step 3: Genus one terms. The basic strategy is to find a basis, express the vector
in terms of the basis, and set the coefficients to 0.

It is easy to see that the terms containing 〈∂j 〉1 give the condition (after applying a
genus zero TRR)

−c1 − c2 + c3 = 0.

The terms containing 〈∂∗∂∗∗∂j 〉〈∂ν〉1 give the equation

2c1 − 3c4 = 0.

The terms containing 〈∂∗∂∗∗∂ν〉〈∂ν〉1 give the equation

c2 − 2c3 + c4 = 0.

3.3.4. Step 4: Genus zero terms. For the terms involving geometric genus zero graphs
only, the only relations are WDVV, after stripping off all descendents by a genus zero
TRR.

(a) Those terms containing a factor 〈∂∗, ∂∗∗, ∂∗∗∗, ∂ i〉 give the equation∑
S4

Sij 〈∂1∂2∂3∂ i〉[c5〈∂4∂
j

1 ∂
ν∂ν〉 − 4c6〈∂4∂j∂µ〉〈∂µ∂ν∂ν〉 − c9〈∂4∂µ∂ν〉〈∂j∂µ∂ν〉] = 0,

which gives the condition
c5 − 4c6 − c9 = 0.
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(b) Those terms containing a factor 〈∂∗∂∗∗∂ i〉 give the equation∑
S4

Sij 〈∂1∂2∂ i〉
[

1
12
c1〈∂3∂4∂ν〉〈∂j∂µ∂µ∂ν〉
− 3c5〈∂3∂j∂ν〉〈∂4∂µ∂µ∂ν〉
− 6c6〈∂3∂4∂j∂ν〉〈∂µ∂µ∂ν〉
− 2c7〈∂3∂4∂µ∂ν〉〈∂j∂µ∂ν〉
+ c8〈∂3∂4∂

j

1 ∂
ν∂ν〉

− c8〈∂3∂4∂µ〉〈∂j∂µ∂ν∂ν〉
− 3c9〈∂3∂µ∂ν〉〈∂4∂j∂µ∂ν〉

]
= 0. (9)

All graphs are disconnected with two components. One common connected compo-
nent is 〈∂1∂2∂ i〉. The other one is a stratum isomorphic to M0,3 × M0,4 ⊂ M0,5. Due
to different labeling, there are five different strata for the second component, up to the
obvious permutation symmetry in ∂3, ∂4:

Ev1 = 〈∂3∂4∂ν〉〈∂j∂µ∂µ∂ν〉,
Ev2 = 〈∂3∂j∂ν〉〈∂4∂µ∂µ∂ν〉,
Ev3 = 〈∂3∂µ∂ν〉〈∂4∂j∂µ∂ν〉,
Ev4 = 〈∂j∂µ∂ν〉〈∂3∂4∂µ∂ν〉,
Ev5 = 〈∂µ∂µ∂ν〉〈∂3∂4∂j∂ν〉.

The WDVV equations induce three linear relations in Ev1, . . . , Ev5, two of them being
independent:

Ev1 + Ev5 = 2Ev3,

Ev2 + Ev5 = Ev3 + Ev4,

Ev1 + Ev4 = Ev2 + Ev3.

Thus, one can write Ev1 and Ev2 in terms of Ev3, Ev4, Ev5. Equation (9) then gives

1
6
c1 − 3c5 + 3c9 = 0,

−3c5 − 2c7 + 2c8 = 0,

− 1
12
c1 + 3c5 − 6c6 = 0.

(c) The remaining terms, after applying a genus zero TRR, contain no descendents.
Therefore the only relations are WDVV and their derivatives. However, WDVV and their
derivatives do not change the sum of the coefficients, therefore the sum has to vanish.
This gives another equation

−1
2
c1 − 11

24
c2 − 11

24
c3 − 11

24
c4 + 3c6 − 3c8 = 0.
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3.3.5. Step 5: Final equation. Combining the above equations, one can express all co-
efficients in terms of c3 and c9:

c1 = −3c3, c2 = 4c3, c4 = −2c3, c5 = −1
6
c3 − c9,

c6 = − 1
24
c3 − 1

2
c9, c7 = 1

4
c3 + c9, c8 = −1

2
c9.

That is,
E = −c3(Getzler’s coefficients)+ c9(T ) = 0,

where T is a sum of (geometric) genus zero graphs. It is easy to see that T = 0 by WDVV.
Therefore, the l = 1 case is established.

3.3.6. Step 6: l = 2. By the same computation, one is led to

r2E =
∑
S4

Aij

[
6〈∂1∂2∂j 〉〈∂3∂4∂ν〉〈∂ i2∂ν〉1
− 4〈∂1∂2∂µ〉〈∂3∂µ∂j 〉〈∂4∂ i2〉1
+ 1

24
〈∂1∂2∂3∂4∂ i2〉〈∂j∂ν∂ν〉

+ 3〈∂1∂2∂µ〉〈∂3∂4∂ν〉〈∂ i∂µ∂ν〉〈∂j1 〉1
− 4〈∂1∂2∂µ〉〈∂3∂µ∂ν〉〈∂ i∂4∂ν〉〈∂j1 〉1
− 4

24
〈∂ i1∂1∂2∂3〉〈∂j∂4∂ν〉〈∂µ∂ν∂ν〉

− 6
24
〈∂ i1∂1∂2∂µ〉〈∂j∂3∂4〉〈∂µ∂ν∂ν〉

]
,

where Aij is the anti-symmetrizer. By easy application of genus one TRR and WDVV and
the antisymmetric property of i, j , the first term cancels with the seventh term; the second
term cancels with the sixth term; the third, fourth and fifth terms combine to vanish.

By Lemma 1, it is enough to check R-invariance for l = 1 and l = 2. The proof is
complete.
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