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Abstract. Generalizing Petrogradsky’s construction, we give examples of infinite-dimensional nil
Lie algebras of finite Gelfand–Kirillov dimension over any field of positive characteristic.

The first examples of infinite-dimensional affine nil algebras were constructed by
E. S. Golod and I. R. Shafarevich [GS]. These algebras have a strong exponential growth.
Later L. Bartholdi and R. I. Grigorchuk [BG] showed that the Lie algebra associated
to the “self-similar” Grigorchuk group is graded-nil and has Gelfand–Kirillov dimen-
sion 1. Using this result L. Bartholdi [B] was able to construct an infinite-dimensional
affine graded-nil associative algebra of Gelfand–Kirillov dimension 2 over a finite field
of characteristic 2. Recently T. Lenagan and A. Smoktunowicz [LS] constructed a family
of infinite-dimensional affine nil algebras of finite Gelfand–Kirillov dimension over an
arbitrary countable field.

In [P] V. Petrogradsky found an infinite-dimensional two-generated “self-similar”
Lie algebra L over an arbitrary field of characteristic 2 such that (i) L is nil, (ii) 1 <

GKdimL < 2.
In this paper we generalize Petrogradsky’s construction and extend it to algebras over

fields of arbitrary positive characteristic.
Let p be a prime number; F a field of characteristc p; T̂ = F [t0, t1, . . . ] the algebra

of truncated polynomials in countably many variables t0, t1, . . . ; t
p
i = 0, i ≥ 0. Let T

be the subalgebra of T̂ consisting of polynomials with zero constant term. Write T̂ (k) =
F [t0, t1, . . . , tk] (for k < 0 we let T̂ (k) = F · 1) and consider the following Lie algebra
of derivations of T̂ :

D =
{ ∞∑
i=1

ai∂i

∣∣∣ ai ∈ T̂ (i − 2)
}
,

where ∂i = d/dti . For k ≥ 1, let

Mk = D ∩
{ ∑
i≤k−1

T̂ ∂i +

∞∑
j=0

T 1+j (p−1)∂k+j

}
.
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In other words, a derivation
∑
∞

i=1 ai∂i lies in Mk if ai ∈ T̂ (i − 2) ∩ T 1+(i−k)(p−1) for
i ≥ k. Clearly, M1 ⊂ M2 ⊂ · · · .

Lemma 1. (a) [Mk,Mq ] ⊆ Mmax(k,q)+1, (b) ap ∈ Mk+1 for all a ∈ Mk .

Proof. (a) is obvious. Let us check (b). Let d =
∑
∞

i=1 ai∂i ∈ Mk . Since ai ∈ T̂ (i − 2)
it follows that (ai∂i)p = a

p
i ∂

p
i = 0. Now consider a commutator [ai1∂i1 , . . . , aip∂ip ] =

b∂is , where b ∈ T̂ and is = max{i1, . . . , ip}.
The coefficient b is an expression in (repeated) (∂i1 , . . . , ∂is−1 , ∂is+1 , . . . , ∂ip )-deriva-

tions of ai1 , . . . , aip . Let is ≥ k+1. Then ais ∈ T
1+(is−k)(p−1), no more than p−1 deriva-

tions could have been applied to ais , hence the derivative lies in T 1+(is−k)(p−1)−(p−1)
=

T 1+(is−k−1)(p−1). ut

Let M =
⋃
k≥1Mk . From Lemma 1 it follows that M is a Lie subalgebra of D, which is

closed with respect to p-th powers. Let

D2 =
{ ∞∑
i=1

ai∂i

∣∣∣ ai ∈ T 2
∩ T̂ (i − 2), i ≥ 1

}
.

Lemma 2. For each d ∈ M there exists s ≥ 1 such that dp
s
∈ D2.

Proof. We follow the idea from [P]. Let λ = (1 +
√

1+ 4(p − 1))/2, the positive root
of λ2

− λ − (p − 1) = 0. We will define a Z + Zλ-grading on the algebra D by setting
deg(ti) = −λi and deg(∂i) = λi . The degree of an arbitrary element from T̂ (i − 2)∂i is
greater than or equal to

λi − (p − 1)(1+ · · · + λi−2) = λi − (p − 1)
λi−1
− 1

λ− 1

=
λi−1(λ2

− λ− (p − 1))+ p − 1
λ− 1

=
p − 1
λ− 1

= ε > 0.

Hence every homogeneous component of an element d from D has degree ≥ ε and every
homogeneous component of dp

s
has degree ≥ psε.

Now let d ∈ Mk . Then by Lemma 1(b), dp
s
∈ Mk+s , hence

dp
s

∈

k+s∑
i=1

T̂ ∂i + T
p∂k+s+1 + T

2p−1∂k+s+2 + · · · .

The degree of an arbitrary nonzero element from
∑k+s
i=1 T̂ ∂i is ≤ λk+s . Hence, if the∑k+s

i=1 T̂ ∂i-part of dp
s

is not equal to 0, then dp
s

has a nonzero homogeneous component
of degree ≤ λk+s . Hence psε ≤ λk+s . However, since λ < p it follows that psε > λk+s

for sufficiently large s, a contradiction. Hence for sufficiently large s we have dp
s
∈

T p∂k+s+1 + T
2p−1∂k+s+2 + · · · ⊆ D2. ut
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Define

T sD =
{ r∑
i=1

aidi

∣∣∣ ai ∈ T s, di ∈ D, r ≥ 1
}
.

Since
⋂
s≥1 T

sD = (0) the subspaces T sD ∩D define a topology on D. Let

Dfin =
{ r∑
i=1

ai∂i

∣∣∣ ai ∈ T̂ (i − 2), r ≥ 1
}

and consider the closure of Dfin in the above topology: Dfin =
⋂
s≥1(Dfin+ (T

sD ∩D)).

Lemma 3. Dfin is a subalgebra of D, closed with respect to p-th powers.

Proof. We have [D, T sD] ⊆ T s−1D. This implies

[Dfin + (T
kD ∩D),Dfin + (T

sD ∩D)] ⊆ Dfin + (T
min(k,s)−1D ∩D).

Hence, [Dfin,Dfin] ⊆ Dfin.
Let a ∈ Dfin + (T

sD ∩D). Thus there exist elements c1, . . . , cr ∈ T
s and an integer

k ≥ 1 such that a =
∑
∞

i=1 ai∂i and all the coefficients ak, ak+1, . . . lie in
∑r
j=1 cj T̂ .

As above we notice that (ai∂i)p = 0 and [ai1∂i1 , . . . , aip∂ip ] = b∂iq , where the coeffi-
cient b is an expression in derivatives of ai1 , . . . , aip and iq = max{i1, . . . , ip}. Suppose
that iq ≥ k. Then aiq ∈

∑
cj T̂ and b lies in the ideal of T̂ generated by the elements

∂j1 · · · ∂jlcj , where l ≤ p − 1. This implies that ap ∈ Dfin + (T
s−p+1D ∩D). ut

Now let
L = M ∩Dfin.

Lemma 4. For each a ∈ L there exists s ≥ 1 such that ap
s
∈ T 2D.

Proof. By Lemma 2 there exists s ≥ 1 such that ap
s
∈ D2. On the other hand, ap

s
∈

Dfin + (T
2D ∩D). We claim that D2 ∩ (Dfin + T

2D) ⊆ T 2D. Indeed, let d ∈ D2, d =

d ′ + d ′′, d ′ ∈ Dfin, d ′′ ∈ T 2D. Then d ′ = d − d ′′ ∈ Dfin ∩D2 ⊆ T
2D. ut

Lemma 5. The associative subalgebra of EndF (T̂ ) generated by T 2D is locally nilpo-
tent.

Proof. Consider a collection of elements a′ia
′′

i di , where 1 ≤ i ≤ r , a′i, a
′′

i ∈ T , and
di ∈D. Let A be the subalgebra of T generated by a′i, a

′′

i , 1≤ i≤ r . Since a′pi =a
′′p
i =0

it follows thatA2r(p−1)+1
= (0). Now, (a′i1a

′′

i1
di1) · · · (a

′

is
a′′isdis ) =

∑
b1 · · · b2sdj1 · · · djq ,

where q ≤ s and the bi’s are obtained from a′j , a
′′

j , 1 ≤ j ≤ r , via (repeated) ap-
plications of the derivations dk . Since there are only s derivations di1 , . . . , dis it follows
that at least s of b1, . . . , b2s lie in {a′i1 , a

′′

i2
, . . . , a′is , a

′′

is
}. If s = 2r(p − 1) + 1, then

(a′i1
a′′i1
di1) · · · (a

′

is
a′′isdis ) = 0. ut

Lemmas 4 and 5 imply
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Proposition 1. All elements of L are nilpotent.

Simliarly to [P] we can find finitely generated nonnilpotent subalgebras in L and estimate
their Gelfand–Kirillov dimensions.

Example 1. Consider the elements

vn = ∂n +

∞∑
i=n+1

(tn−1 · · · ti−2)
p−1∂i

from L, n ≥ 1. We have

[vi, vi+1] = −tp−2
i vi+2; [vi, vj ] = −(ti−1 · · · tj−3)

p−1t
p−2
j−1 vj+1 for j ≥ i + 2;

vi(tj ) =


0, j < i,

1, j = i,

(ti−1 · · · tj−2)
p−1 j > i.

It is easy to see that the Lie algebra L = Lie〈v1, v2〉 generated by v1, v2 is not nilpo-
tent. Just as in [P], we will find its Gelfand–Kirillov dimension.

Proposition 2. GKdimL = logλ p.

Clearly, 1 < logλ p < 2 and logλ p→ 2 as p→∞.
We first prove several lemmas.

Lemma 6. We have

L ⊆ Span(t i00 · · · t
in−2
n−2vn | n ≥ 1; 0 ≤ i0, . . . , in−4 ≤ p − 1; 0 ≤ in−3, in−2 ≤ p − 2).

Proof. Denote the right hand side of this inclusion by V . Since all vi are in V , it suffices
to prove that [V, v1], [V, v2] ⊆ V . Let a = t i00 t

i1
1 · · · t

in−2
n−2 , avn ∈ V . Consider

[avn, v1] = a[vn, v1]− v1(a)vn

= −a(t0 · · · tn−3)
p−1t

p−2
n−1 vn+1 −

n−2∑
s=0

t
i0
0 · · · t

is−1
s−1 v1(t

is
s )t

is+1
s+1 · · · t

in−2
n−2vn.

The first term clearly lies in V and so do all the summands in the second term for s ≤ n−3.
For s = n− 2 we have

t
i0
0 · · · t

in−3
n−3v1(t

in−2
n−2 )vn = in−2t

i0
0 · · · t

in−3
n−3 (t0 · · · tn−4)

p−1t
in−2−1
n−2 vn ∈ V.

Similarly, [avn, v2] ∈ V . ut
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Observe that the Lie algebra L is a graded subalgebra of the Z + Zλ-graded algebra D
with deg(v1) = λ, deg(v2) = λ

2. Let Ld be the sum of the homogeneous subspaces of L
of degree ≤ d .

Suppose that v = t
i0
0 · · · t

in−4
n−4 t

in−3
n−3 t

in−2
n−2vn ∈ Ld with 0 ≤ i0, . . . , in−4 ≤ p − 1 and

0 ≤ in−3, in−2 ≤ p − 2. Then

λn − (p − 1)(1+ λ+ · · · + λn−4)− (p − 2)(λn−3
+ λn−2)

= λn − (p − 1)(1+ λ+ · · · + λn−2)+ λn−3
+ λn−2

=
p − 1
λ− 1

+ λn−3
+ λn−2

≤ deg(v) ≤ d.

This implies that 2λn−3
≤ d and therefore n ≤ logλ(d/2)+ 3.

Now,
dimLd ≤

∑
n≤logλ(d/2)+3

pn−3
≤ plogλ(d/2)+3

≤ cd logλ p,

where c is a constant which depends on p.
Now let us estimate the dimension of Ld from below. In what follows we will assume

that p ≥ 3. For p = 2 the assertion was proved in [PS].

Lemma 7. For each n ≥ 1 there exists a2n−3 ∈ T̂ (2n− 3) such that

v2n ∈ L, t
p−2
2n−1v2n+1 ∈ L, v′2n−1 = v2n−1 + a2n−3t

p−2
2n−2v2n ∈ L.

Proof. For n = 1 the assertion is obvious. Let us assume it for n and prove for n+ 1. We
have

t
p−2
2n−1t

p−2
2n v2n+2 = [tp−2

2n−1v2n+1, v2n] ∈ L.

Since [v2n+2, v2n] = tp−1
2n−1t

p−2
2n+1v2n+3 and since p ≥ 3, it follows that

[tp−2
2n−1t

p−2
2n v2n+2, v2n] = (p − 2)tp−2

2n−1t
p−3
2n v2n+2.

Repeating this p − 2 times we get

(p − 2)!tp−2
2n−1v2n+2 ∈ L.

For i > 0 we have [t i2n−1v2n+2, v2n] = 0. Hence

[t i2n−1v2n+2, v
′

2n−1] = [t i2n−1v2n+2, v2n−1].

Commuting p − 2 times, we get

[. . . [tp−2
2n−1v2n+2, v

′

2n−1], . . . , v′2n−1︸ ︷︷ ︸
p−2

] = [. . . [tp−2
2n−1v2n+2, v2n−1], . . . , . . . , v2n−1]

= (p − 2)!v2n+2 ∈ L,

which proves the first inclusion of the lemma.
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Now,
[v2n+2, t

p−2
2n−1v2n+1] = tp−2

2n−1t
p−2
2n+1v2n+3 ∈ L.

As above, for any i > 0 we have

[t i2n−1t
p−2
2n+1v2n+3, v

′

2n−1] = [t i2n−1t
p−2
2n+1v2n+3, v2n−1].

Hence,

[. . . [tp−2
2n−1t

p−2
2n+1v2n+3, v

′

2n−1], . . . , v′2n−1︸ ︷︷ ︸
p−2

] = [. . . [tp−2
2n−1t

p−2
2n+1v2n+3, v2n−1], . . . , v2n−1︸ ︷︷ ︸

p−2

]

= (p − 2)!tp−2
2n+1v2n+3,

which proves the second inclusion of the lemma.
Finally,

L 3 [tp−2
2n−1v2n+1, v

′

2n−1]

= [tp−2
2n−1v2n+1, v2n−1]+ [tp−2

2n−1v2n+1, a2n−3t
p−2
2n−2v2n]

= (p − 2)tp−3
2n−1v2n+1 + t

p−2
2n−1t

p−2
2n v2n+2 + a2n−3t

p−2
2n−2t

p−2
2n−1t

p−2
2n v2n+2.

Write

Ai = t
i
2n−1v2n+1, Bi = t

i
2n−1t

p−2
2n v2n+2, Ci = a2n−3t

p−2
2n−2t

i
2n−1t

p−2
2n v2n+2.

For any i > 0 we have

[Ai, v′2n−1] = [Ai, v2n−1]+ [Ai, a2n−3t
p−2
2n−2vn] = iAi−1 + Bi + Ci,

[Bi, v′2n−1] = [B, v2n−1] = iBi−1,

[Ci, v′2n−1] = [Ci, v2n−1] = iCi−1.

Therefore, for all 0 ≤ i ≤ p − 2 we have

L 3 [. . . [Ap−2, v
′

2n−1], . . . , v′2n−1︸ ︷︷ ︸
i

]

=
(p − 2)!

(p − i − 1)!
((p − i − 1)Ap−i−2 + iBp−i−1 + iCp−i−1).

In particular, for i = p − 2 we get

L 3 A0 + (p − 2)B1 + (p − 2)C1 = v2n+1 + a2n−1t
p−2
2n v2n+2,

where a2n−1 = −2(t2n−2 + a2n−3)t
p−2
2n−2t2n−1 ∈ T (2n− 1). ut



Some examples of nil Lie algebras 397

Lemma 8. The algebra L contains all elements of the type

t
p−1
0 t

i1
1 · · · t

i2n−3
2n−3t

p−2
2n−1v2n+1 (∗)

with 0 ≤ ik ≤ p − 1 for k = 1, . . . , 2n− 3 and n ≥ 2.

Proof. Consider in L the element l = [v2n, v1] = (t0 · · · t2n−3)
p−1t

p−2
2n−1v2n+1. Note that

[l, v′2n−3] = [l, v2n−3] = (p − 1)(t0 · · · t2n−2)
p−1t

p−2
2n−3t

p−2
2n−1v2n+1 ∈ L.

Continuing in this way, we find that (t0 · · · t2n−2)
p−1t i2n−3t

p−2
2n−1v2n+1 ∈ L for all i =

p − 1, . . . , 0.
Assume that, for some 1 ≤ k ≤ 2n− 3, L contains all elements of the type

lk = (t0 · · · tk)
p−1t

ik+1
k+1 · · · t

i2n−3
2n−3t

p−2
2n−1v2n+1, 0 ≤ is ≤ p − 1, s = k + 1, . . . , 2n− 3.

If k is even then vk ∈ L, and we obtain elements in L of type lk−1 by commuting lk
with vk . If k is odd then v′k ∈ L, and it is easy to see that [lk, v′k] = [lk, vk], which again
gives all elements of type lk−1. Downward induction on k proves that the elements of type
l0 lie in L, which are exactly the elements (∗). ut

End of proof of Proposition 2. Let v = t
p−1
0 t

i1
1 t

i2
2 · · · t

i2n−3
2n−3t

p−2
2n−1v2n+1 where 0 ≤ ik ≤

p − 1 for k = 1, . . . , 2n − 3 and n ≥ 2. Then deg(v) < deg(v2n+1) = λ2n+1. If
n ≤ 1

2 (logλ d − 1), then λ2n+1
≤ d and therefore v ∈ Ld . This implies

dimLd ≥
∑

2≤n≤ 1
2 (logλ d−1)

p2n−3
≥ plogλ d−4

=
1
p4 d

logλ p.

Summarizing we get

1
p4 d

logλ p ≤ dimLd ≤ cd logλ p.

This implies

lim
d→∞

ln dimLd
ln d

= logλ p.

Let L(d) denote the span of all commutators in v1, v2 of length ≤ d . It is easy to see that

Lλd ⊆ L(d) ⊆ Lλ2d .

Hence
GKdimL = lim

d→∞

ln dimL(d)
ln d

= lim
d→∞

ln dimLd
ln d

= logλ p. ut

Let A be the associative subalgebra of EndF (T̂ ) generated by L.

Proposition 3. GKdimA ≤ 2 logλ p.
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Proof. The proof is similar to that in [PS]. That is why we will only sketch it. First, notice
that A is contained in the span of operators of the type

a = t
α0
0 · · · t

αn−2
n−2 v

β1
1 · · · v

βn
n ,

where 0 ≤ α0, . . . , αn−3 ≤ p− 1, 0 ≤ αn−2 ≤ p− 2, 0 ≤ β1, . . . , βn ≤ p− 1, βn ≥ 1.
Let a ∈ Ad . Then

d ≥ deg(a) =
n∑
i=1

βiλ
i
−

n−2∑
j=0

αjλ
j
≥ λn − (p − 1)

n−3∑
j=0

λj − (p − 2)λn−2

=
p − 1
λ− 1

+ λn−2 > λn−2.

Hence, n < logλ d+2 = r . For each n the number of such monomials is less than p2n−1.
Hence,

dimAd ≤
∑
n<r

p2n−1 < p2r−1
= p2 logλ d+3.

Now it remains to notice that

lim
d→∞

lnp2 logλ d+3

ln d
= 2 logλ p. ut

Example 2. The Lie algebra Lm, m ≥ 1, generated by the derivations ∂1, . . . , ∂m,

∂m+1+
∑
∞

i=2(t1 · · · ti−1)
p−1∂m+i is not nilpotent. The associative subalgebra of EndF (T̂ )

generated by Lm has finite Gelfand–Kirillov dimension.
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