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Abstract. We show that infinitesimal automorphisms and infinitesimal deformations of parabolic
geometries can be nicely described in terms of the twisted de Rham sequence associated to a certain
linear connection on the adjoint tractor bundle. For regular normal geometries, this description can
be related to the underlying geometric structure using the machinery of BGG sequences. In the
locally flat case, this leads to a deformation complex, which generalizes the well known complex
for locally conformally flat manifolds.

Recently, a theory of subcomplexes in BGG sequences has been developed. This applies to
certain types of torsion free parabolic geometries including quaternionic structures, quaternionic
contact structures and CR structures. We show that for these structures one of the subcomplexes in
the adjoint BGG sequence leads (even in the curved case) to a complex governing deformations in
the subcategory of torsion free geometries. For quaternionic structures, this deformation complex
is elliptic.

Keywords. Parabolic geometry, BGG sequence, quaternionic structure, quaternionic contact struc-
ture, CR structure, infinitesimal automorphism, infinitesimal deformation, deformation complex

1. Introduction

Given a smooth manifold M and a type of geometric structure, it is a natural idea to con-
sider the moduli space, i.e. the space of isomorphism classes of structures of the given
type on M . This moduli space can be viewed as the quotient of the space of all structures
of the given type by the action of the diffeomorphism group of M , which acts by pulling
back structures. In general, the moduli space is a highly complicated object. Trying to
understand the moduli space locally, one is led to the study of deformations of geometric
structures. Here deformations coming from the action of one-parameter groups of diffeo-
morphisms have to be considered as trivial. Reducing further to the formal infinitesimal
level, one arrives at infinitesimal deformations. These describe the possible directions in
which a given structure can be deformed. As before, there is the notion of a trivial in-
finitesimal deformation, and the quotient of the space of all infinitesimal deformations by
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the trivial ones is usually referred to as the formal tangent space of the moduli space at
the given structure.

In this paper, we study infinitesimal deformations and the closely related infinitesimal
automorphisms for parabolic geometries. These form a large class of geometric struc-
tures containing examples like conformal, quaternionic, hypersurface type CR, and cer-
tain higher codimension CR structures. For some of these structures, deformation theory
has been developed quite far. Infinitesimal deformations are usually defined in an ad hoc
manner as smooth sections of some bundle. Trivial infinitesimal deformations are those
which lie in the image of some linear differential operator, whose kernel is the space of
infinitesimal automorphisms. In particular, the formal tangent space is usually infinite-
dimensional.

It is a highly interesting problem to restrict the class of allowed deformations in such
a way that one obtains a finite-dimensional moduli space. This can be done by imposing
integrability conditions on the geometric structure and looking only at deformations in the
subclass of geometries satisfying these conditions. For parabolic geometries, the simplest
possible condition is local flatness. In some cases, much more subtle integrability con-
ditions can be used, for example anti-self-duality for conformal structures in dimension
four.

The unifying feature of parabolic geometries is that they can be viewed as Cartan
geometries with homogeneous model a generalized flag manifold. Regular normal ge-
ometries of this type are then equivalent to underlying geometric structures including the
examples listed above. For Cartan geometries, there are evident notions of infinitesimal
deformations and infinitesimal automorphisms. These can be nicely formulated in terms
of a certain linear connection (which surprisingly is different from the canonical normal
tractor connection) on the adjoint tractor bundle (see Proposition 3.2). In particular, the
relevant operators are part of the twisted de Rham sequence associated to this linear con-
nection.

The machinery of Bernstein–Gelfand–Gelfand sequences (or BGG sequences), which
was introduced in [13] and improved in [5], can be applied to this twisted de Rham se-
quence. One obtains a sequence of higher order operators acting on sections of bundles
that can be easily interpreted in terms of the underlying structure. For regular normal ge-
ometries, the first operator in this sequence has the space of infinitesimal automorphisms
as its kernel and the formal tangent space to the moduli space of normal geometries as its
cokernel (see 3.4 and 3.6).

For locally flat parabolic geometries (which are automatically regular and normal,
and locally isomorphic to the homogeneous model), the twisted de Rham sequence is a
complex. Thus also the corresponding BGG sequence is a complex which can be naturally
interpreted as a deformation complex in the category of locally flat structures.

Finally, we move to more subtle integrability conditions. The recent joint work [14]
with V. Souček contains a theory of subcomplexes in BGG sequences. In that paper, we
study several examples, in which there is an interesting notion of semiflatness which
includes (and in most cases is equivalent to) torsion freeness. In particular, these include
quaternionic structures and CR structures, but also quaternionic contact structures (torsion
free ones in dimension 7) as introduced in [3, 4]. In Section 4, we show that for all these



Infinitesimal automorphisms and deformations 417

geometries a certain subcomplex of the adjoint BGG sequence can be naturally interpreted
as a deformation complex in the subcategory of semiflat geometries. For quaternionic
structures, this deformation complex is elliptic.

2. Some background

We very briefly review some background. Some more details can be found in [14] and
much more information is available in [13, 11, 7, 12].

2.1. Parabolic geometries

The basic data needed to define a parabolic geometry is a semisimple Lie algebra g en-
dowed with a |k|-grading g = g−k ⊕ · · · ⊕ gk and a group G with Lie algebra g. The
subgroup P ⊂ G consisting of all elements g ∈ G such that Ad(g)(gi) ⊂ gi for all i,
where gi := gi ⊕ · · · ⊕ gk , is a parabolic subgroup. We will also need the subgroup
G0 ⊂ P of all elements whose adjoint action preserves the grading of g.

Parabolic geometries of type (G, P ) are then defined as Cartan geometries of that
type. Such a geometry on a smooth manifold M consists of a principal P -bundle p :
G → M and a Cartan connection ω ∈ �1(G, g). The homogeneous model of parabolic
geometries of type (G, P ) is given by the canonical principal bundleG→ G/P with the
left Maurer–Cartan form as a Cartan connection. A morphism of parabolic geometries is
a homomorphism of principal bundles which is compatible with the Cartan connections.
In particular, any morphism is a local diffeomorphism.

The curvature of a Cartan connection ω can be viewed as the two-formK ∈ �2(G, g)
defined by the structure equation

K(ξ, η) = dω(ξ, η)+ [ω(ξ), ω(η)],

where ξ and η are vector fields on G and the bracket is in g. Since K is horizontal
and equivariant, it can be interpreted as a two-form κ on M with values in the asso-
ciated bundle AM := G ×P g (see 3.1 for more details). The bundle AM is called
the adjoint tractor bundle. The P -invariant filtration {gi} of g gives rise to a filtration
AM = A−kM ⊃ · · · ⊃ AkM by smooth subbundles and the Lie bracket on g gives
rise to a tensorial bracket { , } on AM , making it into a bundle of filtered Lie algebras
modeled on g.

On the other hand, the Cartan connection ω induces an isomorphism between the tan-
gent bundle TM and the associated bundle G×P (g/p). Hence there is a natural projection
5 : AM → TM which induces an isomorphism AM/A0M ∼= TM . Via this isomor-
phism, the filtration of AM descends to a filtration TM = T −kM ⊃ · · · ⊃ T −1M of the
tangent bundle by smooth subbundles.

Applying the projection 5 to the values of κ , we obtain a TM-valued two-form κ−,
which is called the torsion of the Cartan connection ω. The geometry is called torsion free
if this torsion vanishes.

Via the filtrations of TM and AM , one has a natural notion of homogeneity for AM-
valued differential forms. In particular, we say that κ is homogeneous of degree ≥ ` if
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κ(T iM,T jM) ⊂ Ai+j+`M for all i, j = −k, . . . ,−1. A parabolic geometry is called
regular if its curvature is homogeneous of degree ≥ 1. Note that torsion free parabolic
geometries are automatically regular.

For parabolic geometries, there is a uniform normalization condition. This comes
from the Kostant codifferential, which is the differential ∂∗ : 3kp+ ⊗ g→ 3k−1p+ ⊗ g
in the standard complex computing Lie algebra homology of p+ := g1 ⊕ · · · ⊕ gk with
coefficients in the representation g. Now p+ is dual to g/p as a P -module via the Killing
form, so G ×P (3kp+ ⊗ g) ∼= 3kT ∗M ⊗ AM . Since ∂∗ is P -equivariant it induces
a bundle map 3kT ∗M ⊗ AM → 3k−1T ∗M ⊗ AM as well as a tensorial operator
�k(M,AM)→ �k−1(M,AM), all denoted by ∂∗. A parabolic geometry is called nor-
mal if ∂∗(κ) = 0.

Several important geometric structures like conformal structures, almost quaternionic
structures, non-degenerate CR structures of hypersurface type, and quaternionic contact
structures admit an equivalent description as a regular normal Cartan geometry of type
(G, P ) for an appropriate choice of (G, P ). A description of this equivalence can be
found in [7]. Thus parabolic geometries offer a powerful general machinery to study a
variety of geometric structures.

2.2. Bernstein–Gelfand–Gelfand sequences

These are generalizations of the BGG resolutions from representation theory to sequences
of invariant differential operators on parabolic geometries. They were introduced in [13]
and the construction was improved in [5]. We will briefly sketch this improved construc-
tion for regular geometries in the special case of the adjoint tractor bundle; more details
can be found in [14, 6].

The Cartan connection ω induces a natural linear connection ∇, called the adjoint
tractor connection, on the adjoint tractor bundle AM . This in turn induces the covariant
exterior derivative

d∇ : �k(M,AM)→ �k+1(M,AM).

The BGG machinery relates d∇ to higher order operators acting on sections of certain
subquotient bundles. Let ∂∗ : 3kT ∗M ⊗ AM → 3k−1T ∗M ⊗ AM denote the bundle
maps induced by the Kostant codifferential. The kernels and images of these bundle maps
are natural subbundles, so we can look at the quotient bundles ker(∂∗)/im(∂∗). By con-
struction, they are associated to the representations Hk(p+, g). It turns out that the latter
representations are always completely reducible and they are algorithmically computable
using Kostant’s version of the Bott–Borel–Weil theorem. Since the associated bundles
can be viewed as the fiberwise homology groups of the bundle T ∗M of Lie algebras with
coefficients in the bundle AM , we denote them by Hk(T ∗M,AM). Note that by con-
struction there is a natural bundle map πH : ker(∂∗) → Hk(T

∗M,AM), and we will
denote by the same symbol the induced tensorial operator on sections.

For a normal parabolic geometry, the Cartan curvature κ by definition is a section of
ker(∂∗), so we obtain the section κH = πH (κ) of the bundle H2(T

∗M,AM), which is
called the harmonic curvature. This is a much simpler object than κ , but still a complete
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obstruction to local flatness. The components of κH (according to the decomposition of
H2(p+, g) into irreducibles) are the fundamental invariants of a regular normal parabolic
geometry.

The main step towards BGG sequences is the construction of a natural differential
operator L : 0(Hk(T ∗M,AM)) → �k(M,AM), which admits a simple character-
ization. For α ∈ 0(Hk(T

∗M,AM)) one has ∂∗(L(α)) = 0, πH (L(α)) = α, and
∂∗(d∇L(α)) = 0, and this determines L. In particular, we obtain a differential split-
ting of the tensorial projection πH : 0(ker(∂∗)) → 0(Hk(T

∗M,AM)). Therefore, the
operators L are referred to as the splitting operators. The last property implies that we
can define invariant differential operators by

D := πH ◦ d∇ ◦ L : 0(Hk(T ∗M,AM))→ 0(Hk+1(T
∗M,AM)),

and these operators form the adjoint BGG sequence. Each of the bundlesHk(T ∗M,AM)
splits into a direct sum of subbundles according to the splitting of the representation
H∗(p+, g) into irreducible components. Doing this in all degrees, one obtains a pattern of
operators acting between the various components.

It is crucial for this article that this construction does not only work for d∇ . One
only needs that the operator ∂∗d∇ acts invertibly on 0(im(∂∗)) ⊂ �k(M,AM) and the
inverse is a differential operator. This in turn only requires that d∇ preserves homogeneity
of differential forms and the form of its component of homogeneous degree zero.

2.3. Infinitesimal deformations of conformal structures

For the convenience of the reader, we briefly review some basic results on infinitesimal
deformations of conformal structures. Let M be a smooth manifold of dimension n ≥ 3
and let [g] be a conformal class of pseudo-Riemannian metrics on M . An infinitesimal
deformation of a pseudo-Riemannian metric is simply a smooth section h of the bundle
S2T ∗M . To obtain a deformation of the conformal class [g] one first requires h to be trace
free. Second, one requires that if we rescale the metric g in the conformal class, h has to
rescale in the same way. This means that h has to be a section of the tensor product of
S2

0T
∗M with a certain density bundle. Using the notation and conventions of [9], the right

bundle is F1 := S2
0T
∗M[2] = S2

0T
∗M ⊗ E[2].

Trivial deformations are those coming from pulling back the given structure along
diffeomorphisms. The conformal class [g] can be viewed as a section g of S2T ∗M[2]. It
turns out that for any vector field ξ , the Lie derivative Lξg is a section of F1, and these are
the trivial infinitesimal deformations. Hence the quotient of all infinitesimal deformations
by the trivial ones can be interpreted as the cokernel of the (by construction invariant)
linear differential operator D0 : 0(TM) → 0(F1) given by D0(ξ) = Lξg. It is easy to
verify that D0 is the conformal Killing operator. In particular, its kernel is the space of
conformal Killing fields, i.e. of infinitesimal conformal isometries of (M, [g]).

This is about how far one can get for general conformal structures. To proceed further
one can impose some integrability condition on the conformal structure and look at defor-
mations in the subclass of structures satisfying this condition. The simplest choice of such
a condition is local conformal flatness. We will discuss this only for n ≥ 4; the case n = 3
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is similar. For n ≥ 4, local conformal flatness is equivalent to vanishing of the Weyl cur-
vature. Hence it is natural to consider the bundle F2, in which the Weyl curvature has its
values, and the operator D1 : 0(F1)→ 0(F2), which computes the infinitesimal change
of the Weyl curvature caused by an infinitesimal deformation. If (M, [g]) is locally con-
formally flat, then sections in the kernel of D1 correspond to infinitesimal deformations
in the subcategory of locally conformally flat structures. Moreover, D1 ◦ D0 = 0 in that
case, so the quotient ker(D1)/im(D0) is exactly the formal tangent space to the moduli
space of locally conformally flat structures on M .

It turns out that, still in the locally conformally flat case, this extends to a fine resolu-
tion

0→ K→ 0(TM)
D0
−→ 0(F1)

D1
−→ 0(F2)

D2
−→ · · ·

Dn−1
−→ 0(Fn)→ 0

of the sheaf K of conformal Killing fields on M . Constructing this resolution by hand is
fairly involved (see the book [15]).

In the case of four-dimensional conformal structures, a weaker integrability condition
is available. In this case, the bundle F2 splits into the direct sum F+2 ⊕ F

−

2 of self-dual
and anti-self-dual parts. Accordingly, the Weyl curvature splits as W = W+ + W−, so
D1 = D

+

1 + D
−

1 . Conformal structures with W+ = 0 are called anti-self-dual. On such
a structure ker(D+1 ) exactly consists of infinitesimal deformations in the subcategory of
anti-self-dual structures. It turns out that in this case

0→ 0(TM)
D0
−→ 0(S2

0T
∗M[2])

D+1
−→ 0(F+2 )→ 0

is a complex, which is elliptic for Riemannian signature. This is the basis of the deforma-
tion theory for anti-self-dual conformal Riemannian four manifolds (see [17] and [16]).

3. Infinitesimal automorphisms and deformations

3.1. The basic setup

Fix a parabolic geometry (p : G → M,ω) of some type (G, P ). By definition, the adjoint
tractor bundleAM is the associated bundle G×P g corresponding to the restriction of the
adjoint representation of G to P . Smooth sections of this bundle are in bijective corre-
spondence with smooth functions f : G → g such that f (u · g) = Ad(g−1)(f (u)) for
all u ∈ G and g ∈ P . More generally, for k = 1, . . . , dim(M) the space �k(M,AM) can
be identified with the space �khor(G, g)

P of P -equivariant, horizontal g-valued k-forms
on G. Here 8 ∈ �k(G, g) is horizontal if it vanishes upon insertion of one fundamental
vector field, and P -equivariant if (rg)∗8 = Ad(g−1) ◦ 8 for all g ∈ P . Note that this
identification is independent of the Cartan connection ω.

This correspondence immediately leads to a geometric interpretation of�1(M,AM):
Suppose that ω̃ ∈ �1(G, g) is a second Cartan connection on G. Then the difference
ω̃ − ω ∈ �1(G, g) is by definition horizontal and P -equivariant, and thus corresponds to
an element of �1(M,AM). There is an obvious notion of a deformation of the Cartan
geometry (G → M,ω) as a smooth family ωτ of Cartan connections on G parametrized
by τ ∈ (−ε, ε) ⊂ R such that ω0 = ω. The initial direction of this deformation is
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the derivative d
dτ
|τ=0ωτ of this family at τ = 0. By the above, this derivative can be

interpreted as ϕ ∈ �1(M,AM).
Conversely, if 8 ∈ �1(G, g) is horizontal and P -equivariant, then ω +8 is a Cartan

connection provided that it restricts to a linear isomorphism on each tangent space. Since
this is an open condition, we can view �1(M,AM) as the space of all directions of
deformations of the Cartan connection ω, i.e. as the space of all infinitesimal deformations
of ω.

From 2.1 we know that the curvature of any Cartan connection on G is naturally
interpreted as an element of�2(M,AM). In particular, for a deformation ωτ of ω, the re-
sulting infinitesimal change of the curvature can be viewed as an element of�2(M,AM).

To discuss �0(M,AM) = 0(AM) we need a second interpretation of C∞(G, g)P .
Since ω trivializes T G, associating to a vector field ξ on G the function ω ◦ ξ defines a
bijection X(G)→ C∞(G, g). Equivariance of ω immediately implies that (ω ◦ ξ) ◦ rg =
Ad(g−1)◦(ω◦ξ) if and only if (rg)∗ξ = ξ , so we obtain a bijection between 0(AM) and
the space X(G)P of P -invariant vector fields on G. Notice that P -invariant vector fields
are automatically projectable to vector fields onM , and this corresponds to the projection
5 : AM → TM from 2.1.

A vector field ξ ∈ X(G) satisfies (rg)∗ξ = ξ if and only if its flow commutes with rg ,
whenever the flow is defined. This is true for all g ∈ P if and only if the local flows
are principal bundle automorphisms. Thus we can view the space 0(AM) as the space of
infinitesimal principal bundle automorphisms of the Cartan bundle G.

3.2. Formulae in the Cartan picture

Given a section of AM , we can look at the corresponding vector field on G. The local
flows of this vector field are principal bundle automorphisms, so we can use them to pull
back the Cartan connection ω, which locally defines a deformation of ω. Deformations
obtained in this way and also the corresponding infinitesimal deformations are called
trivial. Note that while flows may be only locally defined, the corresponding infinitesimal
deformation is always defined globally.

An automorphism of the parabolic geometry (G, ω) by definition is a principal bundle
automorphism 8 of G such that 8∗ω = ω. Correspondingly, an infinitesimal automor-
phism is a P -invariant vector field ξ on G such that the induced infinitesimal deformation
of the Cartan connection vanishes identically.

In studying the infinitesimal change of curvature caused by an infinitesimal defor-
mation of the Cartan connection, there is an additional subtlety. For a deformation ωτ of
ω = ω0, we may view the curvature κτ of ωτ as an element of�2(M,AM), and we could
simply differentiate this family of sections. However, the identification of32T ∗M⊗AM
with the associated bundle G×P 32p+⊗g, which is used to construct operators acting on
the curvature, depends on the Cartan connection. The easiest way to take this into account
is to first convert κτ into an equivariant function G → 32p+⊗g using ωτ . Then one takes
the derivative of this family of functions at τ = 0 and converts it back to an element of
�2(M,AM) using ω = ω0.
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Finally, observe that by means of the projection5 : AM → TM , any section ofAM
has an underlying vector field onM . In particular, for s ∈ 0(AM)we can insert5(s) into
a (bundle-valued) differential form on M , and we write is for the corresponding insertion
operator. More generally, for ϕ ∈ �`(M,AM) and a vector bundle V → M , we obtain
an insertion operator iϕ : �k(M, V )→ �k+`−1(M, V ).

Proposition. Let (G → M,ω) be a parabolic geometry with curvature κ ∈ �2(M,AM).
Let ∇ be the adjoint tractor connection, and let d∇ : �k(M,AM)→ �k+1(M,AM) be
the corresponding covariant exterior derivative. Then we have:

(1) For s ∈ 0(AM), the infinitesimal deformation of ω induced by the corresponding
invariant vector field is given by ∇s + isκ . In particular, s is an infinitesimal auto-
morphism if and only if ∇s = −isκ .

(2) For an infinitesimal deformation ϕ ∈ �1(M,AM) of the Cartan connection ω, the
induced infinitesimal change of the curvature is given by d∇ϕ − iϕκ ∈ �2(M,AM).

Proof. (1) Let ξ ∈ X(G)P be the vector field corresponding to s. Pulling back ω by its
flow and taking the derivative, we get the Lie derivative Lξω ∈ �1(G, g). Using Cartan’s
formula and the definition of curvature we obtain

(Lξω)(η) = d(iξω)(η)+ dω(ξ, η) = η · ω(ξ)+ κ(ξ, η)− [ω(ξ), ω(η)].

To ensure vanishing of Lξω, it suffices to insert vector fields η which are projectable
to M . Let η ∈ X(M) be the image of η. Then η · ω(ξ) + [ω(η), ω(ξ)] represents the
section ∇ηs (see [8, 2.7]), and the result follows.

(2) Let ωτ be a deformation of ω, put 8 := d
dτ
|τ=0ωτ ∈ �

1
hor(G, g)

P , and let ϕ ∈
�1(M,AM) be the corresponding element. Viewed as Kτ ∈ �2(G, g), the curvature of
ωτ is given by

Kτ (ξ, η) = dωτ (ξ, η)+ [ωτ (ξ), ωτ (η)].
Differentiating with respect to τ at τ = 0 we obtain

d8(ξ, η)+ [8(ξ), ω(η)]+ [ω(ξ),8(η)].

Choose ξ and η to be P -invariant and denote by s and t the corresponding sections of
AM . Expanding the exterior derivative and using the fact that ξ · 8(η) + [ω(ξ),8(η)]
represents ∇5(s)(ϕ(t)), and likewise for the other term, we exactly obtain the formula for
the covariant exterior derivative d∇ϕ(5(s),5(t)).

As discussed above, we should however first convert Kτ into a function using ωτ ,
which means looking at Kτ (ω−1

τ (X), ω−1
τ (Y )) for X, Y ∈ g, differentiate, and then con-

vert the result back into a form using ω. Differentiating the equation X = ωτ (ω−1
τ (X))

we see that
d

dτ

∣∣∣∣
τ=0

ω−1
τ (X) = −ω−1(8(ω−1(X))).

To get the expression for the change of the curvature, we thus have to add to d∇ϕ the
terms

−K0(ω
−1(8(ω−1(X))), ω−1(Y ))−K0(ω

−1(X), ω−1(8(ω−1(Y )))),

which exactly represent −iϕκ . ut
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Remark. We consider infinitesimal automorphisms and deformations on the level of the
total space of the Cartan bundle here. As discussed in 2.1, regular normal parabolic ge-
ometries are equivalent to underlying structures. For several of these structures, notions
of infinitesimal automorphisms and deformations are available in the literature (see 2.3
for a sketch of the conformal case).

For infinitesimal automorphisms, it is easy to see that the two concepts are equiva-
lent: The construction of the canonical normal Cartan connection induces an equivalence
of categories between regular normal parabolic geometries and underlying structures.
An automorphism of the underlying structure uniquely lifts to an automorphism of the
parabolic geometry, and conversely any automorphism of a parabolic geometry induces
an automorphism of the underlying structure on the base. Applying this to local flows of
vector fields, one immediately concludes that there is a bijective correspondence between
infinitesimal automorphisms in the two senses. We shall see below that this correspon-
dence is implemented by the machinery of BGG sequences.

In the case of infinitesimal deformations the question is a bit more subtle, but the con-
cepts still coincide in all cases that I am aware of. The basic point here is the following:
The underlying structures of parabolic geometries can all be encoded as infinitesimal flag
structures (see [11]). These are principal G0-bundles endowed with certain partially de-
fined differential forms. A small deformation of the underlying structure cannot change
the isomorphism type of the principal bundle, so it can be viewed as a deformation of the
partially defined differential forms. Since the subgroup P+ ⊂ P is always contractible,
the total space of the Cartan bundle must be a trivial P+-principal bundle over the under-
lying G0-bundle. Making choices, one can extend the partially defined differential forms
from above to a Cartan connection of the principal P -bundle, and this transforms smooth
families to smooth families. The canonical Cartan connection can then be constructed
by a normalization process which again maps smooth families to smooth families. This
construction will be described in detail in [12]. In this way, any deformation of the un-
derlying structure gives rise to a deformation of the parabolic geometry, and since the
converse direction is obvious, this establishes the equivalence of the two notions. We
shall see in the examples below that this correspondence is implemented by the BGG
machinery.

3.3. A variant of the adjoint BGG sequence

Proposition 3.2 suggests considering the linear connection ∇̃ on the bundle AM which
is defined by ∇̃s = ∇s + isκ . To describe it we need some natural operators on adjoint
tractors. The algebraic bracket { , } is induced by the bracket on g, while the Lie bracket
[ , ] is induced from the Lie bracket on X(G). Finally, the fundamental derivative was
introduced under the name of “fundamental D-operator” in Section 3 of [8].

Lemma. (1) For ϕ ∈ �k(M,AM) we have d∇̃ϕ = d∇ϕ + (−1)kiϕκ .
(2) The curvature R̃ of ∇̃ is given by R̃(ξ, η)(s) = (Dsκ)(ξ, η), where Ds denotes the

fundamental derivative.
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Proof. (1) is a straightforward computation using the standard formula

(d∇̃ϕ)(ξ0, . . . , ξk) =
∑
i

(−1)i∇̃ξi (ϕ(ξ0, . . . , î, . . . , ξk))

+

∑
i<j

(−1)i+jϕ([ξi, ξj ], ξ0, . . . , î, . . . , ĵ , . . . , ξk)

for the covariant exterior derivative.
(2) The action of R̃ on s ∈ 0(AM) can be computed as d∇̃∇̃s. Inserting the definition

of ∇̃ and using (1) shows that this equals d∇∇s + d∇(isκ) − i∇̃sκ . The first term gives
the action κ • s of the curvature of ∇, i.e. (κ • s)(ξ, η) = {κ(ξ, η), s}. Since κ is the
curvature of ∇, the Bianchi identity for linear connections implies that 0 = d∇κ . Taking
t1, t2 ∈ 0(AM) and expanding 0 = d∇κ(t1, s, t2) we obtain the formula

d∇(isκ)(t1, t2) = ∇s(κ(t1, t2))− κ([s, t1], t2)− κ(t1, [s, t2]).

Now∇s(κ(t1, t2)) = Ds(κ(t1, t2))+{s, κ(t1, t2)} by [8, Proposition 3.2], while [8, Propo-
sition 3.6] reads as [s, t1] = Ds t1 − ∇̃t1s. Inserting all these into the above formula for
d∇̃∇̃s yields the claim. ut

Using part (1), we conclude from Proposition 3.2 that the infinitesimal change of curva-
ture caused by an infinitesimal deformation of a Cartan connection is computed by d∇̃ .

Now suppose that we are dealing with a regular parabolic geometry (p : G → M,ω).
By definition, this means that κ is homogeneous of degree ≥ 1, i.e. for ξ ∈ 0(T iM) and
η ∈ 0(T jM), we have κ(ξ, η) ∈ 0(Ai+j+1M). If ϕ ∈ �k(M,AM) is homogeneous
of degree ≥ `, this immediately implies that iϕκ is homogeneous of degree ≥ ` + 1.
Therefore d∇̃ϕ is congruent to d∇ϕ modulo elements which are homogeneous of degree
≥ ` + 1. Hence the lowest possibly nonzero homogeneous components of d∇ϕ and of
d∇̃ϕ coincide. As pointed out in 2.2, this is all we need to apply the BGG machinery to
the twisted de Rham sequence induced by ∇̃.

We write L̃ : 0(Hk(T ∗M,AM)) → �k(M,AM) for the splitting operators ob-
tained by this construction. They are characterized by ∂∗(L̃(α)) = 0, πH (L̃(α)) = α,
and ∂∗(d∇̃L̃(α)) = 0. The induced BGG operators D̃k : 0(Hk(T

∗M,AM)) →
0(Hk+1(T

∗M,AM))) are given by D̃k = πH ◦ d∇̃ ◦ L̃.

3.4. Infinitesimal automorphisms

It is easy to relate the BGG sequence obtained from d∇̃ to infinitesimal automorphisms:

Theorem. Let (p : G → M,ω) be a regular normal parabolic geometry of type
(G, P ) corresponding to a |k|-grading of g. Then the bundle H0(T

∗M,AM) equals
AM/A−k+1M ∼= TM/T −k+1M . The algebraic projection πH and the differential op-
erator L̃ restrict to mutually inverse bijections between infinitesimal automorphisms of
(p : G → M,ω) and smooth sections σ ∈ 0(TM/T −k+1M) such that D̃0(σ ) = 0.
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Proof. The bundle H0(T
∗M,AM) corresponds to the representation H0(p+, g). By def-

inition, this homology group is g/[p+, g], and it is well known that [p+, g] = g−k+1, so
the statement about H0(T

∗M,AM) follows.
By Proposition 3.2(1), a smooth section s ∈ 0(AM) defines an infinitesimal auto-

morphism if and only if ∇̃s = 0. If this is the case, then ∂∗(∇̃s) = 0, and since ∂∗(s) = 0
is automatically satisfied, this implies s = L̃(πH (s)) and D̃0(πH (s)) = 0. Hence πH
restricts to an injection from infinitesimal automorphisms to ker(D̃0).

Conversely, if σ ∈ 0(TM/T −k+1M) satisfies D̃0(σ ) = 0, then put s := L̃(σ ). Then
∂∗(∇̃s) = 0 and D̃0(σ ) = 0 implies that πH (∇̃s) = 0, so ∇̃s is a section of the subbundle
im(∂∗) ⊂ T ∗M ⊗AM . By Proposition 3.2(2), we get d∇̃∇̃s = Dsκ , and by naturality of
the fundamental derivative and normality we get ∂∗(Dsκ) = Ds∂∗(κ) = 0. But from 2.2
we know that ∂∗◦d∇̃ is injective on sections of im(∂∗), so ∇̃s = 0 and s is an infinitesimal
automorphism. ut

3.5. Comparing the BGG operators

To complete the discussion of infinitesimal automorphisms, it remains to compare the
first operator D̃0 in the BGG sequence associated to ∇̃ with the first operator D0 in the
BGG sequence associated to ∇.

Theorem. Let (p : G → M,ω) be a regular normal parabolic geometry of type (G, P ),
and let g be the Lie algebra of G. Let L and L̃ be the splitting operators in degree zero
and D0 and D̃0 the BGG operators obtained from ∇ and ∇̃, respectively.

(1) If g is |1|-graded or (p : G → M,ω) is torsion free, then

L = L̃ : 0(TM/T −k+1M)→ 0(AM) and D̃0(σ ) = D0(σ )+ πH (iL(σ)κ).

(2) If (p : G → M,ω) is torsion free and H1(p+, g) is concentrated in non-positive
homogeneity degrees then D̃0 = D0.

Proof. (1) We start by computing ∂∗(iξκ) for an arbitrary vector field ξ ∈ X(M). Locally,
we can write κ as a finite sum of terms of the form ϕ ∧ ψ ⊗ t for ϕ,ψ ∈ �1(M) and
t ∈ 0(AM). By definition, ∂∗(κ) is then the sum of the corresponding terms of the form

−ψ ⊗ {ϕ, t} + ϕ ⊗ {ψ, t} − {ϕ,ψ} ⊗ t.

On the other hand, iξκ is the sum of the terms ϕ(ξ)ψ ⊗ t − ψ(ξ)ϕ ⊗ t . Thus ∂∗(iξκ) is
the sum of the terms ϕ(ξ){ψ, t} − ψ(ξ){ϕ, t}, and we conclude that

∂∗(iξκ) = −iξ (∂
∗(κ)− ({ , } ⊗ id)(κ)),

where we use { , } ⊗ id : 32T ∗M ⊗ AM → T ∗M ⊗ AM . Since we are dealing with
a normal parabolic geometry, we have ∂∗(κ) = 0. In the case of a |1|-grading the map
{ , } : 32T ∗M → T ∗M is identically zero, so we get ∂∗(iξκ) = 0 in this case.

In the torsion free case, we first observe that the kernel of [ , ]⊗ id is a P -submodule
in 32p+ ⊗ g. For any normal parabolic geometry, the harmonic curvature κH = πH (κ)
has values inH2(T

∗M,AM). By Kostant’s version of the Bott–Borel–Weyl theorem (see
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[18]) the corresponding subrepresentation has multiplicity one in3∗p+⊗g. In particular,
it has to be contained in the kernel of [ , ]⊗ id. By [6, Theorem 3.2(1)] the curvature of
any torsion free parabolic geometry therefore has values in the kernel of { , } ⊗ id, so we
again conclude that ∂∗(iξκ) = 0 for each ξ .

For a section σ of TM/T −k+1M , consider L(σ). By construction, ∂∗(L(σ )) = 0,
πH (L(σ )) = σ , and ∂∗(∇L(σ)) = 0. Since ∇̃L(σ) = ∇L(σ) + iL(σ)κ , we also have
∂∗(∇̃L(σ)) = 0. Hence L(σ) satisfies the three conditions which characterize L̃(σ ) and
so L̃ = L. Using this we obtain

D̃0(σ ) = πH (∇̃L(σ)) = D0(σ )+ πH (iL(σ)κ).

(2) Since we are dealing with a torsion free geometry, we get isκ ∈ �1(M,A0M) ⊂

�1(M,AM) for each s ∈ 0(AM). In particular, isκ is always homogeneous of degree
≥ 1, so by the assumption on H1(p+, g) we get πH (iL(σ)κ) = 0 for any section σ of
TM/T −k+1M . ut

Corollary. Suppose that (p : G → M,ω) is torsion free, H1(p+, g) is concentrated in
non-positive homogeneity degrees, and s ∈ 0(AM) satisfies ∇s = 0. Then isκ = 0 and
in particular s is an infinitesimal automorphism.

Proof. Since∇s = 0 we get s = L(πH (s)) andD0(πH (s)) = 0. By the theorem, we have
L = L̃ andD0 = D̃0, and in the proof of Theorem 3.4, we have seen that D̃0(πH (s)) = 0
implies ∇̃s = 0. ut

Remark. (1) The condition that H1(p+, g) is concentrated in non-positive homogeneity
degrees is easy to verify (see [19] or [10, Proposition 2.7]): The semisimple |k|-graded
Lie algebra g decomposes as a direct sum of |ki |-graded simple ideals with ki ≤ k for
each i. The condition is equivalent to the fact that none of these simple ideals is of type
A` or C` with the grading corresponding to the first simple root. If g itself is simple, then
this exactly excludes classical projective structures and a contact analog of these. Note
that in the latter two cases regular normal parabolic geometries are automatically torsion
free, so part (1) of the theorem holds for all regular normal geometries of these types.

(2) The statement of the corollary is rather surprising even in special cases like con-
formal structures. The identities responsible for its validity are contained in the proof
of Lemma 3.3. From this proof one easily deduces d∇(isκ) = Dsκ − κ • s + i∇̃sκ for
any s ∈ 0(AM). If ∇s = 0, then 0 = d∇(∇s) = κ • s and if the geometry is tor-
sion free then this also implies that ∇̃s has values in A0M and hence i

∇̃sκ = 0. Since
0 = Ds∂∗(κ) = ∂∗(Dsκ) we obtain ∂∗d∇(isκ) = 0, which under the assumptions of the
corollary implies isκ = 0.

3.6. Infinitesimal deformations

Consider an infinitesimal deformation ϕ ∈ �1(M,AM) of a regular normal parabolic
geometry (p : G → M,ω). Then ϕ is called normal if the deformed curvature (infinitesi-
mally) remains normal. According to Propositions 3.2 and 3.3, this is the case if and only
if ∂∗(d∇̃ϕ) = 0.
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The BGG machinery now easily implies that the operator D̃0 whose kernel is the
space of infinitesimal automorphisms, also has the formal tangent space to the moduli
space of normal geometries as its cokernel:

Theorem. Let (p : G → M,ω) be a regular normal parabolic geometry.

(1) Any trivial infinitesimal deformation of ω is normal.
(2) The splitting operator L̃ : 0(H1(T

∗M,AM)) → �1(M,AM) induces a bijection
between 0(H1(T

∗M,AM))/im(D̃0) and the formal tangent space at the given struc-
ture to the moduli space of all normal parabolic geometries on M .

(3) The BGG operator D̃1 computes the infinitesimal change of the harmonic curvature
caused by the infinitesimal deformation L̃(α) associated to α ∈ 0(H1(T

∗M,AM)).

Proof. We have already observed in the proof of Theorem 3.4 that d∇̃∇̃s = Dsκ and that
this has values in the kernel of ∂∗, so (1) follows.

For α ∈ 0(H1(T
∗M,AM)) we put ϕ := L̃(α). Then by construction ∂∗(d∇̃ϕ) = 0,

so ϕ defines a normal infinitesimal deformation. By Proposition 3.2, d∇̃ϕ is the infinites-
imal change of curvature caused by ϕ, and by definition D̃1(α) = πH (d

∇̃ϕ), which
implies (3).

If α = D̃0(σ ), then put s = L̃(σ ), so α = πH (∇̃s). Since ∂∗(∇̃s) = 0 and
∂∗(d∇̃∇̃s) = 0 we conclude that ∇̃s = L̃(α), so the resulting deformation is trivial. Thus
L̃ induces a map from the quotient 0(H1(T

∗M,AM))/im(D̃0) to normal infinitesimal
deformations modulo trivial infinitesimal deformations.

Suppose that L̃(α) = ∇̃s. Then in particular ∂∗(∇̃s) = 0, so s = L̃(πH (s)).
Hence α = D̃0(πH (s)) and our map is injective. To prove surjectivity, suppose that
ϕ ∈ �1(M,AM) is any normal infinitesimal deformation. Put s = −Q̃∂∗(ϕ), where
Q̃ : 0(im(∂∗))→ 0(im(∂∗)) is the inverse of ∂∗ ◦d∇̃ (cf. 2.2). Replacing ϕ by the equiv-
alent infinitesimal deformation ψ = ϕ + ∇̃s, we see that ∂∗(ψ) = 0 and ∂∗(d∇̃ψ) = 0,
so ψ = L̃(πH (ψ)) and surjectivity follows. ut

The relation between the splitting operators and the BGG operators obtained from d∇

respectively d∇̃ is much more complicated than for the first operator in the sequence. We
just prove a simple general result here which is sufficient to deal with the cases discussed
in this paper.

Lemma. Let (p : G → M,ω) be a torsion free normal parabolic geometry. Suppose that
V ⊂ Hk(p+, g) and W ⊂ Hk+1(p+, g) are irreducible components which are contained
in homogeneity ` respectively `+ 1. Then the components of the BGG operators D̃k and
Dk , which map sections of G ×P V to sections of G ×P W , coincide.

Proof. Consider a section α ∈ 0(G ×P V ) and put ϕ := L(α) ∈ �k(M,AM). Then ϕ
is homogeneous of degree ≥ `, ∂∗(ϕ) = 0 and πH (ϕ) = α. By Lemma 3.3(1) we get
d∇̃ϕ = d∇ϕ + (−1)kiϕκ and therefore ∂∗(d∇̃ϕ) = (−1)k∂∗(iϕκ). By torsion freeness κ
is homogeneous of degree≥ 2, so iϕκ is homogeneous of degree≥ `+2. Denoting by Q̃
the operator used in the proof of the theorem, we conclude that ψ := (−1)k+1Q̃∂∗(iϕκ)
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is homogeneous of degree ≥ ` + 2. By construction ∂∗(ϕ + ψ) = 0, πH (ϕ + ψ) = α,
and ∂∗(d∇̃(ϕ + ψ)) = 0, which implies L̃(α) = ϕ + ψ . Now

d∇̃(ϕ + ψ) = d∇ϕ + (−1)kiϕκ + d∇̃ψ,

and the last two terms are homogeneous of degree ≥ `+ 2. By homogeneity, these terms
cannot contribute to the component of the image under πH that we are interested in. ut

3.7. On regularity

To get a complete correspondence to underlying structures, one has to single out regular
normal infinitesimal deformations among all normal ones. Here a normal infinitesimal
deformation ϕ ∈ �1(M,AM) is called regular if d∇̃ϕ ∈ �2(M,AM) is homogeneous
of degree ≥ 1. Notice that this condition is vacuous if the geometry corresponds to a |1|-
grading, and Theorem 3.6 therefore gives a complete description of the formal tangent
space to the moduli space of regular normal geometries.

In general, we can first show that trivial infinitesimal deformations of regular normal
geometries are regular. Indeed, from Lemma 3.3(2) we know that for s ∈ 0(AM) we
have d∇̃∇̃s = Dsκ . If we start from a regular normal geometry, then κ is homogeneous
of degree ≥ 1, and by naturality of the fundamental derivative the same is true for Dsκ .
Theorem 3.6 now directly implies

Corollary. Let (p : G → M,ω) be a regular normal parabolic geometry. Then
the formal tangent space at the given structure to the moduli space of regular nor-
mal geometries is the quotient of the space of all α ∈ 0(H1(T

∗M,AM)) such that
d∇̃L̃(α) ∈ �2(M,AM) is homogeneous of degree ≥ 1 by the image of D̃0.

For any concrete choice of structure, the condition on the homogeneity of d∇̃L̃(α) can be
made more explicit by projecting out step by step the lowest possibly non-zero homoge-
neous components of d∇̃ ◦ L̃. For structures corresponding to |2|-gradings, we can give a
nicer description, which will be useful in the examples of Section 4.

Proposition. Suppose that P ⊂ G corresponds to a |2|-grading of g. Then for any
regular normal parabolic geometry (p : G → M,ω) of type (G, P ) and any section
α ∈ 0(H1(T

∗M,AM)) the form d∇̃L̃(α) ∈ �2(M,AM) is homogeneous of degree ≥ 1
if and only D̃1(α) is homogeneous of degree ≥ 1.

Proof. By definition, we have D̃1(α) = πH (d
∇̃L̃(α)). If D̃1(α) is homogeneous of de-

gree ≥ 1, then so is L̃(D̃1(α)), which differs from d∇̃L̃(α) by a section of im(∂∗). Since
we are dealing with a |2|-grading, any element of 33T ∗M ⊗AM is homogeneous of de-
gree ≥ 1, and the result follows since ∂∗ preserves homogeneities. ut

Since any irreducible component ofH2(p+, g) is contained in some homogeneous degree,
the condition in the proposition simply means that all components of D̃1(α) in bundles
corresponding to irreducible pieces in homogeneity zero have to vanish.



Infinitesimal automorphisms and deformations 429

3.8. The locally flat case

As a simple consequence of Theorem 3.6, we can deal with the case of locally flat ge-
ometries. The following result was first proved in [5].

Theorem. Let (p : G → M,ω) be a locally flat parabolic geometry. Then the BGG
sequence associated to the adjoint representation is a complex. It can be naturally viewed
as a deformation complex, i.e. its homologies in degrees zero and one are the space of
infinitesimal automorphisms respectively the formal tangent space to the moduli space of
all locally flat parabolic geometries on M .

Proof. By local flatness, ∇ = ∇̃ and this connection is flat, so the twisted de Rham
sequence is a complex. This easily implies that L ◦ D = d∇ ◦ L, so the BGG sequence
is also a complex. By Theorem 3.5, the cohomology of this complex in degree zero is
isomorphic to the space of infinitesimal automorphisms. For α ∈ 0(H1(T

∗M,AM))
with D1(α) = 0 we have d∇L(α) = LD(α) = 0, so the infinitesimal deformation
L(α) does not change the curvature infinitesimally. Since conversely d∇L(α) = 0 clearly
implies D1(α) = 0, we see that the kernel of D1 exactly corresponds to the infinitesimal
deformations in the subcategory of locally flat geometries. Now the interpretation of the
first cohomology follows from Theorem 3.6. ut

4. Deformation complexes for torsion free geometries

In the recent joint work [14] with V. Souček, we have developed a theory of subcomplexes
in curved BGG sequences. This theory applies to torsion free geometries of certain types.
To have interesting examples, one needs assumptions on the structure of the homology
group H2(p+, g), which forms the degree two part of the adjoint BGG sequence and
governs the structure of the harmonic curvature. The main examples of this situation are
the ones discussed in [14].

Here we find for all these examples a certain subcomplex in the adjoint BGG sequence
(obtained from d∇ ). Using the results of Section 3, we can show that the first two operators
in this subcomplex coincide with their counterparts in the BGG sequence obtained from
d∇̃ . This leads to an interpretation of the subcomplex as a deformation complex in the
appropriate subcategory of torsion free geometries.

4.1. Grassmannian structures

An almost Grassmannian structure on a manifold M of dimension 2n is essentially given
by two auxiliary bundles E and F over M of rank 2 respectively n, and an isomorphism
8 : E∗ ⊗ F → TM . The bundles E and F are the basic building blocks for bundles
over M corresponding to irreducible representations of P .

The BGG sequences in this case have triangular shape (see [14, 3.4]). The bundle in
degree k of the BGG sequence splits into a direct sum of irreducible subbundlesHp,q with
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p+q = k and 0 ≤ p ≤ q ≤ n. In particular, the second bundle splits asH0,2⊕H1,1, and
correspondingly there are two irreducible components in the harmonic curvature. Let us
now restrict to the case n > 2; the case n = 2 will be discussed in 4.2. The harmonic cur-
vature component in 0(H0,2) is called the torsion of the almost Grassmannian structure.
Vanishing of this torsion is equivalent to torsion freeness in the sense of G-structures,
and the corresponding geometries are called Grassmannian rather than almost Grassman-
nian. The harmonic curvature component in H1,1 is a true curvature. It is shown in [14,
Theorem 3.5] that in the case of Grassmannian structures for any p = 0, . . . , n the parts
Hp,p → · · · → Hp,n and for any q = 0, . . . , n the parts H0,q → · · · → Hq,q are
subcomplexes in each BGG sequence.

The representations inducing the bundles in the adjoint BGG sequence are determined
in [14, 4.1], where we take k = ` = 1. For j < n, one obtains H0,j = (SjE ⊗ E∗)0
⊗ (3jF ∗ ⊗ F)0, where the subscript 0 denotes the trace free part. In particular H0,0 =

E∗ ⊗ F = TM , which also follows from Theorem 3.4, and H0,1 = sl(E) ⊗ sl(F ).
Evidently, H0,jM ⊂ 3j (E ⊗ F ∗) ⊗ (E∗ ⊗ F) = 3jT ∗M ⊗ TM . Looking at homo-
geneities, this implies that the BGG operators 0(H0,j−1) → 0(H0,j ) are of first order
for all j = 1, . . . , n − 1. For the last bundle, we get H0,n = (S

n+1E ⊗ E∗)0 ⊗ 3
nF ∗,

and the last BGG operator 0(H0,n−1)→ 0(H0,n) is of second order.
Finally, we need the bundle H1,1 which turns out to be the highest weight part in

32E⊗S2F ∗⊗sl(F ). This is contained in32T ∗M⊗L(TM, TM), so the BGG operator
0(H0,1)→ 0(H1,1) is a second order operator.

Theorem. Let M be a Grassmannian manifold of dimension 2n ≥ 6. Then the subcom-
plex

0→ 0(H0,0)→ 0(H0,1)→ · · · → 0(H0,n)→ 0

of the adjoint BGG sequence is a deformation complex in the subcategory of Grassman-
nian structures.

Proof. The first two operators in this sequence are just the first two operators in the full
adjoint BGG sequence, and from Theorem 3.5 and Lemma 3.6 we conclude that they
coincide with their counterparts constructed from ∇̃ rather than ∇. The statement on the
cohomology in degree zero then follows from Theorem 3.4.

By Theorem 3.6(2) and since regularity is automatic for |1|-gradings, the quotient
0(H0,1)/im(D0) is isomorphic to infinitesimal deformations of M in the category of al-
most Grassmannian structures modulo trivial infinitesimal deformations. On the other
hand, Theorem 3.6(3) implies that the kernel of 0(H0,1M) → 0(H0,2M) corresponds
exactly to those deformations for which the infinitesimal change of torsion is trivial, so
these are exactly the infinitesimal deformations in the category of Grassmannian struc-
tures. ut

Remark. (1) For almost Grassmannian structures, the right definition of an infinitesimal
deformation is not immediately evident. It is a nice feature of the approach via parabolic
geometries and the BGG machinery that it shows that infinitesimal deformations are
smooth sections of the bundle sl(E)⊗ sl(F ). This can be seen directly as follows.
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The only part of an almost Grassmannian structure that can be deformed non-trivially
is the isomorphism8 : E∗⊗F → TM . Infinitesimally, deformations of this isomorphism
are linear maps E∗⊗F → TM modulo those which are compatible with8. If we use8
to convert the target of such a map back to E∗ ⊗ F , these are exactly the endomorphisms
of E∗ ⊗ F modulo those which are of the form ϕ ⊗ idF + idE ⊗ψ .

(2) By Theorem 3.6, the splitting operator L̃ : 0(H0,1)→ �1(M,AM) computes the
infinitesimal deformation of the canonical Cartan connection caused by an infinitesimal
deformation of the underlying structure.

4.2. The case n = 2

In this case, dim(M) = 4 and an almost Grassmannian structure is equivalent to a confor-
mal spin structure with split signature (2, 2). Basically, this is due to the fact that SL(4,R)
is naturally a two-fold covering of SO(3, 3). Here the situation is more symmetric than
for general Grassmannian structures, and the two components of the harmonic curvature
are the self-dual and the anti-self-dual parts of the Weyl curvature. Theorem 3.6 directly
leads to a complex

0→ 0(H0,0)→ 0(H0,1)→ 0(H0,2)→ 0

inside the BGG sequence obtained from d∇̃ , and, for anti-self-dual structures, an inter-
pretation as a deformation complex in the category of anti-self-dual conformal structures.
This is exactly the split signature version of the complex discussed in 2.3. However, in this
case the second operator (which has order two) differs (tensorially) from its counterpart
in the standard adjoint BGG sequence.

4.3. Quaternionic structures

An almost quaternionic structure on a smooth manifold of dimension 4n is given by a
rank 3 subbundle Q ⊂ L(TM, TM) which is locally spanned by three almost complex
structures I , J , and K = IJ = −J I . However, these local almost complex structures
are an additional choice and not an ingredient of the structure. Equivalently, one can
view such a structure as a reduction to the structure group S(GL(1,H)GL(n,H)) ⊂
GL(4n,R) of the linear frame bundle. Passing to the two-fold covering S(GL(1,H) ×
GL(n,H)), one has an equivalent description as an identification of the complexified
tangent bundle TM ⊗ C with a tensor product E ⊗ F , where E has complex rank two
and F has complex rank 2n. Hence after complexification we are in the same situation as
for almost Grassmannian structures with F even-dimensional.

In particular, the BGG sequences have the same shape as in the almost Grassmannian
case, and the operators have the same orders. Moreover, after complexification the bundles
showing up in each BGG sequence are the same as in the almost Grassmannian case.
In particular, there are again two harmonic curvature components and for n > 1 (the
case n = 1 will be discussed below) one of them is a torsion and the other is a true
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curvature. Vanishing of the torsion is equivalent to torsion freeness in the sense of G-
structures and the corresponding geometries are referred to as quaternionic rather than
almost quaternionic. For quaternionic structures one obtains subcomplexes in all BGG
sequences which have the same form as in the Grassmannian case.

Theorem. LetM be a quaternionic manifold of dimension 4n ≥ 8. Then the subcomplex

0→ 0(H0,0)→ 0(H0,1)→ · · · → 0(H0,n)→ 0

of the adjoint BGG sequence is an elliptic complex, which can be naturally interpreted as
a deformation complex in the category of quaternionic structures.

Proof. The interpretation as a deformation complex works exactly as in the Grassmannian
case. Exactness of the symbol sequence is the special case k = ` = 1 of [14, Theorem
4.3]. ut

Describing the bundles which show up in the deformation complex is straightforward,
but we do not need this description here. Let us just note the description of the bundle
H0,1, whose sections are the infinitesimal deformations of an almost quaternionic struc-
ture. For Q ⊂ L(TM, TM) let LQ(TM, TM) ⊂ L(TM, TM) denote the subbundle
of those endomorphisms which commute with any element of Q. Then it turns out that
L(TM, TM) ∼= Q ⊕ LQ(TM, TM) ⊕ H0,1 and that H0,1 is isomorphic to the tensor
product of Q with the space of trace free elements of LQ(TM, TM).

In the special case n = 1, an almost quaternionic structure on a four manifold is
equivalent to a conformal Riemannian spin structure. As in 4.2, we obtain the deformation
complex discussed in 2.3 directly from Theorem 3.6. Again, the second operator in the
sequence differs from the one in the standard adjoint BGG sequence. Ellipticity can be
easily verified directly.

4.4. Lagrangean contact structures

A Lagrangean contact structure on a smooth manifoldM of dimension 2n+1 is given by
a codimension one subbundleH ⊂ TM , which defines a contact structure onM , together
with a decomposition H = E ⊕ F as a direct sum of two Lagrangean (or Legendrean)
subbundles. This means that the Lie bracket of two sections of E (respectively F ) is a
section of H . Since H defines a contact structure, this forces E and F to be of rank at
most (and hence exactly) n. We will assume n ≥ 2 throughout.

The form of the BGG sequences is described in [14, 3.6]. For k ≤ n, the bundle in
degree k of each BGG sequence splits as

⊕
p,q Hp,q with p + q = k and p, q ≥ 0. The

decomposition of the bundle in degree n+ k has the same form as for degree n− k + 1.
In particular, there are three components in the harmonic curvature. The components in
0(H2,0) and 0(H0,2) are torsions, which are exactly the obstructions to integrability of
the subbundlesE and F of TM . The component in 0(H1,1) is a true curvature. For torsion
free geometries, the bundles E and F are integrable, so M locally admits two transversal
fibrations onto manifolds of dimension n + 1 such that the two vertical bundles span
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a contact distribution on M and both are Legendrean. In the torsion free case, there are
many subcomplexes in each BGG sequence (see [14, 3.7]). In particular, the bundlesH0,q
for q = 0, . . . , n and Hp,0 for p = 0, . . . , n both form subcomplexes.

Specializing to the adjoint BGG sequence, we know from 3.4 that the first bundle
H0,0 is the quotient Q := TM/H of the tangent bundle by the contact subbundle. For
0 < j ≤ n one easily verifies that the bundle H0,j can be described as follows. Since E
and F are Legendrean, the contact structure defines isomorphisms F ∼= E∗ ⊗ Q. Thus
3jE∗ ⊗ F ∼= 3jE∗ ⊗ E∗ ⊗ Q, and H0,j ⊂ 3jE∗ ⊗ F corresponds to the kernel of
the alternation 3jE∗ ⊗ E∗ ⊗ Q → 3j+1E∗ ⊗ Q. In particular, the operator mapping
sections of H0,0 to sections of H0,1 must be of second order, while for 1 ≤ j < n the
operator 0(H0,j ) → 0(H0,j+1) is of first order. In the same way, the bundles Hj,0 for
1 ≤ j ≤ n can be described as subbundles in 3jF ∗ ⊗ E and one gets the analogous
results for the orders of the operators.

Theorem. Let (M,E, F ) be a torsion free Lagrangean contact structure. Then the sub-
complex

0→ 0(H0,0)→
0(H0,1)
⊕

0(H1,0)
→ · · · →

0(H0,n)
⊕

0(Hn,0)
→ 0

in the adjoint BGG sequence can be naturally viewed as a deformation complex in the
category of torsion free Lagrangean contact structures.

Proof. From Theorem 3.5 and Lemma 3.6 we see that the first two operators in this com-
plex coincide with their counterparts in the BGG sequence obtained from d∇̃ . Since the
bundles H2,0, H1,1, and H0,2 are all contained in positive homogeneity degrees, normal
infinitesimal deformations are automatically regular by Proposition 3.7. Now the inter-
pretation as a deformation complex works as for Grassmannian structures. ut

Note that the deformation complex cannot be elliptic or subelliptic, since Q is a real line
bundle, while all other bundles showing up in the subcomplex have even rank.

4.5. CR structures

This case is closely parallel to the case of Lagrangean contact structures. The geometries
in question are non-degenerate almost CR structures of hypersurface type, which satisfy
the partial integrability condition, a weakening of the usual integrability condition for
CR structures (see [10, 4.15]). Compared to the case of Lagrangean contact structures,
one only replaces the decomposition of the contact subbundle (which can be interpreted
as an almost product structure) by an almost complex structure J on the contact sub-
bundle H . The condition that the two subbundles are Legendrean corresponds to the par-
tial integrability condition for almost CR structures. The complexification H ⊗ C splits
as H 1,0

⊕ H 0,1 into holomorphic and anti-holomorphic part, so on this level the picture
is parallel to the Lagrangean contact case.
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In particular, complex BGG sequences have the same form as for Lagrangean contact
structures. However, BGG sequences corresponding to real representations without an in-
variant complex structure (like the adjoint representation) are different. They are obtained
by “folding” a complex BGG pattern (see [14, 3.8]). In particular, there are only two ir-
reducible components in the harmonic curvature. One of these components is a torsion
(corresponding to the two torsions for Lagrangean contact structures), while the other is
a curvature. The torsion is a multiple of the Nijenhuis tensor, so the torsion free geome-
tries are exactly the CR structures (see [10, 4.16]). For CR structures, one obtains many
subcomplexes in BGG sequences (see [14, Theorem 3.8]).

In the notation of [14, 3.8], there is a subcomplex in the adjoint BGG sequence which
starts at H0,0. It has the form

0→ 0(H0,0)→ 0(H1,0)→ · · · → 0(Hn,0)→ 0,

and apart from H0,0 = Q := TM/H , all the bundles Hj,0 in the sequence are com-
plex vector bundles. To identify them, one passes to the complexification and uses the
results from the Lagrangean contact case with E and F replaced by H 1,0 and H 0,1.
In particular, Hj,0 ⊗ C ⊂ LC(3j (H ⊗ C)∗, H ⊗ C) and the components are singled
out by their complex (anti-)linearity properties. For example, H0,1 ⊗ C is contained in
L(H 1,0, H 0,1) ⊕ L(H 0,1, H 1,0), which exactly means that H0,1 consists of conjugate
linear mapsH → H . A conjugate linear map ϕ lies inH0,1 if and only if the correspond-
ing bilinear map H × H → Q is symmetric. In particular, conjugate linear maps are
exactly infinitesimal deformations of the almost complex structure J (which is the only
deformable ingredient in the structure) and the symmetry condition takes care of partial
integrability. As before we deduce:

Theorem. Let (M,H, J ) be a non-degenerate CR structure of hypersurface type. Then
the subcomplex

0→ 0(H0,0)→ 0(H1,0)→ · · · → 0(Hn,0)→ 0

in the adjoint BGG sequence can be naturally interpreted as a deformation complex in
the category of CR structures.

Remark. This deformation complex has been found earlier (by ad hoc methods) and suc-
cessfully applied to the deformation theory of strictly pseudoconvex compact CR mani-
folds. The part starting from H1,0M is used in the work of T. Akahori in the case n ≥ 3
(see e.g. [1]). The full complex was constructed in [2] for n = 2. Since the first bundle
in the complex is a real line bundle while all others are complex vector bundles, there is
again no hope for the whole complex to be elliptic or subelliptic. Nonetheless, for some
of the operators in the complex one can prove subelliptic estimates (in the strictly pseu-
doconvex case), which play a crucial role in the applications to deformation theory.
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4.6. Quaternionic contact structures

These geometries are given by certain codimension three subbundles in the tangent
bundles of manifolds of dimension 4n+ 3. Recall first that for p + q = n, there is (up to
isomorphism) a unique quaternionic Hermitian form of signature (p, q) on Hn. The imag-
inary part of this form is a skew symmetric bilinear map Hn

× Hn
→ im(H). If we put

g1 := Hn and g2 := im(H), this imaginary part makes g1⊕g2 into a nilpotent graded Lie
algebra, called the quaternionic Heisenberg algebra of signature (p, q). Since the forms
of signature (p, q) and (q, p) differ only by sign, we may assume p ≥ q. Similarly, one
may look at the algebra of split quaternions, for which there is a unique Hermitian form
in each dimension. Correspondingly, one obtains a unique split quaternionic Heisenberg
algebra of dimension 4n+ 3 for each n ≥ 1.

Recall that ifH ⊂ TM is a subbundle in the tangent bundle of a smooth manifoldM ,
then the Lie bracket of vector fields induces a tensorial map L : H×H → TM/H =: Q.
For any x ∈ M we put gr1(TxM) = Hx and gr2(TxM) := Qx . Then we can view L
as defining on each of the spaces gr(TxM) = gr1(TxM) ⊕ gr2(TxM) the structure of
a nilpotent graded Lie algebra. A quaternionic contact structure of signature (p, q) on
a smooth manifold M of dimension 4(p + q) + 3 is a smooth subbundle H ⊂ TM of
corank 3 such that for each x ∈ M the nilpotent graded Lie algebra gr(TxM) is isomorphic
to the quaternionic Heisenberg algebra of signature (p, q). A split quaternionic contact
structure on a smooth manifold of dimension 4n + 3 is defined similarly using the split
quaternionic Heisenberg algebra.

For n = 1 we have dim(M) = 7 and there is only one possible signature. It turns out
that both the quaternionic and the split quaternionic Heisenberg algebra are rigid in this
case. Moreover, corank three distributions defining quaternionic and split quaternionic
contact structures are the two generic types of rank 4 distributions in dimension 7. In
particular, a generic real hypersurface in a two-dimensional (split) quaternionic vector
space carries a (split) quaternionic contact structure.

For n > 1, there are no generic distributions of rank 4n in manifolds of dimension
4n + 3, but it is known from the works of O. Biquard (see [3, 4]) that there are many
examples of quaternionic contact structures of signature (n, 0).

For all these structures, the BGG sequences have the same form (see [14, 3.9]). For
k = 0, . . . , 2n + 1 the bundle in degree k splits into a direct sum of bundles Hp,q with
p + q = k and p ≥ q, and the bundle in degree 2n+ 1+ k decomposes in the same way
as the one in degree 2n + 2 − k. In particular, in degree two we obtain two irreducible
components H2,0 and H1,1. The harmonic curvature component having values in the
bundleH2,0 of the adjoint BGG sequence is a torsion, while the one having values inH1,1
is a curvature. For n = 1, one obtains a subcategory of torsion free (split) quaternionic
contact structures. However, for n > 1, the bundleH2,0 is contained in homogeneity zero,
so vanishing of the corresponding harmonic curvature component is forced by regularity,
and any (split) quaternionic contact structure is automatically torsion free.

By [14, Theorem 3.10] there are a number of subcomplexes in each BGG sequence for
a manifold endowed with a torsion free (split) quaternionic contact structure. In particular,
the bundles Hp,0 with p = 0, . . . , 2n + 1 form a subcomplex. For the adjoint BGG
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sequence, one verifies directly that the operator 0(Hn,0) → 0(Hn+1,0) is of second
order, while all other operators in the subcomplex are of first order.

Theorem. LetM be a smooth manifold of dimension 4n+3 ≥ 11 endowed with a quater-
nionic contact structure or split quaternionic contact structure. Then the subcomplex

0→ 0(H0,0)→ 0(H1,0)→ · · · → 0(H2n+1,0)→ 0

of the adjoint BGG sequence can be naturally interpreted as a deformation complex in
the category of (split) quaternionic contact structures.

Proof. By Theorem 3.5 and Lemma 3.6 the first two operators in this sequence coincide
with their counterparts obtained from d∇̃ . Using Proposition 3.7 we conclude that the
kernel of the operator H1,0 → H2,0 exactly corresponds to regular normal deformations.
The interpretation as a deformation complex then works as before. ut

Remark. The situation in the seven-dimensional case is not completely clear. The prob-
lem here is that the operator H1,0 → H2,0 in the adjoint BGG sequence is of second
order. It seems that the two operators obtained from d∇ respectively from d∇̃ differ (ten-
sorially) from each other. Therefore, there is no direct way to relate the BGG sequence
based on d∇ (for which we can prove the existence of the relevant subcomplex) to the one
based on d∇̃ (for which we have the interpretation in terms of infinitesimal deformations).
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[9] Čap, A., Gover, A. R.: Standard tractors and the conformal ambient metric construction. Ann.
Global Anal. Geom. 24, 231–259 (2003) Zbl 1039.53021 MR 1996768
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