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Abstract. We provide L1 estimates for a transport equation which contains singular integral op-
erators. The form of the equation was motivated by the study of Kirchhoff–Sobolev parametrices
in a Lorentzian space-time satisfying the Einstein equations. While our main application is for a
specific problem in General Relativity we believe that the phenomenon which our result illustrates
is of a more general interest.

1. Introduction

The goal of this paper is to prove an L1-type estimate for solutions of the following
transport equation:

∂tu(t, x)− a(t, x)Mu(t, x) = g(t, x), u(0, x) = 0. (1)

Here a = a(t, x) and g = g(t, x) are assumed to be smooth, compactly supported
functions defined1 on [0, 1] × R2 and M is a classical, translation invariant, Calderón–
Zygmund operator in R2, given by a smooth2 multiplier. Though, for simplicity, we shall
proceed as if the equation (1) is scalar, all our results extend easily to systems, i.e. u and
g take values in RN and aM is an N ×N matrix-valued operator.

Ideally, the desired estimate would take the form

sup
t∈[0,1]

‖u(t)‖L1(R2) ≤ C(‖a‖L∞([0,1]×R2)) ‖g‖L1([0,1]×R2).

It is well known, however, that such L1-type estimates cannot possibly hold due to the
failure of L1 boundedness of Calderón–Zygmund operators. To illustrate this consider
first the case of a constant coefficient transport equation with a ≡ 1. In this case we may
write

u(t, x) =

∫ t

0
e(t−s)Mg(s) ds, (2)
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where

etM = I + tM +
1
2
(tM)2 + · · · +

1
n!
(tM)n + · · · .

The problem of L1 estimates for (1) is then reduced to the corresponding question for the
operators Mn. Each Mn is a Calderón–Zygmund operator and as such does not map L1

to L1. A well known way to resolve this problem is to consider instead mapping prop-
erties from the Hardy space3 H1 to L1. Since translation invariant Calderón–Zygmund
operatorsM mapH1 intoH1 (see [Ste2]) we easily infer that a solution u of the transport
equation

∂tu−Mu = g, u(0, x) = 0,

belongs to the space L∞([0, 1];H1). Indeed,

‖u(t)‖H1 ≤

∞∑
n=0

∫ t

0

(t − s)n

n!
‖Mng(s)‖H1 ds ≤

∞∑
n=0

∫ t

0

Cn(t − s)n

n!
‖g(s)‖H1 ds

≤ eCt
∫ t

0
‖g(s)‖H1 ds.

While this may be considered a satisfactory solution of the problem for the transport
equation (1) with constant coefficients, the situation changes drastically in the variable
coefficient case. Consider the transport equation

∂tu− a(x)Mu = g, u(0, x) = 0, (3)

with a time-independent coefficient a(x). As before we may write

u(t, x) =

∫ t

0
e(t−s)aMg(s) ds, (4)

where

etaM = I + taM +
1
2
(taM)2 + · · · +

1
n!
(taM)n + · · · .

The multiplication operator a and Calderón–Zygmund operator M do not commute4.
We need instead that the operator aM has the same mapping properties as M , i.e. it
maps H1 to itself, in which case we would easily conclude that solutions of the transport
equation (3) belong to the spaceL∞([0, 1];H1). To ensure this condition we are led to the
requirement that multiplication by the function a = a(x) maps Hardy space into itself. It

3 The classical Hardy space H1, defined by the norm ‖f ‖H1 = ‖f ‖L1(R2) +

supj=1,2 ‖Rjf ‖L1(R2), can be viewed as a logarithmic improvement of L1. Here Rj = (−1)1/2∂j
are the standard Riesz operators in R2.

4 If they did, we could write (aM)n as anMn and derive the estimate ‖u(t)‖L1(R2) ≤

C
∫ t

0

‖a‖n
L∞(R2)

(t−s)n

n! ‖Mng(s)‖L1(R2) ds ≤ e
Ct‖a‖

L∞(R2)
∫ t

0 ‖g(s)‖H1 ds.
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is well known however that multiplication by a bounded function does not preserve H1.
Instead, such a function a should satisfy the Dini condition∫

∞

0
sup
|x−y|≤λ

|a(x)− a(y)|
dλ

λ
<∞

(see [Steg]). Functions satisfying the Dini condition cannot be sharply characterized in
terms of the standard Lebesgue type spaces. Specifically, one can easily see that even if
a is a single atom in the Besov space B0

∞,1(R
2) or even in B1

2,1(R
2), both sharp Besov

refinements of the L∞(R2) space, this does not guarantee that the Dini condition is sat-
isfied. Yet, in view of the specific applications we have in mind, we need to consider
precisely the situation when a belongs to the space B1

2,1, and allow even more general
functions in the time-dependent case. As a consequence, to accomplish our goal we need
to give up on the Hardy space H1 and consider in fact estimates5 for solutions u of the
transport equation (3) of the form

sup
t∈[0,1]

‖u(t)‖L1(R2) ≤ C(‖a‖B1
2,1(R2))N(g), (5)

where the expression N(g) reflects a logarithmic loss6 relative to the L1 norm of g. The
proper definition of N(g) is given below in (14). In the particular case of g with compact
support, N(g) becomes simply ‖g‖L1(R2) log+ ‖g‖L∞(R2) + 1.

The key feature of estimate (5) is that only one logarithmic loss is present. This means
that we are not able to attack the problem by merely considering the mapping properties
of the operator aM . Indeed, the best we can prove is the estimate

sup
t∈[0,1]

‖aMg(t)‖L1(R2) ≤ C(‖a‖B1
2,1(R2))N(g),

which leads, by iteration, to a loss of (log+ ‖g‖L∞(R2))
n for (aM)n. Instead we analyze

directly the mapping properties of the multilinear expressions

(a(x)M)n = a(x)Ma(x)M . . . a(x)M (6)

and their sums. Using commutator estimates and appropriate interpolations between the
weak L1 and L2 mapping properties of the operators M we are able to show that in fact
we lose only one logarithm for ‖(aM)ng‖L1 , regardless of the exponent n. Note however
that under our assumptions on a(x) the commutator [a(x),M] is not a bounded operator7

on L1(R2) and thus the problem cannot be simply reduced to the weak-L1 estimate for

5 To prove such estimates we need the symbol m(ξ) of M to be smooth at the origin, i.e.,
|∂αm(ξ)| ≤ c(1+ |ξ)−|α| for all ξ ∈ R2.

6 Recall that according to the result of Stein [Ste1] the Hardy space H1 contains precisely such
logarithmic loss, as the finiteness of the local H1 norm of g, i.e. the norm ‖g‖L1 + ‖Rjg‖L1

computed over balls B, is equivalent to bounds on
∫
B |g(x)| log+ g(x) dx.

7 The classical result of Coifman–Rochberg–Weiss [CRW] requires only that a ∈ BMO for the
commutator to be bounded on Lp with p ∈ (1,∞). Extensions of this result from Lp to the Hardy
spaceH1 however impose once again a Dini type condition on a.
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the Calderón–Zygmund operatorMn. Instead, using the assumption that a ∈ B1
2,1 we first

reduce the problem to the case where in the multilinear expression (6) the function a is
replaced by its atoms

Mak1M . . . akn−1M

with ak = Pka and the Littlewood–Paley projection Pk associated with the dyadic band
of frequencies of size 2k . We then decompose

M = M≥k1 +M<k1 = P<k1M + P≥k1M

and observe that [M≥k1 , ak1 ] is a bounded operator on L1. It follows that

Mak1M . . . akn−1M = ak1M≥k1M . . . akn−1M + [M≥k1 , ak1 ]M . . . akn−1M

+M<k1ak1M . . . akn−1M.

We now proceed inductively. The first two terms can be reduced to the problem of L1

estimates for the multilinear expressions M2ak2 . . . akn−1M and M . . . akn−1M , each con-
taining only n−1 Calderón–Zygmund operators and n−2 atoms aki . The remaining term
M<k1ak1M . . . akn−1M can be written in the form

M<k1ak1Mak2 . . . akn−1M =
∑

l2,...,ln−1

M<k1ak1Mk1ak2Ml2 . . . akn−1Mln−1 .

The operator M<k1 is handled with the help of the weak-L1 estimate, which comes on
one hand with a logarithmic loss but on the other hand has a certain important redeem-
ing property in the choice of the constants, which are, in particular, dependent on the
multi-index l1, . . . , ln. The remaining argument consists in showing that the operator
Mk1ak2Ml2 . . . akn−1Mln−1 is bounded on L1 with the bound reflecting exponential gains
in the differences of either of the adjacent frequencies |lm − lm−1| or |km − km−1|.

The problem of L1 estimates for the transport equation (1) with variable time-depen-
dent coefficient a(t, x) exemplifies even more the need for such multilinear estimates. In
this case a solution u does not quite have an exponential map representation similar to (4).
Instead it can be written in the form

u(t) =

∫ t

0
T {e

∫ t
s a(τ)M dτ

}g(s) ds.

Here T is the Quantum Field Theory (QFT) notation for the time ordered product. Thus,
we have

u(t) =

∫ t

0

∞∑
n=0

1
n!
T

{∫ t

s

∫ t

s

. . .

∫ t

s

a(t1)Ma(t2)M . . . a(tn)M dt1 . . . dtn

}
g(s) ds

=

∫ t

0

∞∑
n=0

∫ t

0
a(t1)M dt1

∫ t1

0
a(t2)M dt2 . . . .

∫ tn−1

0
a(tn)M

∫ tn

0
g(s) ds. (7)

The time ordering T arranges variables t1, . . . , tn in the decreasing order t1 ≥ · · · ≥ tn.
Our method for deriving L1 estimates for solutions of the transport equation (1) involves



Singular transport equations 481

analyzing each of the multilinear expressions in the above expansion. As in the case
of the time-independent coefficient a we will be able to derive an L1 estimate with a
logarithmic loss under the assumption that a is a B1

2,1-valued function with an appropriate
(in fact L1) time dependence. The infinite series representation (7) will also help us to
uncover another phenomenon. In the case when the time-dependent coefficient a can be
written as a time derivative of a function b, i.e., a = ∂tb, the L1 estimate for solutions
of the transport equation (1) does not require Besov regularity of the coefficient a and
instead needs L2([0, 1];H 1) regularity of a together with L2([0, 1];H 2) regularity of b.
Our main result is the L1 estimate for solutions of the transport equation (1) with the
coefficient a = ∂tb + c with c ∈ L1([0, 1];B1

2,1) and b satisfying the above conditions.
To treat this general case we consider multilinear expressions appearing in (7) and

decompose each of the a(ti) into its Littlewood–Paley components to form a term

Jn,k(t) =

∫ t

0

∫ t1

0
. . .

∫ tn

0
ak1(t1)Mak2(t2)M . . . akn(tn)Mg(s) dt1 . . . dtn ds

with k = (k1, . . . , kn). For each k we will be able to show the desired estimate

sup
t∈[0,1]

‖Jn,k(t)‖L1(R2) ≤ CN(g).

The constant C above depends on the L1([0, 1];H 1) norms of aki and grows with n. As a
consequence we face two major summation problems: first with respect to a given multi-
index k followed by summation in n. Difficulties with summation over k are connected
with the fact that a no longer has Besov regularity B1

2,1. This lack of regularity is due to
the term ∂tb in the decomposition of a. We notice however that upon substitution into
Jn(t) the term ∂tbkj can be integrated by parts, which results in a gain of 1/2 derivative8

or, alternatively, a factor of 2−kj /2. The problem however is that this gain needs to be
spread across all remaining n − 1 terms in Jn(t), which leads us to choose kj to be the
highest frequency among all ki . If the highest frequency is occupied by a Besov term ckj
appearing in the decomposition of a, we select the second highest frequency and continue
the process, which in the end ensures summability with respect to k. This analysis may
potentially lead to violent growth of the constant C with respect to n and extreme care is
needed. We ensure that C decays exponentially in n by imposing smallness conditions on
the space-time norms of the coefficients b and c.

We now state our result precisely. Consider the transport equation

∂tu− a(t, x)Mu = g(t, x), u(0, x) = 0.

We assume that for the coefficient a,

‖a‖1 := ‖a‖L2
t H

1 =

(∫ 1

0
‖a(t)‖2

H 1(R2)
dt

)1/2

≤ 10. (8)

8 The fact that the gain is only 1/2 derivative rather than the whole derivative is due to the L2 in
time integrability assumption on b.
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In addition a can be decomposed as follows:

a = ∂tb + c, (9)

where

‖b‖2 :=
(∫ 1

0
‖b(t)‖2

H 2(R2)
dt +

∫ 1

0
‖∂tb(t)‖

2
H 1(Rd ) dt

)1/2

≤ 10, (10)

‖c‖3 :=
∫ 1

0
‖c(t)‖B1

2,1(R2) dt ≤ 10, (11)

with B1
2,1(R

2) the classical inhomogeneous Besov space defined by the norm

‖v‖B1
2,1(R2) = ‖P≤0v‖L2 +

∑
k∈Z+

2k‖Pkv‖L2(R2).

The operator M is the classical translation invariant Calderón–Zygmund operator on R2,
given by the symbol m(ξ) satisfying

|∂αm(ξ)| ≤ c(1+ |ξ)−|α|, ∀ξ ∈ R2. (12)

We prove the following theorem,

Theorem 1.1 (Main Theorem). Under the above assumptions, if10 is sufficiently small,
we have the estimate

sup
t∈[0,1]

‖u(t)‖L1(R2) . CN(g) (13)

where
N(g) = ‖g‖L1([0,1]×R2) log+{‖〈x〉3g‖L∞([0,1]×R2)} + 1. (14)

Remark 1.2. For a function g of compact support the expression N(g) can be controlled
as follows:

N(g) . ‖g‖L1([0,1]×R2) log+ ‖g‖L∞([0,1]×R2) + 1. (15)

Remark 1.3. Condition (12) implies that the symbol of the operator M is smooth at the
origin, which in principle eliminates a large class of Calderón–Zygmund operators from
our considerations. We argue however that this condition is not particularly restrictive and
can be replaced with assumptions of additional spatial decay on the coefficients a(t, x).
Moreover, in our application (see the paragraph below) we consider the corresponding
transport equation on a compact manifold (2-sphere) instead of R2, where the existence
of a spectral gap ensures that condition (12) holds. In that context a prototype for M is
the operator (−1)−1

∇
2. Moreover, in that case N(g) can be replaced by the L logL type

expression (15).

The above theorem is a vastly simplified model case for the type of result we need in
[Kl-Ro6] to prove a conditional regularity result for the Einstein vacuum equations. The
main assumption in [Kl-Ro6], concerning the pointwise boundedness of the deformation



Singular transport equations 483

tensor of the unit, future, normal vector field to a space-like foliation, allows us to bound
the flux of the space-time curvature through the boundaryN−(p) of the causal past of any
point p of the space-time under consideration. In [Kl-Ro1]–[Kl-Ro4] (see also [Q]), we
were able to show that the boundedness of the flux of curvature throughN−(p) suffices to
control the radius of injectivity ofN−(p). This result, together with the construction of a
first order parametrix in [Kl-Ro5], is used in [Kl-Ro6] to derive pointwise bounds for the
curvature tensor of the corresponding space-time. To control the main error term gener-
ated by the parametrix one needs however to bound the L1 norm of the first two tangential
derivatives of trχ along N−(p), with trχ the trace of the null second fundamental form
of N−(p). One can show that the second tangential derivative of trχ satisfies a trans-
port equation along the null geodesic generators of N−(p) which can be modeled, very
roughly, by (1), with g a term whose L1 norm along N−(p) is bounded by the flux of
curvature. In fact, a more realistic model would be to consider a transport, similar to (1),
along the null geodesics of a past null cone N−(p) in Minkowski space R3+1 with t the
value of the standard afine parameter along null geodesics and x = (x1, x2) denoting the
standard sperical coordinates on the 2-spheres St , corresponding to constant value of t
along N−(p). Thus the singular integral operator M would act on St .

Finally, we believe that our result, or rather our proof of the result, can be applied
to other situations where one needs to make L1 or L∞ estimates for singular transport
equations, where a simple logarithmic loss is unavoidable.

2. Preliminary results

We recall briefly the classical Littlewood–Paley decomposition of functions defined
on Rd ,

f = f0 +
∑
k∈Z+

fk

with frequency localized components fk , i.e. f̂k(ξ) = 0 for all values of ξ outside
the annulus 2k−1

≤ |ξ | ≤ 2k+1 and a function f0 with frequency localized in the
ball |ξ | ≤ 1. Such a decomposition can be easily achieved by choosing a test function
χ = χ(|ξ |) in Fourier space, supported in 1/2 ≤ |ξ | ≤ 2, and such that, for all ξ 6= 0,∑
k∈Z χ(2

−kξ) = 1. Then for k > 0 set f̂k(ξ) = χ(2kξ)f̂ (ξ) or, in physical space,

Pkf = fk = pk ∗ f,

where pk(x) = 2nkp(2kx) and p(x) is the inverse Fourier transform of χ , while

f̂0(ξ) =
(

1−
∑
k∈Z+

χ(2−kξ)
)
f̂ (ξ)

and f0 = P0f . The operators Pk are called cut-off operators or, somewhat improperly,
Littlewood–Paley projections.

Let M be a Calderón–Zygmund operator with multiplier m, i.e.,

M̂f (ξ) = m(ξ)f̂ (ξ), (16)
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Here m is a smooth function satisfying

|∂αξ m(ξ)| ≤ c(1+ |ξ |)
−|α|, ∀ξ ∈ Rd , (17)

for all multi-indices α with |α| ≤ d + 6 and a fixed constant c > 0. According to the
Mikhlin–Hörmander theorem we have

|m(x)| ≤ c|x|−d , |∂xm(x)| ≤ c|x|
−d−1. (18)

Due to the smoothness of the symbol of M at the origin we can also add the estimate

|m(x)| ≤ c(1+ |x|)−d−6. (19)

We shall make use of the standard Calderón–Zygmund estimates in Lp, 1 < p <∞,

‖Mf ‖Lp ≤ Cp‖f ‖Lp

as well as the weak-L1 estimate

|{x : |Mf (x)| > λ} ≤ Cλ−1
‖f ‖L1 .

Our first result is a global version of the standard local L1 estimate for a multiplier M .
The local estimate in a ball BR does not require the condition (19) and takes the form

‖Mf ‖L1(BR)
≤ CR(‖f ‖L1 log+ ‖f ‖L∞ + 1).

We have the following

Lemma 2.1. Let M be a multiplier satisfying (19). Fix an L1(Rd) positive function β
and a constant µ > 0. Then for any smooth function f of compact support,

‖Mf ‖L1 ≤ CNµ,β(f ),

where

Nµ,β(f ) = µ‖β‖L1 + ‖f ‖L1 log+
{

sup
a∈Zd

∑
|b−a|≤3 ‖χbf ‖L∞

µ‖χaβ‖L1

}
,

χa is a partition of unity adapted to the balls of radius one with centers at integer lattice
points a, and log+ x = log(2+ |x|).

Proof. We first note that the problem can be reduced to the case when the kernel of M ,
given by the function m(x), has compact support. This follows since

Mf (x) = M0f (x)+M1f (x), M1f (x) =

∫
χ(x − y)m(x − y)f (y) dy,

where χ is a smooth cut-off function vanishing on the ball of radius one. Assumption (19)
guarantees that χ(x)m(x) is integrable. As a consequence,

‖M1f ‖L1 ≤ C‖f ‖L1 .
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To deal with M0 we proceed in the usual fashion by writing

‖M0f ‖L1 =

∫
∞

0
|{x : |M0f (x)| > λ}| dλ

≤

∫
∞

0
|{x : |M0f<λ(x)| > λ}| dλ+

∫
∞

0
|{x : |M0f≥λ(x)| > λ}| dλ,

where f<λ(x) is the function coinciding with f (x) on the set where |f (x)| < λ and
vanishing on its complement, and f≥λ = f − f<λ. To estimate the term with f<λ we use
the weak-L2 estimate∫
∞

0
|{x : |M0f<λ(x)| > λ}| dλ ≤ C

∫
∞

0

‖f<λ‖
2
L2

λ2 dλ = C

∫ ∫
∞

|f (x)|

λ−2
|f (x)|2 dλ dx

= C

∫
|f (x)| dx

To estimate the term with f≥λ we decompose f≥λ into the sum of functions f a
≥λ = χaf≥λ,

f≥λ =
∑
a∈Zd

χaf≥λ,

where χa is a partition of unity, parametrized by integer lattice points in Rd with the
property that the support of χa is contained in the ball of radius two around the point
a ∈ Rd . Since the kernel ofM0 is supported in a ball of radius one, the support ofM0f

a
≥λ

is contained in the ball of radius three around k. As a consequence, there are at most 3dC
functions M0f

a
≥λ containing any given point x in their support. Therefore,

|{x : |M0f≥λ(x)| > λ}| ≤
∑
a∈Zd
|{x : |M0f

a
≥λ(x)| > λ(3dC)−1

}|.

We also have the trivial estimate, with another constant still denoted C,

|{x : |M0f
a
≥λ(x)| > λ(3dC)−1

}| ≤ 3dC.

Thus, using a weak-L1 estimate we obtain

Ja :=
∫
∞

0
|{x : |M0f

a
≥λ(x)| > λ(3dC)−1

}| dλ

≤

∫ λ0

0
3dC + 3dC

∫ ∫
∞

λ0

λ−1
‖χαf≥λ‖L1 dλ

≤ 3dCλ0 + 3dC
∫
∞

λ0

∫
|f (x)|≥λ

λ−1
|χaf (x)| dx dλ

≤ 3dCλ0 + 3dC
∫
χa(x)|f (x)|

∣∣∣∣log
|f (x)|

λ0

∣∣∣∣ dx
. 3dCλ0 + 3dC

∫
|f (x)|≥λ0

χa(x)|f (x)| log
|f (x)|

λ0
dx

. 3dCλ0 + 3dC
∫
χa(x)|f (x)| log+

|f (x)|

λ0
dx



486 Sergiu Klainerman, Igor Rodnianski

for some λ0 > 0. We now choose λ0 = µ
∫
χa(x)β(x) dx. The above estimate then

becomes

Ja ≤ 3dC
(
µ‖χaβ‖L1 +

∫
χa(x)|f (x)| log+

|f (x)|

µ‖χaβ‖L1
dx

)
. 3dC

(
µ‖χaβ‖L1 +

∫
|f (x)|χa(x)|log+

∑
b∈Zd

χb(x)|f (x)|

µ‖χaβ‖L1
dx

)
. 3dC

(
µ‖χaβ‖L1 +

∫
|f (x)|χa(x) log+

∑
|b−a|≤3

χb(x)|f (x)|

µ‖χaβ‖L1
dx

)

. 3dC
(
µ‖χaβ‖L1 + ‖f χa‖L1 log+ sup

a∈Zd

∑
|b−a|≤3

‖χbf ‖L∞

µ‖χaβ‖L1

)
Now,

‖M0f ‖L1 .
∫
∞

0
|{x : |M0f<λ(x)| > λ}| dλ+

∫
∞

0
|{x : |M0f≥λ(x)| > λ}| dλ

. C‖f ‖L1 +

∑
a∈Zd

Ja

. C‖f ‖L1 + 3dC
(
µ‖β‖L1 + ‖f ‖L1 log+ sup

a∈Zd

∑
|b−a|≤3

‖χbf ‖L∞

µ‖χaβ‖L1

)
as desired. ut

We also need to consider powers of Mn of M with multipliers m(n)(ξ) = m(ξ)n. Clearly,
there exists a constant C > 0 depending only on c and d such that

|m(n)(x)| ≤ Cn|x|−d , |∂xm
(n)(x)| ≤ Cn|x|−d−1, |m(n)(x)| ≤ Cn(1+ |x|)−d−6. (20)

Thus, for a similar C > 0,

‖Mnf ‖L1 ≤ C
nNµ,β(f ). (21)

Letmk(ξ) = χ(2kξ)m(ξ) and denote byMk the operator defined by the multipliermk .
Clearly Mkf = Pk(Mf ). We shall also denote by MJ the operator PJM with multiplier
mJ =

∑
k∈J mk for any interval J ⊂ Z. In physical space,

Mkf (x) =

∫
Rd
mk(x − y)f (y) dy, M≥kf =

∫
Rd
m≥k(x − y)f (y) dy.

We have the following:

Lemma 2.2. Let k ∈ Z+ ∪ {0} and assume that ak is a function whose frequency is
supported in the band 2k−1

≤ |ξ | ≤ 2k+1, or in the case k = 0 in the ball |ξ | ≤ 1. Then
there exists a constant C > 0 such that for all n ∈ N,

‖[(Mn)≥k, ak]f ‖L1 ≤ C
n
‖ak‖L∞‖f ‖L1 .
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Proof. We have

C(ak)f := (Mn)≥k(akf )(x)− ak(x)(M
n)≥kf (x)

=

∫
(m(n))≥k(x − y)(ak(y)− ak(x))f (y) dy.

To show that the integral operator C(ak) maps L1 into L1 it suffices to show that

I = sup
y
I (y),

I (y) =

∫
|(m(n))≥k(x − y)| |ak(y)− ak(x)| dx ≤ C

n
‖αk‖L∞ .

We write

I (y) ≤ I1(y)+ I2(y),

I1(y) =

∫
|x−y|≥2−k

|(m(n))≥k(x − y)| |ak(y)− ak(x)| dx,

I2(y) =

∫
|x−y|≤2−k

|(m(n))≥k(x − y)| |ak(y)− ak(x)| dx.

We have

|ak(y)− ak(x)| ≤ |x − y| sup
z∈[x,y]

|∂ak(z)| . 2k|x − y| ‖ak‖L∞ .

We also have

|(m(n))≥k(x)| ≤ C
n
|x|−d .

Thus,

I2(y) ≤ C
n
‖ak‖L∞

∫
|x−y|≤2−k

|x − y|−d2k|x − y| dx . Cn‖ak‖L∞ .

Also, since |(m(n))≥k(x)| ≤ Cn2−k|x|−d−1, we have

I1(y) ≤ C
n
‖ak‖L∞

∫
|x−y|≥2−k

2−k|x − y|−d−1 dx . Cn‖ak‖L∞

as desired. ut

We shall now prove the following,

Proposition 2.3. Let M be a Calderón–Zygmund operator on R2 with the symbol satis-
fying (17) and a = a(x) a smooth function satisfying the bound

‖a‖B1
2,1(R2) ≤ A. (22)

Then for every positive integer n we have

‖(aM)nf ‖L1 ≤ C
nAnN(f ) (23)

with N(f ) defined by (14).
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Remark 2.4. Observe that the proposition remains valid if we replace (aM)n by
a(1)M(1)a(2)M(2) . . . a(n)M(n) with

‖a(i)‖B1
2,1(R2) ≤ A, i = 1, . . . , n,

and M1, . . . ,Mn translation invariant Calderón–Zygmund operators with symbols which
are uniformly bounded by the same constant c (see (17)).

The proof follows immediately from the following lemma.

Lemma 2.5. Let (k1, . . . , kn) be an n-tuple of nonnegative integers and assume that the
functions aki with 0 ≤ i ≤ n have frequencies supported in the dyadic shells [2ki−1 , 2ki+1 ],
or in the case ki = 0 in the ball |ξ | ≤ 1. Then for some positive constant B,

‖Mak1M . . . aknMf ‖L1 . BnAk1...knN(f ) (24)

where

Ak1...kn = ‖ak1‖H 1 . . . ‖akn‖H 1 . (25)

Proof. We prove by induction on n the following stronger version of (24):

‖M lak1M . . . aknMf ‖L1 . Bn+l1 Bn2Ak1...knN(f ) (26)

with appropriately chosen constants B1, B2. Assume that the estimate has been proved
for n− 1 and any l ∈ N. Splitting M̄ := M l

= M̄<k1 + M̄≥k1 we need to prove

‖M̄≥k1(ak1Mak2 . . . aknM)f ‖L1 . Bn+l1 Bn2Ak1...knN(f ), (27)

‖M̄<k1(ak1Mak2 . . . aknM)f ‖L1 . Bn+l1 Bn2Ak1...knN(f ). (28)

To deal with the first inequality we write

M̄≥k1ak1Mak2 . . . aknM = ak1M̄≥k1Mak2 . . . aknM

+ [M̄≥k1 , ak1 ]Mak2 . . . aknM.

According to Lemma 2.2 and the Bernstein inequality ‖ak‖L∞ . ‖ak‖H 1 , we have

‖[M̄≥k1 , ak1 ]Mak2 . . . aknMf ‖L1 . Cl‖ak1‖H 1‖Mak2 . . . aknMf ‖L1 .

Also,

‖ak1M̄≥k1Mak2 . . . aknMf ‖L1 . ‖ak1‖L∞‖M
l+1ak2 . . . aknMf ‖L1 . (29)

Thus, taking into account our induction hypothesis,

‖M≥k1(ak1Mak2 . . . aknM)f ‖L1 . Cl‖ak1‖H 1‖Mak2M . . . aknMf ‖L1

+‖ak1‖H 1‖M
l+1ak2 . . . aknMf ‖L1

. (ClBn1B
n−1
2 + Bn+l1 Bn−1

2 )Ak1...knN(f )

. Bn+l1 Bn2Ak1...knN(f )



Singular transport equations 489

as desired, provided that the constants B1, B2 are sufficiently large; in fact, we need
B1 ≥ C and B2 ≥ 1.

We now consider the more difficult term

M̄<k1(ak1Mak2 . . . aknM)f = M̄<k1(ak1M(g)) = M̄<k1(ak1Mk1(g))

with g = (ak2Mak3 . . . aknM)f . Note that if k1 = 0 the operator M̄<k1 is a multiplier
with a smooth symbol of compact support. As a consequence it is bounded on L1 and,
with a0 = ak1 ,

‖M̄<0(a0Mak2 . . . aknM)f ‖L1 ≤ C
l
‖ak1‖H 1‖Mak2 . . . aknMf ‖L1

. ClBn1B
n−1
2 Ak1...knN(f ).

Therefore to prove (28) we need to consider the case k1 > 0 and estimate

‖M̄<k1(ak1Mak2 . . . aknMf )‖L1 .

We further decompose as follows:

M̄<k1(ak1Mak2 . . . aknMf ) =
∑
[l]n

M̄<k1M[k]n,[l]n(f ), (30)

M[k]n,[l]n(f ) = ak1Ml1ak2 . . .Mln−1aknMlnf

with [l]n denoting an arbitrary integer n-tuple (l1, . . . , ln) ∈ (Z+ ∪ {0})n and [k]n =
(k1, . . . , kn). Whenever there is no possibility of confusion we shall drop the index n and
write simply [k], [l]. By the triangle inequality,

‖M̄<k1(ak1Mak2 . . . aknMf )‖L1 ≤

∑
[l]n

‖M̄<k1M[k]n,[l]n(f )‖L1 .

We note that in the expression M̄<k1ak1Ml1(ak2 . . . aknMlnf ) the frequency l1 is forced to
be of the order of k1. This allows us to insert a factor of 2−|k1−l1| in the above expression.
Using (21) we then derive

‖M̄<k1M[k],[l](f )‖L1 . 2−|k1−l1|B l1B2Nµ([l]),β(M[k],[l](f )). (31)

Here, the notation µ([l]) indicates that the scalar µ will be chosen dependent on the
multi-index [l] = [l]n. Recall that9

Nµ,β(g) = µ‖β‖L1 + ‖g‖L1 log+
{

sup
a∈Zd

‖χag‖L∞

µ‖χaβ‖L1

}
.

9 For simplicity of notation we drop the summation
∑
|b−a|≤3 which will only add a finite num-

ber of terms of the same type.
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We now make the following choice for the scalar µ, to be justified in the lemmas below:

µ([l]) = Ak1...kn2−α([l]n), α([l]) =
1
2

n∑
m=2

min(|lm − lm−1|, |lm − km|).

We also choose the function

β = (1+ |x|)−3.

Observe that (
〈b〉
〈a〉

)−3

‖χbβ‖L1 ≤ ‖χaβ‖L1 ≤

(
〈b〉
〈a〉

)3

‖χbβ‖L1 . (32)

We will make use of the following:

Lemma 2.6. The expression

M[k],[l](f ) = ak1Ml1ak2 . . . aknMlnf

satisfies

‖M[k],[l](f )‖L1 . Cn2−2α([l]n)Ak1...kn‖f ‖L1 , (33)

‖χaM[k],[l](f )‖L∞ . CnAk1...kn

∑
b∈Z2

〈|b− a|〉−3
‖χbf ‖L∞ . (34)

We postpone the proof of the lemma to the end of this section.
Now, by (31),

‖M̄<k1(ak1Mak2 . . . aknMf )‖L1 ≤

∑
[l]n

‖M̄<k1M[k],[l](f )‖L1

.
∑
[l]

2−|k1−l1|

(
µ([l])‖β‖L1 + ‖M[k],[l](f )‖L1 log+

{
sup

a∈Zd

‖χaM[k],[l](f )‖L∞

µ([l])‖χaβ‖L1

})
.

Given our choice of µ([l]) we have∑
[l]

2−|k1−l1|µ([l]) = Ak1...kn

∑
[l]

2−|k1−l1|2−α([l])

= Ak1...kn

∑
[l]
(2−|k1−l1| · 2−

1
2 min(|l2−l1|,|l2−k2|) · . . . · 2−

1
2 min(|ln−ln−1|,|ln−kn|)). . Ak1...kn .

Thus, to end the proof of (28) it suffices to show that∑
[l]

2−|k1−l1|‖M[k],[l](f )‖L1 log+
{

sup
a∈Zd

‖χaM[k],[l](f )‖L∞

µ([l])‖χaβ‖L1

}
. CnAk1...knN(f ). (35)
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Using (33) and (34) and recalling the definition of µ([l]) and β(x), we obtain

∑
[l]

2−|k1−l1|‖M[k],[l](f )‖L1 log+
{

sup
a∈Zd

‖χaM[k],[l](f )‖L∞

µ([l])‖χaβ‖L1

}
. CnAk1...kn

∑
[l]

2−|k1−l1|2−2α([l])
‖f ‖L1

× log+
{
Cn−1 sup

a∈Zd

∑
b 6=a
〈|b− a|〉−3 2α([l])‖χbf ‖L∞

‖χaβ‖L1

}

. C2nAk1...kn

∑
[l]

2−|k1−l1|2−α([l])‖f ‖L1 log+
{

sup
a∈Zd

‖χaf ‖L∞

‖χaβ‖L1

}
. C2nAk1...kn‖f ‖L1 log+{ sup

a∈Zd
〈|a|〉3‖χaf ‖L∞}

. C2nAk1...knN(f ),

as desired. Here we have used

(1+ |a|)3 . (1+ |b− a|)3(1+ |b|)3

and the finiteness of the sum∑
[l]

2−|k1−l1|2−α([l])

=

∑
[l]
(2−|k1−l1|2−

1
2 min(|l2−l1|,|l2−k2|) · . . . · 2−

1
2 min(|ln−ln−1|,|ln−kn|)).

It remains to prove Lemma 2.6. Estimate (33) follows recursively provided that we
can establish the following:

‖Mlm−1akmPlmh‖L1 . ‖akm‖H 12−min(|lm−lm−1|,|lm−km|)‖h‖L1 . (36)

In fact, since Mlm−1 is bounded in L1, it suffices to prove

‖Plm−1akmPlmh‖L1 . ‖akm‖H 12−min(|lm−lm−1|,|lm−km|)‖h‖L1 . (37)

On the other hand, estimate (34) is a localized version of the trivial estimate

‖ak1Ml1ak2 . . . aknMlnf ‖L∞ . CnAk1...kn‖f ‖L∞ ,

which holds since each of the frequency localized Calderón–Zygmund operators Ml is
bounded on Lp, including p = 1,∞. Its localized version follows inductively from the
estimate

‖χaMlχbg‖L∞ ≤ C(1+ |b− a|)−3
‖g‖L∞ , l ≥ 0, (38)
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which holds true on account of the sharp localization of the kernel of Ml , in physical
space, due to the smoothness of the symbol of M at zero. Indeed, the kernel m(x − y) of
the operator χaMlχb satisfies

|m(x − y)| ≤ Cχa(x)(1+ |x − y|)−6χb(y) ≤ C(1+ |b− a|)−3m1(x − y)

with m1(x − y) = (1+ |x − y|)−3 in L1.
To prove (37) we distinguish the following cases.

(1) Assume lm−1 < km. Observe that Plm−1(akmPlmh) = 0 unless |lm − km| ≤ 2. There-
fore, since

min(|lm − lm−1|, |lm − km|) ≈ 1

we have

‖Plm−1(akmPkmh)‖L1 . ‖akm‖H 1‖h‖L1 . 2−min(|lm−lm−1|,|lm−km|)‖akm‖H 1‖h‖L1

as desired.
(2) Assume lm−1 > km. In this case Plm−1(akmPlmh) = 0 unless |lm−1 − lm| ≤ 2. There-

fore we have again min(|lm − lm−1|, |lm − km|) ≈ 1 and

‖Plm−1(akmPlm−1h)‖L1 . ‖akm‖H 1‖h‖L1 . 2−min(|lm−lm−1|,|lm−km|)‖akm‖H 1‖h‖L1 .

(3) If lm−1 = km, then Plm−1(akmPlmh) = 0 unless lm ≤ km. Then, using the Bernstein
inequality ‖Plmh‖L2 . 2lm‖h‖L2 we derive

‖Plm−1(akmPlmh)‖L1 . ‖(akmPlmh)‖L1 . ‖akm‖L2‖Plmh)‖L2

. 2−km‖akm‖H 1‖Plmh‖L2 . 2−km+lm‖ak‖H 1‖h‖L1 .

Since in this case lm ≤ km = lm−1, we have

min(|lm − lm−1|, |lm − km|) = km − lm.

Therefore,

‖Plm−1(akmPlmh)‖L1 . 2−min(|lm−lm−1|,|lm−km|)‖akm‖H 1‖h‖L1

as desired.

Thus in all cases inequality (37) is verified. ut

3. Proof of the main theorem

We need to prove the estimate

sup
t∈[0,1]

‖u(t)‖L1(Rd ) . CN(g)

where d = 2 and

N(g) = ‖g‖L1([0,1]×R2) log+{ sup
a∈Z2
|a|2‖χag‖L∞([0,1]×R2)} + 1
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for a solution u to (1), i.e.

∂tu− a(t, x)Mu = g, u(0, x) = 0,

where the coefficient a admits the decomposition

a = ∂tb + c (39)

with a, b and c satisfying the conditions (8), (10) and (11).
We also define the following auxiliary norm:

N(g)(t) = ‖g(t)‖L1(R2) log+{ sup
a∈Z2
|a|2‖χag(t)‖L∞(R2)} + 1.

We define the iterates u0
= 0, u1, . . . , un, un+1 according to the recursive formula

∂tu
(n+1)(t, x) = a(t0, x)Mu

(n)(t, x)+ g(t, x), u(n+1)(0) = 0. (40)

3.1. First iterates

To illustrate our method consider first the case of the iterate

u(2)(t0) =

∫ t0

0
g(t1) dt1 +

∫ t0

0
a(t1) dt1M

∫ t1

0
g(t2) dt2.

Thus,

‖ sup
t0∈[0,1]

u(2)(t0)‖L1(Rd ) .

∥∥∥∥ sup
t0∈[0,1]

∫ t0

0
g(t1) dt1

∥∥∥∥
L1
+ ‖ sup

t0∈[0,1]
I (t0)‖L1 ,

I (t0) =

∫ t0

0
a(t1) dt1M

∫ t1

0
g(t2) dt2.

The first term is trivial. To estimate the second term we need to make use of the decom-
position (39). Thus,

I (t0) = Ib(t0)+ Ic(t0),

Ic(t0) =

∫ t0

0
c(t1) dt1

∫ t1

0
Mg(t2) dt2,

Ib(t0) =

∫ t0

0
∂t1b(t1) dt1

∫ t1

0
Mg(t2) dt2

= b(t0)

∫ t0

0
Mg(t2) dt2 −

∫ t0

0
b(t1)Mg(t1) dt1 =: Ib,1(t0)+ Ib,2(t0).

To estimate Ic we use the fact that, for d = 2, the Besov space B1
2,1(R

d) embeds in
L∞(Rd), and the estimate

‖Mg(t)‖L1(Rd ) . ‖g(t)‖L1(Rd ) log+ ‖g(t)‖L∞(Rd ) + 1 . N(g)(t).
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Thus,

‖ sup
t0∈[0,1]

Ic(t0)‖L1 .
∫ 1

0
‖c(t1)‖L∞ dt1

∫ t1

0
‖Mg(t2)‖L1(Rd ) dt2

.
∫ 1

0
‖c(t1)‖B1

2,1(Rd )
dt1

∫ t1

0
N(g)(t2) dt2 . ‖c‖3N(g).

On the other hand, decomposing b = b0 +
∑
k∈Z+ bk , we obtain

‖ sup
t0∈[0,1]

Ib,1(t0)‖L1(Rd ) . ‖ sup
t0∈[0,1]

b(t0)‖L∞(Rd )

∫ t0

0
‖Mg(t2)‖L1(Rd ) dt2

. N(g)‖ sup
t0∈[0,1]

b(t0)‖L∞(Rd )

. N(g)
∑

k∈Z+∪{0}
‖ sup
t0∈[0,1]

bk(t0)‖L∞(Rd ).

We now appeal to the following straightforward lemma:

Lemma 3.2. The following calculus inequality holds true (see (10)) for k ≥ 0:

sup
t∈[0,1]

‖bk(t)‖H 1(Rd ) . ‖∂tbk‖
1/2
L2
t H

1‖bk‖
1/2
L2
t H

1 . 2−k/2‖bk‖2.

Also,

‖ sup
t∈[0,1]

bk(t)‖L∞(Rd ) . ‖∂tbk‖
1/2
L2
t H

1‖bk‖
1/2
L2
t H

1 . 2−k/2‖bk‖2.

In view of the lemma we deduce

‖ sup
t0∈[0,1]

Ib,1(t0)‖L1(Rd ) . N(g)
∑

k∈Z+∪{0}
‖bk‖L2

t H
1

. N(g)
∑

k∈Z+∪{0}
2−k/2‖bk‖2 . N(g)‖b‖2.

Similarly,

‖ sup
t0∈[0,1]

Ib,2(t0)‖L1(Rd ) .

∥∥∥∥∫ 1

0
b(t1)Mg(t1) dt1

∥∥∥∥
L1(Rd )

. N(g) sup
t1∈[0,1]

‖b(t1)‖L∞ . N(g)‖b‖2.

Therefore,

‖ sup
t0∈[0,1]

u(2)(t0)‖L1(Rd ) . N(g)(‖b‖2 + ‖c‖3).

Remark 3.3. Observe that there is room of a 1/2 derivative in the estimates for Ib. This
room will play an important role for treating the general iterates u(n+1).
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Consider now the more difficult case of the iterate u(3):

u(3)(t0) =

∫ t0

0
g(t1) dt1 +

∫ t0

0
a(t1)Mu

(2)(t1) dt1

=

∫ t0

0
g(t1) dt1 +

∫ t0

0
a(t1) dt1M

(∫ t1

0
g(t2) dt2

)
+

∫ t0

0

∫ t1

0

∫ t2

0
a(t1)Ma(t2)Mg(t3) dt1 dt2 dt3.

We concentrate our attention on the last term,

I (t0) =

∫ t0

0

∫ t1

0

∫ t2

0
a(t1)Ma(t2)Mg(t3) dt1 dt2 dt3.

As we decompose each a(ti) = ∂tb(ti) + c(ti) with i = 1, 2 we notice that we can
integrate by parts only one of the potentially two terms containing ∂tb(ti). We need to
make that choice judiciously, based on the relative strength of the terms. We begin by
decomposing a(t1), a(t2) into their Littlewood–Paley pieces and write

I (t0) =

∫ t0

0

∫ t1

0

∫ t2

0

∑
k1,k2∈Z+∪{0}

ak1(t1)Mak2(t2)Mg(t3) dt1 dt2 dt3

=

∫ t0

0

∫ t1

0

∫ t2

0

∑
0≤k1<k2

+

∫ t0

0

∫ t1

0

∫ t2

0

∑
0≤k1=k2

+

∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2≥0

.

In what follows we will tacitly assume that all the integer indices ki take values in the
set of nonnegative integers and will not write this constraint explicitly. Consider the last
term,

J (t0) =

∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

ak1(t1)Mak2(t2)Mg(t3) dt1 dt2 dt3.

We further decompose

ak1(t1) = ∂tbk1(t1)+ ck1(t1)

and concentrate on the term

Jb(t0) =

∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

∂t1bk1(t1)Mak2(t2)Mg(t3) dt1 dt2 dt3

=

∑
k1>k2

bk1(t0)

∫ t0

0

∫ t2

0
Mak2(t2)Mg(t3) dt2 dt3

−

∑
k1>k2

∫ t0

0

∫ t1

0
bk1(t1)Mak2(t1)Mg(t3) dt1 dt3.
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Let

Jb1(t0) =
∑
k1>k2

bk1(t0)

∫ t0

0

∫ t2

0
Mak2(t2)Mg(t3) dt2 dt3

and estimate

‖Jb1(t0)‖L1 .
∑
k1>k2

‖bk1(t0)‖L∞

∫ t0

0

∫ t2

0
‖Mak2(t2)Mg(t3)‖L1 dt2 dt3.

Using Lemma 2.6, we have

‖Mak2(t2)Mg(t3)‖L1 . ‖ak2(t2)‖H 1N(g)(t3).

Also, according to Lemma 3.2, using the norm ‖ ‖2 introduced in (10), we obtain

‖bk1(t0)‖L∞ . 2−k1/2‖bk1‖2.

Hence,

‖Jb1(t0)‖L1 .
∑

k1>k2≥0

2−k1/2‖bk1‖2

∫ t0

0
‖ak2(t2)‖H 1 dt2

∫ t2

0
N(g)(t3) dt3

. N(g)
∑

k1>k2≥0

2−k1/2‖bk1‖2‖ak2‖1 . N(g)‖b‖2‖a‖1.

The term Jb2(t0) =
∑
k1>k2

∫ t0
0

∫ t1
0 bk1(t1)Mak2(t1)Mg(t3) dt1 dt3 can be treated in ex-

actly the same fashion. Thus,

‖Jb(t0)‖L1 . N(g)‖b‖2‖a‖1. (41)

Consider now the term

Jc(t0) =

∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

ck1(t1)Mak2(t2)Mg(t3) dt1 dt2 dt3.

We further decompose

ak2(t2) = ∂tbk2(t2)+ ck2(t2).

We show how to treat the term

Jcb(t0) =

∫ t0

0

∫ t1

0

∫ t2

0

∑
k1>k2

ck1(t1)M∂tbk2(t2)Mg(t3) dt1 dt2 dt3

=

∑
k1>k2

∫ t0

0

∫ t1

0
ck1(t1)Mbk2(t1)Mg(t3) dt1 dt3

−

∑
k1>k2

∫ t0

0

∫ t1

0
ck1(t1)Mbk2(t2)Mg(t2) dt1 dt2.
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Hence, using first Lemma 2.6 followed by Lemma 3.2, we obtain

‖Jcb(t0)‖L1 .
∑
k1>k2

∫ t0

0

∫ t1

0
‖ck1(t1)Mbk2(t1)Mg(t3)‖L1 dt1 dt3

+

∑
k1>k2

∫ t0

0

∫ t1

0
‖ck1(t1)Mbk2(t2)Mg(t2)‖L1 dt1 dt2

.
∑
k1>k2

∫ t0

0

∫ t1

0
‖ck1(t1)‖H 1‖bk2(t1)‖H 1N(g)(t3) dt1 dt3

+

∑
k1>k2

∫ t0

0

∫ t1

0
‖ck1(t1)‖H 1‖bk2(t2)‖H 1N(g)(t2) dt1 dt2

.
∑
k1>k2

sup
t∈[0,1]

‖bk2(t)‖H 1

∫ t0

0

∫ t1

0
‖ck1(t1)‖H 1N(g)(t2) dt1 dt2

. N(g)
∑

k1>k2≥0

2−k2/2‖bk2‖2‖ck1‖L1H 1 . N(g)‖b‖2
∑
k1

‖ck1‖L1H 1

. N(g)‖b‖2‖c‖3.

3.2. General case

Treatment of the general case will follow the scheme laid down for the third iterate u(3).
Additional challenge however is to control constants in the estimates, which may grow
uncontrollably with respect to the order of the iterates. Recalling (40) we write

u(n+1)(t) =

∫ t

0
g(t1) dt1 +

∫ t

0
a(t1) dt1

∫ t1

0
Mg(t2) dt2 + · · ·

+

∫ t

0

∫ t1

0
. . .

∫ tn

0
a(t1)Ma(t2)M . . . a(tn)Mg(tn+1) dt1 dt2 . . . dtn+1.

To simplify notations introduce the simplex 1n(t) defined by

t ≥ t1 ≥ · · · ≥ tn ≥ tn+1 ≥ 0

and write

u(n+1)(t) = u(n)(t)+ Jn(t), (42)

where

Jn(t) =

∫
1n(t0)

a(t1)Ma(t2)M . . . a(tm)Mg(tn+1)

:=
∫
. . .

∫
1n(t0)

dt1 . . . dtn+1 a(t1)Ma(t2)M . . . a(tm)Mg(tn+1).
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To prove (13) it will suffice to show that

sup
t∈[0,1]

‖Jn(t)‖L1(Rd ) . Cn1nN(g). (43)

We decompose each a(ti) in the expression for Jn into its Littlewood–Paley compo-
nents according to

a(ti) =
∑

k∈Z+∪{0}
Pka(ti) = a0(ti)+

∑
ki∈Z+

aki (ti).

Thus, writing N = Z+ ∪ {0} and k = (k1, . . . , kn) ∈ Nn,

Jn(t) = J (t) =
∑

k∈Nn

∫
1n(t)

ak1(t1)M . . . akn(tn)Mg(tn+1). (44)

For each 1 ≤ j ≤ n we define

[kj ] = {(k1, . . . , kn) ∈ Nn | ki ≤ kj ∀i}, (45)

In what follows we will tacitly assume that all indices ki take values in the set of nonneg-
ative integers and will not write this constraint explicitly. Let

J
j
n (t) = J

j (t) =
∑

k∈[kj ]

∫
1n(t)

ak1(t1)M . . . akn(tn)Mg(tn+1). (46)

Clearly,

‖Jn(t)‖L1(Rd ) .
n∑
j=1

‖J
j
n (t)‖L1(Rd ).

We now fix j and decompose in view of (39),

akj (tj ) = ∂tbkj (tj )+ ckj (tj ). (47)

Thus,

J j (t) = J
j
b (t)+ J

j
c (t) =

∑
k∈[kj ]

J
j

b,k(t)+
∑

k∈[kj ]
J
j

c,k(t), (48)

J
j

b,k(t) =

∫
1n(t)

ak1(t1)M . . . ∂tbkj (tj )M . . . akn(tn)Mg(tn+1) dt1 . . . dtn+1,

J
j

c,k(t) =

∫
1n(t)

ak1(t1)M . . . ckj (tj )M . . . akn(tn)Mg(tn+1) dt1 . . . dtn+1,

with the summation convention∑
k∈[kj ]

=

∑
kj∈Z

∑
k′≤kj

, k′ = (k1, . . . , k̂j , . . . , kn).
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We first estimate10 Jb = J
j
b . Integrating by parts gives

Jb,k(t)

=

∫
1n−1(t)

. . . akj−1(tj−1)Mbkj (tj−1)Makj+1(tj+1) . . .Mg(tn+1) dt1 . . . d̂tj . . . dtn+1

−

∫
1n−1(t)

. . . akj−1(tj−1)Mbkj (tj+1)Makj+1(tj+1) . . .Mg(tn+1) dt1 . . . d̂tj . . . dtn+1

= J−b,k(t)+ J
+

b,k(t).

Now, with the help of Lemma 2.6, we proceed as in the previous subsection:

,‖J−b,k(t)‖L1

. Cn sup
t
‖bkj (t)‖H 1

∫
1n−1(t)

Ak(t1, . . . , t̂j , . . . , tn)N(g)(tn+1) dt1 . . . d̂tj . . . dtn+1,

where

Ak,j (. . . , t̂j , . . .) = ‖ak1(t1)‖H 1 . . . ̂‖akj (tj )‖H 1 . . . ‖akn(tn)‖H 1 .

Hence, with the help of Lemma 3.2,

‖J−b,k(t)‖L1

. CnN(g)2−kj /2‖bkj ‖2|1n−2(t)|
1/2
(∫

1n−2(t)
Ak(. . . , t̂j , . . .)

2 dt1 . . . d̂tj . . . dtn

)1/2

,

where |1n−2(t)| is the volume of the (n− 2) dimensional simplex.11 Consequently,

‖J−b,k(t)‖L1 . Cn((n− 1)!)−1/2N(g)2−kj /2‖bkj ‖2‖ak1‖1 . . . ‖̂akj ‖1 . . . ‖akn‖1

and, by the triangle inequality and then Cauchy–Schwarz,∥∥∥ ∑
k∈[kj ]

J−b,k(t)
∥∥∥
L1

. Cn((n− 1)!)−1/2N(g)
∑

k∈[kj ]
2−kj /2‖bkj ‖2‖ak1‖1 . . . ‖̂akj ‖1 . . . ‖akn‖1

. Cn((n− 1)!)−1/2N(g)
( ∑

k∈[kj ]
2−kj

)1/2( ∑
k∈[kj ]

‖bkj ‖
2
2‖ak1‖

2
1 . . . ‖akn‖

2
1

)1/2

. Cn
(

n!
(n− 1)!

)1/2

N(g)‖b‖2‖a‖
n−1
1 . n1/2CnN(g)‖b‖2‖a‖

n−1
1 .

10 For simplicity, since j is kept fixed we drop the upper index j below.
11 In our notations it corresponds to an actual (n− 1)-dimensional simplex.
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Proceeding exactly in the same way we derive∥∥∥ ∑
k∈[kj ]

J+b,k(t)
∥∥∥
L1

. nCnN(g)‖b‖2‖a‖
n−1
1 .

Therefore, recalling that Jb(t) =
∑

k∈[kj ] Jb,k(t),

‖J
j
b (t)‖L1(Rd ) . nCnN(g)‖b‖2‖a‖

n−1
1 . (49)

To estimate J jc (t) =
∑

k∈[kj ] Jc,k(t) we have to a further decomposition. We define

[kj , kl] = {(k1, . . . , kn) ∈ Nn | ki ≤ kl ≤ kj ∀i 6= l, j}. (50)

For fixed j we have precisely n− 1 such regions covering [kj ]. Fix l 6= j and consider,

J
j l
c (t) =

∑
k∈[kj ,kl ]

J
j l

c,k(t). (51)

Clearly,

‖J
j
c (t)‖L1(Rd ) .

∑
l 6=j

‖J
j l

c,k(t)‖L1(Rd ). (52)

In view of (39) we decompose

akl (tl) = ∂tbkl (tl)+ ckl (tl). (53)

Thus, dropping the upper indices j, l,

Jc(t) = Jcb(t)+ Jcc(t) =
∑

k∈[kj ,kl ]
Jcb,k(t)+

∑
k∈[kj ,kl ]

Jcc,k(t), (54)

Jcb,k(t) =

∫
1n(t)

ak1(t1)M . . . ckj (tj )M . . . ∂tbkl (tl)M . . . akn(tn)Mg(tn+1) dt1 . . . dtn+1,

Jcc,k(t) =

∫
1n(t)

a(t1)k1M . . . ckj (tj )M . . . ckl (tl) . . . akn(tn)Mg(tn+1) dt1 . . . dtn+1.

Integrating by parts, and dropping the operators M for a moment, we obtain

Jcb,k(t) =

∫
1n−1(t)

. . . ckj (tj ) . . . akl−1(tl−1)bkl (tl−1)akl+1(tl+1)

. . . g(tn+1) dt1 . . . d̂tl . . . dtn+1

−

∫
1n−1(t)

. . . ckj (tj ) . . . akl−1(tl−1)bkl (tl+1)akl+1(tl+1)akl+2(tl+2)

. . . g(tn+1) dt1 . . . d̂tl . . . dtn+1
= J−cb,k(t)+ J

+

cb,k(t).
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By Lemma 2.6 as before,

‖J±cb,k(t)‖L1

. Cn sup
t
‖bkl (t)‖H 1

∫
1n−1(t)

Bk(t1, . . . , t̂l, . . . , tn)N(g)(tn+1) dt1 . . . d̂tl . . . dtn+1,

where

Bk(. . . , t̂l, . . .) = ‖ak1(t1)‖H 1 . . . ‖ckj (tj )‖H 1 . . . ̂‖akl (tl)‖H 1 . . . ‖akn(tn)‖H 1 .

Therefore, exactly as before with the help of Lemma 3.2,

‖J±cb,k(t)‖L1 . CnN(g)2−kl/2‖bkl‖2Pk,n−2(t),

Pk,n−2(t) =

∫
1n−2(t)

Bk(. . . , t̂l, . . .) dt1 . . . d̂tl . . . dtn.

Observe that

Pk,n−2(t)

≤

∫
1n−2(t)

‖ak1(t1)‖H 1 . . . ‖ckj (tj )‖H 1 . . . ̂‖akl (tl)‖H 1 . . . ‖akn(tn)‖H 1 dt1 . . . d̂tl . . . dtn

Thus ∥∥∥ ∑
k∈[kj ,kl ]

J±cb,k(t)
∥∥∥
L1

. Cn((n− 2)!)−1/2N(g)Q

with

Q =
∑
kl≤kj

2−kl/2‖bkl‖2‖ckj ‖3
∑

k′′≤kl

‖ak1‖1 . . . ‖̂akj ‖1 . . . ‖̂akl‖1 . . . ‖akn‖1

with k′′ = (k1, . . . , k̂j , . . . , k̂l, . . . , kn). Therefore, by Cauchy–Schwarz,

Q .
∑
kl≤kj

2−kl/2k(n−2)/2
l ‖bkl‖2‖ckj ‖3

(∑
k′′≤kl

‖ak1‖
2
1 . . . ‖akn‖

2
1

)1/2

. ‖a‖n−2
1

∑
kj∈N
‖ckj ‖3

∑
kl≤kj

2−kl/2k(n−2)/2
l ‖bkl‖2

. ‖a‖n−2
1 ‖b‖2

∑
kj∈N
‖ckj ‖3

( kj∑
kl=0

2−klkn−2
l

)1/2

. ((n− 1)!)1/2‖a‖n−2
1 ‖b‖2‖c‖3.

Consequently,∥∥∥ ∑
k≤kl≤kj

J±cb,k(t)
∥∥∥
L1

. Cn
(
(n− 1)!
(n− 2)!

)1/2

N(g)‖a‖n−2
1 ‖b‖2‖c‖3

. n1/2CnN(g)‖a‖n−2
1 ‖b‖2‖c‖3.
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Therefore,

sup
t∈[0,1]

‖J
j l
cb (t)‖L1(Rd ) . n1/2CnN(g)‖a‖n−2

1 ‖b‖2‖c‖3. (55)

To treat the term Jcc,k(t) we decompose once more. Continuing in the same manner after
m steps we arrive at the integral

J
j1...jm−1
c1...cm−1 (t) =

∑
[kj1 ,...,kjm−1 ]

∫
1n(t)

. . . (56)

with the integrand containing c1 = ckj1
, c2 = ckj2

, . . . , cm−1 = ckjm−1
and

[kj1 , . . . , kjm−1 ] = {(k1, . . . , kn) ∈ Nn | ki ≤ kjm−1 ≤ · · · ≤ kj1 ∀i 6= j1, . . . , jm−1}.

Clearly [kj1 , . . . , kjm−1 ] can be covered by precisely n − m + 1 regions of the form
[kj1 , . . . , kjm ]. We have

J
j1...jm−1
c1...cm−1 (t) =

∑
jm

J
j1...jm
c1...cm−1(t), kjm ≤ kjm−1 , (57)

J
j1...jm
c1...cm−1(t) =

∑
[kj1 ,...,kjm ]

∫
1n(t)

. . . . (58)

In view of (39) we decompose

akjm (tjm) = ∂tbkjm (tjm)+ ckjm (tjm) (59)

and, respectively,

J
j1...jm
c1...cm−1(t) =

∑
k∈[kj1 ,...,kjm ]

J
j1...jm
c1...cm−1bm,k(t)+

∑
k∈[kj1 ,...,kjm ]

J
j1...jm
c1...cm,k(t),

where bm = bkjm , cm = ckjm Proceeding exactly as before, integrating by parts and using
Lemma 2.6, we write

‖J
j1...jm
c1...cm−1bm,k(t)‖L1 . Cn sup

t
‖bkjm (t)‖H 1

∫
1n−1(t)

Bk(t1, . . . , t̂jm , . . . , tn)N(g)(tn+1),

where

Bk(. . . , t̂jm , . . .) = ‖ckj1 (tj1)‖H 1 . . . ‖ckjm−1
(tjm−1)‖H 1

· ‖akjm+1
(tjm+1)‖H 1 . . . ‖akjn (tjn)‖H 1 .

Therefore,

‖J
j1...jm
c...cb,k(t)‖L1 . CnN(g)2−kjm/2‖bkjm ‖2Pk,n−2(t),

Pk,n−2(t) =

∫
1n−2(t)

Bk(. . . , t̂jm , . . .),

where kjm+1 , . . . , kjn are the labels for all other frequencies different from kj1 , . . . , kjm−1 .
To estimate Pk,n−2(t) we make use of the following obvious lemma.
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Lemma 3.3. Let f1, . . . , fn be an ordered sequence of positive, integrable, functions
defined on the interval [0, 1] ⊂ R among whichm, say fi1 , . . . , fim , are in L1 and n−m,
say fj1 , . . . fjn−m , are in L2. Then∫

1n−2(t)
f1(t1) . . . fn(tn) dt1 . . . dtn .

(
1

(n−m)!

)1/2

‖fi1‖L1 . . . ‖fim‖L1

· ‖fj1‖L1 . . . ‖fjn−m‖L1 .

According to Lemma 3.3 we have

Pk,n−2(t) .

(
1

(n−m− 1)!

)1/2

‖ckj1
‖L1H 1 . . . ‖ckjm−1

‖L1H 1 · ‖akjm+1
‖1 . . . ‖akjn ‖1.

Observe that,∑
k′′≤kjm

‖akjm+1
‖1 . . . ‖akjn ‖1 . (kjm)

(n−1−m)/2
( ∑
k′′≤kjm

‖akjm+1
‖

2
1 . . . ‖akjn ‖

2
1

)1/2

. (kjm)
(n−1−m)/2

‖a‖m−n1 ,

where k′′ = (kjm+1 , . . . , kjn). Observe also that∑
kj1≤···≤kjm−1

‖ckj1
‖L1H 1 . . . ‖ckjm−1

‖L1H 1 .
1

(m− 1)!
‖c‖m−1

3 . (60)

Indeed, this follows by symmetry in view of the fact that∑
kj1 ,...,kjm

‖ckj1
‖L1H 1 . . . ‖ckjm−1

‖L1H 1 . ‖c‖m−1
3 .

Finally, by Cauchy–Schwarz,∑
kjm∈N

2−kjm/2(kjm)
(n−1−m)/2

‖bkjm ‖2 . ((n−m)!)1/2‖b‖2.

Hence,∑
[kj1 ,...,kjm ]

‖J
j1...jm
c...cb,k(t)‖L1 . Cn

1
(m− 1)!

(
(n−m)!

(n−m− 1)!

)1/2

N(g)‖b‖2‖a‖
n−m
1 ‖c‖m−1

3 .

In other words, ∑
[kj1 ,...,kjm ]

‖J
j1...jm
c...cb,k(t)‖L1 . n1/2Cn

1
(m− 1)!

1n0 . (61)

We are ready to estimate Jn(t) = J (t) in formula (44). We have

‖J (t)‖L1) .
n∑

j1=1

‖J j1(t)‖L1
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and
‖J j1(t)‖L1 . ‖J j1

b1
(t)‖L1 + ‖J

j1
c1 (t)‖L1 . n

1
2Cn1n0 + ‖J

j1
c1 (t)‖L1 .

Hence,

‖J (t)‖L1 . n3/2Cn1n0 +

n∑
j1=1

‖J
j1
c1 (t)‖L1 .

On the other hand, for each j1,

‖J
j1
c1 (t)‖L1 .

n∑
j2 6=j1

‖J
j1j2
c1 (t)‖L1

and

‖J
j1j2
c1 (t)‖L1 . ‖J j1j2

c1b2
(t)‖L1 + ‖J

j1j2
c1c2 (t)‖L1 . n1/2C

n1n0
1!
+ ‖J

j1j2
c1c2 (t)‖L1 .

Therefore,

‖J (t)‖L1(Rd ) . n1/2nCn1n0 + n
1/2 n(n− 1)

1!
Cn1n0 +

∑
j1 6=j2

‖J
j1j2
c1c2 (t)‖L1 .

Continuing in this way we derive

‖Jn(t)‖L1

. N(g)n3/21n0C
n

(
1+

n− 1
1!
+
(n− 1)(n− 2)

2!
+· · ·+

(n− 1) . . . (n−m)
m!

+· · · + 1
)

. n3/21n0C
n(1+ 1)n−1N(g) . n3/21n0(2C)

nN(g),

as claimed in (43).
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