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Abstract. Random Witten Laplacians on infinite coverings of compact manifolds are considered.
The probabilistic representations of the corresponding heat kernels are given. The finiteness of the
von Neumann traces of the corresponding semigroups is proved, and the short-time asymptotics of
the corresponding supertrace is computed. Examples associated with Gibbs measures on configu-
ration spaces and product manifolds are considered.
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1. Introduction

Random operators, in particular, Schrödinger operators with random potentials, play an
important role in different parts of mathematics and mathematical physics (see e.g. [10],
[22], [30]). A crucial role in this theory is played by the concept of metric transitivity.
Let 9 be a probability space equipped with a probability measure µ. A random operator
Hγ , γ ∈ 9, acting in a Hilbert spaceH, is said to be metrically transitive if there exists a
group G of measure-preserving transformations of 9 and a unitary representation Ug of
G in H such that

1) its action on 9 is ergodic,
2) for any g ∈ G and γ ∈ 9 the following commutation relation holds:

Ug−1HγUg = Hgγ . (1)

The importance of this notion lies in the fact that the scalar spectral characteristics ofHγ ,
being unitary invariants and thus invariant with respect to the action ofG on9, are in fact
non-random. The spectral theory of operators of such type has been discussed by many
authors (see a review in [30]). The concept of metric transitivity has also been used in [22]
in the construction of the index theory for random pseudodifferential operators acting in
vector bundles over non-compact manifolds.

In the situation where H is non-random, condition (1) means that H commutes with
the action of G in H. If H is a self-adjoint operator, the latter implies that the corre-
sponding spectral projections E(λ) and the semigroup e−tH belong to the commutant
A = {Ug}′g∈G of the action of G, which is a von Neumann algebra and has a trace TrA
(different from the usual trace in the space B(H) of bounded linear operators on H). It
turns out that, in some cases, TrA E(λ) and TrA e−tH are finite despite the fact that these
operators are not of trace class. This approach was initiated by M. Atiyah in [9], who con-
sidered the case of H being an elliptic operator on the universal covering X of a compact
manifold M with infinite fundamental group G. It has been shown in that situation that
the regularized index (supertrace) of the corresponding Dirac operator is equal to the Eu-
ler characteristic χ(M) of the underlying manifold M . This approach leads to the notion
of L2-invariants (see a review in [28], [29]).

Let us observe that in the case of the random operator Hγ the corresponding semi-
group

Tγ (t) = e
−tHγ (2)

satisfies the relation
Ug−1Tγ (t)Ug = Tgγ (t) (3)

and thus does not in general belong to A, for the set of γ ∈ 9 which are fixed points of
the action of G usually has measure zero. However, it is possible to understand Tγ (t) as
an element of the algebra C of essentially bounded maps

A : 9 → B(H) (4)

such that
A(gγ ) = UgA(γ )Ug−1 (5)
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for any g ∈ G and γ ∈ 9. This approach has been proposed in [3] in the case of the Witten
Laplacians associated with Gibbs measures on configuration spaces. In the present work,
we

a) extend this approach to the case of more general random operators,
b) investigate the short time asymptotics of the supertrace of the corresponding semi-

groups.

Let us note that our situation of Witten operators acting in spaces of differential forms is
specifically complicated because of the structure of the corresponding potential, which is
a matrix-valued function, neither positive nor bounded, in contrast to [30] and [22].

The contents of the paper are as follows. In Section 2 we introduce the main objects
to be considered:

• the random measure
σγ (dx) = e

−Eγ (x)dx (6)

onX, γ ∈ 9,where dx denotes the Riemannian volume onX, andE is a homogeneous
random function,
• the corresponding Witten–Bismut Laplacian H (p)

γ in the space L2�p(X) of square
integrable p-forms on X,
• the corresponding heat semigroup T (p)γ (t) = e−tH

(p)
γ in L2�p(X) and its integral ker-

nel K(p)
γ (x, y; t),

• the θ -function
θ (p)(x, t) = E trK(p)

γ (x, x; t), (7)

where tr is the usual matrix trace.

In Theorem 1, we formulate the conditions on the random function E which imply the
finiteness of θ (p)(x, t).

In Section 3, we develop a probabilistic representation of the semigroup T (p)γ (t) and
apply it to prove Theorem 1. In Section 4, we introduce the corresponding operator alge-
bra C = Cp (cf. formulae (4), (5)) and prove that it is a von Neumann algebra with the
faithful normal semifinite trace TR given by the formula

TRA =
∫
X/G

E tr aγ (x, x) dx, (8)

where aγ (x, y) is the integral kernel of A(γ ) (Theorem 4). Next, we consider the maps
T(p)t : γ 7→ T

(p)
γ,t and P(p) : γ 7→ P

(p)
γ , where P (p)γ is the orthogonal projection onto the

kernel of H (p)
γ . The commutation relations (71) imply that T(p)t ,P(p) ∈ Cp. We prove the

following theorem.

Theorem 5. 1) For all times t > 0 and any p = 0, . . . , dimX,

TR T(p)t = 2
(p)(t) :=

∫
X/G

θ (p)(t) dx <∞. (9)
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2) For any p = 0, . . . , dimX,
TR P(p) <∞. (10)

3) The following McKean–Singer formula holds for all times t > 0:

dimX∑
p=0

(−1)p TR T(p)t =
dimX∑
p=0

(−1)p TR P(p). (11)

Let us note that the right-hand side of the latter formula can be understood as a regularized
index of the corresponding Dirac operator.

In Section 5, we study the short time asymptotics of the left-hand side of formula (11)
and prove the following result.

Theorem 6.
STR P :=

∑
p

(−1)p TR P(p) = χ(M), (12)

where χ(M) is the Euler characteristic of M = X/G.

The latter formula allows us to discuss some properties of the spaces of harmonic forms
of individual operators Hγ . We prove that, provided the G-action on 9 is ergodic and
χ(M) = ∞, the latter spaces are infinite-dimensional for a.a. γ .

In Section 6, we consider two main examples which motivate our study. The first
example is related to Gibbs measures on configuration spaces. In this case the probability
space 9 is the space 0X of locally finite configurations γ in X equipped with a Gibbs
measure µ. The random field E has the form

Eγ (x) =
∑
y∈γ

v(ρ(x, y)), (13)

where ρ is the distance on X and v is a smooth function with compact support. Measures
of such type appear, via the generalized Mecke identity, in the theory of configuration
spaces, and in particular in the theory of Laplace operators on differential forms over 0X
(see [5], [6], [4]). In fact, the Witten Laplacian H associated with σ is a “part” of the
Hodge–de Rham operator on 0X associated with the Gibbs measure µ. The structure of
the latter operator is very complicated in the case where µ is different from the Poisson
measure. We believe that the study of spectral properties of H , which is a more real-
istic goal than the study of the full Hodge–de Rham operator on 0X, may already give
interesting links between the properties of µ and geometrical and topological properties
of X.

Let us note that the interest in the analysis on infinite configuration spaces has risen
in recent years, because of new approaches and rich applications in statistical mechanics
and quantum field theory (see [7], [8] and the review [31]). L2-Betti numbers of config-
uration spaces with Poisson and Lebesgue–Poisson measures were computed in [2] and
[15] respectively (see also [1], [14], [16]).
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In our second example, the role of 9 is played by the infinite product space XG,
equipped with a Gibbs measure µ which is invariant with respect to the G-action Tg
given by

XG 3 ξ = (ξg′)g′∈G 7→ Tg(ξg′)g′∈G = (ξgg′)g′∈G. (14)

The random field E is defined in the following way:

Eξ (x) =
∑
g∈G

v(ρ(x, gξg)). (15)

In both examples, the operator H is related to the following model from statistical
mechanics. Let us consider a particle with position x performing a random motion in
X and interacting with a random medium (gas in the first example and crystal in the
second) described by the Gibbs measure µ. The distribution of the particle is given by the
random measure σγ ( dx), where Eγ (x) is the energy of interaction of the particle x and
the configuration γ of gas particles or crystal vertices, respectively.

2. Random Witten Laplacian

Let X be a complete connected, oriented, C∞ Riemannian manifold of infinite volume
with a lower bounded curvature. We assume that there exists an infinite discrete group G
of isometries ofX such thatX/G is a compact Riemannian manifold. For instance,X can
be the universal cover of a compact oriented C∞ Riemannian manifold M with infinite
fundamental group G.

Let E be a random homogeneous field onX defined on a probability space (9,P, µ).
That is, there exists a representation

G 3 g 7→ Tg (16)

of the group G by measure preserving transformations of 9 such that

E : X ×9 → R (17)

satisfies the relation
E(gx, Tgγ ) = E(x, γ ) (18)

for all g ∈ G, x ∈ X and a.a. γ ∈ 9. We assume in addition that Eγ := E(·, γ ) ∈

C∞(X). In what follows, we will use the notation gγ := Tgγ .
For any γ ∈ 9 we introduce the measure

σγ ( dx) = e
−Eγ (x) dx (19)

on X, where dx denotes the Riemannian volume on X.
In what follows, we will use the following notations:

• L2�p(X) – the space of p-forms on X which are square-integrable with respect to the
volume measure;
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• L2
σγ
�p(X) – the space of p-forms on X which are square-integrable with respect to

σγ ;
• dp – the de Rham differential on p-forms on X;
• H (p) – the de Rham Laplacian on p-forms on X;
• ∇ – the Levi-Civita covariant derivative;
• B(H1,H2) – the space of bounded linear operatorsH1 → H2,H1,H2 Hilbert spaces;
• B(H) := B(H,H).

Let us consider the Witten–Bismut Laplacian H (p)
σγ in L2

σγ
�p,

H (p)
σγ

:= dp−1(dp−1)∗γ + (d
p)∗γ d

p, (20)

where (dk)∗γ : L2
σγ
�k+1

→ L2
σγ
�k is the adjoint of dk : L2

σγ
�k → L2

σγ
�k+1. It follows

from the results of [11] that H (p)
σγ is essentially self-adjoint on the space of smooth forms

with compact support (for a general definition and discussion of properties of Witten
Laplacians see e.g. [13], [19]).

On smooth forms, H (p)
σγ is given by the expression

H (p)
σγ
= H (p)

+
1
2
(∇Eγ ,∇)T pX + (∇

2Eγ )
∧p, (21)

where

(∇2Eγ )
∧p
=

p∑
k=1

k︷ ︸︸ ︷
I ⊗ I ⊗ · · · ⊗ ∇2Eγ ⊗ · · · ⊗ I. (22)

Let
U : L2

σγ
�p(X)→ L2�p(X) (23)

be the unitary isomorphism defined by multiplication by e−
1
2Eγ (x). Then the operator

H (p)
γ := UH (p)

σγ
U−1 (24)

in L2�p(X) has the form
H (p)
γ = H (p)

+W (p)
γ , (25)

where
W (p)
γ = ‖∇Eγ ‖

2
+1Eγ + (∇

2Eγ )
∧p (26)

(see [19]). Let us remark that W (p)
γ is G-invariant in the sense that

W (p)
γ (x) = (dg)−1W

(p)
gγ (gx) (27)

for any g ∈ G, γ ∈ 9 and x ∈ X. Here dg ∈ B((TxX)∧p, (TgxX)∧p) is the correspond-
ing group translation in the fibers of the tensor bundle (T X)∧p.

Let us consider the corresponding heat semigroup Tγ (t)=e−tH
(p)
γ , t >0, in L2�p(X)

and let
K(p)
γ (x, y; t) ∈ B((TxX)∧p, (TyX)∧p) (28)
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be its integral kernel. We introduce the function

θ (p)(x, t) = E trK(p)
γ (x, x; t), (29)

where tr is the usual matrix trace. Our first aim is to prove the following result.

Theorem 1. Assume that there exists a random homogeneous function f : X→ R such
that

−(W (p)
γ (x)h, h) ≤ fγ (x)‖h‖

2 (30)

for all x ∈ X and h ∈ (TxX)∧p. Moreover, assume that for any t > 0,

sup
z∈X

Eetf (z) <∞. (31)

Then, for any t > 0 and p = 0, 1, . . . , dimX,

sup
x∈X

θ (p)(x, t) <∞. (32)

Remark 1. The statement of the theorem does not rely on the particular form (26) of the
potential W (p)

γ and is valid for any potential which satisfies conditions (27), (30), (31)
and such that the operator H (p)

γ is essentially self-adjoint on the space �p0 (X) of smooth
p-forms with compact support.

The proof of the theorem will be given in the next section. In what follows, we will
always assume that the conditions (30)–(31) hold. In Section 6 we will show that the latter
is true in particular examples.

The G-invariance (27) of the potential W (p) implies the G-invariance of the kernel
K
(p)
γ (x, x; t), and consequently of the function θ (p)(x, t) (the latter follows from the G-

invariance of µ). Thus, θ (p)(·, t) defines a function θ̃ (p)(·, t) on X/G, and we can define
the theta-function

2(p)(t) =

∫
X/G

θ̃ (p)(x, t) dx. (33)

The next statement follows immediately from the theorem above and compactness of
X/G.

Corollary 1. For any t > 0 and p = 0, 1, . . . , dimX, we have

2(p)(t) <∞. (34)
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3. Probabilistic representation of the heat kernels

In this section we give a probabilistic representation of the semigroup e−tH
(p)

, t > 0, and
apply it to prove Theorem 1.

According to the Weitzenböck formula, the Witten Laplacian H (p)
γ has the form

H (p)
γ = 1(p) +R(p)γ , (35)

where 1(p) is the Bochner Laplacian in L2�p(X), R(p)γ = R(p) +W (p)
γ , and R(p)(x) ∈

B((TxX)∧p) is the corresponding Weitzenböck term (see e.g. [19], [13]).
Let ξx(s), s ∈ [0, t], be the Brownian motion on X in the time interval [0, t] start-

ing at x, defined on its own probability space (independent of the random field E), and
consider the differential equation

D

ds
ω(s) = −R(p)γ (ξx(s))ω(s), ω(0) ∈ (TxX)∧p, (36)

in the tensor bundle (T X)∧p, whereD/ds is the covariant derivative along the trajectories
of ξx(s) (see [18]).

Let f be as in Theorem 1, that is,

−(W (p)
γ (x)h, h) ≤ fγ (x)‖h‖

2 (37)

for all x ∈ X and h ∈ (TxX)∧p, and for any t ,

F(z, t) := E etf (z) ≤ a(t) <∞ (38)

for some function a(t) uniformly in z ∈ X. In what follows, we denote by W the expec-
tation with respect to the Brownian motion ξx .

Theorem 2. Assume that the estimates (37) and (38) hold. Then:

1) For all times t > 0, any x ∈ X and a.a. γ ∈ 9 we have∫ t

0
W[etfγ (ξx (s))] ds <∞. (39)

2) A solution ω(t) = ωγ (t) of equation (36) exists for all times t > 0 and a.a. γ ∈ 9
and satisfies the estimate

W‖ω(t)‖(Tξx (t)X)∧p ≤ ‖ω(0)‖(TxX)∧pe
tcp

1
t

∫ t

0
W[etfγ (ξx (s))] ds, (40)

where cp = − infx∈X ‖R(p)(x)‖, t ∈ R.
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Proof. 1) It follows from (38) that

WE etfγ (ξx (s)) ≤ a(t). (41)

Then, by Fubini’s theorem,

E
[∫ t

0
W[etfγ (ξx (s))] ds

]
=

∫ t

0
W[E[etfγ (ξx (s))]] ds ≤ ta(t), (42)

which implies (39).
2) We use arguments similar to [27, Th. 5.1] (in fact, our situation is simpler). We

have
d

dt
‖ω(t)‖2 = −2(R(p)γ (ξx(t))ω(t), ω(t)), (43)

or
d

dt
‖ω(t)‖2 = −2

(R(p)γ (ξx(t))ω(t), ω(t))

‖ω(t)‖2
‖ω(t)‖2, (44)

which implies

‖ω(t)‖2 = ‖ω(0)‖2 exp
(
−

∫ t

0
2
(R(p)γ (ξx(s))ω(t), ω(s))

‖ω(s)‖2
ds

)
≤ ‖ω(0)‖2etcp exp

∫ t

0
2fγ (ξx(s)) ds. (45)

Then

W‖ω(t)‖ ≤ ‖ω(0)‖etcpW exp
∫ t

0
fγ (ξx(s)) ds

≤ ‖ω(0)‖etcp
1
t

∫ t

0
W[etfγ (ξx (s))] ds (46)

by Jensen’s inequality, which together with (39) implies the result. ut

Thus, for a.a. γ ∈ 9, the equation (36) defines the evolution operator family

U
(p)
ξx ,γ

(s) ∈ B((TxX)∧p, (Tξx (s)X)∧p) (47)

by the formula
U
(p)
ξx ,γ

(s)ω(0) = ω(s). (48)

It satisfies the estimate

W‖U (p)ξx ,γ
(t)‖ ≤

1
t

∫ t

0
W[etfγ (ξx (s))] ds, t > 0. (49)

Remark 2. In the case where E ≡ 0 the operator U (p)ξx
(s) coincides with the parallel

translation along ξx (see [18]).
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Remark 3. Let ξx,y(s), s ∈ [0, t], be the Brownian bridge from x to y. Then

U
(p)
ξx,y ,γ

(t) ∈ B((TxX)∧p, (TyX)∧p) (50)

and

W‖U (p)ξx,y ,γ
(t)‖ ≤ etcp

1
t

∫ t

0
W[etfγ (ξx,y (s))] ds, (51)

where W is the bridge expectation.

Let us consider the semigroup e−tH
(p)
γ , t > 0, in L2�p(X). LetK(x, y; t) be the heat

kernel onX. It is known [17] thatK is a strictly positive C∞ function onX×X× [0,∞).

Theorem 3. For any t > 0 and γ ∈ 9 the semigroup e−tH
(p)
γ has the integral kernel

K(p)
γ (x, y; t) ∈ B((TxX)∧p, (TyX)∧p), (52)

which satisfies the relation

K(p)
γ (x, y; t) = K(x, y; t)W(U

(p)
ξx,y ,γ

(t))∗, x, y ∈ X. (53)

Proof. Let us recall that H (p)
γ is essentially self-adjoint on �p0 . Thus, for ω ∈ �p0 , we

have the following probabilistic representation of the semigroup e−tH
(p)
γ , t > 0:

〈e−tH
(p)
γ ω(x), ν〉 =W〈ω(ξx(t)), U

(p)
ξx ,γ

(t)ν〉 (54)

for all ν ∈ (TxX)∧p (see [18]). This can be rewritten as

〈e−tH
(p)
γ ω(x), ν〉 =

∫
X

K(x, y; t)W〈ω(ξx,y(t)), U
(p)
ξx,y ,γ

(t)ν〉 dy

=

∫
X

K(x, y; t)W〈ω(y), U (p)ξx,y ,γ
(t)ν〉 dy

=

〈∫
X

K(x, y; t)W(U
(p)
ξx,y ,γ

(t))∗ω(y) dy, ν

〉
, (55)

which implies (53). ut

Proof of Theorem 1. Formulae (51) and (53) imply that for any γ ∈ 9 and all x ∈ X,
t > 0,

trK(p)
γ (x, x; t) ≤

(
dimX

p

)
K(x, x; t)W‖U (p)ξx,x

(t)‖

≤

(
dimX

p

)
K(x, x; t)etcp

1
t

∫ t

0
W[etfγ (ξx (s))] ds, (56)

where tr denotes the usual matrix trace. Note that k(x) := K(x, x; t) is G-invariant and
C∞, which together with compactness of X/G implies that it is bounded. Formula (42)
immediately implies that the θ -function

θ (p)(x, t) = E trK(p)
γ (x, x; t) (57)

is bounded in x ∈ X for any t > 0 and p = 0, 1, . . . , dimX. ut
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Remark 4. More precisely, the θ -function satisfies the estimate

θ (p)(x, t) ≤

(
dimX

p

)
etcp K(x, x; t) a(t), (58)

where a is defined by (38).

Remark 5. We can also give a lower bound of θ (p)(x, t). Indeed, let g : X×X→ R be
such that for

gγ (x) := 〈gx, γ 〉 =
∑
y∈γ

g(x, y), (59)

and any γ ∈ 9 and x ∈ X, the estimate

−(W (p)
γ (x)h, h) ≥ gγ (x)‖h‖

2 (60)

holds for all h ∈ (TxX)∧p. It then follows from (45) that

W‖U (p)ξx,y
(t)‖ ≥ etbpWe

∫ t
0 gγ (ξx,y (s)) ds (61)

for all t > 0, and consequently

θ (p)(x, t) ≥

(
d

p

)
etb

(p)

K(x, x; t)WE e
∫ t

0 gγ (ξx,y (s)) ds, (62)

where bp = − supx∈X ‖R
(p)(x)‖.

Remark 6. If X is a symmetric space, that is, there exists a group of isometries acting
on X transitively, then both K(x, x; t) and F(x, t) (defined by (38)) do not depend on x,
and the estimate (58) gets the form

θ (p)(x, t) ≤

(
dimX

p

)
etcp k(t), (63)

where k(t) := K(x, x; t)F(x, t).

Example 1 (Euclidean space). Let X = Rd , G = Zd . Then R(p)(x) = 0 and Kt (x, x)
= (4πt)−d/2, t > 0. Formula (63) can be rewritten in the form

θ (p)(x, t) ≤ (4πt)−d/2
(
d

p

)
F(0, t). (64)

Then

2(p)(t) =

∫
Td
θ (p)(x, t) dx ≤ (4πt)−d/2

(
d

p

)
F(0, t). (65)

Here Td is the d-dimensional torus.
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Example 2 (Hyperbolic space). LetX = Hd . Then R(p)(x) = −p(d−p) and we have,
for t > 0,

θ (p)(x, t) ≤

(
d

p

)
etp(d−p)K(x, x; t)

1
t
E
∫ t

0
W[etfγ (ξx (s))] ds, (66)

where K is the heat kernel on Hd . It is known that the group SL(d,R) acts transitively
on Hd by isometries. Thus, according to Remark 6, the latter estimate takes the form

θ (p)(x, t) ≤

(
d

p

)
etp(d−p)k(t). (67)

4. Von Neumann algebras associated with random Laplacians

In this section, we construct a W ∗ (von Neumann) algebra containing the semigroup

T
(p)
γ,t := e−tH

(p)
γ (68)

and interpret the theta-function 2(p)(t) as its trace. We refer to [34] for general notions
of the theory of von Neumann algebras.

LetUg, g ∈ G, be the action ofG inL2�p(X). It follows from (27) thatH (p)
γ satisfies

the commutation relation

UgH
(p)
γ U−1

g = H
(p)
gγ (69)

for any g ∈ G and γ ∈ 9. Obviously, the semigroup T (p)γ,t and the orthogonal projection

P (p)γ : L2�p(X)→ KerH (p)
γ (70)

satisfy similar relations:

UgT
(p)
γ,t U

−1
g = T

(p)
gγ,t , UgP

(p)
γ U−1

g = P
(p)
gγ . (71)

Remark 7. If H (p)
γ commuted with Ug , g ∈ G, then both T (p)γ,t and P (p)γ would belong

to the commutant Up := {Ug}′g∈G, and we would have the equality

TrU e−tH
(p)
γ =

∫
X/G

trK(p)
γ (x, x; t) dx. (72)

This, however, holds only for γ such that gγ = γ for all g ∈ G. Such γ form a µ-zero
set.
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Let us consider the space

L2
µ�

p := L2(9 ×X→ T ∧pX, dµ⊗ dx) = L2(9, dµ)⊗ L2�p(X). (73)

The diagonal action

9 ×X 3 (γ, x) 7→ g(γ, x) := (gγ, gx) (74)

of G on 9 × X generates the action G 3 g 7→ Ug on the space of forms L2
µ�

p. We
denote by Ap := {Ug}′g∈G ⊂ B(L

2
µ�

p) the commutant of Ug .
Next, we introduce the algebra Cp of µ-essentially bounded maps

A : 9 → B(L2�p(X)) (75)

such that
A(gγ ) = UgA(γ )Ug−1 (76)

for any g ∈ G and γ ∈ 9. The algebra Cp can be naturally identified with a subalgebra
of Ap. Moreover,

Cp = Ap ∩ L∞µ (9 → B(L2�p(X))) (77)

and thus is a W ∗-algebra.
LetA ∈ Cp and, for any γ ∈ 9, denote by aγ (x, y) the integral kernel ofA(γ ). Let us

remark that, because of the commutation relation (76), the kernel aγ (x, y) is G-invariant
in the sense that

agγ (gx, gy) = aγ (x, y) (78)

for all g ∈ G, γ ∈ 9 and x, y ∈ X. The latter relation together with the G-invariance
of the expectation E imply that the function f (x) := E tr aγ (x, x), x ∈ X, is constant on
each orbit of the action of G on X. Therefore it defines a function φa on X/G such that
f (x) = φa(π(x)), where π : X→ X/G is the canonical projection.

Thus we can define the functional

TRA =
∫
X/G

E tr aγ (x, x) dx :=
∫
X/G

φa(x) dx, (79)

where dx is the volume measure of the compact manifold X/G.

Theorem 4. TR is a faithful normal semifinite trace on the W ∗-algebra Cp.

Proof. 1) Let us prove that TR is cyclic, i.e. for any A,B ∈ Cp such that TRAB is finite
we have

TRAB = TRBA. (80)

Assume without loss of generality that A and B are symmetric. Then their integral ker-
nels aγ and bγ satisfy the relations aγ (x, y)+ = aγ (y, x) and bγ (x, y)+ = bγ (y, x)
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respectively, where n+ : TyX→ TxX is the adjoint of an operator n : TxX→ TyX with
respect to the Riemannian structure of X. Then

TRAB =
∫
X/G

E tr
(∫

X

aγ (x, y)bγ (y, x) dy

)
dx

=

∫
X/G

E tr
(∫

X

aγ (x, y)bγ (y, x) dy

)+
dx

=

∫
X/G

E tr
(∫

X

bγ (y, x)
+aγ (x, y)

+ dy

)
dx

=

∫
X/G

E tr
(∫

X

bγ (x, y)aγ (y, x) dy

)
dx = TRBA. (81)

2) Let us show that TR is faithful. Assume that TRA∗A = 0. The integral kernel cγ
of A∗A has the form cγ (x, z) =

∫
X
aγ (y, x)

+aγ (y, z) dy. We have

TRA∗A =
∫
X/G

E tr cγ (x, x) dx =
∫
X/G

φc(x) dx = 0 (82)

(cf. (79)), which implies that φc(x) = 0 for a.a. x ∈ X/G, and consequently E tr cγ (x, x)
= φc(π(x)) = 0 for a.a. x ∈ X. This implies that

|aγ (y, x)|
2 := tr(aγ (y, x)+aγ (y, x)) = 0 (83)

and aγ (y, x) = 0 for almost all γ ∈ 9 and x, y ∈ X. Thus we have A = 0.
3) Let us show that TR is normal. We define the operator

P : A 7→ EA, A ∈ Cp. (84)

Because of G-invariance of µ we have P(A) ∈ Up. It is known that Up has a faithful
normal semifinite trace TrU defined by the formula

TrU B =
∫
X/G

tr b(x, x) dx, (85)

where b is the integral kernel of B ∈ U (see [9], [21]). Thus, for A ∈ Cp, we have
obviously

TRA = TrU P(A). (86)

The normality of TR now follows from the normality of TrU and the lemma below. ut

Lemma 1. The mapping P is normal.

Proof. Let us first show that P is a Schwarz mapping, i.e.

P(A)∗P(A) ≤ P(A∗A) (87)

for all A ∈ Cp. We remark that

‖id⊗ P(A)‖Cp = ‖EA‖ ≤ ess sup ‖A(γ )‖ = ‖A‖Cp . (88)
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Thus id ⊗ P is a projection of norm one [35] from the W ∗-algebra Cp onto its W ∗-
subalgebra 1⊗ Up consisting of the constant maps

9 3 γ 7→ 1⊗ B ∈ 1⊗ Up (89)

(here 1 is the identity operator in the Hilbert spaceL2(9, dµ)), which implies the estimate
(87) (see [35, Th. 1]).

It is known that any Schwarz mapping between W ∗-algebras is continuous in the σ -
weak topology (that is, it is normal) if it is continuous in the strong topology. Moreover,
a stronger statement is true: for Schwarz mappings continuity in the weak topology is
equivalent to continuity in the σ ∗-strong topology (see [33]).

Thus we only need to prove that P is strongly continuous, which follows from the
estimate

‖P(A)f ‖2
L2�p(X)

=

∫
X

|EAγ f (x)|2 dx ≤
∫
X

E|Aγ f (x)|2 dx

=

∫
X

E|Aγ f̃ (γ, x)|2 dx = ‖Af̃ ‖2L2
µ�

p , (90)

where f ∈ L2�p(X) and f̃ ∈ L2
µ�

p, f̃ (γ, x) = f (x). ut

Let us now consider the maps T(p)t : γ 7→ T
(p)
γ,t and P(p) : γ 7→ P

(p)
γ . The commutation

relations (71) imply that T(p)t ,P(p) ∈ Cp.

Theorem 5. 1) For all times t > 0 and any p = 0, . . . , dimX,

TR T(p)t = 2
(p)(t) <∞. (91)

2) For any p = 0, . . . , dimX,
TR P(p) <∞. (92)

3) The following McKean–Singer formula holds for all times t > 0:
dimX∑
p=0

(−1)p TR T(p)t =
dimX∑
p=0

(−1)p TR P(p). (93)

Proof. 1) Formula (91) follows immediately from (79) and Corollary 1.
2) We have obviously

T
(p)
γ,t (I − P

(p)
γ ) = T

(p)
γ,t − P

(p)
γ , (94)

or
T(p)t (I − P(p)) = T(p)t − P(p). (95)

Thus
TR P(p) = TR T(p)t − TR T(p)t (I − P(p)) <∞. (96)

3) Formula (93) follows from the McKean–Singer formula in von Neumann alge-
bras (see [12, (5.1.10)]), applied to the algebra C =

⊕
p Cp and the operators D :=∑

dp, D∗ = U(
∑
(dp)∗γ )U

−1 in
⊕
p L

2
µ�

p (cf. (24)). �

Remark 8. The right-hand side of formula (93) can be understood as a regularized index
of the Dirac operator D +D∗.
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5. Stability of the index

Let us recall the framework of the proof of the third part of Theorem 1 and remark that
the right-hand side of formula (93) can be understood as a regularized index of the Dirac
operator D + D∗ acting in the space L2

µ� :=
⊕
p L

2
µ�

p. We will prove that it depends
neither on the choice of the potential V nor on the measure µ on 9.

We will use the following notations:

• L2
µ� :=

⊕
p L

2
µ�

p,
•
∧
TxX :=

⊕
p T
∧p
x X,

• P : =
∑
p P(p), Pγ :=

∑
p P

(p)
γ ,

• pγ (x, y, t) – the integral kernel of Pγ ,
• Tt : =

∑
p T(p)t , Tγ,t :=

∑
p T

(p)
γ,t ,

• Kγ (x, y; t) – the integral kernel of Tγ,t ,
• Uξx,y ,γ =

∑
p U

(p)
ξx,y ,γ

.

Thus we have pγ (x, y, t), Kγ (x, y, t), Uξx,y ,γ ∈ B(
∧
TxX,

∧
TyX) and P ∈ B(L2

µ�).

Theorem 6.
STR P : =

∑
p

(−1)p Tr P(p) = χ(M), (97)

where χ(M) is the Euler characteristic of M = X/G.

Proof. According to formula (93),

STR P =E
∫
M

strKγ (x, x; t) dx (98)

for any t > 0. Here str denotes the usual matrix supertrace of an operator acting in
∧
TxX.

In particular,

STR P = lim
t→0

E
∫
M

strKγ (x, x; t) dx. (99)

In order to find the latter asymptotics, we will need the probabilistic representation of the
kernel K similar to the one introduced in [18], which is different from (53).

Let zt (s), 0 ≤ s ≤ 1, zt (0) = x, zt (1) = y, be the semiclassical bridge, that is, the
process in X with the time-dependent generator Ht ,

Ht = t1+∇Ys, Ys(x) = −ρ(x, y)
2/(1− s)− tF (x), (100)

where F(x) is determined by the geometry of X. We do not need the explicit form of F .
It is known [18] that, almost surely, zt converges to a geodesic from x to y (as t → 0).

The following formula for the heat kernel holds:

K(p)
γ (x, y; t) = (2πt)−dω(x)−1/2 exp

(
−
ρ(x, y)2

2t

)
×W

[
exp

(
t

∫ 1

0
Veff(zt (s)) ds

)
U
(p)
zt ,γ (1)

]
, (101)
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where Uzt ,γ (s) is the evolution family generated by equation (36) with the process z in-
stead of ξ and the operator tR(p) instead ofR(p). Like F , the potential Veff is determined
entirely by the geometry of X, and we will not use its explicit form (see [18] for more
details). The existence of the family Uzt ,γ can be shown by similar methods to those used
in the previous section.

Remark 9. In general, we have to assume that y is a pole. However, if x /∈ Cut(y), we
can always choose a compact domain D inside X\Cut(y) which contains the shortest
geodesic from x to y and modify X outside D in such a way that y is a pole. This modi-
fication does not affect the short time asymptotics of K(p)

γ (see [18] for more details).

According to formula (53) we have, for t > 0,

strKγ (x, y; t) = (2πt)−dω(x)−1/2 exp
(
−
ρ(x, y)2

2t

)
×W

[
exp

(
t

∫ 1

0
Veff(zt (s)) ds

)
strU (p)zt ,γ (1)

]
. (102)

For any fixed trajectory zt and γ ∈ 9, the operator Ut (s) := (//s)−1Uzt ,γ (s) belongs to
B(
∧
TxX), where //s denotes the parallel translation along zt (s), 0 ≤ s ≤ 1. It satisfies

the equation
d

ds
Ut (s) = tUt (s) ◦ (R(s)+W(s)), (103)

where
R(s) = (//s)−1

∑
p

R(p)(zt (s)), (104)

W(s) = (//s)
−1
∑
p

W (p)
γ (zt (s)). (105)

Then
Ut (1) = id+ Z1 + · · · + Zl +O(t

l+1), (106)
where

Zl = t
l

∫ 1

0
. . .

∫ s2

0
S(sl) ◦ · · · ◦ S(s2) ◦ S(s1) ds1 ds2 . . . dsl,

S = R+W.

(107)

Obviously

strUt (1) =
n/2∑
l=1

t l strZl +O(t), (108)

and

strKγ (x, x; t) =
n/2−1∑
l=1

t l−n/2 strZl + strZn/2 +O(t), (109)

because
str(Uzt ,γ (1)− Ut (1)) = O(t) (110)

(see [18]).
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The following result is well-known (see e.g. [13]).

Proposition 1. Let V be a d-dimensional vector space, fix an orthonormal basis (ek)
in V , and let ak be the corresponding annihilation operators on the exterior algebra

∧
V

of V . Then:

1) any operator A ∈ B(
∧
V ) can be uniquely represented in the form

A =
∑

I,J⊂(1,...,d)

AIJ (a
I )∗aJ , (111)

where aI =
∏
i∈I a

i , and

strA = (−1)dA(1,...,d)(1,...,d) (112)

(Berezin–Patodi formula);
2) for any B ∈ B(V ) given by the matrix (Bij ) we have∧

B =
∑
i,j

Bij (a
i)∗aj , (113)

where
∧
B :=

∑
p B
∧p.

It follows from (21), (113) and the well-known representation of the Weitzenböck
term R(p) in terms of creation-annihilation operators (see e.g. [13]) that

R(s)+W(s) = Rijkl(s)(a
i)∗aj (ak)∗al + Eij (s)(a

i)∗aj + e(s)id (114)

for some coefficients Rijkl(s), Eij (s) and e(s). The basis which defines the creation-
annihilation operators (ai)∗, aj can be chosen arbitrarily in TxX and then transported
to Tzt (s)X by parallel translation along zt (s).

It is clear from (112) that

strZl =

{
0, l < d/2,

str Z̃d/2, l = d/2,
(115)

where Z̃ is defined by (107) with W = 0. Thus the potential W just does not have any
influence on the leading term of the decomposition (109). Therefore

strKγ (x, x; t) = str K̃(x, x; t)+O(t), (116)

where K̃ is the heat kernel on X, and consequently

STR P = E
∫
M

strKγ (x, x, t) dx =
∫
M

str K̃(x, x, t) dx = χ(M). (117)

The latter equality follows from the index theorem for coverings (see [9]). ut

Theorem 6 gives us a possibility to study the spaces of harmonic forms of individual
operators Hγ . We have the following result.
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Theorem 7. Assume that the action of G on 9 is ergodic, and let χ(M) 6= 0. Then

dim KerHγ = ∞ for µ-a.a. γ ∈ 9. (118)

Proof. Consider the integral kernel pγ (x, y) of the operator Pγ . Then, for any g ∈ G,

pγ (gx, gx) = pg−1γ (x, x), (119)

and thus the function

F(γ ) := dim KerHγ = Tr Pγ =
∫
X

trpγ (x, x) dx (120)

is G-invariant. Because of the ergodicity of the action of G on 9 we have

F(γ ) = C (121)

for some constant C. On the other hand,

F(γ ) =
∑
g∈G

∫
gX̃

trpγ (x, x) dx =
∑
g∈G

∫
X̃

trpg−1γ (x, x) dx, (122)

where X̃ is a fundamental domain of the action of G on X. Then

C = E
∫
X

trpγ (x, x) dx =
∑
g∈G

∫
X̃

E trpg−1γ (x, x) dx =
∑
g∈G

∫
X̃

E trpγ (x, x) dx

≥

∑
g∈G

STR P =
∑
g∈G

χ(M) = ∞, (123)

because G is infinite and χ(M) 6= 0. ut

6. Examples

6.1. Gases

We will consider the situation where 9 = 0X, the space of locally finite configurations
in X.

6.1.1. Configuration spaces and measures. The configuration space 0X over X is de-
fined as the set of all locally finite subsets (configurations) in X:

0X := {γ ⊂ X : |γ ∩3| <∞ for each compact 3 ⊂ X}. (124)

Here, |A| denotes the cardinality of a set A.
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We can identify any γ ∈ 0X with the positive, integer-valued Radon measure∑
x∈γ

εx ∈M(X), (125)

where εx is the Dirac measure with mass at x,
∑
x∈∅ εx := zero measure, and M(X)

denotes the set of all positive Radon measures on the Borel σ -algebra of X. The space
0X is endowed with the relative topology as a subset of the space M(X) with the vague
topology, i.e., the weakest topology on 0X with respect to which all maps

0X 3 γ 7→ 〈f, γ 〉 :=
∫
X

f (x) γ (dx) ≡
∑
x∈γ

f (x) (126)

are continuous. Here, f ∈ C0(X) (:= the set of all continuous functions on X with com-
pact support).

The action of G on X can be lifted to a diagonal action on 0X:

0X 3 γ = {. . . , x, y, z, . . .} 7→ gγ = {. . . , gx, gy, gz, . . .} ∈ 0X, g ∈ G. (127)

Let µ be a Gibbs measure on 0X (see Appendix). We assume that:

(i) µ satisfies the Ruelle bound, that is,

|k(n)µ | ≤ a
n (128)

for some constant a, where k(n)µ is the n-th correlation function of µ;
(ii) µ is invariant with respect to to the G-action (127).

A class of Gibbs measures with these properties is described in the Appendix (see Re-
mark 10).

6.1.2. Probabilistic representations of Laplacians. Let v ∈ C2
0(R) with supp v ⊂

[−r, r],where r > 0 is the injectivity radius ofX, and define the function V : X×X→ R
by

V (x, y) = v(ρ(x, y)), x, y ∈ X, (129)

where ρ is the Riemannian distance on X. Let

Eγ (x) =
∑
y∈γ

V (x, y), (130)

and consider the Witten Laplacian

H (p)
γ = 1(p) + R(p) +W (p)

γ (131)

(cf. (35)).

Theorem 8. The operator H (p)
γ satisfies the conditions of Theorem 1.

Proof. Choose a function F : X ×X→ R which satisfies the following conditions:

1) F is bounded, and for some r ∈ R and any x ∈ X, suppF(x, ·) ⊂ B(x, r), where
B(x, r) is the ball of radius r centered at x;



Random Witten Laplacians 591

2) the function
fγ (x) := 〈F(x, ·), γ 〉 =

∑
y∈γ

F(x, y) (132)

satisfies the estimate
−(W (p)

γ (x)h, h) ≤ fγ (x)‖h‖
2 (133)

for any γ ∈ 0X, x ∈ X and h ∈ (TxX)∧p.

Such an F always exists: for instance, we can set

F(x, y) := −1xV (x, y)+ ‖(∇2
xV (x, y))

∧p
‖B(TxX∧p). (134)

The following result is general.

Lemma 2. Assume that F satisfies condition 1). Then, for all t > 0, the estimate (39)
holds, that is,

sup
z∈X

E etf (z) <∞. (135)

The lemma together with condition 2) imply the result. �

Corollary 2. All results of the previous sections can be applied to the operator H (p)
γ .

Proof of Lemma 2. For any measurable function g on X with compact support, the
Laplace transform of µ has the form∫

0X

et〈g,γ 〉 µ(dγ )

= 1+
∞∑
n=1

1
n!

∫
Xn
(etg(y1) − 1) . . . (etg(yn) − 1)k(n)µ (y1, . . . , yn) dy1 . . . dyn, (136)

which follows from formula (172) in the Appendix. Here k(n)µ is the n-th correlation func-
tion of µ. According to the Ruelle bound (128),∫

0X

et〈g,γ 〉 µ(dγ ) ≤ exp
(
a

∫
X

(etg(y) − 1) dy
)
. (137)

The right-hand side is finite because g has compact support. Thus

E etF (z) =
∫
0X

etfγ (z) µ(dγ ) ≤ exp
(
a

∫
X

(etF (z,y) − 1) dy
)
<∞. (138)

Moreover, for any z ∈ X,∫
X

(etF (z,y) − 1) dy =
∫
B(z,r)

(etF (z,y) − 1) dy

≤ max
y,z∈X

(volB(z, r)|etF (z,y) − 1|) =: C(t) <∞. (139)

This implies the estimate
E etf (z) ≤ eaC(t) (140)

for any z ∈ X. �
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6.2. Crystals

Another type of examples can be constructed in the following way. Let 9 = X be the
infinite product of identical copies Xg, g ∈ G, of the manifold X:

X = XG :=
∏
g∈G

Xg 3 ξ = (ξg)g∈G, ξg ∈ X. (141)

X is endowed with the product topology and the corresponding Borel σ -algebra Bor(X).
Let µ be a translation invariant probability measure on X. That is, µ is invariant with
respect to the following action T of G:

Tg′(ξg)g∈G = (ξg′g)g∈G, g′ ∈ G. (142)

We define the random field E on the probability space (X,Bor(X), µ) in the following
way:

Eξ (x) =
∑
g∈G

V (x, gξg), (143)

where V is given by formula (129), and consider the corresponding Witten Laplacian
H
(p)

ξ
.

Let F(X2) be the set of all bounded functions F : X ×X→ R such that

suppF(x, ·) ⊂ B(x, r) (144)

for some r ∈ R and any x ∈ X, and set

fξ (x) :=
∑
g∈G

F(x, gξg). (145)

Let us assume that the measure µ satisfies the following condition:

(C) for any F ∈ F(X2),

sup
z∈X

E etf (z) <∞ for all t > 0. (146)

Theorem 9. The operator H (p)

ξ
satisfies the conditions of Theorem 1.

Proof. The proof is quite similar to the proof of Theorem 8. Choose F : X × X → R
which satisfies (144) and

−(W
(p)

ξ
(x)h, h) ≤ fξ (x)‖h‖

2 (147)

for any ξ ∈ X, x ∈ X and h ∈ (TxX)∧p. As in the proof of Theorem 8, we can set

F(x, y) := −1xV (x, y)+ ‖(∇2
xV (x, y))

∧p
‖B(TxX∧p). (148)

The statement of the theorem now follows from (146). �

Corollary 3. All results of the previous sections can be applied to the operator H (p)

ξ
.

We will consider two examples of measures which satisfy the above condition (C): the
product measures and Gibbs measures with compact support.
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6.2.1. Product measures. Let us consider a probability measure

ν(dξ) = φ(ξ)dξ (149)

on X and define
µ(dξ) :=

⊗
g∈G

ν(dξg). (150)

Lemma 3. µ satisfies condition (C).

Proof. We have

F(z, t) :=
∫
XG
e
tfξ (z) µ(dξ) =

∏
g∈G

∫
X

etF (z,gξ) ν(dξ)

=

∏
g∈G

∫
X

1+ (etF (z,gξ) − 1) ν(dξ)

=

∏
g∈G

(
1+

∫
X

(etF (z,gξ) − 1) ν(dξ)
)
, (151)

and ∑
g∈G

∫
gB(z,r)

(etF (z,gξ) − 1) ν(dξ) ≤ c
∑
g∈G

ν(gB(z, r)). (152)

Let us prove that the right-hand side is finite. Let X̃ be a fundamental domain of the action
of G on X, and let

Gz = {g ∈ G : B(z, r) ∩ gX̃ 6= ∅}. (153)

Set N = |Gz| (obviously N <∞). Then∑
g∈G

ν(gB(z, r)) ≤
∑
g∈G

ν
( ⋃
f∈Gz

gf X̃
)
≤

∑
f∈Gz

∑
g∈G

ν(gf X̃)

=

∑
f∈Gz

ν
(⋃
g∈G

gf X̃
)
=

∑
f∈Gz

ν(X) = N. (154)

Thus
F(z, t) <∞ (155)

uniformly in z. �

6.2.2. Gibbs measures. Let G be the collection of all finite subsets of G and denote by
G(g) the family of all sets3 ∈ G containing g ∈ G. Let us consider a family of potentials
U = (U3)3∈G , U3 ∈ C(X3), satisfying the condition∑

3∈G(g)
sup
x∈X
|U3(x)| <∞, g ∈ G. (156)

Let µ be the Gibbs measure on X defined by the family U and the reference measure

v(dξ) :=
⊗
g∈G

ν(dξg), (157)
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where ν is a probability measure on X. Heuristically µ can be given by the expression

µ(dξ) =
1
Z
e−E(ξ)v(dξ), E(ξ) =

∑
3∈G

U3(ξ). (158)

We refer to the Appendix for the general definition of Gibbs measures on X.
We assume that the following conditions hold:

(M1) µ isG-invariant (for this, it is sufficient to assume that the family U isG-invariant,
that is, Ug3(gx) = U3(x) for all g ∈ G, 3 ∈ G, x ∈ X);

(M2) ν has compact support (this, together with (156), guarantees the existence of µ, and
will also be needed as a technical condition in what follows).

For a compact set K ⊂ X, defineGK ⊂ G as the set of all g ∈ G such that gX̃ ∩K 6= ∅.
Let us remark that GK is finite. We set

XK :=
⋃
g∈GK

gX̃. (159)

Lemma 4. µ satisfies condition (C).

Proof. Let S = suppµ. Assume without loss of generality that z ∈ X̃ and denote byU(r)
the r-neighborhood of X̃. We have

F(z, t) :=
∫
XG

exp tfξ (z) µ(dξ) =
∫
XG

exp t
∑
g

F(z, gξg) µ(dξ)

=

∫
SG

exp t
∑
g

F(z, gξg) µ(dξ) =

∫
SG

exp t
∑
g∈G̃

F(z, gξg) µ(dξ), (160)

where

G̃ = {g ∈ G : XU(r) ∩ gXS 6= ∅}. (161)

We have obviously

N := |G̃| ≤ |XU(r)| · |XS |. (162)

Then

F(z, t) ≤
∫
SG
etN supφ µ(dξ) = etN supφ . (163)

�
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7. Appendix: Gibbs measures

7.1. Gibbs measures on configuration spaces

Here we briefly discuss the definition and some properties of Gibbs measures on 0X,
associated with pair potentials. For a detailed exposition see e.g. [7].

A pair potential is a measurable symmetric function φ : X × X → R ∪ {+∞}. We
will also suppose that φ(x, y) ∈ R for x 6= y. For a compact set 3 ⊂ X, the conditional
energy Eφ3 : 0X → R ∪ {+∞} is defined by

E
φ
3(γ ) :=

{ ∑
{x,y}⊂γ, {x,y}∩36=∅

φ(x, y) if
∑

{x,y}⊂γ, {x,y}∩36=∅

|φ(x, y)| <∞,

+∞ otherwise.
(164)

Given3, we define for γ ∈ 0 and1 ∈ Bor(0X) (the Borel σ -algebra of 0X) the function

5
z,φ
3 (γ,1) := 1

{Z
z,φ
3 <∞}

(γ ) [Zz,φ3 (γ )]−1 (165)

×

∫
0X

11(γ3c + γ ′3) exp[−Eφ3(γ3c + γ
′
3)]πz(dγ

′),

where
Z
z,φ
3 (γ ):=

∫
0X

exp[−Eφ3(γ3c + γ
′
3)]πz(dγ

′). (166)

A probability measure µ on (0X,Bor(0X)) is called a grand canonical Gibbs mea-
sure with interaction potential φ if it satisfies the Dobrushin–Lanford–Ruelle equation∫

0X

5
z,φ
3 (γ,1)µ(dγ ) = µ(1) (167)

for all compact subsets 3 ⊂ X and 1 ∈ Bor(0X). Let G(z, φ) denote the set of all such
probability measures µ.

It can be shown [23] that the unique grand canonical Gibbs measure corresponding to
the free case, φ = 0, is the Poisson measure πz.

We suppose that the interaction potential φ satisfies the following conditions:

(S) (Stability) There exists B ≥ 0 such that, for any compact3 ⊂ X and for all γ ∈ 03,

E
φ
3(γ ):=

∑
{x,y}⊂γ

φ(x, y) ≥ −B|γ |. (168)

(I) (Integrability) We have

C := ess sup
x∈X

∫
X

|e−φ(x,y) − 1| dy <∞. (169)

(F) (Finite range) There exists R > 0 such that

φ(x, y) = 0 if ρ(x, y) ≥ R. (170)
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Theorem 10 ([24–26]).

(1) Assume that (S), (I), and (F) hold, and let z > 0 be such that

z <
1
2e
(e2BC)−1, (171)

where B and C are as in (S) and (I), respectively. Then, there exists a Gibbs measure
µ ∈ G(z, φ) such that for any n ∈ N and any measurable symmetric function f (n) :
Xn→ [0,∞], we have∫

0X

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn) µ(dγ )

=
1
n!

∫
(Rd )n

f (n)(x1, . . . , xn)k
(n)
µ (x1, . . . , xn) dx1 · · · dxn, (172)

where k(n)µ is a non-negative measurable symmetric function on (Rd)n, called the
n-th correlation function of the measure µ, and this function satisfies the following
estimate

∀(x1, . . . , xn) ∈ (Rd)n : k(n)µ (x1, . . . , xn) ≤ a
n, (173)

where a > 0 is independent of n (the Ruelle bound).
(2) Let φ be a non-negative potential which satisfies (I) and (F). Then, for each z > 0,

there exists a Gibbs measure µ ∈ G(z, φ) such that the correlation functions k(n)µ of
the measure µ satisfy the Ruelle bound (173).

Remark 10. Let us assume that the potential φ(x, y) has the form

φ(x, y) = 8(ρ(x, y)) (174)

and 8 ∈ C2(R+ → R+) is such that supp8 ⊂ [0, r], where r > 0 is the injectivity
radius ofX. Then conditions (S), (I) and (F) are satisfied. Thus, under the condition (171),
the corresponding measure µ exists and satisfies conditions (i), (ii) of Section 6.1.1.

For X = Rd , the existence of Gibbs measures satisfying the Ruelle bound is known
for arbitrary z > 0 under the additional conditions of superstability and lower regular-
ity (Ruelle measures [32]). We present two classical examples of potentials φ(x, y) =
8(x − y) satisfying these conditions.

Example 1 (Lennard–Jones type potentials). 8 ∈ C2(Rd \ {0}), 8 ≥ 0 on Rd , 8(x) =
c|x|−α for x ∈ B(r1), 8(x) = 0 for x ∈ B(r2)c, where c > 0, α > 0, 0 < r1 < r2 <∞.

Example 2 (Lennard–Jones 6-12 potentials). d = 3, 8(x) = c(|x|−12
− |x|−6), c > 0.
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7.2. Gibbs measures on product manifolds

Let us recall the definition of the Gibbs measure on the Borel σ -algebra Bor(X), associ-
ated with U . For any 3 ∈ G we introduce the energy of the interaction in the volume 3
with fixed boundary condition ξ ∈ X as

V3(x3|ξ) =
∑

3
′
∩36=∅

U
3
′ (y), (175)

where y = (x3, ξ3c ) ∈ X, 3c = Zd \3. We define the Gibbs measure in the volume 3
with boundary condition ξ as the following measure on Bor(X3):

dµ3(x3|ξ) =
1

Z3(ξ)
e−V3(x3|ξ) dx3, (176)

where dx =
⊗

k∈3 dxk is the product of the Riemannian volume measures dxk on Xk
and

Z3(ξ) =

∫
M3

e−V3(x3|ξ) dx3. (177)

These measures are well-defined for any finite volume 3 and all boundary conditions
ξ ∈ X.

Bor(X) is called a Gibbs measure (for given U) if∫
E3f dµ =

∫
f dµ (178)

for each 3 ∈ G and any continuous cylinder function f on X, where

(E3f )(ξ) =
∫
f (x3, ξ3c ) dµ3(x3|ξ). (179)

Remark 11. Condition (178) is equivalent to the assumption that µ3(·|ξ) is the condi-
tional measure associated with µ under the condition ξ3c .

Remark 12. Heuristically µ can be given by the expression

dµ(x) =
1
Z
e−E(x) dx, E(x) =

∑
3∈G

U3(x), (180)

where dx =
⊗

k dxk is the product of the Riemannian volume measures on Xk.

Let Gibbs(U) be the family of all such Gibbs measures. If X is compact, Gibbs(U) is
non-empty under the condition (156) (see e.g. [23], [20]).
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