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Abstract. We develop a new combinatorial method to deal with a degree estimate for subalgebras
generated by two elements in different environments. We obtain a lower bound for the degree of
the elements in two-generated subalgebras of a free associative algebra over a field of zero charac-
teristic. We also reproduce a somewhat refined degree estimate of Shestakov and Umirbaev for the
polynomial algebra, which plays an essential role in the recent celebrated solution of the Nagata
conjecture and the strong Nagata conjecture.

Keywords. Degree estimate, two-generated subalgebras, polynomial algebras, free associative al-
gebras, commutators, Jacobians

1. Introduction and main results

Suppose A is an algebra on which a degree function with the usual properties is defined.
Let B be a subalgebra of A which is generated by two elements f and g.

The question of what are the possible degrees for the elements of B seems to be both
natural and interesting. To be more specific, regarding P ∈ B as a polynomial in f and g,
what can we say about the degree of P(f, g) in terms of the degrees of P relative to f
and g? It is rather clear that the upper bound for the degree of P(f, g) can be easily found,
but is it possible to find a meaningful lower bound?

The question is motivated by a result in [13] where a lower bound is discovered when
A is a polynomial ring over a field of zero characteristic, and f, g are algebraically
independent. This result plays a crucial role in the recent celebrated solution of the Nagata
conjecture [14] and the strong Nagata conjecture [17].

The cases when f and g are algebraically dependent and algebraically independent
are apparently quite different. Say, even when A is a polynomial algebra in one vari-
able (then, of course f and g are algebraically dependent) there is no useful estimate
known to us of the smallest degree of non-constant polynomials in B, and this question is
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very interesting indeed. For instance the well-known AMS Theorem (Abhyankar’s high-
school lemma, [1, 16]), is equivalent to the statement that when this degree is one, then
min{deg(f ), deg(g)} divides max{deg(f ), deg(g)}.

The degree estimate in [13] depends linearly on degf (P ) and it seems that with the
right assumptions this should be so in far greater generality. We replace degf (P ) by the
“weighted degree” of P . As the reader will see it is more natural to use the weighted
degree instead of the degree relative to f . In this paper we develop a new combinatorial
method based on the Lemma on radicals (below), which can be used in different envi-
ronments. In particular, by this method we obtain a sharp degree estimate for the “free”
case, namely when A is either a free associative algebra or a polynomial algebra over a
field of zero characteristic. For the free associative algebra our degree estimate is new.
For the polynomial case we reproduce the degree estimate of Shestakov and Umirbaev
(see [13]) with some improvement.

We are going to treat both cases more or less in parallel. In order to formulate the
results let us introduce necessary notions and notations. Below A stands for either a poly-
nomial algebra or a free associative algebra.

From our discussion above it is clear that for the polynomial case it is essential to
assume that f and g are algebraically independent. We also want to assume something
similar for the free case. So let us call two elements of a free algebra algebraically in-
dependent if the subalgebra generated by these two elements is a free algebra of rank
two. Otherwise we will call them algebraically dependent. (We remind the reader that
when two elements of a free associative algebra are algebraically dependent, then they
commute and even belong to a subalgebra which is isomorphic to a free algebra of rank
one, or in other words to a polynomial algebra in one variable; see [2].) Let us denote
by deg(a) the homogeneous (total) degree of an element a ∈ A and by a+ the highest
homogeneous form of a. Let B be an algebra of rank two (either polynomial or free) with
generators u and v. Let us denote by degu(b) and degv(b) the degree of b ∈ B relative to
u and v respectively. If we assign weights ρ and σ to u and v respectively we can define a
weighted degree function wρ,σ on B as follows. If µ ∈ B is a monomial then wρ,σ (µ) =
ρ degu(µ) + σ degv(µ) and wρ,σ (b) = max(wρ,σ (µ)) over all monomials µ appearing
in b with a non-zero coefficient. (In this notation degu = deg1,0 and degv = deg0,1.) It
is clear that wdeg(f ),deg(g)(P ) gives an upper bound for deg(P (f, g)). Of course, if f+

and g+ are algebraically independent then deg(P (f, g)) = wdeg(f ),deg(g)(P ).
Finally, let [f, g] = fg − gf denote the commutator of the elements f, g ∈ A (free

case) and let

df ∧ dg =
∑(

∂f

∂xi

∂g

∂xj
−
∂f

∂xj

∂g

∂xi

)
dxi ∧ dxj

denote the corresponding differential 2-form (commutative case).
Here is our main result:

Theorem 1.1. LetA = F 〈x1, . . . , xk〉 be a free associative algebra over a field F of zero
characteristic and let f, g ∈ A be algebraically independent. Suppose that f+ and g+ are
algebraically dependent and neither deg(f ) divides deg(g) nor deg(g) divides deg(f ).
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Then for any P ∈ F 〈x, y〉 we have

deg(P (f, g)) ≥ D(f, g)wdeg(f ),deg(g)(P ) where D(f, g) =
deg([f, g])

deg(fg)
.

We also reproduce the degree estimate obtained in [13].

Proposition 1.2. Let A = F [x1, . . . , xk] be a polynomial algebra over a field F of zero
characteristic, f, g ∈ A be algebraically independent, and P ∈ F [x, y]. Then

deg(P (f, g)) ≥ D(f, g)wdeg(f ),deg(g)(P )

where

D(f, g) =

[
1−

(deg(f ), deg(g))(deg(fg)− deg(df ∧ dg))
deg(f ) deg(g)

]
.

Here (deg(f ), deg(g)) is the greatest common divisor of deg(f ) and deg(g), and
deg(df ∧dg) is the degree of the differential form df ∧dg, i.e. it is 2 plus the largest of the
degrees of the 2 by 2 minors of the Jacobi matrix of f and g with respect to x1, . . . , xk .

Remark 1.3. 1) Both estimates are sharp. Indeed, take two relatively prime natural num-
bers m and n and consider f = xn and g = xm+ y. Let P(f, g) = [f, g] in the free case
and P(f, g) = gn − fm in the polynomial case. For these polynomials both estimates
become equalities.

2) The estimate in [13] follows from the estimate of Proposition 1.2 since P(f, g)
contains a monomial f deg1(P )gj where j ≥ 0; hence

wdeg(f ),deg(g)(P (f, g)) ≥ deg1(P ) deg(f );

replacing wdeg(f ),deg(g)(P ) by deg1(P ) deg(f ) one gets the estimate from [13]. Also in
[13] it is required that (f, g) is a so-called ∗-pair, i.e. neither f+ is a power of g+ nor g+

is a power of f+, which we do not need in Proposition 1.2. So the estimate obtained in
Proposition 1.2 can be viewed as a refinement of the estimate in [13]. In the free case we
do require that (f, g) is a ∗-pair (our non-divisibility condition), and the example f = x,
g = xm + y, and P = g − fm shows that this condition is essential: 1 < 2

m+1m. See the
explanation in Remark 3.2.

3) Both in Theorem 1.1 and in Proposition 1.2 the homogeneous degree can be re-
placed by a weighted degree defined by w(xi) = ni where ni are positive integers. To
obtain the corresponding formulae just substitute ynii in place of xi and then use the esti-
mates for the homogeneous degree function.

4) It seems natural to include into considerations the case when A is a free Lie al-
gebra. Unfortunately in this case as well as in the case of any free algebra A with the
Nielsen–Schreier property (any subalgebra of A is free) algebraic independence of f
and g implies that f+ and g+ are either algebraically independent or linearly depen-
dent. See, for instance, Theorem 11.1.1, p. 195 in [9]. So we can always assume that f+

and g+ are algebraically independent and then deg(P (f, g)) = wdeg(f ),deg(g)(P ), i.e. no
reduction in degree is possible.
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2. Reduction by Lemma on radicals

As the first step we extend the algebra A to the algebra A of Mal’tsev–Neumann power
series.

Here is the definition of the latter. LetG be a linearly ordered group (of course the or-
der should agree with the group operations).A is defined as the set of all sums

∑
g∈1 cgg

where g ∈ G, cg ∈ F \0, and1 is a well-ordered subset ofG. Both addition and multipli-
cation are naturally defined though it requires some effort to prove that the multiplication
is well-defined.

These algebras were introduced by Mal’tsev and Neumann [8, 11] in order to show
that the group algebra of a free group can be embedded into a division ring. (This was a
question raised by Moufang in [10].)

In our context it is more convenient to have 1 well-ordered relative to the opposite
order; that is, any non-empty subset of 1 should have a largest element.

Let us start with polynomial algebras. In this case we take asG the free abelian group
G on generators x1, . . . , xk . The total degree can be defined on the elements of G and it
gives a partial order on G. This partial order can be refined to a linear order on G, say by
adding lexicographic order x1 >> · · · >> xk > 1.

For a free associative algebra take the free group G on generators x1, . . . , xk . The
total degree can be defined on the elements ofG and again it gives a partial order onG. It
is possible to refine this partial order (in many different ways) to a linear order on G (so
that the order agrees with the group operations), but the description of these orders is too
involved, and the interested reader should consult [12, 15] for details.

The algebra A has a valuation |a| = max{g ∈ 1(a)}, where 1(a) is the support
of a, i.e. the set of all g appearing in a with non-zero coefficients. Let v(a) = cgg where
g = |a| ∈ G and c = cg ∈ F is the coefficient of g in a.

The Mal’tsev–Neumann algebras ([8, 11]) are, as mentioned, division algebras which
satisfy the following

Lemma on radicals. If a ∈ A and the monomial v(a) has a root: v(a) = (cg1)
k where

c ∈ F and g1 ∈ G, then there exists an α ∈ A such that a = αk if k is not divisible by the
characteristic of F .

This can be shown using “approximations” relative to the valuation function onA. See [3,
4, 6] for a proof. The proof is similar to the proofs given in [5, 8, 11] that A is a division
ring, that is, for every non-zero element of A there exists a root of degree −1. See also
[7] where further applications of this technique are given.

In caseA is a polynomial algebra, the lemma can be deduced from Newton’s binomial
theorem for general degree.

Let us return to f and g which we now consider as elements of A. Put v(f ) =
c1h1 and v(g) = c2h2 where ci ∈ F and hi ∈ G. We can assume without loss of
generality that c1 = c2 = 1 since we can multiply f and g by non-zero elements of F .
If h1 and h2 are algebraically independent then deg(P (f, g)) = wdeg(f ),deg(g)(P ) since
v(f i1gj1 . . . f ikgjk ) = v(f i1)v(gj1) . . . v(f ik )v(gjk ) by the definition of v. Also then
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deg([f, g]) = deg(fg) in the free case and deg(df ∧ dg) = deg(fg) in the commutative
case, and D(f, g) = 1 in both cases.

So from now on let us assume that h1 and h2 are algebraically dependent. Any sub-
group of a free group (free abelian group) is free, therefore the subgroup generated by h1
and h2 is a free group of rank 1 and is generated by one element, say h. Since h can be
replaced by h−1 we can assume that h > 1. Let us also assume that h is an element of G
without root. (Clearly in our situation any element of G has maximal possible root.) So
h1 = h

q and h2 = h
p for some integers p and q. Both v(f ) > 1 and v(g) > 1, so p and

q are natural numbers.
If F has zero characteristic, then by the lemma on radicals we can put f = τ q . Then

g = τp + g1 where v(g1) < v(g). If v(g1) and v(f ) are algebraically dependent then
v(g1) = c1h

p1 where p1 < p, g1 = c1τ
p1 + g2 where v(g2) < v(g1) and so on. By

repeating these steps we either obtain g =
∑p
i=l ciτ

i
+ s, ci ∈ F , where v(f ) and v(s)

are algebraically independent, or never stop.

Lemma on steps. The process above will stop after a finite number of steps.

Proof. After k steps we will obtain g =
∑p
i=k ciτ

i
+ gk where v(gk) < hk . Now, in the

free case [f, g] = [f, gk] since [f, τ i] = [τ q , τ i] = 0. Similarly in the commutative case
take derivations ∂i on A which are given by ∂i(xj ) = δi,j (where δi,j is the Kronecker
delta). Then ∂i(f )∂j (g)−∂j (f )∂i(g) = ∂i(f )∂j (gk)−∂j (f )∂i(gk) by elementary calculus
rules. But deg([a, b]) ≤ deg(ab), or deg(∂i(a)∂j (b) − ∂j (a)∂i(b)) ≤ deg(ab) − 2, for
any a, b in the corresponding A. So deg(gk) ≥ deg([f, g]) − deg(f ), or deg(gk) ≥
deg(df ∧ dg) − deg(f ) accordingly. Since in our setting deg(τ ) = deg(h) > 0 and
deg(τ k) = k deg(τ ) we conclude that k is bounded away from −∞. This proves the
lemma.

From this lemma we see that it is possible to write g =
∑p
i=l ciτ

i
+ s where v(f )

and v(s) are algebraically independent.
Now we can find deg(s). Indeed, in the free case [f, g] = [f, s] and deg([f, s]) =

deg(f ) + deg(s) since v(f ) and v(s) are algebraically independent. So deg(s) =
deg([f, g])− deg(f ).

Similarly in the commutative case ∂i(f )∂j (g)−∂j (f )∂i(g)=∂i(f )∂j (s)−∂j (f )∂i(s).
It is also clear that if ∂i(v(f ))∂j (v(s))− ∂j (v(f ))∂i(v(s)) = 0 for all i, j then v(f ) and
v(s) are algebraically dependent. Since that is not the case, at least one of these minors is
not equal to zero and deg(s) = deg(df ∧ dg)− deg(f ).

Let us remark that in both cases deg(s) ≤ deg(g).
Consider the subalgebraC ofAwhich is generated by τ , τ−1, and s. Clearly f, g ∈ C.

Take the weighted degree function w1,p on C given by w1,p(τ ) = 1, w1,p(s) = p. (It is
defined exactly as the weighted degree function on a free algebra.) Let ã be the leading
form of an element a ∈ C relative tow1,p. Thenw1,p(f ) = q,w1,p(g) = p, and f̃ = τ q ,
g̃ = τp + s.

Take now any polynomial P(x, y) where x and y are independent variables. It
can be written as P(x, y) = P(x, y) + P1(x, y) where P(x, y) is q, p-homogeneous,
wq,p(P (x, y)) = wq,p(P (x, y)), and wq,p(P1(x, y)) < wq,p(P (x, y)). (P(x, y) is the
leading form of P(x, y) relative to wq,p.)
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Lemma on degree. Let deg be the homogeneous degree on A. Then deg(P (f, g)) ≥
deg(P (f̃ , g̃)) for any polynomial P .

Proof. Represent P(f, g) as above: P(f, g) = P(f, g) + P1(f, g). Let P(f, g) =
Q(τ, τ−1, s), P1(f, g) = Q1(τ, τ

−1, s), and P(f̃ , g̃) = R(τ, s). Since v(τ) = h and
v(s) are algebraically independent elements of G, for any polynomial S(τ, τ−1, s) its
deg(S(τ, τ−1, s)) is the maximum of the degrees of the monomials in s, τ , and τ−1 ap-
pearing in S with non-zero coefficients. Of course, in order to compute deg(S(τ, τ−1, s))

we should substitute expressions of s and τ as elements of A. It is clear that w1,p(m) ≤
wq,p(P1(f, g)) for any monomial m appearing in Q1 with non-zero coefficient. It is also
clear that P(f, g) = P(f̃ , g̃) + r(τ, τ−1, s) where w1,p(r) < wq,p(P ). Therefore all
monomials of R appear in Q with non-zero coefficients, which proves the lemma.

Now in order to obtain an estimate of deg(P (f, g)) we can replace P by P which
is uniquely determined by deg(f ) and deg(g), and further replace f and g by f̃ and g̃
which are uniquely determined by v(f ), v(g), and v([f, g]) or v(f ∧ g).

We have reduced our main problem to the following question.
Take f = τp, g = τ q + s where τ and s generate either a free associative or a

polynomial algebra of rank two. Estimate deg(P (f, g)) provided:

• the polynomial P is n,m-homogeneous;
• deg(τ ) = n/p = m/q, deg(s) ≤ deg(g);
• on the algebra generated by τ and s, the degree deg is given by wdeg(τ ),deg(s).

Let us introduce te = τ where e = n/p. Then f = tn, g = tm + s. We replaced τ
by t since it is more convenient for further computations to have degt (f ) = deg(f ),
degt (g) = deg(g), and deg(t) = 1.

From now on we assume that f = tn and g = tm + s and that P(f, g) is n,m-
homogeneous.

3. Degree estimate for free associative algebras

In this section F 〈t, s〉 is a free algebra of rank two. In view of the hypothesis of Theorem
1.1 we assume that m > n and that n does not divide m.

Lemma on monomials. Assume wn,m(P (f, g)) = N . Let q be the integral part of
N/(n+m). Then Q(t, s) = P(tn, tm + s) contains a monomial µ with degs(µ) ≤ q.

Proof. Let µ be a monomial of P(f, g) which is determined by the following two prop-
erties:

• J = degg(µ) is the largest possible.
• Among the monomials of P(f, g) with degg equal to J , µ is the largest in the lexico-

graphic ordering given by f >> g.



Degree estimate for subalgebras 539

If J ≤ q our claim is obviously correct since degs for all monomials of Q(t, s) is at
most J . So assume that J > q. Let I = degf (µ). Since P(f, g) is n,m-homogeneous,
nI +mJ = N . If I + J > 2q + 1 then

N = nI +mJ = n(I + J )+ (m−n)J ≥ n(2q+ 2)+ (m−n)(q+ 1) = (n+m)(q+ 1)

and soN/(n+m) ≥ q+1, which is impossible since q is the integral part ofN/(n+m).
So I + J ≤ 2q + 1. (The reader is reminded that m > n.) Let µ = f i1gj1 . . . f ikgjk .
After the substitution it becomes

m = tni1(tm + s)j1 . . . tnik (tm + s)jk .

We would like to find a monomial ν in m with degs(ν) ≤ q which cannot come from any
other monomial of P(f, g) after the substitution. Then ν cannot be cancelled out and is a
monomial of Q(t, s).

First let us obtain a monomial π of m by the following rule. If jr = 2σr replace
(tm + s)jr by (stm)σr ; if jr = 2σr + 1 replace (tm + s)jr by (stm)σr s. Then degs(π) ≤∑
r [(jr + 1)/2] = (J + k)/2. Since i1 ≥ 0 and ir > 0 for r > 1 it is clear that I ≥ k−1.

So J + k ≤ J + I + 1 ≤ 2q + 2. Therefore degs(π) ≤ q + 1.
If degs(π) ≤ q take ν = π . If degs(π) = q + 1 then I + J = 2q + 1, all js are odd,

and k = I + 1. Therefore i1 = 0, i2 = · · · = ik = 1. To obtain ν in this case replace
(stm)σ1s in π by (tms)σ1 tm.

If degs(π) = q + 1 then ν = (tms)σ1 tm+n(stm)σ2stn . . . (stm)σk s. If ξ is a monomial
of P(f, g) and ν is contained in its image after the substitution then any s appearing in
ν, any tm appearing as stms, and the first tm correspond to g in ξ . Also tn appearing as
stns corresponds to f in ξ . So the only ambiguity is tm+n which corresponds to either gf
or fg. In any case degs(ξ) = J and if instead of gf appearing in µ we put fg then ξ is
larger than µ in the lexicographic ordering contrary to our assumption on µ.

If degs(π) ≤ q then any (stm)σ s corresponds to g2σ+1 in ξ . Now, (stm)σ t ins =
(stm)σ−1stm+ins and corresponds to g2σ−1f τgf i−τg for 0 ≤ τ ≤ i. As above this
means that degs(ξ) = J and that the only choice possible is τ = 0 since otherwise ξ > µ

in the lexicographic ordering.
The lemma is proved.

Estimate. Recall that deg(f ) = n, deg(g) = m, deg(t) = 1, deg(s) = deg([f, g]) −
deg(f ) = deg([f, g])− n ≤ m, P(f, g) is n,m-homogeneous and N = wn, m(P (f, g)).
As we checked, Q(t, s) = P(tn, tm + s) contains a monomial ν for which degs(ν) ≤
N/(n+m). If i = degt (ν) and j = degs(ν) then N = i + jm and deg(ν) = i +

j (deg([f, g])− n). So deg(ν) = N + j (deg([f, g])− n−m). Therefore

deg(P (f, g)) ≥ deg(ν)) ≥ N +
N

n+m
(deg([f, g]− n−m) =

deg([f, g])
n+m

N

=
deg([f, g])
n+m

wn,m(P ).

Theorem 1.1 is proved.
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Example 3.1. Let f = xn, g = xm + y, P = [x, y]k . Then

deg(P (f, g)) = k(n+ 1) =
deg([f, g])

deg(fg)
wn,m(P )

shows that the bound in Theorem 1.1 cannot be improved.

Remark 3.2. If n |m the estimate does not work. Take e.g. f = x, g = xm + y, and
P = g − fm. Then deg(P (f, g)) = 1 < 2

1+mm. This happens because the degree drop
for g − fm/n in this case is larger than the degree drop of [f, g].

4. Degree estimate for polynomial algebras

In this section F [t, s] is a polynomial algebra of rank two. Recall that f = tn, g = tm+s,
P(f, g) is an n,m-homogeneous polynomial, and N = wn, m(P (f, g)). We would like
to estimate deg(P (f, g)) if deg(t) = 1, deg(s) = deg(df ∧ dg)− deg(f ) ≤ deg(g), and
deg is a weighted degree function on F [t, s] determined by these weights. Let d = (n,m)
be the greatest common divisor of n andm, and n1 = nd

−1,m1 = md
−1. Put f1 = g

n1−

fm1 . Then wn,m(f1) = nm1 = n1m. We can write P(f, g) =
∑
ci,j,kf

igjf k1 where
ci,j,k ∈ F and 0 ≤ i < m1. Since P(f, g) is n,m-homogeneous, in+ jm+ kn1m = N

and does not depend on a summand. SoN− in is divisible bym and since i < m1 we can
conclude that i is the same for all summands. Hence P(f, g) = f i

∑
cj,kg

jf k1 where
0 ≤ i < m1 and different summands have different k.

Clearly for all summands k ≤ N/nm1. So κ = min{k | cj,k 6= 0} does not ex-
ceed N/nm1. Take this summand f igιf κ1 . Consider Q(t, s) = P(tn, tm + s). Then
Q(t, s) contains a monomial µ = t in+ιm+κm(n1−1)sκ with non-zero coefficient since
f1 = n1t

m(n1−1)s+ · · · and all other monomials ofQ(t, s) have larger degs . Since deg is
a weighted degree function on F [t, s] we have deg(P (f, g)) = deg(Q(t, s)) ≥ deg(µ).
So

deg(P (f, g)) ≥ in+ ιm+ κm(n1 − 1)+ κ deg(s) = N + κ(deg(s)−m).

Since deg(s)−m ≤ 0 we conclude that

deg(P (f, g)) ≥ N +
N

nm1
(deg(df ∧ dg)− n−m) = N

[
1−

n+m− deg(df ∧ dg)
nm1

]
,

which is the estimate of Proposition 1.2.
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