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Abstract. We consider an Abel differential equation y′ = p(x)y2
+ q(x)y3 with p(x), q(x)

polynomials in x. For two given points a and b in C, the “Poincaré mapping” of the above equation
transforms the values of its solutions at a into their values at b. In this paper we study global
analytic properties of the Poincaré mapping, in particular, its analytic continuation, its singularities
and its fixed points (which correspond to the “periodic solutions” such that y(a) = y(b)). On
the one hand, we give a general description of singularities of the Poincaré mapping, and of its
analytic continuation. On the other hand, we study in detail the structure of the Poincaré mapping
for a local model near a simple fixed singularity, where an explicit solution can be written. Yet,
the global analytic structure (in particular, the ramification) of the solutions and of the Poincaré
mapping in this case is fairly complicated, and, in our view, highly instructive. For a given degree
of the coefficients we produce examples with an infinite number of complex “periodic solutions” and
analyze their mutual position and branching. Let us recall that Pugh’s problem, closely related to
the classical Hilbert’s 16th problem, asks for the existence of a bound on the number of real isolated
“periodic solutions”. New findings reported here lead us to propose new insights on the Poincaré
mapping. If the “complexity” of the path in the x-plane between a and b is a priori bounded, the
number of fixed points should be uniformly bounded. We think that, in some sense, this is close to
the complex version of Khovanskiı̆’s fewnomial theory.

1. Introduction

In this paper we investigate some global analytic properties of the “Poincaré mapping” φ
for an Abel differential equation of the form

y′ = p(x)y2
+ q(x)y3.

For two given points a and b, φ transforms the values y(a) of the solutions y(x) of this
equation at a into their values y(b) at b. A more precise definition is given in Section 3
below.

The “compactification at infinity” Y = 1/y transform the above equation to the form
dx/dt = Y , dy/dt = p(x)Y+q(x), which is a generalized Liénard equation. Essentially,
we study the geometry of the complex foliation, produced by this equation.
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However, we follow the approach of the classical analytic theory of differential equa-
tions (see [37, 25, 29, 35]) and consider the solutions of the Abel equation and its Poincaré
mapping as ramified analytic functions of one complex variable. Consequently, the main
questions under investigation are fixed and movable singularities, analytic continuation
and ramification of the functions involved. An especially important role in our analysis is
played by the study of the continuation paths and their evolution.

Below we always restrict ourselves to the case of a polynomial Abel equation

y′ = p(x)y2
+ q(x)y3, y(0) = y0, (1.1)

with p(x), q(x) polynomials in the complex variable x of degrees d1, d2 respectively.
The following two problems for equation (1.1) have been intensively studied (see

[2]–[5], [8]–[12]), [15]–[19], [28, 34, 41]:

a. For given a, b is it possible to bound the number of real solutions y(x) of (1.1), satis-
fying y(a) = y(b), in terms of the degrees d1, d2 only?

b. Is it possible to give explicit conditions on p and q for the identity y(a) ≡ y(b) to be
satisfied for all the solutions of (1.1)?

These two problems are well known to be closely related to the classical Hilbert’s 16th
problem (second part; see, for example, [27]) and Poincaré’s center–focus problem for
polynomial vector fields on the plane.

Adopting the standard terminology in these problems, we shall call solutions of (1.1),
satisfying y(a) = y(b), closed or periodic, and the conditions on p, q, a, b for y(a) ≡
y(b) the center conditions. Let us stress that in general these notions depend on a contin-
uation path from a to b.

Abel equations were first investigated and studied by Abel himself as natural exten-
sions of Riccati equations. Abel found several examples which are integrable ([1]). Then
this list was enriched by Liouville. Classical references are [1, 33, 25, 29], and the modern
references [35, 31, 14] have been instrumental for us.

The main motivation for our study comes from those classical examples of polynomial
Abel equations which can be solved explicitly. Moreover, we mostly (but not always)
restrict ourselves to the case where a first integral is a rational function.

However, the global analytic structure (in particular, the ramification) of the solutions
and of the Poincaré mapping in these examples turns out to be fairly complicated, and, in
our view, highly instructive. We study the singularities and the branching of the solutions
and of the Poincaré mapping.

In particular, for a fixed degree of the coefficients, we produce, varying the parame-
ters, examples with arbitrarily many and with an infinite number of “periodic solutions”.
We analyze the mutual position and branching of these periodic solutions. Following this
analysis we suggest that the above “periodic solutions” (or “limit cycles”) sit on differ-
ent leaves of the Poincaré mapping. In other words, although the equality y(0) = y(b)

is satisfied for a large number of the initial values y0, it is realized on more and more
complicated continuation paths from a to b.
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This conjectural behavior of the complex “limit cycles” reminds the behavior of the
solutions of “fewnomial” equations in the complex domain, as prescribed by the complex
Khovanskiı̆ fewnomials theory ([30]).

Our attempt to better understand the global structure of the Poincaré mapping for
polynomial Abel equations is also motivated by the recent progress in the investigation in
[8]–[12], [7, 13, 15, 38, 41] of the center–focus problem for (1.1). As mentioned above,
this problem is to give explicit conditions on p and q for the Poincaré mapping on a, b to
be identical, i.e. for y(a) ≡ y(b). In particular, in [8]–[12] the moment and composition
conditions, providing a close approximation of the center conditions, have been intro-
duced. On this base in [7] complete “local center conditions” have been obtained, and the
“local Bautin ideal” has been computed for the Poincaré mapping φ, while in [13] similar
conditions “at infinity” have been found.

Via Bautin’s approach [6], further developed in [22, 23, 42], the knowledge of the
Bautin ideal of the Poincaré mapping φ allows one to produce “semi-local” bounds on
the fixed points of φ. In other words, we get a fairly accurate control of the fixed points
inside the disk of convergence of the Taylor series of φ at the origin. It was already
mentioned that the problem of the global control of real fixed points of φ is very closely
related to the Hilbert 16th problem of counting limit cycles of plane vector fields.

However, the methods of [22, 23, 42] are at present strictly limited to the disk of
convergence of φ. Any attempt to “globalize” the information produced by these methods
will require a much better understanding of the global analytic nature of φ, in particular,
of its analytic continuation, its singularities and its ramification structure. In this paper we
start an investigation in this direction.

The paper is organized as follows:
In Section 2 we restate some classical results of [37] which provide the description

of singularities of the solutions of (1.1). Our formulations of these results are somewhat
more “quantitative” than the classical ones, providing accurate estimates of the domains
and parameters involved. We also provide some lemmas relating the position of the sin-
gularities of the solutions of (1.1) to the initial values of these solutions. We do not give
the proofs of these results in the present paper, referring the reader to [21].

On this base, in Section 3, we give a precise definition of the Poincaré mapping φ, and
discuss the problem of the analytic continuation of φ. In particular, we give a constructive
procedure for this analytic continuation, based on the path deformation following the
movable singularities of the solutions.

In Section 4 we describe typical singularities of the Poincaré mapping φ. This com-
pletes our general description of the Poincaré mapping for the Abel equation.

In Section 5 we produce, via a linearization, a “local model” of the Abel equation near
a simple fixed singularity. It turns out to be the equation

y′ = y2
+ cxy3. (1.2)

We produce its explicit solutions, and formulate some problems concerning this equation,
which are investigated in the rest of the paper.

In Section 6 we analyze in detail one specific case c = 1/4 of equation (1.2). The
value c = 1/4 is a “discriminant” value of the parameter c, so the solution takes a special
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form, which in some aspects is easier to investigate than the case of a generic c. We
study for c = 1/4 the singularities and ramification of the solutions and of the Poincaré
mapping, describing, in particular, the fundamental domain and the monodromy action
for the latter. Finally, we combine these results to produce an infinite number of periodic
solutions and to analyze their geometry.

In Sections 7–9 we analyze in detail the case c = cn =
1
4

(
1 − 1

(2n+1)2
)
, where the

first integral is a rational function. We follow the same pattern as in Section 7, ultimately
producing n periodic solutions on different leaves of the Poincaré mapping.

2. The Abel equation

Below we shall always assume that the functions p(x) and q(x) in the Abel equation (1.1)
are polynomials in x with complex coefficients. Most of the results below remain valid
for much more general analytic functions, but our assumption simplifies the presentation.

Let a ∈ C. Denote by y(ya, x) the solution of (1.1) satisfying y(ya, a) = ya . By the
uniqueness and existence results for ordinary differential equations, the solution y(ya, x)
exists in a certain neighborhood of a and is there a regular complex analytic function
of the complex argument x. However, an analytic continuation of y(ya, x) may lead to
singularities.

The classical result of Painlevé [37] shows that the “movable” singularities of the solu-
tions y(ya, x)must be “algebroid”. Moreover, following the proof of Painlevé (see, for ex-
ample [37, 25, 35]), one can easily show that at each movable singular point x0, y(ya, x)

behaves like 1/
√
x − x0. In order to relate the singularities of y to those of the Poincaré

mapping φ we need more detailed information on the position of the singularities, on
their dependence on the initial values, etc., than is usually given. So below we restate
in the special case of (1.1) the classical results, providing some specific estimates where
necessary.

Notice that y ≡ 0 is a solution of (1.1). It follows, in particular, that as ya → 0 all the
singularities of y(ya, x) tend to infinity. Below we make this remark more precise.

Another remark is that, as we shall see below, the problematic points of the equation
(1.1) are the zeroes of q(x). We denote these zeroes by x1, . . . , xm and always distinguish
between the “fixed” singularities of y at x1, . . . , xm and the “movable” singularities of y,
which may occur at points different from x1, . . . , xm.

2.1. Domain of regularity of solutions

The following assumptions will be preserved along the rest of this section: p(x) and q(x)
are polynomials of degree m in x, with ‖p‖, ‖q‖ ≤ K . The norm of a polynomial is
defined here as the sum of the absolute values of its coefficients. Let a ∈ C. Denote, as
above, by y(ya, x) the solution of (1.1) satisfying y(ya, a) = ya .

Lemma 2.1. Let a ∈ C and ya ∈ C be given. Then the solution y(ya, x) exists in a disk
Dρ(a) centered at a. Here ρ = ρ(|a|, |ya|) is a positive explicitly given function of its
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arguments, which for |ya| large satisfies

ρ(|a|, |ya|) ≥ C1(4K|a|m|ya|2)−1.

For |ya| small, ρ satisfies

ρ(|a|, |ya|) ≥ C2

(
1

2K|ya|

)1/(m+1)

.

In particular, ρ tends to infinity as |ya| tends to zero.
The solution y(ya, x) is bounded in the disk Dρ(a) by ŷ(|ya|, |a|, |x − a|), with ŷ an

explicitly given function of its arguments satisfying

ŷ(|ya|, |a|, t) ≤ C3(|ya|, |a|)(ρ − t)
−1/2.

Proof. We do not give the proofs of the statements in this section, referring the reader
to [21].

Corollary 2.1. y(ya, x) is regular in the disk DR of radius R centered at the origin,
with R growing as (2K|ya|)−m−1 as |ya| tends to zero.

2.2. Singularities of y(ya, x)

In this subsection we restate the classical results on the structure of singularities of
y(ya, x), stressing the explicit estimates of the size of the domains where the results are
valid. The assumptions on p and q and the notations remain the same as in Subsection 2.1.

First we recall the following simple property of singular points of solutions y(x) of
(1.1):

Lemma 2.2. If x0 ∈ C is a singular point of a solution y(x) of (1.1), then y tends to
infinity as x tends to x0.

Next we give an analytic description of the movable singular points of the solutions of
(1.1). As already mentioned in the Introduction, the classical result of Painlevé [37, 25,
35] shows that “movable” singularities of the solutions y(ya, x) of (1.1) must be “alge-
broid”. Moreover, following the proof of Painlevé (see, for example [37, 25, 35]), one can
easily show that at each movable singular point x0, y(ya, x) behaves like 1/

√
x − x0.

However, in order to relate the singularities of y to those of the Poincaré mapping φ we
need more accurate estimates than are usually given, and in particular, we have to describe
the behavior of the movable singular points of the solutions of (1.1) as functions of the
initial value ya . So we restate below the classical result of Painlevé (in the special case of
the equation (1.1)), providing the required formulas and estimates.

To simplify the statements of the results below, let us introduce some notations.
Assume that x0 ∈ C is different from the zeroes x1, . . . , xm of q(x). Let η(x0) =

|q(x0)| > 0. Put R(x0) = 2(|x0| + 1) and define

r(x0) = min
(

1
4
R,

η

2m(K + 1)Rm−1

)
,
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where K = max ‖p‖, ‖q‖. Finally, define

M(x0) =
4m(K + 1)Rm

η
, δ(x0) =

1
M
, c(x0) =

4
Mη
=

1
m(K + 1)Rm

.

Theorem 2.1. For any x0 ∈ C different from the zeroes x1, . . . , xm of q(x), there is a
unique solution y(x) = y[x0](x) of (1.1) with a singularity at x0. This solution has an
algebraic ramification of order 2 at x0. In a neighborhood of x0, the solution is given by
a Puiseux series

y[x0](x) =
c(x0)

(x − x0)1/2
·

(
1+

∞∑
k=1

ck(x0)(x − x0)
k/2
)
, (2.1)

converging for |x−x0| ≤ r(x0), with the coefficients c(x0), ck(x0) single-valued analytic
functions in C \ {x1, . . . , xm}, satisfying there |ck(x0)| ≤ δ(x0)(r(x0))

−k.

2.3. Singularities of y(ya, x) as functions of ya

To relate the singularities of the Poincaré mapping to those of the solutions of (1.1), it is
important to see how the initial value of the solution y at a certain regular point influences
the position of the singularities of y. The description of the singularities of y, given above,
allows one to get a rather accurate information in this respect.

Let us fix a certain point c ∈ C, c 6= x1, . . . , xm (i.e. q(c) 6= 0).

Lemma 2.3. For any yc sufficiently large in absolute value, the solution y(yc, x) of (1.1)
satisfying y(yc, c) = yc has a singularity x0 = x0(yc) in a neighborhood of c. The
position of this singularity, x0(yc), is a regular function of yc for |yc| sufficiently large,
and dx0/dyc 6= 0.

Corollary 2.2. Let the solution y(ya, x) of (1.1) satisfying y(ya, a) = ya and continued
to x0 6= x1, . . . , xm along a path s in C \ {x1, . . . , xm} have a singularity at x0. Then x0
is a regular function of the initial value ya , and dx0/dya 6= 0.

We can extend Lemma 2.3 above and describe the dependence of the position x0 of the
singular point of the solution on the value of this solution at the “original singular point”
itself. Let us fix, as above, a certain point c ∈ C, c 6= x1, . . . , xm (i.e. q(c) 6= 0).

Proposition 2.1. For yc near ∞, the position x0(yc) of the singularity of the solution
y(yc, x) of (1.1) satisfying y(yc, c) = yc can be represented by a convergent Taylor
series in u = u(c) = 1/y(c),

x0 − c = u
2
∞∑
k=0

αku
k, α0 6= 0. (2.2)

Conversely, the value y(yc, c) = yc at c of the solution y of (1.1) having a singularity
at x0 can be represented by a convergent fractional Puiseux series

u = u(c) =

∞∑
k=1

βk(x0 − c)
k/2, β1 6= 0. (2.3)
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Below we shall use this proposition to describe the ramification of the Poincaré mapping
around its singularities.

3. Analytic continuation of the Poincaré mapping

In this section we give a precise definition of the Poincaré mapping φ of the Abel equation

(1.1) y′ = p(x)y2
+ q(x)y3

and discuss some related problems. Then we give a “semi-constructive” description of the
analytic continuation of φ along a given path.

Let a, b ∈ C, b 6= x1, . . . , xm, where x1, . . . , xm are, as above, all the zeroes
of q. Notice that if a solution y of (1.1) happens to have a singularity at one of the
xi, i = 1, . . . , m, then the analytic structure of this solution near xi may be much more
complicated than that described in Section 2 above (see examples in Section 5 below).

Let s be a path in C joining a and b. We do not assume that s avoids the points
x1, . . . , xm, unless explicitly stated. Let the initial value y0

a ∈ C be given. Assume that the
solution y(y0

a , x) of (1.1) satisfying y(y0
a , a) = y

0
a can be analytically continued along s

from a neighborhood of a. In particular, this continuation does not have singularities on s.

Definition 3.1. The (germ at y0
a of the) Poincaré mapping φ = φa,b,s,y0

a
of the equation

(1.1) along the path s is defined as follows: it associates to each ya near y0
a the value yb

at the point b of the solution y(ya, x) of (1.1) satisfying y(ya, a) = ya and continued to
b along s. Thus φ(ya) = y(ya, b) = yb.

Since y ≡ 0 is a solution of (1.1), the germ of the Poincaré mapping at zero satisfies
φ(0) = 0 along any path s and for any endpoints a, b. Moreover, by Corollary 2.1, for any
R > 0 the solutions y(ya, x) are regular in the disk DR , assuming that |ya| is sufficiently
small. Hence, for any a, b, s, the germ at the origin of φa,b,s is defined and it does not
depend on the path s.

However, for larger values of ya , analytic continuation of y(ya, x) along different
paths s may lead to different values of yb.

Now assume that a path σ from w0 = σ(0) to w1 = σ(1) in the plane of the ini-
tial values ya is given, parametrized by t ∈ [0, 1]. Assuming that none of the solutions
y(wt , x),wt = σ(t), t ∈ [0, 1], has a singularity on the path s, the definition above works
and defines the values (in fact, the germs) of φ(wt ), t ∈ [0, 1], and, in particular, φ(w1).

The problem appears if the singularities of the solutions y(wt , x) continued along s
approach and cross the path s. The idea of the following construction is that if we can
deform the path s (following the movement of wt along the curve σ ) in such a way that
it avoids the singularities of y(wt , x), we can still use this deformed path for analytic
continuation of the solutions y(w, x), and hence for analytic continuation of φ.

Let σ as above be given. Assume that there exists a family st , t ∈ [0, 1], of paths from
a to b with the following properties:

1. st is a continuous (in t) deformation of the original path s, s0 = s.
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2. For each t ∈ [0, 1], the solution y(wt , x) continued along st is regular at each point
of st .

Theorem 3.1. The germ of the Poincaré mapping along s at the point w0, φa,b,s,w0 , ad-
mits analytic continuation along σ from w0 = σ(0) to w1 = σ(1). The continued germ
at w1 is φa,b,s1,w1 provided by the analytic continuation of the solutions starting near w1
along s1.

Proof. We shall show that for each t ∈ [0, 1] the value (germ) of φ(wt ), obtained by
analytic continuation of φ along σ , is given by

φ(wt ) = y(wt , b), (3.1)

with the solution y(wt , x) satisfying y(wt , a) = wt being analytically continued from a

to b along the path st . We can subdivide the process of analytic continuation of φ into a
finite number of small successive steps. In each step we first move wt along σ , without
deforming st (provided that the singularities of y(wt , x) do not hit st ). Then we deform st
without changing wt . Clearly, the first part of each step gives an analytic continuation of
φ along σ , while the second step does not change φ at all. Therefore the total procedure
provides the required analytic continuation of φ. This completes the proof of Theorem 3.1.

Theorem 3.1 reduces the problem of analytic continuation of the Poincaré mapping φ
to the construction of a family of paths st with the properties stated above.

One particular case is very easy: if the singularities of y(wt , x) do not approach the
path s, it does not need to be deformed, and we can take st ≡ s.

In general, the construction of st depends on the behavior of the singularities of the
solutions y(wt , x). Below we describe it only in the simplest situation, where these sin-
gularities do not “escape to infinity” in finite time and cross the path s transversally.

We assume, in particular, that the path s avoids the “fixed” singularities x1, . . . , xm of
(1.1). As usual, we assume that the solution y(w0, x) of (1.1) satisfying y(w0, a) = w0
can be analytically continued to b along s from a neighborhood of a. In particular, this
continuation does not have singularities on s.

The following procedure (P) allows one to construct the required deformation st of
the initial path s = s0. We consider the solutions y(wt , x) of (1.1) for wt = σ(t) as t
moves from 0 to 1. The singularities xj0 (t) of y(wt , x) move in this process along certain
trajectories j̀ . By Corollary 2.2, as long as these singularities remain in C\{x1, . . . , xm},

their positions depend in a regular way on the initial value wt . Therefore, after a small
deformation of σ we can assume that the trajectories j̀ do not pass through a and b, and
that they cross s transversally and at different times t .

Let t0 be the earliest crossing time: for t = t0 the trajectory xi0(t) of the singularity xi0
crosses s for the first time.

The main step of the procedure (P) consists in deforming s in a small neighborhood
of a crossing point of s and `i , to avoid the singularity xi0(t) as it approaches and crosses
s along `i for t near t0, and then stretching s along `i , escaping the point xi0(t) for t > t0.
This step is shown in Fig. 1. It defines the required deformation st for t from t0 until the
time of the next crossing.
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xi0(0)

b

xi0(1)

xi0(0)

a

xi0(t)

xi0(1)

b

a

s = s0 st

Fig. 1

When the next singularity xj0 (t) of y(wt , x) crosses the path st , we repeat the con-
struction. Notice that from now on the crossing may happen at the “double lines” of st . In
this case these double lines are deformed, as described above.

More precisely, this process can be described as follows: After the first crossing of
s by the singularity xi0(t), the deformed path st is obtained from s by adding to s the
following loop δit : δ

i
t starts at the crossing point ωi of s and `i , follows `i till the point

xi0(t), encircles xi0(t) in a counter-clockwise direction, and then returns to ωi along `i .
If the second crossing happens at a simple point of st , the new loop δt is added, exactly

as above. If this crossing appears at a “double line” of st (which belongs to the added loop
δit ), the new loop δt is added to both branches of st passing through the crossing point.

For the later crossings the process is repeated, with appropriate corrections, taking
into account the “multiplicity” of the path st at the crossing point.

One of the possible results of the deformation of s via the procedure (P) is shown in
Fig. 2.

By the construction, the singular points xj0 (t) of the solutions y(wt , x) of (1.1) never
cross the path st . On each crossing of the already constructed path with xj0 (t) we extend
the deformation st to a larger value of t , till the next crossing time.

Let us assume, in addition to the assumptions made above, that only a finite number
of singularities are encountered in this process, and that the trajectory `i of none of these
singularities xi0(t) escapes to infinity. Then the following result is true:

Theorem 3.2. Under the above assumptions the procedure (P ) can be extended to the
entire interval [0, 1], and it provides a deformation st of the path s as required in Theo-
rem 3.1.

If we know explicitly the trajectories j̀ (t) of the singular points xj0 (t), we can provide
an explicit description of the final path s as an element of the appropriate fundamental
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xi0(1)

s1

a

b

xi0(0)

Fig. 2

group. Then an application of Theorem 3.1 provides an explicit analytic continuation of
the Poincaré mapping8 along σ . Below we illustrate this construction by some examples.

4. Singularities of the Poincaré mapping

Let s be a path in C joining two points a and b, and let the initial value y0
a ∈ C be

given. Assume that the solution y(y0
a , x) of the equation (1.1) satisfying y(y0

a , a) = y0
a

can be analytically continued along s from a neighborhood of a to each point of s except,
possibly, the endpoint b. In particular, this continuation does not have singularities at the
interior points of s. If b is also a regular point of this solution, then the germ at y0

a of the
Poincaré mapping φ = φa,b,s,y0

a
along the path s is defined and regular.

Consider now the case when the analytic continuation along s of the solution y(y0
a , x)

has a singularity at b. From now on, we assume that b is different from the fixed singu-
larities x1, . . . , xm.

Proposition 4.1. Under the above assumptions there is a germ of a real curve γ ⊂ C
at y0

a such that for ya 6∈ γ the analytic continuation along s of the solution y(ya, x) is
regular at each point of s including the endpoint b.

Proof. We are in the situation of Corollary 2.2 above. By this corollary, the position
x0(ya) of the singularity of the solution y(ya, x) near b is a regular function of ya near y0

a .
So the curve γ is formed by exactly those ya for which this singularity x0(ya) belongs
to s. By the description of the singularities of the solutions of (1.1) given in Section 2,
x0(ya) is the only singular point of the local branch of the solution y(ya, x) near b. On
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the other hand, by the assumptions, there are no singularities of the solution y(ya, x) on s
not in a neighborhood of b. Therefore, for ya 6∈ γ the analytic continuation along s of the
solution y(ya, x) is regular at each point of s, including the endpoint b. This completes
the proof of the proposition.

Now we are ready to describe the generic singular points of the Poincaré mapping.

Theorem 4.1. Let s be a path in C joining two points a and b 6= x1, . . . , xm, and let
the initial value y0

a ∈ C be given. Assume that the solution y(y0
a , x) of (1.1) satisfying

y(y0
a , a) = y0

a can be analytically continued along s from a neighborhood of a to each
point of s except the endpoint b, where this solution has a singularity. Then for each ya in
a neighborhood of y0

a such that ya 6∈ γ , where the curve γ has been defined in Proposition
4.1, the germ at ya of the Poincaré mapping φ = φa,b,s,ya along the path s is defined and
regular. In a punctured neighborhood U0 of y0

a these germs can be analytically continued
across γ to form a double-valued regular function φ in U0 which admits a representation
by a Puiseux series

y(b) =
1√

ya − y0
a

∞∑
k=0

νk(ya − y
0
a)
k/2, ν0 6= 0, (4.1)

convergent in U0.

Proof. The fact that for each ya in a neighborhood of y0
a such that ya 6∈ γ , the germ at

ya of φ is defined and regular, follows directly from Proposition 4.1. The possibility of
analytic continuation of φ across γ follows from the results of Section 3. The local form
of φ near y0

a can be obtained in two ways.
The first one uses Corollary 2.2 and Proposition 2.1. By Corollary 2.2, the position

x0(ya) of the singularity (near b) of the solution y(ya, x) analytically continued along s
is a regular function of ya . By Proposition 2.1, ub = 1/yb, where yb = y(ya, b), as a
function of x0, is given by

u = ub =

∞∑
k=1

βk(x0 − b)
k/2, β1 6= 0. (4.2)

Substituting into this expression a regular function x0(ya), x0(y
0
a) = b, we get

u = ub =

∞∑
k=1

ck(y0 − y
0
a)
k/2, c1 6= 0. (4.3)

Finally, expressing yb = 1/ub through ub via (4.3), we get the required formula (4.1).
The second way to describe the ramification of the Poincaré mapping φ at its singular

point is via the results of Section 3. Let us fix a point w in the complex plane of the initial
values ya , close enough to y0

a . Let σ be a path going from w to a small neighborhood
of y0

a , then going around y0
a in a counter-clockwise direction, and then returning to the

initial point w. Let x0(w) be the singularity (near b) of the solution y(w, x) analytically
continued along s. Since by Corollary 2.2, x0(w) is a regular function of w (and since
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b

s̃1

a

x0(w)

a

b

x0(w)

s1

Fig. 3

the point w was chosen close enough to y0
a ), as a running point w̃ moves along σ , the

singularity x0(w̃) of the solution y(w̃, x) analytically continued along s describes the
path shown in Figure 3 above. In this simple situation all the assumptions of Theorem
3.2 are satisfied, and analytic continuation of the Poincaré mapping along σ is provided
by the deformed path s1 shown in Figure 3. In turn, the path s1 is homotopic, in the
complement of the singularities of y(w, x), to the path s̃1, also shown in Figure 3. This
path s̃ is obtained from s by adding a loop going around the singularity x0(w) of the
solution y(w, x). But we know by the results of Section 2 that y(w, x) has a ramification
of order 2 at x0(w). Hence, as we follow σ once, we return to another branch of φ, but
after the second tour we return to the initial branch of φ, and therefore φ has a ramification
of order two at y0

a . This completes the proof of Theorem 4.1.

Remark. Let us describe once more the role of the curve γ defined in Proposition 4.1 and
appearing in Theorem 4.1 above. This curve γ is formed by exactly those initial values
ya for which the singularity x0(ya) of the solution y(x, ya) analytically continued along
the path s belongs to s. Formally, the solutions starting at ya ∈ γ cannot be continued
along s.

In the real case this presents a serious difficulty: all the real solutions, starting in a
certain interval of values ya , blow up inside the interval [a, b], and there is no natural way
to determine their value at b.

In the complex domain the curve γ does not have any intrinsic meaning, since the
continuation path s can be deformed. The curve γ just provides a natural “cut” of the
neighborhood of the singularity y0

a of the Poincaré mapping φ. The analytic continuation
of φ across γ is described by Theorem 4.1. See the example of Section 8.1 below where
the curve γ is used as a global cut.
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Let us stress that the local branch of the Poincaré mapping φ at y0
a is regular along γ ,

and y0
a is its only singularity. In particular, the Puiseux expansion given by (4.1) is valid

only at y0
a .

5. A local model: an example of an integrable Abel equation

In this section we investigate the local behavior of the solutions near a generic fixed
singularity. That is, we assume that the polynomial q(x) has a simple zero.

5.1. Linearization at infinity

We consider the foliation defined by the Abel equation near y = ∞, or 1/y = 0. We
change accordingly the coordinate y to 1/y, which yields

−
1
y2
dy

dx
= q(x)

1
x3 + p(x)

1
x2 ,

dy

dx
=
q(x)+ p(x)y

−y
.

This foliation is also defined by the vector fields

dx

dt
= −y,

dy

dt
= q(x)+ p(x)y,

which is usually called the generalized Liénard equation. We can assume that q has a
simple zero at x = 0 and that p(0) 6= 0. A new scaling of the variables (x, y) and of the
time t displays the linear part of the vector field at (0, 0) as

dx

dt
= −y,

dy

dt
= cx + y.

Hence, the generalized Liénard vector field can be linearized near (0, 0). Back to the
initial coordinates, this yields the local model

dy

dx
= cxy3

+ y2.

5.2. Solving the model equation

According to the result of the previous section, we consider the equation

dy

dx
= cxy3

+ y2. (5.1)
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The change of unknown function y = v/x yields

−
v

x2 +
v′

x
=
cv3

x2 +
v2

x2 ,

and thus

v′ =
1
x

[cv3
+ v2
+ v], (5.2)

which obviously separates. Write

1
cv3 + v2 + v

=
α

v
+

β

v − v1
+

γ

v − v2
,

with

v1 =
−1+

√
1− 4c

2c
, v2 =

−1−
√

1− 4c
2c

,

and

α = 1, β =
1

cv1(v1 − v2)
, γ =

1
cv2(v2 − v1)

.

Integrating equation (5.2) we get, for each solution v(x),

v(v − v1)
β(v − v2)

γ
= K · x

for a certain constant K . Equivalently,

y(xy − v1)
β(xy − v2)

γ
= K,

or

y

(
1−

xy

v1

)β(
1−

xy

v2

)γ
=

K

v
β

1 v
γ

2

= K ′. (5.3)

Notice that the only “fixed singularity” of the equation (5.1) is x = 0. To start, let us take
this point x = 0 as the initial point a. Now, the constantK ′ in (5.3) is evaluated by setting
x = 0 and y = y0, which yields K ′ = y0.

Therefore, the solution y(y0, x) of (5.1) satisfying y(y0, 0) = y0 is given by

y(x)

(
1−

xy(x)

v1

)β(
1−

xy(x)

v2

)γ
= y0. (5.4)

Substituting into (5.4) the point x = b, we get the relation between yb = y(b) and y0 in
the form

y0 = yb

(
1−

byb

v1

)β(
1−

byb

v2

)γ
. (5.5)

In a certain sense, (5.5) provides an explicit expression for the Poincaré mapping y0 =

φ(yb) of (5.1).
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5.3. Main questions

Equations (5.4) and (5.5) give a complete solution of the model equation (5.1). However,
since these equations produce multivalued solutions, their interpretation is far from being
straightforward.

In this paper we discuss (and in some cases answer) the following questions:

1. Ramification structure of the solution y(y0, x) of (5.1) given by equation (5.4).

2. Ramification structure of the Poincaré mapping φ of (5.1), given by equation (5.5).
It turns out that the correct interpretation of (5.5) cannot be done without a careful analysis
of the ramifications of the solution y(y0, x) of (5.1).

3. Finally, we are interested in the “limit cycles” of the equation (5.1), i.e. in its so-
lutions y(x) satisfying y(0) = y(b). This relation together with (5.5) gives the following
equation for the limit cycles:(

1−
by0

v1

)β(
1−

by0

v2

)γ
= 1. (5.6)

The accurate immediate interpretation of (5.6) is that the algebraic curve Y = Yy0 defined
by (5.4) passes through the points (0, y0) and (b, y0).

Certainly, this curve Y , parametrized as y = y(x), satisfies the differential equation
(5.1). But a priori we do not even know whether Y is connected. So (5.6) by itself does
not exclude the possibility that the points (0, y0) and (b, y0) belong to different leaves
of the solutions of the differential equation (5.1). So we have to clarify the geometric
interpretation of the “limit cycles”, specifying the continuation paths from a to b for the
solutions y(x) satisfying y(0) = y(b).

Below we choose some specific values for the free parameter c in the model equa-
tion (5.1). In particular, in all the cases considered we show that in fact for y0 6= 0 the
curve Y = Yy0 is connected. This allows us to give the following interpretation to the
equation (5.6): for each y0 satisfying (5.6) there exists a path s from 0 to b such that the
solution y(y0, x) can be analytically continued along s, and this continuation satisfies
y(y0, b) = y0.

On this base we produce examples of (5.1) with an infinite (or finite, but arbitrarily
large) number of complex “limit cycles”.

In these examples we see that the equation (5.1) may have as many complex limit
cycles as we wish, when the parameter c varies, although the degree of the coefficients
of this equation remains bounded. This phenomenon resembles (in a much simpler set-
ting) the counterexample due to Yu. Il’yashenko to the Petrovskiı̆–Landis claim ([26]). It
should also be compared with the examples of differentiable Abel equations discussed by
A. Lins Neto ([32]). Note that Khovanskiı̆ fewnomials theory, or rather, “additive com-
plexity” arguments (see [30, 40]) imply that the number of real roots of equation (5.7)
remains bounded independently of n. So that this example does not provide a counterex-
ample to the real Hilbert–Pugh problem.
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Moreover, in all the cases considered we show that the above limit cycles “sit on
different leaves” of the Poincaré mapping. In other words, although the equality y(0) =
y(b) is satisfied for a large number of initial values y0, it is realized on more and more
complicated continuation paths from a to b.

This is similar to the behavior of solutions of “fewnomial” equations in the complex
domain, as prescribed by the complex Khovanskiı̆ fewnomials theory.

Accordingly, we may ask to what extent this property remains valid for the Poincaré
mapping of a general polynomial Abel equation (1.1).

Our basic example (5.1) can be used to generate a family of similar examples by
the change of independent variable, or “polynomial compositions”. Compositions appear
quite naturally in this area (see both the classics (Abel, Liouville,...) and more recent
contributions [8]–[12]). Consider the Abel equations of the form

y′ = cP (x)p(x)y3
+ p(x)y3, (5.7)

where p(x) is an arbitrary polynomial, and P(x) is the anti-derivative of p(x) which
vanishes at x = 0. The change of variables w = P(x) brings (5.7) to the form

dy

dw
= cwy3

+ y2. (5.8)

Applying the above analysis of this last equation, we see that the solution y(x) to the
equation (5.7) satisfying y(0) = y0 solves the implicit algebraic equation

y

(
1−

P(x)y

v1

)β(
1−

P(x)y

v2

)γ
= y0. (5.9)

Hence also the limit cycles of (5.7) can be investigated in a similar way. Notice, however,
that a special composition structure of the solutions of (5.7), namely, that each of its
solutions y can be represented as y(x) = ỹ(P (x)) for ỹ(w) solving (5.8), implies the
following: for any a, b with P(a) = P(b) we have y(a) ≡ y(b).

6. The case c = 1/4

We consider the case c = 1/4 and the equation

dy

dx
=

1
4
xy3
+ y2.

With y = v/x, this equation yields

dv

dx
=

1
4x
(v3
+ 4v2

+ 4v),

which separates and gives the solution y(x) corresponding to the initial data y0 as the
solution to

y

xy + 2
e2/(xy+2)

=
e

2
y0.
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Periodic orbits correspond to solutions with y(1) = y(0) = y of

2
y + 2

e2/(y+2)
= e.

If we change variable by setting y = 2ξ
1−ξ , this yields

1− ξ = eξ .

We write ξ = x + iy, and derive the two equations

1− x = ex cos y, −y = ex sin y.

Note that if (x, y) is a solution, then (x,−y) is also a solution. Thus we can assume
y > 0. The second equation implies sin y < 0 and we restrict ourselves now to y ∈
](2n + 1)π, (2n + 2)π [. Now we plug x = −log(− sin y

y
) into the first equation. This

yields

F(y) = 1+ log
(
−

sin y
y

)
+

y

tan y
= 0.

Then we note that F(y)→+∞ as y → (2n+1)π , and F(y)→−∞ as y → (2n+2)π .
There is thus at least one solution (and in fact a single one) in the above interval. The Abel
equation has thus infinitely many limit cycles:

Theorem 6.1. For c = 1/4 equation (5.1) has infinitely many different “limit cycles”,
i.e. local solutions yj (x) at the origin, j = 1, . . . , n, and paths sj from 0 to 1, such that
each yj (x) after analytic continuation along sj satisfies y(0) = y(b).

Let us give some initial considerations supporting the assumption that all these “limit
cycles” are situated on different leaves of the Poincaré mapping for (5.1). They concern
the geometry of the Riemann surface defined by the equation

y

xy + 2
e2/(xy+2)

=
e

2
y0.

We introduce the coordinate Y defined by

xy = 2(1/Y − 1),

and fix y0 = 1/e, to simplify. The equation of the Riemann surface becomes

(1− Y )eY = x.

The different sheets of the Riemann surface, seen as a cover of the x-plane, can be expli-
citly parametrized. Write x = α + iβ and Y = u+ iv. Then

u = − log
(
−

v

α sin v + β cos v

)
,
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and the sheets are parametrized by the different solutions v to the equation

1+ log
(
−

v

α sin v + β cos v

)
+ v

α cos v − β sin v
α sin v + βcosv

= 0.

Comparing these expressions with those defining the limit cycles above, we see that the
“fundamental domains” are essentially the same. The accurate analysis of the ramifica-
tion of the Poincaré mapping requires the use of the Lambert W -functions, defined by
W(x)eW(x) = x. (See, for example, [16].) We plan to present this analysis separately.

7. The case c = cn = 1
4

(
1− 1

(2n+1)2
)

To study in detail the other possible patterns of ramification of solutions of the Abel equa-
tion (5.1), dy

dx
= cxy3

+ y2, we choose the parameter c in this equation in the following
way. We would like c to tend to 1/4, which is a “discriminant point” for the denominator
cv3
+ v2
+ v appearing after separation of variables in (5.1). On the other hand, we want

the first integral to be algebraic. So let us write

1− 4c = δ2, c =
1
4
−
δ2

4
,

where δ is small. In this case we obtain

v1 = −
2

1+ δ
≈ −2+ 2δ, v2 = −

2
1− δ

≈ −2− 2δ.

For β and γ we get, respectively,

β = −
1+ δ

2δ
, γ =

1− δ
2δ

.

Notice that β + γ = −1. Thus, taking δ = −1/(2n+ 1) for n an integer, we obtain v1 =

−2− 1/n, v2 = −2+ 1/(n+ 1), β = n, γ = −n− 1 and c = cn = 1
4 (1− 1/(2n+ 1)2).

Let us fix this choice of c.

Remark. One can investigate the situation for another choice of the parameter c. If we
pick the number n above (not an integer anymore) in such a way that n/(n+ 1) = k or
n = −k/(k − 1), and let k be a large integer, this corresponds to n ≈ −1 or c ≈ 0. We
also have β = n = −k/(k − 1), and γ = −n− 1 = 1/(k − 1). The equation (5.4) takes
the form

y1−k
(

1−
xy

v1

)k
= y1−k

0

(
1−

xy

v2

)
. (7.1)

while (5.6) takes the form (
1−

by0

v1

)k
= 1−

by0

v2
. (7.2)

The investigation of this case is important since as c tends to zero, equation (5.1) tends
to the integrable equation y′ = y2, and the results can be compared with those obtained
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in the study of the “first variation” of the Abel equation y′ = εxy3
+ y2 at ε = 0 (cf. [9,

13]).
Let us return to the case c = cn. The first integral (5.4) now takes the form

y0 =
y(1− xy/v1)

n

(1− xy/v2)n+1 = H(x, y). (7.3)

In the rest of this section we investigate in some detail the solutions of the algebraic
equation (7.3).

First of all, we notice that for y0 = 0 we get two separate leaves: the straight line
Y 0

0 = {y ≡ 0} and the hyperbola Y 1
0 = {y = v1/x}. Concerning the zero curves of

H(x, y), the first has multiplicity 1, while the second has multiplicity n.
Another remark is that the pole locus of H(x, y) is the hyperbola Y∞ = {y = v2/x},

which has multiplicity n+ 1. As we can expect, both the hyperbolas above are solutions
of the differential equation (5.1). This can be checked by direct substitution.

7.1. Critical points of H(x, y)

Let us find the critical points of the function H(x, y).

Lemma 7.1. All the critical points of the function H(x, y) (in fact, all the points with
Hy(x, y) = 0) are situated on the hyperbola Y 1

0 = {y = v1/x}.

Proof. After differentiatingH with respect to x and y, cancelling the common degrees of
1 − xy/v2, equating the numerator to zero, and some computations, using, in particular,
the identities

n

v2
−
n+ 1
v1
= 0,

n

v1
−
n+ 1
v2
= 1,

we obtain the following system of equations:(
1−

xy

v2

)n
Hy =

(
1−

xy

v1

)n−1

= 0,(
1−

xy

v2

)n
Hx =

(
1−

xy

v1

)n−1(
1−

xy

v1v2

)
= 0.

The common zeroes of this system (for n > 1) lie exactly on the hyperbola Y 1
0 = {y =

v1/x}. Notice that the partial derivative Hx vanishes, in addition, on the hyperbola y =
v1v2/x. Hence, the points of this hyperbola are zeroes of the derivative y′ of the solutions
of (5.1) passing through these points. Of course, this can be checked by direct substitution.

Remark 1. The fact that H is the first integral of the equation (5.1), and hence its level
curves must be locally graphs of a regular function at each finite point, does not exclude
by itself possible critical points of H—compare the points of the hyperbola Y 1

0 .
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Remark 2. Instead of the rational equation (7.3) we can consider the equivalent polyno-
mial equation

W(x, y) = y

(
1−

xy

v1

)n
− y0

(
1−

xy

v2

)n+1

= 0. (7.4)

The advantage of (7.3) is that the initial value y0 appears there just as the right hand side.
Now, differentiating (7.4) with respect to x and y and equating to zero we get the

following system of equations:

Wx =

(
1−

xy

v1

)n
+
nxy

v1

(
1−

xy

v1

)n−1

−
(n+ 1)xy0

v2

(
1−

xy

v2

)n
= 0,

Wy =
ny2

v1

(
1−

xy

v1

)n−1

−
(n+ 1)yy0

v2

(
1−

xy

v2

)n
= 0.

Multiplying the first equation by y and the second by x and subtracting, we get

y

(
1−

xy

v1

)n
= 0.

So either y = 0 or the point (x, y) belongs to Y 1
0 . If y = 0 then the second equation above

is satisfied, while the first equation gives x = v2/((n+ 1)y0). So the function W(x, y)
has an additional critical point, not on the hyperbola Y 1

0 . Notice, however, that for any
y0 6= 0 this point does not belong to the solution curve of (7.4), while for y0 = 0 it is at
infinity.

7.2. Singularities of solutions of dy
dx
= cxy3

+ y2

The only “fixed” singularity of equation (5.1) is the origin x = 0. Let us start with the
“movable” singularities x0 6= 0 of solutions (compare with the general results of Sec-
tion 2).

Proposition 7.1. For y0 6= 0 the solution y(y0, x) has the only movable singularity at
the point x0(y0) = κ/y0, where

κ = −v2

(
v2

v1

)n
= −

2
1− δ

(
1− δ
1+ δ

)n
≈ −2e

for δ small. Exactly one local branch of y(y0, x) takes an infinite value and has a ramifi-
cation of order 2 at x0(y0), while the other n− 1 local branches are regular at this point
and take there n− 1 different finite values.
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Proof. Denoting, as above, 1/y by u we get from (7.3)

y0 =
(u− x/v1)

n

(u− x/v2)n+1 . (7.5)

Substituting here u = 0 (and assuming x 6= 0 and so cancellation is possible) we get
x0(y0) = κ/y0. So the local branch of y(y0, x) can take an infinite value only at the point
x0(y0) = κ/y0.

To find the order of branching of u as a function of x, we write the series expansion
of (7.5) as follows:

x =
κ

y0

(1− uv1/x)
n

(1− uv2/x)n+1 =
κ

y0

(
1+

u

x
[(n+ 1)v2 − nv1]+ A

(
u

x

)2

+ · · ·

)
. (7.6)

Since (n+ 1)v2 − nv1 = 0, we can rewrite the last expression as

x =
κ

y0

(
1+ A

(
u

x

)2

+ · · ·

)
, x −

κ

y0
= B

(
u

x

)2

(1+ · · · ). (7.7)

Although (7.7) contains x on both sides, it shows that x − κ/y0 as a function of u has a
second order zero at u = 0, and hence u as a function of x has at x0 = κ/y0 a second
order branching. (We do not prove that the coefficient B above is different from zero,
since this fact was stated in general form in Section 2.) This completes the description of
the branch passing through the point (x0(y0),∞).

Any other branch of the solution y(y0, x) (i.e. of the curve H(x, y) = y0) over x0 is
regular, since by Lemma 7.1 all the singularities of H belong to the level curve H = 0.
Since for any fixed x the total number of solutions of H(x, y) = y0 with respect to y,
counted with multiplicities, is n+1, and since the multiplicity of the singular branch is 2,
there are exactly n − 1 regular local branches of the curve H(x, y) = y0 over x0. This
completes the proof of the proposition.

Remark. Exactly as in Sections 3 and 4, we can use the series (7.7) to analyze the local
structure of the singularities of the Poincaré mapping. Indeed, for a fixed x = x0 we can
rewrite (7.7) as

y0 −
κ

x0
= D

(
u

x0

)2

(1+ · · · ), (7.8)

and we get a second order zero of y0 − κ/x0 as a function of u(x0) and a second order
ramification of u(x0) as a function of y0.

The next step is to investigate the structure of the fixed singularity x = 0.

Proposition 7.2. For y0 6= 0 the solution y(y0, x) has over x = 0 two local components:
the regular one, passing through the point (0, y0), and the singular one, passing through
the point (0,∞). The singular component is represented by the Puiseux series

1
y(x)

= u(x) =
1
v1
x + µx1+1/n

+ · · · , (7.9)
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with

µ = y
1/n
0

(
1

2n+ 1

)1+1/n

≈
1

2n
y

1
n

0 .

In particular, the local monodromy acts as a cyclic permutation of the infinite branches.

Proof. Let us rewrite equation (7.3) in the form

y0

(
u−

x

v2

)n+1

=

(
u−

x

v1

)n
. (7.10)

We have to find the Puiseux expansion of the curve given by (7.10) at the point (u, x) =
(0, 0). We use the following “Ansatz”:

u(x) =
1
v1
x + µxν + · · · . (7.11)

Substituting (7.11) into (7.10) we get

y0

[(
1
v1
−

1
v2

)
x + µxν + · · ·

]n+1

= µnxνn + · · · .

Comparing the leading degrees and coefficients, we obtain

y0

(
1
v1
−

1
v2

)n+1

xn+1
+ · · · = µnxνn + · · · ,

and hence

µ = y
1/n
0

(
1
v1
−

1
v2

)(n+1)/n

= y
1/n
0 (−δ)1+1/n

≈
1

2n
y

1/n
0 , ν = 1+

1
n
.

Let us illustrate the above computations by writing explicitly the solution y in the case
n = 1, i.e. for c = c1 = 2/9. Equation (7.4) takes the form

W(x, y) = y

(
1−

xy

v1

)
− y0

(
1−

xy

v2

)2

= 0. (7.12)

Taking into account that for n = 1 we have v1 = −3, v2 = −3/2, we get the following
quadratic equation for y:

1
3
x

(
4
3
xy0 − 1

)
y2
+

(
4
3
xy0 − 1

)
y + y0 = 0.

Solving it we get

y = −
3

2x

(
−1±

1√
1− 4

3xy0

)
.

This function has a double ramified pole at x = 3/(4y0), a branch with a usual pole at
x = 0, and a regular branch passing through (0, y0).
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7.3. Global ramification of solutions

According to Propositions 7.1 and 7.2, there are only two singularities of the solution
y(y0, x) for y0 6= 0: the fixed singularity at x = 0 and the movable singularity of one
of the branches of y at x0(y0) = κ/y0. The original local branch at x = 0 of y(y0, x)

is regular at the origin. Hence, it can be analytically extended as a regular single-valued
function into the disk D = D|κ/y0|, centered at x = 0.

Lemma 7.2. The regular branch of y(y0, x) on the diskD has a singularity at the bound-
ary point κ/y0.

Proof. Take y0 positive. By our choice of the parameter c ≈ 1/4 we have c > 0. There-
fore, the right hand side of (5.1) is positive, and bounded from below by y2, and hence
its solution blows up in finite time on the semi-axis x > 0. By Proposition 7.1, this hap-
pens exactly at the point x0(y0) = κ/y0. This proves the lemma for y0 positive. Now,
as y0 moves along the circle |y0| = const, the singularity x0(y0) = κ/y0 of the regu-
lar single-valued function y(y0, x) on the disk D moves along the boundary of this disk.
Since y(y0, x) analytically depends on y0, the point x0(y0) remains its singularity. This
completes the proof.

Let the value y0 6= 0 be fixed. Consider the loop ω in the x-plane following the
straight line segment from 0 to the singular point x0(y0), then going around this point in
a counter-clockwise direction along a small circle, and then returning to 0 along the same
straight line segment.

Lemma 7.3. The regular branch at x = 0 of the solution y(y0, x) analytically continued
along the loop ω returns at x = 0 to one of the infinite branches of the solution.

Proof. Since y(y0, x) has a second order ramification at x0, after one turn around this
point we get another branch of the solution. When we return to zero, we stay on this new
branch, different from the initial (regular) one. But by Proposition 7.2 all the branches,
except the initial one, tend to∞ at x = 0.

Now we have enough tools to prove one of the main properties of the solutions of
(5.1), as given by the first integral H(x, y) = y0:

Theorem 7.1. For each y0 6= 0 the solution curve Yy0 = {H(x, y) = y0} is irreducible.
Analytic continuation of the local solution y(y0, x) at zero along the loop ω and then
several turns around zero transform this local branch to each of the remaining n branches
of Yy0 .

Proof. By Lemma 7.3 continuation along ω transforms the local regular branch of
y(y0, x) at zero into one of the infinite branches. By Proposition 7.2, each turn around
zero results in a cyclic permutation of the n infinite branches. Hence, in at most n turns
any other infinite branch can be obtained.
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8. Poincaré mapping, c = cn

The first integral for the Abel equation (5.1) with c = cn, as computed in Section 7,
equation (7.3), has the form

y0 =
y(1− xy/v1)

n

(1− xy/v2)n+1 . (8.1)

Substituting here x = b we get an algebraic equation

y0 =
y(1− by/v1)

n

(1− by/v2)n+1 , (8.2)

which expresses the relation between y and y0 in the Poincaré mapping from a to b.
In particular, read as an expression for y0 through y, (8.2) represents y0 as a rational
function of y. However, such a straightforward interpretation of (8.2) is somewhat mis-
leading, since for each y1 the continuation path from b to 0 must be specified, avoiding
singularities of the solution y(b, y1).

Indeed, without taking this into account, (8.2) produces some peculiar phenomena.
In particular, the derivative dy0/dy at y = v1/b is zero by (8.2). On the other hand, the
derivative of the Poincaré mapping cannot vanish (since the Poincaré mapping is always
locally invertible).

The correct interpretation of (8.2) is that the algebraic solution curve given by (8.1)
contains the points (0, y0) and (b, y). However, an analytic continuation of this solution
from (b, y) along a given path can be either y0 or∞, according to the results of Section 7.
In particular, the point (b, v1/b) belongs to the hyperbola y = v1/x, and its analytic
continuation to x = 0 is∞ for any path. Therefore, we cannot come from (b, v1/b) to
(0, 0), whichever continuation path is taken, and the vanishing derivative above is not the
derivative of any “true” Poincaré mapping.

8.1. Example: n = 1

In this paper we provide a complete description of the ramification structure of the Poin-
caré mapping only in one simple example: for n = 1. We also assume b = 1. In this case
equations (8.1) and (8.2) take the form

y0 =
y(1+ xy/3)
(1+ 2xy/3)2

, (8.3)

y0 =
y(1+ y/3)
(1+ 2y/3)2

. (8.4)

Solving the first equation with respect to y we get

y = −
3

2x

(
−1±

1√
4
3xy0 − 1

)
,
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and substituting x = 1 we obtain the Poincaré mapping from 0 to 1 as

y = −
3
2

(
−1±

1√
1− 4

3y0

)
. (8.5)

Now, the singular point of the solution is at x = 3/(4y0). The singular point y0 = 3/4 of
the Poincaré mapping corresponds (in agreement with the description of Section 3 above)
to the singularity of the solution being at x = 1.

Following Section 3, let us consider the values of y0 for which the singular point of
the solution x = 3/(4y0) crosses the continuation segment [0, 1]. They form the segment
J = [ 3

4 ,∞]. Consequently, for y0 ∈ C \ J the Poincaré mapping, as given by the branch
of (8.5) with the value 0 for y0 = 0, corresponds to the continuation segment [0, 1]. As
y0 crosses J , the continuation path must be deformed as described in Section 3. After two
turns we return to the same branch—this is specific to the case n = 1, where the infinite
branch of the solution over 0 does not ramify.

9. “Limit cycles”, c = cn

Theorem 9.1. For c = cn =
1
4

(
1 − 1

(2n+1)2
)

and b 6= 0 equation (5.1) has n different

“limit cycles”, i.e. local solutions yj (x) at the origin, j = 1, . . . , n, and paths sj from 0
to b, such that each yj (x)when analytically continued along sj satisfies y(0) = y(b). The
ramification structure of these “limit cycles”, in particular, the paths sj , approximates
that of the case c = 1/4 as n tends to infinity.

Proof. Let us rewrite equation (5.6) for the “limit cycles” in the form(
1−

by0

v1

)n
−

(
1−

by0

v2

)n+1

= 0. (9.1)

First, we have to analyze the algebraic equation (9.1). Notice that (9.1) depends only on
the product by0. Denoting by0 by κ we get(

1−
κ

v1

)n
−

(
1−

κ

v2

)n+1

= 0. (9.2)

Denoting the roots of (9.2) by κ0, . . . , κn we get for any b 6= 0 the corresponding solutions
y
j

0 = b/κj , j = 0, . . . , n, of (9.1).

Lemma 9.1. For large enough integer values of n equation (9.2) has n+ 1 distinct com-
plex solutions κ0, . . . , κn.

Proof. Indeed, equating to zero the derivative of (9.2) we get

−
n

v1

(
1−

κ

v1

)n−1

+
n+ 1
v2

(
1−

κ

v2

)n
= 0.
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Multiplying this equation by (v1/n)(1−κ/v1) and adding it to (9.2) we obtain, after some
transformations, the equation(

1−
κ

v2

)n[
−2−

1
n
−
(n+ 1)2κ

2n+ 1

]
= 0. (9.3)

It has one root κ̃ = v2 = −2 + 1
n+1 of multiplicity n, and another simple root κ̂ =

(2n+ 1)2/(n(n+ 1)2). The first root clearly is not a root of (9.2). Substituting into (9.2)
the second root of (9.3) we get(

1−
(2n+ 1)2

n(n+ 1)2

)n
−

(
1−

(2n+ 1)3

n(n+ 1)3

)n+1

,

which for n large enough gives (1−4/n+· · · )n− (1−8/n+· · · )n+1
≈ e−4

− e−8
6= 0.

Therefore, (9.2) and its derivative do not have common roots. Hence, all the roots of (9.2)
are simple, different from one another, and their number is n+1. This completes the proof
of the lemma.

Consider now the local solutions yj (x) = y(y
j

0 , x) at the origin satisfying yj (0) =
y
j

0 , j = 0, . . . , n, where yj0 , j = 0, . . . , n, are all the distinct solutions of (9.1) given
by Lemma 9.1. Analytic continuation of yj (x) gives an algebraic curve Y

y
j

0
satisfying

equation (5.4) with y0 = y
j

0 . Now equation (9.1) says exactly that the points (0, yj0 )
and (b, yj0 ) belong to Y

y
j

0
. By Theorem 7.1 this curve is irreducible, and we can pass

from the point (0, yj0 ) to the point (b, yj0 ) via analytic continuation of the local branch
yj (x) = y(y

j

0 , x) at the origin along a certain path sj , as described in Theorem 9.1.
As n tends to infinity, cn tends to 1/4. By the analytic dependence on the parameter,

the solutions and the Poincaré mapping of the Abel equation with c = cn approximate that
of the limit one on each compact domain. Hence the same is also true for the ramification
structure of the “limit cycles” over the paths sj of “bounded complexity”. This completes
the proof of Theorem 9.1.
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