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Abstract. Let X denote either CP" or C". We study certain analytic properties of the space
E™(X, gp) of ordered geometrically generic n-point configurations in X. This space consists of
allg = (q1,...,qn) € X" such that no m + 1 of the points ¢, ..., g, belong to a hyperplane
in X. In particular, we show that for large enough n any holomorphic map f: £E"(CP™, gp) —
EN(CP™, gp) commuting with the natural action of the symmetric group S(n) in £ (CP™, gp) is of
the form f(q) = t(q)q = (t(¢)q1, ..., T(q@)qn), g € E"(CP™, gp), where t: E"(CP™, gp) —
PSL(m + 1, C) is an S(n)-invariant holomorphic map. A similar result holds true for mappings of
the configuration space £ (C™, gp).

Keywords. Configuration space, geometrically generic configurations, vector braids, points in gen-
eral position, holomorphic endomorphism

1. Introduction

In this paper we study certain analytic properties of the spaces of geometrically generic
point configurations in projective and affine spaces.

The most traditional configuration space C" = C"(X) of a complex space X consists
of all n-point subsets (“configurations™) Q = {q1, ..., g,} C X.If X carries an additional
geometric structure, it may be taken into account. Say if X is either the projective space
CP™ or the affine space C"™ and n > m then the space C" = C"(X, gp) of geometrically
generic configurations consists of all n-point subsets O C X such that no hyperplane in X
contains more than m points of Q. The corresponding ordered configuration space £" =
E™(X, gp) consistsof all ¢ = (q1,-..,¢q,) € X" suchthattheset Q = {q1,...,qn} C X
belongs to C"(X, gp). The left action of the symmetric group S(n) on £" defined by
0(q1,---sqn) = (go-1(1ys - -»4o-1(n)) 18 free; the corresponding orbit map identifies
with the tautological covering map p: £" 3 (q1,...,qn) —> {q1, ..., gn} € C*, which is
an unbranched Galois covering with Galois group S(n).

Let Autg X be the subgroup of the holomorphic automorphism group Aut X of X
consisting of all elements A € Aut X that respect the geometrical structure of X; i.e. for
X = CP" we have Auty, X = PSL(m + 1, C) = Aut X, whereas for X = C" it is known
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that Aut, X = Aff(m, C) C Aut(C™). Notice that in both cases Aut, X is a complex Lie
group. The Aut, X action in X induces the diagonal Aut, X actions in C" and £" defined
by AQ := {Aqi1, ..., Agy} forall Q = {q1,...,qn} € C" and Aq := (Aq1, ..., Aqn)
forallq = (q1,...,qn) € E™.

Definition 1.1. An endomorphism F of C" is said to be tame if there is a holomorphic
map T : C" — Auty X such that F(Q) = Fr(Q) :=T(Q)Q forall Q € C". Similarly,
an endomorphism f of E" is called tame if there is an S(n)-invariant holomorphic map
1: " — Auty X and o € S(n) such that f(q) = fr,5(q) == 071(q)q forallq € £".

When X = C™, an endomorphism F of C"(C™, gp) is said to be quasitame if
there is a holomorphic map T : C"(C™, gp) — PSL(m + 1, C) such that F(Q) =
Fr(Q) = T(Q)Q for all Q € C"(C™, gp), notice that the latter condition im-
plies that T(Q)Q < C™ for any Q € C"(C™, gp). Similarly, an endomorphism f
of &' = E"(C™, gp) is quasitame if there is an S(n)-invariant holomorphic map
7: EM(C", gp) - PSL(m + 1,C) and o € S(n) such that t(q)q1, ..., t(q)g, € C"
and f(q) = ot(q)q forany q = (q1, ..., qn) € E"(C", gp).

The left S(n)-action on £"(X, gp) induces the left S(n)-action on the set of all maps

f:E&"(X, gp) — &"(X, gp) defined by of = o (f1,..., fu) = (fo-101ys -+ fo-1(n)
for f = (f1,..., fu): E"(X, gp) — E£"(X, gp) and o € S(n).

Definition 1.2. A continuous map f: E" — E" is called equivariant if there is o €
AutS(n) such that f(oq) = a(o) f(q) forall g € E" and o € S(n). (This property is
slightly weaker than the “standard” equivariance, which requires that f(oq) = o f(q).)

When m = 1, that is, when X = CP' or C', the spaces of geometrically generic con-
figurations in X coincide with the usual configuration spaces C*(X) and £"(X). V. Lin
[4-6]] proved that when n > 4 and X is C or CP', any equivariant endomorphism F of
£"(X) is tame. (He also completely described all endomorphisms of the spaces C" (CP')
and C"(C); moreover, thanks to the works of V. Zinde [11H15] and the author [3]], such
a description is known for endomorphisms of traditional configuration spaces of all non-
hyperbolic algebraic curves.)

In this paper we treat the equivariant endomorphisms of &"(CP™, gp) and
E™(C™, gp). The following theorem contains the main results of this work.

Theorem 1.3. Letm > 1,n > m +3 andn # 2m + 2.

(a) Any equivariant endomorphism f of E"(CP™, gp) is tame.

(b) Any equivariant endomorphism f of E"(C™, gp) is quasitame.

In more detail, for any equivariant endomorphism f of E", there is an S(n)-invariant
holomorphic map t©: E" — PSL(m + 1, C) and o € S(n) such that

f(@) =o0t(@)g = (T (@Qgs-1(1)s - - - T(@Gs-1(n)) Sorallg =(qi,....qn) € E".

Remark 1.4. Any tame endomorphism f = f; , of £" is equivariant; the corresponding
automorphism « € AutS(n) is just the automorphism s > oso~!. The same holds true
for quasitame maps.
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Remark 1.5. Theorem b) is not complete, since at the moment I do not know whether
there are endomorphisms of £”(C™, gp) that are quasitame but not tame. Moreover, al-
though I think that Theorem @] holds true for n = 2m + 2, in this case I could not
overcome some technical difficulties which arose in the proof.

The plan of the proof is as follows. Let X = C™ or CP™. To study an equivariant
endomorphism f of £" = £"(X, gp), we start with an explicit description of all non-
constant holomorphic maps A: £ — C\ {0, 1} (cf. [6], [12], [13] and [3]]). The set
L(E™) of all such maps is finite and separates points of a certain submanifold M C &"
of complex codimension m(m + 1); we endow L = L(E") with a special simplicial
structure. The action of S(z) in £" induces a simplicial S(n)-action in the complex L.
An endomorphism f induces a simplicial self-map f* of L via f*: L 2 A — f*A =
Ao f € L, which carries important information about f. Since f is equivariant, f* is
nicely related to the S(n)-action on L. Studying all these things together, we come to the
desired conclusion.

Remark 1.6. The topology of the spaces in question is of great independent interest.
A. L. Barvinok calculated the first homology group of the ordered space £ (C2, gp) (see
[L]]). V. Moulton [8] found the generators and some generating relations of the fundamen-
tal groups 71 (E"(C™, gp)) and 71 (E"(CP™, gp)). T. Terasoma [9] found a presentation
of 1 (E"(CP™, gp)) forn > m + 1.

2. Some properties of generic configurations

The spaces £" have the following explicit algebraic description.
Any point ¢ € (CP™)" may be represented as a ‘matrix’

q1 [Zl,l e Zl,m+l]
g=1: 1= : e (CP™)", (H
qn [2n1 0 Znma1 ]
where ¢; = [zj1 @ --- @ Zjmg1] € CP™, j = 1,...,n. For m + 1 distinct indices
i1, .-y imt1 € {1, ..., n}, the determinant
Ziy,1 Ziy,m Ziy,m+1
diy,...ins1 (@) = : :
gy, ooe Zigyr,m o Ziggp,m+1

is a homogeneous polynomial of degree m + 1 in the homogeneous coordinates [z 1 :
“t Ztmt1)s -5 [zna ¢t o0 0 Zoms1]). The space £ (CP™, gp) consists of all g of the
form () such that d;, i, ., (¢) # O for all distinct iy, ..., imq1 € {1,...,n}.
Similarly, the space £"(C™, gp) consists of all matrices

q1 2115 -5 Zms 1
g=1:1= : e (@ )

qn Zl’l,lv"'azn,I’nvl
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withall g; = (zj,1,...,2j,m) € C" such that
Ziy,1 Ziy,m 1
dilvwsierl(q) = 7& 0
Ziggi,l ooo Zigygm 1
for all distinct iy, ..., in4+1 € {1,...,n}.

We refer to the components ¢, ..., g, of a point ¢ = (g1, ..., gn) in E"(CP™", gp)
or in E"(C™, gp) as vector coordinates of q.

Although we use the same notation for determinant polynomials in both cases, pro-
jective and affine, it will be clear from the context which one we mean.

One can easily verify the following statement.

Lemma 2.1. All minors of the matrices and @) are irreducible homogeneous poly-
nomials of the entries z; s.

Notation 2.2. By a multiindex we mean an ordered seti = (i, ..., ;) with distinct
i1, ...,is € {1,...,n}. Sometimes we forget the order and write i € i and #i = s. If
s=1landi € {1,...,n}, we may write i =i instead of i = (7).

For t multiindices ij = G{,...,i]),....i, = @,...,i) such that i},...,il, ...,
if, ..., il are distinct, we set dj, _;, = dill,...,i},...,ii,..‘,ig‘ Leti = (i1,...,i,) and i’ =
(i1,...,is—1);foranyi € {i1,...,is}andany k = 1,...,s — 1, we denote by Dj.; x the

(s — 1) x (s — 1) minor of the s x s matrix

Zig 1y - v Zigs—10 1
Zi = :

Zl'x,lv MR ZZ'S,S—la 1

complementary to z; x; for i = iy, we write 8y.x instead of Dj.; . Let I' denote the set of
all multiindicesi = (i1, ..., i) suchthatl <i; <--- <iy <n.Fori= (if,...,i5) e I
and j = (ji,..., j;) € I', we define the multiindices i N j and i \ j in the evident way;
ifiNj = @, we define the multiindex i U j € I*** by an appropriate reordering of the
components iy, ..., is, ji,..., j;. For 1 < j <n, setI;? ={iell|j£i}.

Now we can establish the following property of the determinant polynomials.

Lemma 2.3. Letig € {1,...,n}, ip = (i1,...,im) € Ig and L C C™ be a linear
subspace defined by the relations z;, » = --- = z;,, 2. Fori € I;Z‘H, degdi|, = m; the

polynomial di|y, is irreducible if and only if #(i Nig) < m; moreover, if #({i Niy) = m,
then di|;, = £D;.;2 - (zi2 — 2iy,2), wherei €1\ .

Proof. Assume that #(i Nig) = m, thus #( \ ip) = 1. Set (i) =i\ ip. By the Lagrange
determinant decomposition formula, we can show that di|;, = £Dj.; 2 - (zi2 — 2i;,2), 1.e.
di|r is reducible and degdj|;, = m. Now assume that #(i Nig) < m. Leti, j € i\ i
be two distinct indices. It is clear that if we prove that d; j,, .. ;,|o is irreducible and
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degd; ji,...i,|L = m, the same statements for dj|; hold true. Sosetj = (i, j, iz, ..., im).
Clearly, dj|;. = (zi,2—2i,2)-Dj.i,2—(2ir,2—2j,2) - Dj; j,» and deg dj| . = m. Therefore, dj|,
is a linear function of the variables z; 2, z;,2, zi,,2 With coefficients Dj;; 2, Dj, 2, Dj.i2 —
Dj.i 2. By Lemma[2.1} Dj; 2, Dj, ;2 are irreducible. Thus Dj;; 2, Dj, 2, Dj.i2 — Dj.i2 are
pairwise co-prime. This implies that dj|. is irreducible, and completes the proof. O

2.1. The direct decomposition of E" (CP™, gp)

Here we observe that £" (CP™, gp) admits a natural representation as a Cartesian product
of its subspace of codimension m(m + 2) and the group PSL(m + 1, C).

Definition 2.4. Setvi =[1 : 0: --- : 0, vp =[0:1:0: - :0L,...,9p41 =
[0:---:0:1landw = [1 : --- : 1]. The subspace My, , C E"(CP™, gp) defined by
Mun=1{q=1(q1,....q90) € E"(CP", gp) | gi =viVi=1,....m+1, gui2 =w}is
called the reduced space of geometrically generic ordered configurations.

Lemma 2.5. Let n > m + 3. For every q € E"(CP™, gp), there is a unique y(q) €
PSL(m + 1) such that y(q)q € My . The map y: E"(CP",gp) 2 g — y(q) €
PSL(m + 1) is holomorphic.

For m = 1 the statement of the lemma is common knowledge; the case m = 2 is treated
in [2, Chap. V, Sec. 109, Theorem 36]. Since for m > 2 the proof is similar to the proof
of the case m = 2, we shall omit it.

Corollary 2.6. The mutually inverse maps A: E"(CP",gp) > q — A(q) =
(¥(@), v(@)q) € PSL(n+1)x My, , and B: PSL(n+1)x My, 3 (T, §) > B(T,§) =
T~ e £ (CP™, gp) induce a natural biholomorphic isomorphism E"(CP™, gp) =
PSL(m + 1) x My, n.

Remark 2.7. The above corollary implies that £"(CP", gp) and C"(CP™, gp) are ir-
reducible non-singular affine algebraic varieties, and hence Stein manifolds. Indeed, in
the above decomposition of £"(CP™, gp) both PSL(m + 1) and M,, , are such varieties
and hence E"(CP™, gp) is also of the same nature. Since S(n) is finite and its action on
E™(CP™, gp) is free, the same is true for C" (CP™, gp). The same properties hold true for
EM(C™, gp) and C"(C™, gp).

2.2. Determinant cross ratios

Here we construct certain non-constant holomorphic functions £ — C \ {0, 1}.

Definition 2.8. Let X be either CP" or C" and let n > m + 3. For any m + 3-

dimensional multiindex I = (i1, ..., in+3) with distinct components i, € {1,...,n},
seti= (i1,...,im=1), ] =im k = im+1, | = im+2, § = im+3, the non-constant rational
function

dijk(q)  diks(q)

: , e((CPm)",
diq)  dusq@ 7

er(q) =eijris(q) =
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is called a determinant cross ratio, or, in brief, a DCR. This function is regular on the
algebraic manifold £" (X, gp) C (CP™)".

The unordered set of indices {1} = {i1,...,im—1, J, k, 1, s} is called the support of
the function u = ey = ej;j k1,5 and is denoted by supp u, its unordered subset {i} =
{i1, ..., im—1} is called the essential support of u and is denoted by supp.e 1 (We often
write I instead of {1} and i instead of {i}). In fact, e;(q) = e;(q1, - .., qn) depends only
on the vector variables q; witht € I.

By a straightforward computation, one can easily obtain the following relations.

Lemma 2.9. (a) €i:t.k,r,s = ei;j,k,r,s/ei;j,k,r,t;
(©) €j.icjkrs = €jjiikrsCis:jkri = €k jirsCirjkise

The following lemma is a known fact of the classical invariant theory (for small dimen-
sions it was discovered by A. F. Mobius [7]], note especially Part 2). The proof may be
extracted from [[10, Section 2.14] (especially, Theorem 2.14.A).

Lemma 2.10. Leti = (i, ..., in—1) be a multiindex, and j, k, 1, s be indices such that
alliy, ... im—1, j, k,1, s are distinct. Then d; j idi s + di j1di sk + di j sdik1 = 0.

Corollary 2.11. e;.j x5 + ei; sk = 1.
Proof. By a straightforward computation and the above lemma, we see that

di,jkdig s + dijsdig + dijidisk
di, jidik,s

=0. ]

€i;jkl,s T eijs ik — 1=

Lemma 2.12. Any DCR omits the values 0 and 1 on E" (CP™, gp).

Proof. Let A = ej;j 1,5 be a DCR. By Definition[2.8] A omits the value 0. By Corollary
211} A = 1—ej 5.1,k Since ej; j 5,1k omits the value 0, it follows that A does not take the
value 1 either.

Remark 2.13. Notice that two determinant cross ratios, say e; = ejj s and ey =
ey, jr kI s'» coincide if and only if {i} = {i’} and (j, &, I’, s") is obtained from (j, k, [, 5)
by a Kleinian permutation of four letters. The set of all determinant cross ratios is denoted
by DCR(E") = DCR(E" (X, gp)) = DCR(E™(CP™, gp)).

The S(n)-action in £" induces an S(n)-action on functions defined by (o1)(q) =
rMo~lg) = AGo(1ys - - -+ Qo)) (A is a function on £", g = (g1, ...,gs) € E"; notice
that A may also be written as (6 ~1)*A = 1 o (6 ~!), where o and o~ ! are considered as
self-maps of £"). This action preserves the set of holomorphic functions.

Lemma 2.14. The S(n)-action leaves the set DCR(E™) invariant. Moreover, this action
is transitive on DCR(E™).
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Proof. Let a = (aj,...,q;) be a multiindex. For any ¢ € S(n), let o(a) :=
(0(ap), ..., (@)). Then 6da(q) = da(0~'q) = dy(a(g)- Thus,

_ dijr(07'9)  digs(0'g)
di,j,r(U_lQ) ) di,r,s(U_IQ)
do(i).o(j).0k)(q)  doiiy,owk).os)(q)

= : = €o(i);0(j).0(k).0(r).0(s)(q)-
do(i),o(j),o(r)(q) da(i),o(r),a(s)(‘]) oWioD.o®.o(.06)

-1
O€j;jk,rs (q) = ei;j,k,r,s(a q)

Let e;, e; € DCR(E™). Since each of the sets [ and I’ consists of m + 3 < n distinct
elements of {1, ..., n}, thereis 0 € S(n) such that ol = I’; hence oe; = ey O

Lemma 2.15. DCRs are invariants of the PSL(m + 1)-action on £"(CP™, gp).

Proof. Clearly, the following elementary operators do not change a DCR:

[z1 2 zmpl > lazi oot amp1zmr]  forap----- am+1 # 0;
[Zl:"':Zi:"':Zj:"':Zm-i-l]'_)[Zl:"':Zi+Zj:"':Zj:"':zm+l]~

Any element of PSL(m 4+ 1) can be decomposed into a sequence of elementary operators.
This proves the lemma. O

Notation 2.16. Fors € {1,...,m},setm(§) = (1,...,S5,...,m). For s = m, we write
sometimes m instead of m(#).

Lemma 2.17. (a) The map P: My, ,, — (CP="=2y" defined by

PLm+3(q)s -.-y P1.a(q)
g P(q) =

)

pm,m+3(Q)y veey pm,n(Q)

with ps:(q) = em@):s.m+1,m+2,:(@) fors =1,... . mandt =m +3,...,n,isa
holomorphic embedding.
(b) My, is a hyperbolic space.

Proof. (@ For ¢ = (q1,...,qn) € Mm,n with qi = [Zi,l Lo Zi,m+1] we
have z;m+1 = dmmi(q) # 0 and zrs = FdmE)m+1,.(q) # 0. Furthermore,

dm@s).s.m1(@) = dm@)sm2(@) = D" dim@my1.(@) = —(=D" "z, and
A5y m+2,0(@) = (=1 Gt = 20,9); thus,
Per(q) = dm).s.m+1(q) : dm@s),m+1.0(4) _ | Gemtl
dm(s),5.m+2(2)  dms),m+2,6(2) s
If Q/ = (Qi, e ,q;l) € Mm,n with ql/ = [Zl/',l C et Z;,m+1] and ps,t(q) _ px,t(q,) for

s=1,...,m,then

/
Zrm+l Zemtl
cmtl _ Zhmtl foralls =1,...,m

!/
Zt,s Zt,s
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and hence ¢; = ¢;. Thus, P(q) = P(q’) implies ¢ = ¢’ and so P is injective. To see that
P is an embedding, it suffices to observe that from the above calculation it follows that at
any point the Jacobi matrix of P is of maximal rank.

(b) Since every DCR omits the values 0 and 1, P(M,, ,) C (C\ {0, 1})ymn=—m=2),
Hence M,, ,, is hyperbolic. O

3. Holomorphic functions £" — C\ {0, 1}

Notation 3.1. For a complex space Z, we denote by L(Z) the set of all non-constant
holomorphic functions Z — C\ {0, 1}.

The following lemma plays a crucial part in the explicit description of L(E").

Lemma 3.2. Let A, B, C € C[C"™"] = Clz1.1, - .., 2n.m] be pairwise co-prime polyno-
mials on C"™" non-vanishing on £"(C™, gp) C C™*. Assume that at least one of them
is non-constant and A + B + C = 0. Then there exist a multiindexi = (i1, ..., In—1),
indices j,k,l,s, and a € C\ {0} such that all iy, ...,in—1, J, k,1,s are distinct and
A= Oédi,j’kdi‘l,s, B = Oédi,j,[di,s,k and C = Oédi,j,sdi,k‘l.

Proof. Since A, B, C do not vanish on £"(C™, gp) = C™ \ | J;{g € C™ | di(g) = 0},
from Lemma[2.J] we see that

A=a [] a4, B=p[]d'. c=y [] 4.

jepnt1 jerm+1 jem+1

where o, B,y € C\ {0} and a;, bj, ¢ci € Z4 (see Notation [2.2). The polynomials are
homogeneous; thus, the equality A + B + C = 0 implies that deg A = deg B = deg C,
ie.> ai=> b = c. For every index iy, | < ip < n, we can write

Qi i big.i Cig i
A=A [Td,5. B=8,[d,5. c=c[]d5.

iel” iel” iel”
io io io

where A;,, Bj,, C;, are the products of all factors d; that do not contain the variables
Zig, 15+« Zig,m> i.e.

i by i
Ap==%a [ df. By=+p [] &". Ciy=xy [] 4. 3)
jer"t! jer"t! jert!
0 ‘0 o
The proof is divided into two steps.
Step 1. Let us prove the following statement:

() There is an index ty such that the polynomials Ay, By, Cy, are constant.
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Proof. First, we prove that for any ip € {1, ..., n},

Zaio,i = Zbio,i = Z cioi and deg A;, = deg B;, = deg Cj,. 4)

Without loss of generality, we can assume that either (a) > a;,i > > bjyi = Y Cjy,i OF

() Y aiyi= D bigi > Y cigior(c) D aipi= Y biyi= Y Cipi-

Compare the terms of the maximal degree in the variable z;, 1 in the equality A+ B +

C = 0. In case (a) we have A;, H Sia;i{”i = 0 (see Notation for the definition of ).
This means A = 0, a contradiction. In case (b) we obtain

Gjgi biy.i
Ai [T80 +Bi [] 8.0 =0.
iel” iel”
0 ‘0
.. biy i
By Lemma we see that the greatest common divisors GCD(A;y, [ [;cp» 8i,f’ ) and
10 i

i i .
GCD(B;,, l‘[iel’% Si;f ) equal 1; hence A;, + B;, = 0 and a;, ; = b, i for alli € If’g. Thus
C = —(A+B) = 0, a contradiction. This completes the proof of {@). Since A+ B+C = 0,

foreach k =1, ..., m the leading term of A + B + C in the variable z;, s is 0, i.e.
iy i biy i Cigi
Aio 1—[ 8i;12 + BiO 1_[ 8i;l? + CiO l_[ ai;l(() =0. o
ieIl’,'(“) ieIl'.:’] ieI;’(‘)

Assume that there is i such that A;, # A and A;, # const (otherwise either A = const,
which is a contradiction, or A;, = const and () holds with 7y = ig). By @), for such
ip we have 0 < deg A;;, = deg B;, = degC;, < degA = deg B = degC. By Lemma
[2;1'], all ;. are irreducible and distinct. Since A, B, C are pairwise co-prime, the integers
iy is biy.i» Cig,i are also distinct. Using these facts, it is easy to verify that the second order
system of the linear equations in variables A;, B;,, C;, defined by @) withk = 1,2 is of
rank 2; actually, all its 2 x 2 minors are non-zero polynomials. Thus, A;,/2 = B;,/*B =
Ci,/€ with certain non-zero polynomials 2, B, €. The polynomials B;, and C;, are co-
prime, so

B=B-B;, and C€=C-C, ©)

where B, C are non-zero polynomials. Pick ig = (i1,...,in) € IZ; such that g;, i, > 0.
Since A, B and C are pairwise co-prime, it follows that b;, j, = c;, i, = 0.
Let us prove that
i i biji Cili
A=Ad 5, Biy=%p[[d;’ Cio=%y[]d:" 7
i#io i#ip
the statement (x) will follow from this by combinatorial considerations.
Let L be the linear subspace of C"" defined by z;;,» = - -+ = z;,, 2. Since fori € I’
we have §;.x|; = 0if and only if #(i N ip) = m and k # 2, the restrictions

Bl = —(H Sz’g’i . néf?') 5 and ¢|p =— (l_[ ‘S.algl : l_[‘snbl?l)

®)

L
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are non-zero polynomials. Thus E| L, C | # 0. According to , 8|, and €|, are prod-
ucts of irreducible polynomials of degree < m — 1. By (3),

Byl =% [[ @l)" and Cilo =%y [] @l ©)

o _ym+1 . _ym+1
lEIiO 1eIi0

By (6). Bi,|r and Cj,|; must also be products of irreducible polynomials of degree <
m — 1. By Lemma[2.3] this may happen if and only if the decompositions (9) of B;,|. and
Ci,|L contain only factors of the form d; j,|. , i.e. we have shown that

bii Cili
Biy=+B]]d;’ and Ciy==%y[]d;°.
i#ig [ESD)
To complete the proof of (7)), we must show that a;, j, = 0 for any i; € If’g \ {io}. Suppose
the contrary, that there is i; € I;’; \ {io} such that a;, j, > 0. Then similarly we have

bii bi i Cij Cii
Biy=+p[[diy> =4[] d;" Co==y][]di’ =+v[]d} «0)
iiy i#io i#ig iig

Since we asiume that B;), C;, # const, (IO can occur only if B, = :I:ﬂdffi'go and
Ci, = :I:)/ds’l , i.e. Bj, and C;, have a non-trivial common factor, which contradicts
our assumptions. Thus, we have proved (7).

By (@), the choice of iy implies that Y a;, i = Y biyi = Y cip,i > 0. Since b; i, = 0,
the latter implies that there exists a multiindex iy # ig such that b;;;, > 0. In the same
way as we proved (7)), we conclude that

s,i0
io

aj i b
AiO = :|:Ol/ l_[ di,izz’ B = BiOdiO,iz
iFig i#ig

“ Gy =4y []dE (11)

1,1

Comparing (7)) and (L)), we conclude that C;, = j:yd:Si':)O and igNiy # @. Pick 1o € ipNip.
Then A;; = const. Due to @[) deg A;, = deg B;, = degC;; that is, Ay, By, Cy, are

constant polynomials. This completes the proof of (x).

Step 2. Letip € {1, ..., n}. Let us prove the following statement:
(kx) Assume that A;,, B;,, C;, are constant. Then there are i = (i1, ..., in—2), indices
Jys, 0, t, and o € C\ {0} such that all ig, i1, ...,in—2, j,S,1,t are distinct and

A =ad;y ;i jsdigiln B =adi jidiyins and C = adi j 1diy s 1-

i biy.i iod 1, - .
Proof. Set A" = A, [] (Sla{’ ,B' =B, [18.7]".C" =Ci, [] 8:? . Itis easily seen that A’,
B’ and C’ are pairwise co-prime on C™~D@=1 and do not vanish on the configuration
space £"~1(C"1, gp) € C=DO=D_ According to @), A’ + B’ + C’ = 0. The proof
of () is by induction on m.

Letm = 2. Lemma 5.1 of [6] states that for any three non-constant pairwise co-prime

polynomials P = a ]_[l.#j (xi —x))%i, Q=0 ]_[l.#j (x; —xj)biwj, R=c Hi;ﬁj (xi —x;)d
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in the variables x1, ..., x, which satisfy the equation P + Q + R = 0, there are distinct
indices j, s, [, t and @ € C\ {0} such that either P = a(x; — x;), O = a(xy — x7), R =
a(x;—xj)or P =a(x;—xs)(x1 —x1), QO = a(x; —x7)(x; — x5), R = a(xj — x¢) (x5 — xp).
This lemma applies to the polynomials A’, B/, C’ in the variables zj 2, ..., z,.2. There-
fore, there are distinct indices j, s, [, t and o € C\ {0} such that either A’ = a(zj,2—25,2)
B’ = a(zs2 — 212), C' = a(zp —zjp) or A" = a(zj2 — 22) (@2 — 22), B =
a(zj2 — 212)(2e2 — 25,2), €' = a(zj2 — 21,2) (25,2 — 21,2). Thus, for our original poly-
nomials A, B, C we infer that either A = ad; js, B = adjs;, C = adj,,,; or
A = adiy, jsdig1.0» B = adi jidig s, C = adi, jdi, 1. 1t is easily seen that in the
first case A+ B+ C = a(d;, j.s +diy,s,1 +diy,1,j) # 0. Thus, the equality A+B+C =0
can hold only in the second case, which provides the base of induction.

Suppose that (xx) is satisfied for some m = k — 1 > 1, and let us prove it for m = k.
Due to (%) (from Step 1), the induction hypothesis applies to the polynomials A’, B’, C’;
that is, there exist a multiindex i = (iy, ..., ix—2), indices j, s, [, ¢, and « € C\ {0} such
thatall iy, ..., ixk—2, j,s,[,t are distinctand A" = o - dj j s - di1 s, B = o - di j; - dis s
and C" = « - djj,; - dis;;ie. A, B and C can be written as A = « - dj i j.s - digil.1»
B =a-djji-diissand C =« - dj,j j - dip.is,i. This completes the proofs of ()
and of Lemma[3.2] O

Theorem 3.3. Let X = C™ or CP™. Then L(E"(X, gp)) = DCR(E™ (X, gp)).

Proof. By Corollary[2.12] it suffices to show that L(E"(X, gp)) € DCR(E"(X, gp)). We
follow [6]. Let u € L(E"(X, gp)), that is, u: E"(X, gp) — C\ {0, 1} is a holomorphic
function. First, let X = C™. It follows from the Big Picard Theorem that u is a regular
function on £"(C™, gp); hence it is a rational function on (C™)" and there are co-prime
polynomials A, B € C[(C™)"] that do not vanish on £"(C™, gp) such that u = —A/B.
The function 1 — u = (A + B)/B also omits the values 0, 1. The polynomials A, B and
C = —B — A are pairwise co-prime, do not vanish on £ (C™, gp) and satisfy A + B +
C = 0. Lemma [3.2] applies to the last three polynomials and shows that u = —A/B =
—di,j kdi1s/di, j.1di 5.k = ei.j k1,5 for appropriatei, j, k, I, s. When X = CIP", we restrict
wu from " (CP™, gp) to E"(C™, gp) and apply the above result, which leads to the desired
conclusion. o

4. Simplicial structure on L (&™)

It was shown in [6] that the set L(Z) of all non-constant holomorphic functions Z —
C\ {0, 1} on a complex space Z may be endowed with a natural structure of a simpli-
cial complex L(Z), and the correspondence Z +— L(Z) has some properties of a
contravariant functor from the category of complex spaces to the category of simplicial
complexes. First, we recall the definition of the complex LA (Z).

Definition 4.1. Let Z be a complex space and L(Z) be the set of all non-constant holo-
morphic functions Z — C\ {0, 1}. For u, v € L(Z), we say that v is a proper divisor of
wandwritev|puifpu v e L(Z). Clearly, v | u is equivalent to [u | v.
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A non-empty ordered subset A = {lo, ..., s} € L(Z) is said to be an s-simplex
with vertices o, ..., ws if Wi | pu; for all i # j. Since any non-empty subset of a sim-
plex is also a simplex, we obtain a well-defined simplicial complex L (Z) with the set
of vertices L(Z). If Z is a quasi-projective algebraic variety, then the set L(Z) con-
sists of a finite number of regular functions and the complex L(Z) is finite (it can
be empty). A holomorphic map f: Z — Y of complex spaces induces the homomor-
phism f*: O(Y) — O(Z) of the algebras of holomorphic functions defined, as usual,
by f*(A\) = Ao f, A € O). Let . € L(Y); suppose that f*(A) # const. Then
the map of the vertices f*: L(Y) > A +— Ao f € L(Z) induces the simplicial map
[*: La(Y) = La(Z) whose restriction to each simplex A C L(Y) is injective and
preserves dimensions of simplices.

Remark 4.2. Leti = (if,...,im—1) and u = ejj x5, Let e, ..., e, be the standard
basisin C",u; =0andu, =377, .,e forp=2,...,m— 1. Set

L={w,....,v) € C)" v, =upforp=1,....,m—1}

Forqg = (q1,....qx) € (C")"N L with all g, = (2,1, ..., 2-,m) € C", the restriction
of any dj; , to the subspace L reduces to a certain determinant of order 2 and may be
computed as (—1)"(z;,1z-2 — zr,121,2). Consequently, the restriction of  to L may be
written as

Zj1/2j2 — k1 /72 Tk /Th2 — 21/22
Zj1/2j2 — Z5,1/2s2  Zs,1/Zs2 — Z0,1/2t2
Thus, w|p is the cross ratio of the four quantities a = zj,1/zj2, b = zk1/2k2, ¢ =
zj,1/zj,2 and d = z;1/z;,2, which may be treated as four distinct points in CP! whenever
g € E"NL.If p and p’ are determinant cross ratios, p|p” and i = SUppeg 4 = SUPPegs s
then suppeg (4 © (') = SUPPegs 4 = SUPPegs 14~ In View of the above, the restrictions of
w, i’ and p : @ to L are usual cross ratios, and moreover, (u|z) : (u'|z) = (u: u)|L.

mlr(g) = (12)

In view of the previous remark, certain results about usual cross ratios also apply to
the DCRs. In particular, we shall use the following lemma (see Lemma 5.7 of [6])):

Lemma 4.3. If the ratio i : 1’ of two cross ratios

4 — 49k Gk —qt ’r
n=—-——:=-2 qgnd u =
q4j —4s 4s — q:

q]-/ — Qk’ . qk/ — CIt’
qj —d4s  4s’ —qr

is a cross ratio of certain four of the eight variables q;, qk, qs, q:, qj'> qx'» 4s'» qr' then
#{j, k,s,ty N {j k',s',t'}) = 3 and W is obtained from u by replacing one of the
variables q;, qi, qs, q; with some qp,, where m # j, k, s, t.

We also need the following technical lemma.

Lemma 4.4. Let X = CP" or C", n > m+2, and let i = ej;j i s be a proper divisor of
a determinant cross ratio j’. Then #(Suppegs LNSUPPegs 1) > m—2. If supp 1’ # supp u,
then #(supp w N supp ') = m + 2, SUPPegs 4 = SUPPegs 1> and ' is one of the functions

€i; j.k,r,t> €isk,j,s,t> €isr,s, j,t> Ciss,rk,t-
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Proof. Set
dijk  diks , _dv e dvps

= [} . .
dijr dirs dijrr dirs

Letj=iNi. Since y | u', from Lemmal[2.1] we see that

(%) i,i" € (supp Nsupp ') C supp p.

Letus show that #j Am — 5, m — 4, m — 3 and hence #j > m — 2.
If#j=m — 5, thenby (x),i= (j, j/, k', r,s") and i = (j, j, k, r, s). Thus,

o= dj,j’,k’,r’,S’,j,k . dj,j/,k’,r’,S’,k,s and ' = dj,,/',k,r,s,j’,k’ . dj jkrs.kl s

dj,j’,k’,r/,S’,j,r dj,j’,k’,r’,s/,r,s dj,j,k,r,s,j/,r’ . dj,j,k,r,s,r/,S’.

Since w/u’ is a determinant cross ratio, and determinant polynomials are irreducible
(Lemma2.1), #({j’, k', ', s’} N {j, k, r, s}) > 0,1.e. iN{ # j, a contradiction.

By similar straightforward combinatorial computations, one can prove that #j #
m — 4, m — 3. This completes the proof of the first part of the lemma.

Suppose now that supp & # supp p’. Since we have already proved that m > #j >
m — 2, we need to show that # j % m — 2. Suppose to the contrary that #j = m — 2. Then,
without loss of generality, we may assume that u = €j jr.j ks and u' = ¢j j.jr /., g
Therefore,

ot = Bk sy ks

djjj' ki, j ks g jrds s

Since all determinant polynomials are irreducible (Lemma [2.T)), the latter quotient is a
DCR if and only if ¥ = k, r’ = r and s’ = s, which may happen if and only if supp u =
supp u’, a contradiction.

We are left with the case #j = m — 1, thatis, i = i’. Let L be as in Remark then
the restrictions w|; and p'|; are usual cross ratios of the variables Dj» Pk» Pr» ps and
Dir, Dk’ Pr's Ps'» Tespectively, and (w|z) @ (@[1) is such a cross ratio as well. By Lemma
#{j, k,r,syN{j’,k',r',s’}) = 3 and the ordered set {j’, k', r’, s’} is obtained by
replacing one of the indices in the ordered set {j, k, r, s} with some index ¢, where ¢ #
J, k,r, s (up to a Kleinian permutation). Consequently, #(supp u Nsupp ') = #i+3 =
m + 2 and 1/ is one of the functions €i: j k,rts Cick, j,s.t5 €isrys, jits Cirs,rk,1- ]

4.1. S(n)-action in LA(E™)

The S(n)-action in £" induces an S(n)-action on the set L(E") of all non-constant holo-
morphic functions £" — C\ {0, 1}. Of course, this is the action on the set of all determi-
nant cross ratios that we dealt with in Lemma [2.14} thus, it is transitive. If ., v € L(E")
and o € S(n), then the relations © | v and (o) | (ov) are equivalent. Hence the above
action induces a simplicial dimension preserving S(n)-action on LA (E"), i.e. S(n) acts
on the sets of all simplices of any fixed dimension. Here we prove that on the set of all
simplices of any positive dimension this action has two orbits.
We use the notation (7, j) for the transposition of elements i, j € {1, ..., n}.
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Definition 4.5. Foranys =m+3,...,n,set Iy = (1,...,m+ 2,s). The t-simplex

t__ . . .
V] - {eIm+3’ elm+4’ ce eIm+3+!}

is called the normal t-simplex of the first type; such simplices do exist for 0 < t <
n —m — 3. We say that a t-simplex is of the first type if it belongs to the S(n)-orbit of Vi.
The t-simplex

4 . . . .
Vz = {(m - tv m)elm+3a (m —1 + 17 m)elm+3a RN (m - 1’ m)elm+37 e[er}}

is called the normal z-simplex of the second type; such simplices exist forO <t <m — 1.
We say that a t-simplex is of the second type if it belongs to the S(n)-orbit of V). Notice
that for t > 0 the simplices V| and V), belong to different orbits.

Remark 4.6. If A; = {uo, ..., s} and Ay = {vg, ..., v;} are of the same type and the
corresponding sets of functions y and v both involve only the vector variables g;,, . . ., g;,,
then A may be carried to Ay by o € S{iy, ..., i}) C S(n).

The following lemma shows that any z-simplex, ¢ > 0, is of the first or of the second
type. Notice that, by Theorem [3.3] any vertex of L 5 (E") is a DCR.

Lemma 4.7. Let X be either C™ or CP" andn > m + 2.

(@) Let A = {u; }?:'11 € LA(E™) be an l-dimensional simplex and let supppu; = - =
supp pi+1. Then #(SUppegs s N SUPPegs Ur) = M — 2 forall t # s andl < m — 1.
Moreover, A is of the second type.

(b) Let A = {Ms}i111 € LA (E") be an l-dimensional simplex. If supp fis, 7 Supp s, for
some so 7 to, then supp Ly 7= Supp iy and SUPPegs s = SUPPegs M for all s # t.
Moreover, the simplex A is of the first type.

(¢) dimLA(E™) = max{n — (m + 3),m — 1}.

Proof. (a) Suppose, to the contrary, that #(Suppeg, fbs N SUPPegs M) 7= M — 2 for some s #¢.
By Lemmal4.4} this means that #(Suppeg fbs N SUPPegs 1) > M — 2. Since # Suppegs is =
#SUppegs r = M — 1, we have supp.g s = SUPPes Mr; endow the latter set with some
order and denote it by i = (i1, ..., in—1). Let L be as in Remark Then ug|z and
pe|L are usual cross ratios of the variables p;, pi, ps, pr and pj:, pr, py, py, respec-
tively, and (us|z) @ (u|r) is such a cross ratio as well. By Lemma [d.3] #({/, k., s, 1} N
{j/,k',s’,'}) = 3. Consequently, #(supp s N Supp pt;) = #Suppegs s + 3 = m + 2.
Since #supp s = #supp p; = m + 3, it follows that supp ws # supp u;, a contradiction.
Hence, for s # ¢t we have #(Suppeg (s M SUPPees Ur) = m — 2. Now let us show that
[ <m-—1.

Letj = (i1,...,im—2) = SUPPegs 41 M SUPPess 2. Then g = ej ;. j k. rs With cer-
tain 7, j, k, r, s. By Lemma @] and a straightforward computation, one can show that
u2 € D = {ej j:ikrs» €k jirs» €jrijkis» €s;jknri); the latter set contains no pair of
functions {v, v’} that are vertices of the same simplex.

If m = 2, then j = ¢ and we must have [ < 1, for otherwise it is easy to show
that u3 € D and puy could not be a proper divisor of p3. Assume now that m > 2.
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Then #(Suppegs 1 N SUPPegs U2 M SUPPegs M7) < m — 2 for any ¢ > 2, since the equality
#(SUPPegs 41MSUPPegs 42MSUPPegs (r) = m—2 would imply j = suppegs (41MSUPPegs U2 =
SUPPegs M1 N SUPPeg (¢ and ; € D, which is impossible. Since the intersection of any
two of the three (m — 1)-point sets SuppPeg, (41, SUPPegs M2 and SUPP.. M; consists of m — 2
points, the intersection of all of them contains at least m — 3 points. Thus, #(supp (1 N
SUPPegs U2 M SUPPegs My) = M — 3.

Furthermore, for any ¢ > 2, there is a unique i’ € supp. (41 N SUPP.g (2 Such that
i’ & Suppegs r- We shall show that i, is uniquely determined by i’.

Seti=(i1,...,1m—3) = SUPPegs M1 M SUPPess U2 N SUPPegs Uy and [L1 = € ;7. j k.r.s-
By Lemma [2.T] and a straightforward computation, one can show that 1 belongs to
the set S = {eiir jiik.rss €Ll ksjirss @il jkiinss €il s j ki) Similarly, u, € T =
{ei,i,j;i/,k,r,s’ €i,ik;j,i'\r,s> €Lirj ki’ ei’i“g;j’k’r’i/}. Neither § nor T contains a pair of
functions {v, v’} such that v | v'. Since #(Suppge U2 N SUPPegs 1) = m — 2, for every
v € S there is only one v' € T such that v | v'; this shows that i, is uniquely determined
by i’. It follows that/ = dim A <m — 1.

Finally, in view of the above facts and the transitivity of the S(n)-action on 0-simplices
(see Lemma , the last statement of part (a) is obvious.

(b) By Lemma [#.4] for I < 2 the statement is obvious. Suppose that [ > 2. By
Lemrna SUPPegs Isy = SUPPess M1o- Assume that supp pz = supp u; for some § # 1.
Then, without loss of generality, we may assume supp yz = SuUpp jt; 7 Supp jig,. By
Lemma 4.4} this implies that SUppegs (45 = SUPPegs fs and SUPPegs (7 = SUPPegs s that
IS, SUPPegs 5 = SUPPegs M7>» Which contradicts part (a) of the lemma. Thus, supp., 1 =
0 = SUPPegs Mi+1-

Let us prove that A is of the first type. Set i = suppee 1 = -+ = SUPPegs Mi+15
U1 = e jkrs- By Lemma@ #(supp ;1 N supp w2) = m + 2. There is a unique index
t € supp u such that t & supp . Since pg | o, Lemma [d.4] shows that uo € D =
{€i:j k.rt> €ick,j.s,10 €isrys, 1> Cics,rk,r }- After a Kleinian permutation of j, k, 7 and s in 1,
which never changes such a function, and an appropriate renaming of the indices in both
w1 and pp, we may assume that w1 = ej;j ks and (o = € j k. r;-

Let p > 2; let us prove that supp 11 N supp wy = supp w1 N supp Wp = supp u2 N
supp up. First, we shall prove that ¢t ¢ supp u,. Suppose, on the contrary, that t €
supp up. Since 1 | up, by Lemma@ tp € D. But D contains no pair of DCRs which
are proper divisors of each other, which contradicts u> | ip. Similarly, s ¢ supp up.
Simple combinatorics shows that supp (1 M supp (2 = supp i1 N supp pp = supp 2 N
supp 11p. Thus, there is a unique #, € supp i), such that #, ¢ supp u;. Since 1 | (p, by
Lemma@ Mp € {ei;j,k,r,tpy €isk,j,5,tp> Cisr,s, jitps ei;s,r,k,tp}' Since s ¢ supp up, we have
Up = €ijk,rt,- The group S(n) is n times transitive on the set {1, ..., n}, thus, in view
of Lemma|2.14] there is 0 € S(n) such that {opuy, ..., ocu+1} = Vi. This completes the
proof of (b).

(c) Since the S(n)-orbit of a simplex contains a normal simplex (see (a) and (b)),
dim L 5 (") = max{dim V}, dim V}} = max{n — (m + 3), m — 1}. O

Lemma 4.8. Let n > m + 3. The stabilizer Sts(n)(V'f_m_3) of the simplex Vf_m_3 in
the group S(n) coincides with the subgroup S(m — 1) = S({1, ..., m — 1}) C S(n).
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Proof. Clearly S(m — 1) C Sts(n)(fomﬁ). Leto € Sts(n)(VI’*m*). Then

el,...m—1};mm+1,m+2,m+3 = O€{1,..m—1}y;mm+1,m+2,m+3
= €{o(1),....0(m—1)};0(m),0 (m+1),0 (m+2),0 (m+3)>
hence o is a disjoint product 0 = @0, where ¢ € S(m — 1), ¥ is one of the four
Kleinian permutations Id, (m, m+1)(m+2, m+3), (m, m+2)(m+1,m+3), (m, m+3)

c(m+1,m+2)and 6 € S{m +4,...,n}) (cf. Remark 2.13). For any t > m + 3 we
have

e(l,...m—1};mm+1,m+2,t = ¢1/f96{1 ..... m—1};m,m+1,m+2,t
= €{p(1),....¢p (m—=D) k9 (m), Y (m+1), 9 (m+2),0()
= €(l,..m—1};¢ (m), ¥ (m+1),¥ (m+2),0(t)-

Consequently, ¢ = Id and 6(¢) = t; since the latter is true for any r > m + 3, we see that
0 =Idando = ¢ € S(m — 1). O

Lemma 4.9. The stabilizer Sts(n)(Vglfl) of the ordered simplex V;”fl in the group S(n)
coincides with the subgroup S({m + 4, ..., n}) C S(n).

Proof. Of course, any element of S({m + 4, ..., n}) does not change V;"_l. Let o €
Sts(n)(Vg"fl). Define I = (1, ...,m + 3). Then V;"il = {(i, m)e;}"_,, where, as usual,
(i, t) denotes the transposition of two indices i, ¢; furthermore, (i, m)e; = o (i, m)e;. For
i = m this means that

e(1,...m—1};mm+1,m+2,m+3 = €{a(l),...,0(m—1)};0(m),o (m+1),0 (m+2),0 (m+3)

and hence o is a disjoint product o = 6¢y, where 8 € S(m — 1), ¢ is one of the
four Kleinian permutations Id, (m, m + 1)(m 4+ 2, m 4+ 3), (m,m + 2)(m + 1, m + 3),
(m,m—+3)m + 1,m + 2), and v € S{m + 4, ...,n}) (cf. Remark [2.13). For any

i=1,....m-—1,

The last equality is satisfied if and only if ¢ = Id and 6 (i) = i; since the latter is true for
anyi =1,...,m—1,weseethatd =Idando = € S(m +4,...,n}). O

4.2. Maps of LA(E™(X, gp)) induced by holomorphic self-maps

Here we show that an equivariant endomorphism f: £* — £" induces a simplicial auto-
morphism f* of LA (E"). Then we prove that, for sufficiently large n, certain m simplices
are, up to a permutation of ¢y, . . ., ¢, fixed points of f*.

Since the proof of the following lemma is identical to the proof of Lemma 6.1 and
Corollary 6.2 from [6]], we shall skip it.
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Lemma 4.10. Let X = CP" or C™. Let f: E"(X, gp) — E™"(X, gp) be an equivariant
holomorphic map. If . € L(E"(X, gp)) then A o f € L(E"(X, gp)).

Corollary 4.11. Let X = CP"™ or C™ and n > m + 2. Any equivariant endomorphism f
of E"(X, gp) induces a simplicial map f* whose restriction to each A € Lx(E"(X, gp))
is injective; hence f* preserves the dimension of any simplex.

Proof. By Lemma [4.10] for any A € L(E"(X, gp)) we have > o f € L(E"(X, gp)).
Thus f induces a map f*: L(E"(X,gp)) 2 A — f*(A) = Ao f € L(E"(X, gp)). If
Ayp,v € L(E™(X, gp)) and A = p/v then f*(u)/f*(v) = f*(n/v) = f*(1). Hence
f* is a simplicial map, its restriction to each simplex A € LA (E"(X, gp)) is injective,
and the dimension of a simplex does not change under this transformation. O

Lemma 4.12. Let X = CP" or C™, n > m + 3 and n # 2m + 2. For any equivariant
endomorphism f of E"(X, gp), the induced simplicial map f* is an automorphism of the
complex L A(E™), which preserves the type of simplices.

Proof. The set L(E™) of all vertices of L o (") is finite. Hence, to prove that the simplicial
map f* is an automorphism of the complex L (E"), it suffices to show that the map
% L(E™) — L(E™) is surjective. Let o be the automorphism of S(n) associated to our
equivariant endomorphism f so that f(ocg) = a(o) f(g) and f*(ou) = a~ (@) [f* ()]
forall o € S(n) and u € L(E"). Let u € L(E") and v = f*(u). By Lemma[2.14]
there is 0 € S(n) such that ov = u. Set A = a(o)u. Then u = ov = o (f*(n)) =
f*(a(o)) = f*(1), which proves that f* is surjective and therefore bijective. Hence,
f* is a simplicial automorphism of L A (E™).

Let us now prove that f* preserves the type of simplices. First assume that n >
2m + 2. We start with the normal simplex Vf_m_3 and its faces. Since f* preserves
dimension, dim f*(V}™ %) =n —m —3 > m — | and Lemma a, b) shows that
the simplex f *(V;’_m_3 ) is of the first type. Any normal simplex of the first type V{
is a face of V{’_m_3, and any face of a simplex of the first type is also a simplex of
the first type (see Definition . Since f *(V{) is a face of the simplex f *(V?""_B)
which is of the first type, f*(V) is of the first type. Now let A € LA (") be any [-
simplex of the first type. It follows from Definition that there is 0 € S(n) such that
oVl = A. Therefore the simplex f*(A) = f*(oV]) = a~ (o) f*(V}) is of the first
type. Thus, f* carries simplices of the first type to simplices of the first type. Since the
simplicial map f* is an automorphism of the finite complex L (E"), f* is bijective on
the set of all simplices of positive dimension. By Lemma[.7(a, b) and Definition[4.5] the
latter set is a disjoint union of two of its subsets consisting of all simplices of the first
and second type, respectively. Therefore, it follows from what was proved above that f*
carries simplices of the second type to simplices of the second type. This completes the
proof for n > 2m + 2.

When n < 2m + 2, we consider the normal simplex Vg”_l and its faces. Using a
similar argument, we see that f* carries simplices of the second type to simplices of the
same type. This implies that f* preserves the type of all simplices, which completes the
proof. O
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Remark 4.13. Let o be the automorphism of S(r) associated to an equivariant endomor-
phism f of £". For any p € S(n) and any function A on £" we have

@(P))*) =rolap)Hl=ro fop=p o fl=p LXMW, (13)

where p~![Ao f]is the result of the action of the permutation p~!

f*(X). Changing p to ,0_1, we obtain
pLFF M1 = @™ H ) W) =nrola(p )OI = (@(PM) o f = f*@(p)r). (14)

The following result plays an important part in the proof of Theorem|1.3

on the function Ao f =

Theorem 4.14. Let X = CP" or C", n > m + 3 and n # 2m + 2. For any equivariant
holomorphic self-map f of E" (X, gp) thereis p € S(n) such that (0f)* (em():r.m-+1,m+2.5)
= em@):rmt+1mt2,s foranyr € {1,...,m} and s € {m + 3,...,n}. In other words,
the map (pf)* is identical on each of the simplices {em(i);1,m+],m+2,s}?=m+3’ ey
{gm(lﬂ);m,m+l,m+2,s}?:m+3'

Proof. First assume that n > m + 3. To simplify the notation, forany s =m + 3, ..., n,
set Iy = (1,...,m 4 2, 5); notice that I is the support of eg:m m+1.m+2,s- Notice also
that the last simplex in the above list, namely

—m=3
{elx }?=m+3 = {em(rh);m,m-i-l,m+2,s}?=m+3 = {eﬁ;m,m+l,m+2,s}?=m+3 = Vf "

is the normal (n — m — 3)-simplex of the first type (see Definition 4.5)).

By Lemma f* preserves the type of simplices; hence f*(V{ ™" ~3) is of the first
type and there is & € S(n) such that (Hf)*(Vf_m_3) = Vf"”_3. Clearly, it would be
sufficient to prove the theorem for the map 6f. Therefore, without loss of generality, we
may assume from the very beginning that f *(fom%) = fo”‘f‘% . Since we deal with
ordered simplices, the last relation means that all vertices of V{ ™" =3 are fixed points
of f*, i.e.

fHer) = [H(emmmt1m+2.s) = €qmmmt1mi2s = e, Vs=m+3,....n (15
Since f is equivariant, there is « € AutS(n) such that f(ocg) = a(o) f(g) for every
o € S(n). Consequently, for 1 <i < mandm <t < n we have f*((i,t)Vf_’”_3) =

oL, t))V’f_m_3, where (i, 1) is the transposition of i and z.
The permuted simplices

Ag1=(m+3, s)V'2"71 = {1, m)er,, 2, m)ey,,...,(m—1,m)ey_, ey},
Asp={0,m+Dey, 2,m+ Dey,,...,(m—1,m+ ey, ey},
Asz={(1,m+2)e;, 2, m+2e,...,(m—1,m+2e, e},

Aga ={(1,5)er, 2,8)er,,...,(m—1,5)er e}

are simplices of the second type. By Lemma[.12] all f*(A ), k = 1,2, 3, 4, are sim-

plices of the second type. Since f* preserves vertices of V| —m=3 we have f*(er) =ei,.
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and hence each of the simplices f*(A; ), k = 1,2, 3,4, contains the vertex e;, whose
essential support is m = (1, ..., m — 1). By Lemma[4.7(a), the essential supports of all
vertices of f*(A; ) but ej, are different from supp, €7, = m.

Claim. Thereis o € S{1,...,m — 1}) C S(n) such that for any s > m + 2 the couple
of simplices f*(As2), [*(As,3) coincides with the couple o Ag 2, 0 Ay 3.

Proof of Claim. We divide the proof into four steps.

Step 1. Pick some s > m + 3. Let
As = fH(As2) = (A, m+Dep), f*(2,m+Dep), ..., f*((m—1,m+1)ey), er}.

Then Ay is of the second type and Lemma a, b) shows that supp f*((1,m + 1)ey,) =

- = supp f*((m — 1,m + 1)e;) = suppes, = I;. The simplex Ay, is also of the
second type and, according to Definition {.5] it may be carried to As by a permuta-
tion ¢s € S(n). The vertices of both these simplices depend only on the vector vari-
ables qi, ..., gm+2, gs (see Section [2] and Definition [2.8); by Remark 4.6 ¢; may be
chosen in the subgroup S(I;) = S({1,...,m + 2,s}) C S(n) and, by Lemma 4.9
such a permutation is unique. In particular, e;, = ¢ser, = dseq1,.. . m—1}:mm+1,m+2,5>
Le. e, = €(g,(1),...h5 (m—1)}iby (m), by m+1). ¢ (m+2). ¢ s) and hence ¢y is a disjoint product
¢s = o505, where og € S(m — 1) and 6 is one of the four Kleinian permutations Id,
(m,m+ D(m +2,5), ((m,m+2)(m + 1,5), (m,s)(m + 1, m + 2) (cf. Remark 2.13).
Consequently, foranyi = 1,...,m — 1 we have

Os(i,m+ Der, = eq1,..i—1,0,(u+1),i+1,...m—1}:65 (m),i,05 (m+2),04(s) (16)

the last function, in turn, must be one of the following DCRs: (i, m + l)e; , (i, m)ey,,
(@, s)ey,, (i, m + 2)ey,. This means that ;A > = A ; for a certain j; € {1,2, 3,4} and
hence

Ay = f*(AS,2) = GsesAs,2 = UsAs,j5~ am

Since o, € S(m — 1) does not touch the indices m, m +1, ..., n, relation determines
both j; and 05; moreover, j, is uniquely determined by the value of 6; on any one of the
numbers m, m + 1, m + 2, s. In particular, we see that the value 6;(m + 1) € {m, m + 1,
m + 2, s} determines j,; more precisely,

(i) the ordered couple (js; 65(m-1)) is one of the four ordered couples (1; m), (2; m+1),
(3;m+2), (4 5).

Step 2. Let us now show that both o5 € S(m — 1) and j; € {1,2, 3,4} in do not
depend on s, and moreover j; # 4.

We start with os. Fix some i € {l,...,m — 1}. By Lemma [@.12] the sim-
plex f*((i,m + I)V?fm%) is of the first type; the functions f*((i,m + ey, ),
[, m+Deyp,y), ..., f*((i,m + 1)ey,) are its vertices, and, by Lemmaa, b),

SUPPegs (i, m + ey, 5) = -+ - = Suppegs f (i, m + Dey,). (18)
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Moreover, the function f*((i, m + 1)e;,) is the i™ vertex of the simplex f*(A;.2); by
(@), f*(As.2) = 0405As.2 and therefore, by (16),

FH, m A4 1Der) = ogeqi,.im1,6,(n-+1),i+1,....m—1}:05 (m).i,05 (m-+2).05 (s)
= €{os(1),...,05(i—1),05 (m+1),05(i+1),...,05(m—1)};65 (m), 05 (i), 65 (M~+2) 65 (5) -
Consequently, by (T8)), the set

Y = SUPPess ST ((/, m + Dey,)
={os(1),...,05(i = 1),60(m+1),05(i +1),...,00(m — 1)}

does not depend on s. The only element of ¥ thatis notin {1,...,m — 1} is 65(m + 1);
hence 0;(m + 1) does not depend on s and the same is true for the set &' := {0, (1), ...,
Z(T), ...,03(m — 1)} of all elements of X but ;(m + 1). In fact, X’ consists of all
numbers 1, ..., m — 1 but o, (i); thus, o, (i) also does not depend on s. Since this is the
case forany i € {1, ..., m — 1}, the permutation o := o5 € S(m — 1) does not depend
ons.

Now we turn to the index j; € {1, 2, 3, 4}. 6; is a Kleinian permutation of m, m + 1,
m + 2, s and we have already proved that the element 6;(m + 1) € {m,m + 1, m + 2, s}
does not depend on s € {m + 3,...,n}; thus, O43(m +1) = --- = 6, (m + 1) €
N2 sim,m+1,m+2,s} ={m,m+1,m+ 2} and hence 6;(m + 1) # s. By (i), this

mé:I;r;Lthat Js # 4 and j; does not depend on s.
Thus, as a result of Steps 1 and 2, we know that
(ii) there are a permutation o € S(m — 1) and j € {1, 2, 3} such that
ff(As2) =0A,; foranyse{m+3,...,n}. (19)
Step 3. In a similar way, one can show that
(ii") there is a permutation o’ € S(m — 1) and j € {1, 2, 3} such that

[ (Ag3)=0'A 0 foranys € {m+3,...,n}. (20)

Step 4. Let us now prove that o = o”, j, j’ # 1 and j # j'. By Lemma[2.9(b), for any
s €{m+3,...n} we have

er, = ((i,m)ey,) - (i, s)ey) = (G, m + Dey) - (i, m + 2)ey,). 2D
Hence, by (13),
er, = f*(er,) = [ (G, m)er,) f*((i, $)er) = f*(G, m~+ Dey) f*((1,m + 2)er). (22)

Suppose that j = 1. Then, by (T9), f*((i, m + Dey,) is the i vertex of f*(Ay ) =
o Ag1:hence f*((i, m + Dey,) = (o (i), m)ey,. By 22) and 1),

el

s

F*(Gm+ Der) (o). mey,

ey

s

A, m+ ey = = (0 (D), s)ey,.
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By (20), this implies that (o (i), s)e;, must be the ith vertex of [ (As3) = O'/As’j/; the
latter shows that j = 4, which contradicts (ii’). Thus j # 1. The proof of j/ # 1 is
similar. Consequently, j, j’ € {2, 3}.

Now we turn to the permutations o and o’. Suppose first that j = 2. Then, by (19),

each f*((i,m + 1es,), i = 1,...,m — 1, is a vertex of f*(A;2) = oAy 2; hence
¥, m+ Dey,) = (o(i),m + 1)ey,. By and (21)), we obtain

els e]s — (U(l), m + 2)61S~

(G, m+2)ey,) = P (Gm+ Der) = @@, m+ Dep,

By (20), the last equality implies that the function (o (i), m + 2)e;, must be the i th vertex
of the simplex f*(A3) = o’As jr. This shows that j' = 3 # j and o/'(i) = o(i)
for any i and hence ¢’ = o. Finally, for j = 3, in the same way as above, we obtain
Jj' =2 # jand ¢’ = o. This completes Step 4 and proves the Claim.

Continuing the proof of the theorem, notice that by almost the same argument as in
Steps 1 and 2 above, one can show that there is a permutation ¢ € S(m — 1) C S(n) and
an index [ € {1, 2, 3} such that

(A5 ) =0A; foranys > m + 3. (23)

It follows from the Claim that either [ = 1 or ! € {2,3} = {j, j'}, where j and j’ are
defined by (ii) and (ii’) and, according to Step 4 of the proof above, are distinct elements
of the set {2, 3}. Thus, we must consider the following three cases: (a)/ = 1, (b) [ = j
and (c) ] = j'.

(a) In this case takes the form f*(A 1) = ¥ Ay 1; therefore, using for all
vertices p of the simplex Ay | and the permutation p = ¥, we obtain (x (%) f)* (A1) =
ﬂ_l[f*(As,l)] = ﬁ_lﬁAs,l = Ay 1; in terms of the vertices of the ordered simplices,
this means that for any i = 1,...,m — 1 we have («(9) f)*((i, m)e;,) = (i, m)ey,
and (a () f)*(e;,) = ey, for all s > m + 3. Since ey,,_,, ..., e, are all the vertices of
VI3, we obtain (@) £)* (VI = VI and (a(@) £)* (G, m)VT" ) =
@, m)V;’_m_3 foralli = 1,...,m — 1; this proves the theorem in case (a).

Let us now prove that cases (b) and (c) are impossible. Indeed, if / = j then (23) and
(ii) imply that f*(As.1) = @[ f*(As.2)] with the permutation ¢ = voleSm—-1) C
S(n) that does not depend on s. Therefore, using (I4) for the vertices p of the simplex
As2 and the permutation p = ¢, we obtain f*(A; 1) = f*(a(p)As2); since f* is
an automorphism of the complex L (E") (see Lemma , the latter relation implies
Ag1 = a(p)As 2. Notice that ey, is the very last vertex of the (m — 1)-simplices Ay
and Ag; hence for all s > m + 3 we have ej, = a(p)ey,. Since ey, 5, ..., ey, are all
the vertices of Vi ™" —3 we see that V’f_m_3 = oz((p)Vi’_m_3. Lemma implies that
a(p) € S(m—1) C S(n). Asm > 1, one can see from the definition of Ay | and A > that
As1 # Y Ao for any ¢y € S(m — 1), which contradicts the equality As1 = a(@)As 2.
Case (c) may be treated similarly. This completes the proof for n > m + 3.

When n = m + 3, the theorem asserts that there exists p € S(n) such that
(pf)*(gm(f);r,m+l,m+2,m+3) = em@)irm+1,m+2.m+3 for any r € {1,...,m}. The func-
HONS € 4 1 i 1 mt 237+ » €mOR);mm+1,m+2,m+3 are all the vertices of the ordered
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simplex Vg”fl. Thus, the statement in question says that (of )*(V;"fl) = V;”il for an
appropriate permutation p € S(n). Since f is equivariant, this is equivalent to the ex-
istence of ¢ € S(n) such that f* (V;" _1) = ¢V£" ~!, which means precisely that the
simplex f *(V’znfl) is of the second type. The last property follows from Lemma
which completes the proof. O

5. The proof of Theorem[1.3]

Here we prove the main result of this paper. We start with the following remark which is
similar to Remark 2.14 in [6]].

Remark 5.1. For n > m + 3, there is a non-empty Zariski open subset U C £" (X, gp)
such thatif Ag = oq forsome g € U, A € PSL(C, m+1) and 0 € S(n) then A = Id and
o = Id. Indeed, Lemmaimplies that for any two points ¢ = (gq,...,q,) and ¢’ =
(q1s---»qy) inE"(X, gp), anelement A € PSL(C, m + 1) is uniquely determined by the
requirement Ag; = g/ foralli =1, ..., m 4 2. Since S(n) is finite, it follows that the set
S of all points ¢ = (q1, ..., qn) € E"(X, gp) such that for some A € PSL(C,m + 1)
and some non-trivial permutation o € S(n) (both A and o may depend on ¢g) the point
Aq = (Aqi, ..., Aqy) coincides with the point 6g = (¢,-1(1), - - - » 45-1(n))> IS @ proper
Zariski closed subset of £"(X, gp). Its complement U = £"(X, gp) \ S is the desired
non-empty Zariski open set.

Proof of Theorem 1.3. By Theorem[4.14] there is a permutation p such that

em();r,m+1,m+2,s (of(q) = em();r,m+1,m+2,s (@) (24)

forallg € £"(X, gp),s =m+3,...,nandr = 1,..., m. Lemma[2.5|implies that there
isamap y: E"(CP", gp) — PSL(C,m + 1) such that y(q)qg € M, , (see Definition
[2.4). Lemma[2.15]says that DCRs are PSL(C, m + 1)-invariant; hence

em();r,m+1,m+2,s (v(@)q) = em(f);r,m+l,m+2,s(‘])’
em(f);r,m+l,m+2,s(y(pf(Q))pf(CI)) = em(f);r,m+1,m+2,s(pf(q»

forallg € &"(X,gp),s e {m+3,...,n}andr € {1, ..., m}. Comparing (24) and (23)
we see that

(25)

(*) em();r,m+1,m+2,s (V (6])6]) = em(f);r,m-l—l,m+2,s(y(pf(q))pf(q))

forany g € £"(X,gp) and all s € {m + 3,...,n} and r € {1,..., m}. Both points
y(q)q and y(pf(q))(pf(q)) are in M, ,, and Lemma says that the functions
em@):r.m+1.m+2s With s € {m +3,...,n} and r € {l,...,m} separate points of
M,, ,. Consequently, (x) implies that y(of(q))pf(g) = y(q)q, or, which is the same,
pf(@) = (v (pf @) 'y (@)q.Sett(q) = (y(pf (@) "'y (q). The map T: £"(X, gp) >
q — t(q) € PSL(C, m+1) is holomorphic and t(q)q = pf(q), thatis, f(g) = ot(q)q
forall g € £"(X, gp), where o = p~—! € S(n).
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To complete the proof, we must check that the morphism 7 is S(n)-invariant. Let
a € AutS(n) be the automorphism associated to our equivariant map f. For every 0 €
S(n) and all ¢ € £"(X, gp) we have o1(0q)0q = f(Oq) = a(0) f(q) = a(®)ot(q)q,
which can be written as [(t(0¢)) "' - t(q)lg = o ~'a (0~ o0q, where (t(8¢)) "' -t(q) is
a product in PSL(C, m + 1). In view of Remark this implies that o ~la (0~ 1o 0 = Id
and t(0q) = t(q) for all & € S(n) and all ¢ in a non-empty Zariski open subset U C
E™(X, gp). Since T is continuous, the last equality holds true for all ¢ € £" (X, gp); since
6 € S(n) was arbitrary, this shows that the morphism t: £"(X, gp) — PSL(C,m + 1)
is S(n)-invariant. This completes the proof. g

Theorem [1.3]and Definition[I.T]imply the following corollary.

Corollary 5.2. Letm > 1,n > m+ 3 and n # 2m + 2.

(a) Any holomorphic map F: C"(CP", gp) — C"(CP™, gp) that can be lifted to an
equivariant holomorphic map f: E"(CP™, gp) — E"(CP™, gp) is tame.

(b) Any holomorphic map F: C"(C™, gp) — C"(C™, gp) that can be lifted to an equiv-
ariant holomorphic map f: E"(C™, gp) — E"(C™, gp) is quasitame.
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