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Abstract. Let X denote either CPm or Cm. We study certain analytic properties of the space
En(X, gp) of ordered geometrically generic n-point configurations in X. This space consists of
all q = (q1, . . . , qn) ∈ X

n such that no m + 1 of the points q1, . . . , qn belong to a hyperplane
in X. In particular, we show that for large enough n any holomorphic map f : En(CPm, gp) →
En(CPm, gp) commuting with the natural action of the symmetric group S(n) in En(CPm, gp) is of
the form f (q) = τ(q)q = (τ (q)q1, . . . , τ (q)qn), q ∈ En(CPm, gp), where τ : En(CPm, gp) →
PSL(m+ 1,C) is an S(n)-invariant holomorphic map. A similar result holds true for mappings of
the configuration space En(Cm, gp).

Keywords. Configuration space, geometrically generic configurations, vector braids, points in gen-
eral position, holomorphic endomorphism

1. Introduction

In this paper we study certain analytic properties of the spaces of geometrically generic
point configurations in projective and affine spaces.

The most traditional configuration space Cn = Cn(X) of a complex space X consists
of all n-point subsets (“configurations”)Q = {q1, . . . , qn} ⊂ X. IfX carries an additional
geometric structure, it may be taken into account. Say if X is either the projective space
CPm or the affine space Cm and n > m then the space Cn = Cn(X, gp) of geometrically
generic configurations consists of all n-point subsetsQ ⊂ X such that no hyperplane inX
contains more than m points of Q. The corresponding ordered configuration space En =
En(X, gp) consists of all q = (q1, . . . , qn) ∈ X

n such that the setQ = {q1, . . . , qn} ⊂ X

belongs to Cn(X, gp). The left action of the symmetric group S(n) on En defined by
σ(q1, . . . , qn) = (qσ−1(1), . . . , qσ−1(n)) is free; the corresponding orbit map identifies
with the tautological covering map p : En 3 (q1, . . . , qn) 7→ {q1, . . . , qn} ∈ Cn, which is
an unbranched Galois covering with Galois group S(n).

Let Autg X be the subgroup of the holomorphic automorphism group AutX of X
consisting of all elements A ∈ AutX that respect the geometrical structure of X; i.e. for
X = CPm we have Autg X = PSL(m+1,C) = AutX, whereas for X = Cm it is known
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that Autg X = Aff(m,C) ( Aut(Cm). Notice that in both cases Autg X is a complex Lie
group. The Autg X action in X induces the diagonal Autg X actions in Cn and En defined
by AQ := {Aq1, . . . , Aqn} for all Q = {q1, . . . , qn} ∈ Cn and Aq := (Aq1, . . . , Aqn)

for all q = (q1, . . . , qn) ∈ En.

Definition 1.1. An endomorphism F of Cn is said to be tame if there is a holomorphic
map T : Cn → Autg X such that F(Q) = FT (Q) := T (Q)Q for all Q ∈ Cn. Similarly,
an endomorphism f of En is called tame if there is an S(n)-invariant holomorphic map
τ : En→ Autg X and σ ∈ S(n) such that f (q) = fτ,σ (q) := στ(q)q for all q ∈ En.

When X = Cm, an endomorphism F of Cn(Cm, gp) is said to be quasitame if
there is a holomorphic map T : Cn(Cm, gp) → PSL(m + 1,C) such that F(Q) =
FT (Q) := T (Q)Q for all Q ∈ Cn(Cm, gp); notice that the latter condition im-
plies that T (Q)Q ⊂ Cm for any Q ∈ Cn(Cm, gp). Similarly, an endomorphism f

of En = En(Cm, gp) is quasitame if there is an S(n)-invariant holomorphic map
τ : En(Cm, gp) → PSL(m + 1,C) and σ ∈ S(n) such that τ(q)q1, . . . , τ (q)qn ∈ Cm
and f (q) = στ(q)q for any q = (q1, . . . , qn) ∈ En(Cm, gp).

The left S(n)-action on En(X, gp) induces the left S(n)-action on the set of all maps
f : En(X, gp) → En(X, gp) defined by σf = σ(f1, . . . , fn) = (fσ−1(1), . . . , fσ−1(n))

for f = (f1, . . . , fn) : En(X, gp)→ En(X, gp) and σ ∈ S(n).

Definition 1.2. A continuous map f : En → En is called equivariant if there is α ∈
Aut S(n) such that f (σq) = α(σ)f (q) for all q ∈ En and σ ∈ S(n). (This property is
slightly weaker than the “standard” equivariance, which requires that f (σq) = σf (q).)

When m = 1, that is, when X = CP1 or C1, the spaces of geometrically generic con-
figurations in X coincide with the usual configuration spaces Cn(X) and En(X). V. Lin
[4–6] proved that when n > 4 and X is C or CP1, any equivariant endomorphism F of
En(X) is tame. (He also completely described all endomorphisms of the spaces Cn(CP1)

and Cn(C); moreover, thanks to the works of V. Zinde [11–15] and the author [3], such
a description is known for endomorphisms of traditional configuration spaces of all non-
hyperbolic algebraic curves.)

In this paper we treat the equivariant endomorphisms of En(CPm, gp) and
En(Cm, gp). The following theorem contains the main results of this work.

Theorem 1.3. Let m > 1, n ≥ m+ 3 and n 6= 2m+ 2.

(a) Any equivariant endomorphism f of En(CPm, gp) is tame.
(b) Any equivariant endomorphism f of En(Cm, gp) is quasitame.

In more detail, for any equivariant endomorphism f of En, there is an S(n)-invariant
holomorphic map τ : En→ PSL(m+ 1,C) and σ ∈ S(n) such that

f (q) = στ(q)q = (τ (q)qσ−1(1), . . . , τ (q)qσ−1(n)) for all q = (q1, . . . , qn) ∈ En.

Remark 1.4. Any tame endomorphism f = fτ,σ of En is equivariant; the corresponding
automorphism α ∈ Aut S(n) is just the automorphism s 7→ σsσ−1. The same holds true
for quasitame maps.
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Remark 1.5. Theorem 1.3(b) is not complete, since at the moment I do not know whether
there are endomorphisms of En(Cm, gp) that are quasitame but not tame. Moreover, al-
though I think that Theorem 1.3 holds true for n = 2m + 2, in this case I could not
overcome some technical difficulties which arose in the proof.

The plan of the proof is as follows. Let X = Cm or CPm. To study an equivariant
endomorphism f of En = En(X, gp), we start with an explicit description of all non-
constant holomorphic maps λ : En → C \ {0, 1} (cf. [6], [12], [13] and [3]). The set
L(En) of all such maps is finite and separates points of a certain submanifold M ⊂ En
of complex codimension m(m + 1); we endow L = L(En) with a special simplicial
structure. The action of S(n) in En induces a simplicial S(n)-action in the complex L.
An endomorphism f induces a simplicial self-map f ∗ of L via f ∗ : L 3 λ 7→ f ∗λ =

λ ◦ f ∈ L, which carries important information about f . Since f is equivariant, f ∗ is
nicely related to the S(n)-action on L. Studying all these things together, we come to the
desired conclusion.

Remark 1.6. The topology of the spaces in question is of great independent interest.
A. I. Barvinok calculated the first homology group of the ordered space En(C2, gp) (see
[1]). V. Moulton [8] found the generators and some generating relations of the fundamen-
tal groups π1(En(Cm, gp)) and π1(En(CPm, gp)). T. Terasoma [9] found a presentation
of π1(En(CPm, gp)) for n > m+ 1.

2. Some properties of generic configurations

The spaces En have the following explicit algebraic description.
Any point q ∈ (CPm)n may be represented as a ‘matrix’

q =

 q1
...

qn

 =

[
z1,1 : · · · : z1,m+1

]
...[

zn,1 : · · · : zn,m+1
]
 ∈ (CPm)n, (1)

where qj = [zj,1 : · · · : zj,m+1] ∈ CPm, j = 1, . . . , n. For m + 1 distinct indices
i1, . . . , im+1 ∈ {1, . . . , n}, the determinant

di1,...,im+1(q) =

∣∣∣∣∣∣∣
zi1,1 . . . zi1,m zi1,m+1
...

...
...

...

zim+1,1 . . . zim+1,m zim+1,m+1

∣∣∣∣∣∣∣
is a homogeneous polynomial of degree m + 1 in the homogeneous coordinates [z1,1 :
· · · : z1,m+1], . . . , [zn,1 : · · · : zn,m+1]. The space En(CPm, gp) consists of all q of the
form (1) such that di1,...,im+1(q) 6= 0 for all distinct i1, . . . , im+1 ∈ {1, . . . , n}.

Similarly, the space En(Cm, gp) consists of all matrices

q =

 q1
...

qn

 =
 z1,1, . . . , z1,m, 1

...

zn,1, . . . , zn,m, 1

 ∈ (Cm)n (2)
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with all qj = (zj,1, . . . , zj,m) ∈ Cm such that

di1,...,im+1(q) =

∣∣∣∣∣∣∣
zi1,1 . . . zi1,m 1
...

...
...

...

zim+1,1 . . . zim+1,m 1

∣∣∣∣∣∣∣ 6= 0

for all distinct i1, . . . , im+1 ∈ {1, . . . , n}.
We refer to the components q1, . . . , qn of a point q = (q1, . . . , qn) in En(CPm, gp)

or in En(Cm, gp) as vector coordinates of q.
Although we use the same notation for determinant polynomials in both cases, pro-

jective and affine, it will be clear from the context which one we mean.
One can easily verify the following statement.

Lemma 2.1. All minors of the matrices (1) and (2) are irreducible homogeneous poly-
nomials of the entries zt,s .

Notation 2.2. By a multiindex we mean an ordered set i = (i1, . . . , is) with distinct
i1, . . . , is ∈ {1, . . . , n}. Sometimes we forget the order and write i ∈ i and # i = s. If
s = 1 and i ∈ {1, . . . , n}, we may write i = i instead of i = (i).

For t multiindices i1 = (i11 , . . . , i
1
s ), . . . , it = (it1, . . . , i

t
s) such that i11 , . . . , i

1
s , . . . ,

it1, . . . , i
t
s are distinct, we set di1,...,it = di11 ,...,i

1
s ,...,i

t
1,...,i

t
s
. Let i = (i1, . . . , is) and i′ =

(i1, . . . , is−1); for any i ∈ {i1, . . . , is} and any k = 1, . . . , s − 1, we denote by Di;i,k the
(s − 1)× (s − 1) minor of the s × s matrix

Zi =

 zi1,1, . . . , zi1,s−1, 1
...

zis ,1, . . . , zis ,s−1, 1


complementary to zi,k; for i = is , we write δi′;k instead of Di;is ,k . Let Is denote the set of
all multiindices i = (i1, . . . , is) such that 1 ≤ i1 < · · · < is ≤ n. For i = (i1, . . . , is) ∈ Is
and j = (j1, . . . , jt ) ∈ It , we define the multiindices i ∩ j and i \ j in the evident way;
if i ∩ j = ∅, we define the multiindex i ∪ j ∈ Is+t by an appropriate reordering of the
components i1, . . . , is, j1, . . . , jt . For 1 ≤ j ≤ n, set Isj = {i ∈ Is | j 6∈ i}.

Now we can establish the following property of the determinant polynomials.

Lemma 2.3. Let i0 ∈ {1, . . . , n}, i0 = (i1, . . . , im) ∈ Imi0 and L ⊂ Cmn be a linear

subspace defined by the relations zi1,2 = · · · = zim,2. For i ∈ Im+1
i0

, deg di|L = m; the
polynomial di|L is irreducible if and only if #(i ∩ i0) < m; moreover, if #(i ∩ i0) = m,
then di|L = ±Di;i,2 · (zi,2 − zi1,2), where i ∈ i \ i0.

Proof. Assume that #(i ∩ i0) = m, thus #(i \ i0) = 1. Set (i) = i \ i0. By the Lagrange
determinant decomposition formula, we can show that di|L = ±Di;i,2 · (zi,2 − zi1,2), i.e.
di|L is reducible and deg di|L = m. Now assume that #(i ∩ i0) < m. Let i, j ∈ i \ i0
be two distinct indices. It is clear that if we prove that di,j,i2,...,im |L is irreducible and
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deg di,j,i2,...,im |L = m, the same statements for di|L hold true. So set j = (i, j, i2, . . . , im).
Clearly, dj|L = (zi2,2−zi,2)·Dj;i,2−(zi2,2−zj,2)·Dj;j,2 and deg dj|L = m. Therefore, dj|L
is a linear function of the variables zi,2, zj,2, zi2,2 with coefficients Dj;i,2,Dj;j,2,Dj;i,2 −
Dj;i,2. By Lemma 2.1,Dj;i,2,Dj;j,2 are irreducible. ThusDj;i,2,Dj;j,2,Dj;i,2−Dj;i,2 are
pairwise co-prime. This implies that dj|L is irreducible, and completes the proof. ut

2.1. The direct decomposition of En(CPm, gp)

Here we observe that En(CPm, gp) admits a natural representation as a Cartesian product
of its subspace of codimension m(m+ 2) and the group PSL(m+ 1,C).

Definition 2.4. Set v1 = [1 : 0 : · · · : 0], v2 = [0 : 1 : 0 : · · · : 0], . . . , vm+1 =

[0 : · · · : 0 : 1] and w = [1 : · · · : 1]. The subspace Mm,n ⊂ En(CPm, gp) defined by
Mm,n = {q = (q1, . . . , qn) ∈ En(CPm, gp) | qi = vi ∀i = 1, . . . , m+ 1, qm+2 = w} is
called the reduced space of geometrically generic ordered configurations.

Lemma 2.5. Let n ≥ m + 3. For every q ∈ En(CPm, gp), there is a unique γ (q) ∈
PSL(m + 1) such that γ (q)q ∈ Mm,n. The map γ : En(CPm, gp) 3 q 7→ γ (q) ∈

PSL(m+ 1) is holomorphic.

For m = 1 the statement of the lemma is common knowledge; the case m = 2 is treated
in [2, Chap. V, Sec. 109, Theorem 36]. Since for m > 2 the proof is similar to the proof
of the case m = 2, we shall omit it.

Corollary 2.6. The mutually inverse maps A : En(CPm, gp) 3 q 7→ A(q) =

(γ (q), γ (q)q) ∈ PSL(m+1)×Mm,n andB : PSL(m+1)×Mm,n 3 (T , q̃) 7→ B(T , q̃) =

T −1q̃ ∈ En(CPm, gp) induce a natural biholomorphic isomorphism En(CPm, gp) ∼=
PSL(m+ 1)×Mm,n.

Remark 2.7. The above corollary implies that En(CPm, gp) and Cn(CPm, gp) are ir-
reducible non-singular affine algebraic varieties, and hence Stein manifolds. Indeed, in
the above decomposition of En(CPm, gp) both PSL(m+ 1) and Mm,n are such varieties
and hence En(CPm, gp) is also of the same nature. Since S(n) is finite and its action on
En(CPm, gp) is free, the same is true for Cn(CPm, gp). The same properties hold true for
En(Cm, gp) and Cn(Cm, gp).

2.2. Determinant cross ratios

Here we construct certain non-constant holomorphic functions En→ C \ {0, 1}.

Definition 2.8. Let X be either CPm or Cm and let n ≥ m + 3. For any m + 3-
dimensional multiindex I = (i1, . . . , im+3) with distinct components it ∈ {1, . . . , n},
set i = (i1, . . . , im−1), j = im, k = im+1, l = im+2, s = im+3; the non-constant rational
function

eI (q) = ei;j,k,l,s(q) =
di,j,k(q)

di,j,l(q)
:
di,k,s(q)

di,l,s(q)
, q ∈ (CPm)n,
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is called a determinant cross ratio, or, in brief, a DCR. This function is regular on the
algebraic manifold En(X, gp) ⊂ (CPm)n.

The unordered set of indices {I } = {i1, . . . , im−1, j, k, l, s} is called the support of
the function µ = eI = ei;j,k,l,s and is denoted by suppµ; its unordered subset {i} =
{i1, . . . , im−1} is called the essential support of µ and is denoted by suppess µ (we often
write I instead of {I } and i instead of {i}). In fact, eI (q) = eI (q1, . . . , qn) depends only
on the vector variables qt with t ∈ I .

By a straightforward computation, one can easily obtain the following relations.

Lemma 2.9. (a) ei;t,k,r,s = ei;j,k,r,s/ei;j,k,r,t ;
(b) ej,i;j,k,r,s = ej,j ;i,k,r,sej,s;j,k,r,i = ej,k;j,i,r,sej,r;j,k,i,s .

The following lemma is a known fact of the classical invariant theory (for small dimen-
sions it was discovered by A. F. Möbius [7], note especially Part 2). The proof may be
extracted from [10, Section 2.14] (especially, Theorem 2.14.A).

Lemma 2.10. Let i = (i1, . . . , im−1) be a multiindex, and j, k, l, s be indices such that
all i1, . . . , im−1, j, k, l, s are distinct. Then di,j,kdi,l,s + di,j,ldi,s,k + di,j,sdi,k,l = 0.

Corollary 2.11. ei;j,k,l,s + ei;j,s,l,k = 1.

Proof. By a straightforward computation and the above lemma, we see that

ei;j,k,l,s + ei;j,s,l,k − 1 =
di,j,kdi,l,s + di,j,sdi,k,l + di,j,ldi,s,k

di,j,ldi,k,s
= 0. ut

Lemma 2.12. Any DCR omits the values 0 and 1 on En(CPm, gp).

Proof. Let λ = ei;j,k,l,s be a DCR. By Definition 2.8, λ omits the value 0. By Corollary
2.11, λ = 1− ei;j,s,l,k . Since ei;j,s,l,k omits the value 0, it follows that λ does not take the
value 1 either.

Remark 2.13. Notice that two determinant cross ratios, say eI = ei;j,k,l,s and eI ′ =
ei′;j ′,k′,l′,s′ , coincide if and only if {i} = {i′} and (j ′, k′, l′, s′) is obtained from (j, k, l, s)

by a Kleinian permutation of four letters. The set of all determinant cross ratios is denoted
by DCR(En) = DCR(En(X, gp)) = DCR(En(CPm, gp)).

The S(n)-action in En induces an S(n)-action on functions defined by (σλ)(q) =
λ(σ−1q) = λ(qσ(1), . . . , qσ(n)) (λ is a function on En, q = (q1, . . . , qn) ∈ En; notice
that σλ may also be written as (σ−1)∗λ = λ ◦ (σ−1), where σ and σ−1 are considered as
self-maps of En). This action preserves the set of holomorphic functions.

Lemma 2.14. The S(n)-action leaves the set DCR(En) invariant. Moreover, this action
is transitive on DCR(En).
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Proof. Let a = (a1, . . . , al) be a multiindex. For any σ ∈ S(n), let σ(a) :=
(σ (a1), . . . , σ (al)). Then σda(q) = da(σ

−1q) = dσ(a)(q). Thus,

σei;j,k,r,s(q) = ei;j,k,r,s(σ
−1q) =

di,j,k(σ
−1q)

di,j,r(σ−1q)
:
di,k,s(σ

−1q)

di,r,s(σ−1q)

=
dσ(i),σ (j),σ (k)(q)

dσ(i),σ (j),σ (r)(q)
:
dσ(i),σ (k),σ (s)(q)

dσ(i),σ (r),σ (s)(q)
= eσ(i);σ(j),σ (k),σ (r),σ (s)(q).

Let eI , eI ′ ∈ DCR(En). Since each of the sets I and I ′ consists of m + 3 ≤ n distinct
elements of {1, . . . , n}, there is σ ∈ S(n) such that σI = I ′; hence σeI = eI ′ . ut

Lemma 2.15. DCRs are invariants of the PSL(m+ 1)-action on En(CPm, gp).

Proof. Clearly, the following elementary operators do not change a DCR:

[z1 : · · · : zm+1] 7→ [a1z1 : · · · : am+1zm+1] for a1 · · · · · am+1 6= 0;
[z1 : · · · : zi : · · · : zj : · · · : zm+1] 7→ [z1 : · · · : zj : · · · : zi : · · · : zm+1];
[z1 : · · · : zi : · · · : zj : · · · : zm+1] 7→ [z1 : · · · : zi + zj : · · · : zj : · · · : zm+1].

Any element of PSL(m+1) can be decomposed into a sequence of elementary operators.
This proves the lemma. ut

Notation 2.16. For s ∈ {1, . . . , m}, set m(ŝ) = (1, . . . , ŝ, . . . , m). For s = m, we write
sometimes m̂ instead of m(m̂).

Lemma 2.17. (a) The map P : Mm,n→ (Cn−m−2)m defined by

q 7→ P(q) =

 p1,m+3(q), . . . , p1,n(q)

. . . . . . . . .

pm,m+3(q), . . . , pm,n(q)

 ,
with ps,t (q) = em(ŝ);s,m+1,m+2,t (q) for s = 1, . . . , m and t = m + 3, . . . , n, is a
holomorphic embedding.

(b) Mm,n is a hyperbolic space.

Proof. (a) For q = (q1, . . . , qn) ∈ Mm,n with qi = [zi,1 : · · · : zi,m+1] we
have zt,m+1 = dm̂,m,t (q) 6= 0 and zt,s = ±dm(ŝ),m+1,t (q) 6= 0. Furthermore,
dm(ŝ),s,m+1(q) = dm(ŝ),s,m+2(q) = (−1)m−s , dm(ŝ),m+1,t (q) = −(−1)m−szt,s and
dm(ŝ),m+2,t (q) = (−1)m−s(zt,m+1 − zt,s); thus,

ps,t (q) =
dm(ŝ),s,m+1(q)

dm(ŝ),s,m+2(q)
:
dm(ŝ),m+1,t (q)

dm(ŝ),m+2,t (q)
= 1−

zt,m+1

zt,s
.

If q ′ = (q ′1, . . . , q
′
n) ∈ Mm,n with q ′i = [z′i,1 : · · · : z′i,m+1] and ps,t (q) = ps,t (q

′) for
s = 1, . . . , m, then

zt,m+1

zt,s
=
z′t,m+1

z′t,s
for all s = 1, . . . , m
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and hence qt = q ′t . Thus, P(q) = P(q ′) implies q = q ′ and so P is injective. To see that
P is an embedding, it suffices to observe that from the above calculation it follows that at
any point the Jacobi matrix of P is of maximal rank.

(b) Since every DCR omits the values 0 and 1, P(Mm,n) ⊂ (C \ {0, 1})m(n−m−2).
Hence Mm,n is hyperbolic. ut

3. Holomorphic functions En→ C \ {0, 1}

Notation 3.1. For a complex space Z, we denote by L(Z) the set of all non-constant
holomorphic functions Z→ C \ {0, 1}.

The following lemma plays a crucial part in the explicit description of L(En).

Lemma 3.2. Let A,B,C ∈ C[Cmn] = C[z1,1, . . . , zn,m] be pairwise co-prime polyno-
mials on Cmn non-vanishing on En(Cm, gp) ⊂ Cmn. Assume that at least one of them
is non-constant and A + B + C = 0. Then there exist a multiindex i = (i1, . . . , im−1),
indices j, k, l, s, and α ∈ C \ {0} such that all i1, . . . , im−1, j, k, l, s are distinct and
A = αdi,j,kdi,l,s , B = αdi,j,ldi,s,k and C = αdi,j,sdi,k,l .

Proof. Since A,B,C do not vanish on En(Cm, gp) = Cmn \
⋃

i{q ∈ Cmn | di(q) = 0},
from Lemma 2.1 we see that

A = α
∏

i∈Im+1

d
ai
i , B = β

∏
i∈Im+1

d
bi
i , C = γ

∏
i∈Im+1

d
ci
i ,

where α, β, γ ∈ C \ {0} and ai, bi, ci ∈ Z+ (see Notation 2.2). The polynomials are
homogeneous; thus, the equality A + B + C = 0 implies that degA = degB = degC,
i.e.

∑
ai =

∑
bi =

∑
ci. For every index i0, 1 ≤ i0 ≤ n, we can write

A = Ai0

∏
i∈Imi0

d
ai0,i
i0,i , B = Bi0

∏
i∈Imi0

d
bi0,i
i0,i , C = Ci0

∏
i∈Imi0

d
ci0,i
i0,i ,

where Ai0 , Bi0 , Ci0 are the products of all factors di that do not contain the variables
zi0,1, . . . , zi0,m, i.e.

Ai0 = ±α
∏

i∈Im+1
i0

d
ai
i , Bi0 = ±β

∏
i∈Im+1

i0

d
bi
i , Ci0 = ±γ

∏
i∈Im+1

i0

d
ci
i . (3)

The proof is divided into two steps.

Step 1. Let us prove the following statement:

(∗) There is an index t0 such that the polynomials At0 , Bt0 , Ct0 are constant.
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Proof. First, we prove that for any i0 ∈ {1, . . . , n},∑
ai0,i =

∑
bi0,i =

∑
ci0,i and degAi0 = degBi0 = degCi0 . (4)

Without loss of generality, we can assume that either (a)
∑
ai0,i >

∑
bi0,i ≥

∑
ci0,i or

(b)
∑
ai0,i =

∑
bi0,i >

∑
ci0,i or (c)

∑
ai0,i =

∑
bi0,i =

∑
ci0,i.

Compare the terms of the maximal degree in the variable zi0,1 in the equality A+B+
C = 0. In case (a) we have Ai0

∏
δ
ai0,i
i;1 = 0 (see Notation 2.2 for the definition of δi;k).

This means A = 0, a contradiction. In case (b) we obtain

Ai0

∏
i∈Imi0

δ
ai0,i
i;1 + Bi0

∏
i∈Imi0

δ
bi0,i
i;1 = 0.

By Lemma 2.1, we see that the greatest common divisors GCD(Ai0 ,
∏

i∈Imi0
δ
bi0,i
i;1 ) and

GCD(Bi0 ,
∏

i∈Imi0
δ
ai0,i
i;1 ) equal 1; hence Ai0 +Bi0 = 0 and ai0,i = bi0,i for all i ∈ Imi0 . Thus

C = −(A+B) = 0, a contradiction. This completes the proof of (4). SinceA+B+C = 0,
for each k = 1, . . . , m the leading term of A+ B + C in the variable zi0,k is 0, i.e.

Ai0

∏
i∈Imi0

δ
ai0,i
i;k + Bi0

∏
i∈Imi0

δ
bi0,i
i;k + Ci0

∏
i∈Imi0

δ
ci0,i
i;k = 0. (5)

Assume that there is i0 such that Ai0 6= A and Ai0 6= const (otherwise either A = const,
which is a contradiction, or Ai0 = const and (∗) holds with t0 = i0). By (4), for such
i0 we have 0 < degAi0 = degBi0 = degCi0 < degA = degB = degC. By Lemma
2.1, all δi;k are irreducible and distinct. Since A,B,C are pairwise co-prime, the integers
ai0,i, bi0,i, ci0,i are also distinct. Using these facts, it is easy to verify that the second order
system of the linear equations in variables Ai0 , Bi0 , Ci0 defined by (5) with k = 1, 2 is of
rank 2; actually, all its 2× 2 minors are non-zero polynomials. Thus, Ai0/A = Bi0/B =
Ci0/C with certain non-zero polynomials A,B,C. The polynomials Bi0 and Ci0 are co-
prime, so

B = B̃ · Bi0 and C = C̃ · Ci0 , (6)

where B̃, C̃ are non-zero polynomials. Pick i0 = (i1, . . . , im) ∈ Imi0 such that ai0,i0 > 0.
Since A,B and C are pairwise co-prime, it follows that bi0,i0 = ci0,i0 = 0.

Let us prove that

A = Ai0d
ai0,i0
i0,i0 , Bi0 = ±β

∏
i 6=i0

d
bi,i0
i,i0 , Ci0 = ±γ

∏
i 6=i0

d
ci,i0
i,i0 ; (7)

the statement (∗) will follow from this by combinatorial considerations.
Let L be the linear subspace of Cmn defined by zi1,2 = · · · = zim,2. Since for i ∈ Imi0

we have δi;k|L = 0 if and only if #(i ∩ i0) = m and k 6= 2, the restrictions

B|L = −
(∏

δ
ai0,i
i;2 ·

∏
δ
ci0,i
i;1

)∣∣∣
L

and C|L = −
(∏

δ
ai0,i
i;2 ·

∏
δ
bi0,i
i;1

)∣∣∣
L

(8)
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are non-zero polynomials. Thus B̃|L, C̃|L 6= 0. According to (8), B|L and C|L are prod-
ucts of irreducible polynomials of degree ≤ m− 1. By (3),

Bi0 |L = ±β
∏

i∈Im+1
i0

(di|L)
bi and Ci0 |L = ±γ

∏
i∈Im+1

i0

(di|L)
ci . (9)

By (6), Bi0 |L and Ci0 |L must also be products of irreducible polynomials of degree ≤
m−1. By Lemma 2.3, this may happen if and only if the decompositions (9) of Bi0 |L and
Ci0 |L contain only factors of the form di,i0 |L, i.e. we have shown that

Bi0 = ±β
∏
i 6=i0

d
bi,i0
i,i0 and Ci0 = ±γ

∏
i 6=i0

d
ci,i0
i,i0 .

To complete the proof of (7), we must show that ai0,i1 = 0 for any i1 ∈ Imi0 \ {i0}. Suppose
the contrary, that there is i1 ∈ Imi0 \ {i0} such that ai0,i1 > 0. Then similarly we have

Bi0 = ±β
∏
i 6=i0

d
bi,i0
i,i0 = ±β

′
∏
i 6=i0

d
bi,i1
i,i1 , Ci0 = ±γ

∏
i 6=i0

d
ci,i0
i,i0 = ±γ

′
∏
i 6=i0

d
ci,i1
i,i1 . (10)

Since we assume that Bi0 , Ci0 6= const, (10) can occur only if Bi0 = ±βd
bs,i0
s,i0 and

Ci0 = ±γ d
cs,i0
s,i0 , i.e. Bi0 and Ci0 have a non-trivial common factor, which contradicts

our assumptions. Thus, we have proved (7).
By (4), the choice of i0 implies that

∑
ai0,i =

∑
bi0,i =

∑
ci0,i > 0. Since bi0,i0 = 0,

the latter implies that there exists a multiindex i2 6= i0 such that bi0,i2 > 0. In the same
way as we proved (7), we conclude that

Ai0 = ±α
′
∏
i 6=i0

d
ai,i2
i,i2 , B = Bi0d

bi0,i2
i0,i2 , Ci0 = ±γ

′
∏
i 6=i0

d
ci,i2
i,i2 . (11)

Comparing (7) and (11), we conclude thatCi0 = ±γ d
cs,i0
s,i0 and i0∩i2 6= ∅. Pick t0 ∈ i0∩i2.

Then At0 = const. Due to (4), degAi0 = degBi0 = degCi0 ; that is, At0 , Bt0 , Ct0 are
constant polynomials. This completes the proof of (∗).

Step 2. Let i0 ∈ {1, . . . , n}. Let us prove the following statement:

(∗∗) Assume that Ai0 , Bi0 , Ci0 are constant. Then there are i = (i1, . . . , im−2), indices
j, s, l, t , and α ∈ C \ {0} such that all i0, i1, . . . , im−2, j, s, l, t are distinct and
A = αdi0,i,j,sdi0,i,l,t , B = αdi0,i,j,ldi0,i,t,s and C = αdi0,i,j,tdi0,i,s,l .

Proof. Set A′ = Ai0
∏
δ
ai0,i
i;1 , B ′ = Bi0

∏
δ
bi0,i
i;1 , C′ = Ci0

∏
δ
ci0,i
i;1 . It is easily seen that A′,

B ′ and C′ are pairwise co-prime on C(m−1)(n−1) and do not vanish on the configuration
space En−1(Cm−1, gp) ⊂ C(m−1)(n−1). According to (5), A′ + B ′ + C′ = 0. The proof
of (∗∗) is by induction on m.

Letm = 2. Lemma 5.1 of [6] states that for any three non-constant pairwise co-prime
polynomials P = a

∏
i 6=j (xi −xj )

ai,j ,Q = b
∏
i 6=j (xi −xj )

bi,j , R = c
∏
i 6=j (xi −xj )

ci,j
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in the variables x1, . . . , xn which satisfy the equation P +Q+ R = 0, there are distinct
indices j, s, l, t and α ∈ C \ {0} such that either P = α(xj − xs), Q = α(xs − xl), R =
α(xl−xj ) or P = α(xj −xs)(xl−xt ),Q = α(xj −xl)(xt −xs), R = α(xj −xt )(xs−xl).
This lemma applies to the polynomials A′, B ′, C′ in the variables z1,2, . . . , zn,2. There-
fore, there are distinct indices j, s, l, t and α ∈ C\{0} such that eitherA′ = α(zj,2−zs,2),
B ′ = α(zs,2 − zl,2), C′ = α(zl,2 − zj,2) or A′ = α(zj,2 − zs,2)(zl,2 − zt,2), B ′ =
α(zj,2 − zl,2)(zt,2 − zs,2), C′ = α(zj,2 − zt,2)(zs,2 − zl,2). Thus, for our original poly-
nomials A,B,C we infer that either A = αdi0,j,s , B = αdi0,s,l , C = αdi0,l,j or
A = αdi0,j,sdi0,l,t , B = αdi0,j,ldi0,t,s , C = αdi0,j,tdi0,s,l . It is easily seen that in the
first case A+B+C = α(di0,j,s+di0,s,l+di0,l,j ) 6≡ 0. Thus, the equality A+B+C = 0
can hold only in the second case, which provides the base of induction.

Suppose that (∗∗) is satisfied for some m = k − 1 > 1, and let us prove it for m = k.
Due to (∗) (from Step 1), the induction hypothesis applies to the polynomials A′, B ′, C′;
that is, there exist a multiindex i = (i1, . . . , ik−2), indices j, s, l, t , and α ∈ C \ {0} such
that all i1, . . . , ik−2, j, s, l, t are distinct and A′ = α · di,j,s · di,l,t , B ′ = α · di,j,l · di,t,s
and C′ = α · di,j,t · di,s,l ; i.e. A,B and C can be written as A = α · di0,i,j,s · di0,i,l,t ,
B = α · di0,i,j,l · di0,i,t,s and C = α · di0,i,j,t · di0,i,s,l . This completes the proofs of (∗∗)
and of Lemma 3.2. ut

Theorem 3.3. Let X = Cm or CPm. Then L(En(X, gp)) = DCR(En(X, gp)).

Proof. By Corollary 2.12, it suffices to show that L(En(X, gp)) ⊆ DCR(En(X, gp)). We
follow [6]. Let µ ∈ L(En(X, gp)), that is, µ : En(X, gp)→ C \ {0, 1} is a holomorphic
function. First, let X = Cm. It follows from the Big Picard Theorem that µ is a regular
function on En(Cm, gp); hence it is a rational function on (Cm)n and there are co-prime
polynomials A,B ∈ C[(Cm)n] that do not vanish on En(Cm, gp) such that µ = −A/B.
The function 1− µ = (A+ B)/B also omits the values 0, 1. The polynomials A, B and
C = −B − A are pairwise co-prime, do not vanish on En(Cm, gp) and satisfy A+ B +
C = 0. Lemma 3.2 applies to the last three polynomials and shows that µ = −A/B =
−di,j,kdi,l,s/di,j,ldi,s,k = ei;j,k,l,s for appropriate i, j, k, l, s. WhenX = CPm, we restrict
µ from En(CPm, gp) to En(Cm, gp) and apply the above result, which leads to the desired
conclusion. ut

4. Simplicial structure on L(En)

It was shown in [6] that the set L(Z) of all non-constant holomorphic functions Z →
C \ {0, 1} on a complex space Z may be endowed with a natural structure of a simpli-
cial complex LM(Z), and the correspondence Z 7→ LM(Z) has some properties of a
contravariant functor from the category of complex spaces to the category of simplicial
complexes. First, we recall the definition of the complex LM(Z).

Definition 4.1. Let Z be a complex space and L(Z) be the set of all non-constant holo-
morphic functions Z → C \ {0, 1}. For µ, ν ∈ L(Z), we say that ν is a proper divisor of
µ and write ν |µ if µ : ν ∈ L(Z). Clearly, ν |µ is equivalent to µ | ν.
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A non-empty ordered subset 1 = {µ0, . . . , µs} ⊆ L(Z) is said to be an s-simplex
with vertices µ0, . . . , µs if µi |µj for all i 6= j . Since any non-empty subset of a sim-
plex is also a simplex, we obtain a well-defined simplicial complex LM(Z) with the set
of vertices L(Z). If Z is a quasi-projective algebraic variety, then the set L(Z) con-
sists of a finite number of regular functions and the complex LM(Z) is finite (it can
be empty). A holomorphic map f : Z → Y of complex spaces induces the homomor-
phism f ∗ : O(Y ) → O(Z) of the algebras of holomorphic functions defined, as usual,
by f ∗(λ) = λ ◦ f , λ ∈ O(Y ). Let λ ∈ L(Y ); suppose that f ∗(λ) 6= const. Then
the map of the vertices f ∗ : L(Y ) 3 λ 7→ λ ◦ f ∈ L(Z) induces the simplicial map
f ∗ : LM(Y ) → LM(Z) whose restriction to each simplex 1 ⊆ L(Y ) is injective and
preserves dimensions of simplices.

Remark 4.2. Let i = (i1, . . . , im−1) and µ = ei;j,k,s,t . Let e1, . . . , em be the standard
basis in Cm, u1 = 0 and up =

∑m
j=m−p+2 ej for p = 2, . . . , m− 1. Set

L = {(v1, . . . , vn) ∈ (Cm)n | vip = up for p = 1, . . . , m− 1}.

For q = (q1, . . . , qn) ∈ (Cm)n ∩ L with all qr = (zr,1, . . . , zr,m) ∈ Cm, the restriction
of any di,l,r to the subspace L reduces to a certain determinant of order 2 and may be
computed as (−1)m(zl,1zr,2 − zr,1zl,2). Consequently, the restriction of µ to L may be
written as

µ|L(q) =
zj,1/zj,2 − zk,1/zk,2

zj,1/zj,2 − zs,1/zs,2
:
zk,1/zk,2 − zt,1/zt,2

zs,1/zs,2 − zt,1/zt,2
. (12)

Thus, µ|L is the cross ratio of the four quantities a = zj,1/zj,2, b = zk,1/zk,2, c =
zj,1/zj,2 and d = zt,1/zt,2, which may be treated as four distinct points in CP1 whenever
q ∈ En∩L. If µ and µ′ are determinant cross ratios, µ|µ′ and i = suppess µ = suppess µ

′,
then suppess(µ : µ′) = suppess µ = suppess µ

′. In view of the above, the restrictions of
µ, µ′ and µ : µ′ to L are usual cross ratios, and moreover, (µ|L) : (µ′|L) = (µ : µ′)|L.

In view of the previous remark, certain results about usual cross ratios also apply to
the DCRs. In particular, we shall use the following lemma (see Lemma 5.7 of [6]):

Lemma 4.3. If the ratio µ : µ′ of two cross ratios

µ =
qj − qk

qj − qs
:
qk − qt

qs − qt
and µ′ =

qj ′ − qk′

qj ′ − qs′
:
qk′ − qt ′

qs′ − qt ′

is a cross ratio of certain four of the eight variables qj , qk, qs , qt , qj ′ , qk′ , qs′ , qt ′ then
#({j, k, s, t} ∩ {j ′, k′, s′, t ′}) = 3 and µ′ is obtained from µ by replacing one of the
variables qj , qk, qs, qt with some qm, where m 6= j, k, s, t .

We also need the following technical lemma.

Lemma 4.4. LetX = CPm or Cm, n > m+2, and letµ = ei;j,k,r,s be a proper divisor of
a determinant cross ratioµ′. Then #(suppess µ∩suppess µ

′) ≥ m−2. If suppµ′ 6= suppµ,
then #(suppµ∩ suppµ′) = m+ 2, suppess µ = suppess µ

′, and µ′ is one of the functions
ei;j,k,r,t , ei;k,j,s,t , ei;r,s,j,t , ei;s,r,k,t .
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Proof. Set

µ =
di,j,k

di,j,r
:
di,k,s

di,r,s
, µ′ =

di′,j ′,k′

di′,j ′,r ′
:
di′,k′,s′

di′,r ′,s′
.

Let j = i ∩ i′. Since µ |µ′, from Lemma 2.1 we see that

(∗) i, i′ ∈ (suppµ ∩ suppµ′) ⊂ suppµ.

Let us show that # j 6= m− 5, m− 4, m− 3 and hence # j ≥ m− 2.
If # j = m− 5, then by (∗), i = (j, j ′, k′, r ′, s′) and i′ = (j, j, k, r, s). Thus,

µ =
dj,j ′,k′,r ′,s′,j,k

dj,j ′,k′,r ′,s′,j,r
:
dj,j ′,k′,r ′,s′,k,s

dj,j ′,k′,r ′,s′,r,s
and µ′ =

dj,j,k,r,s,j ′,k′

dj,j,k,r,s,j ′,r ′
:
dj,j,k,r,s,k′,s′

dj,j,k,r,s,r ′,s′
.

Since µ/µ′ is a determinant cross ratio, and determinant polynomials are irreducible
(Lemma 2.1), #({j ′, k′, r ′, s′} ∩ {j, k, r, s}) > 0, i.e. i ∩ i′ 6= j, a contradiction.

By similar straightforward combinatorial computations, one can prove that # j 6=
m− 4, m− 3. This completes the proof of the first part of the lemma.

Suppose now that suppµ 6= suppµ′. Since we have already proved that m > # j ≥
m− 2, we need to show that # j 6= m− 2. Suppose to the contrary that # j = m− 2. Then,
without loss of generality, we may assume that µ = ej,j ′;j,k,r,s and µ′ = ej,j ;j ′,k′,r ′,s′ .
Therefore,

µ : µ′ =
dj,j ′,j,kdj,j ′,r,sdj,j,j ′,r ′dj,j,k′,s′

dj,j,j ′,k′dj,j ′,k,sdj,j ′,j,rdj,j,r ′,s′
.

Since all determinant polynomials are irreducible (Lemma 2.1), the latter quotient is a
DCR if and only if k′ = k, r ′ = r and s′ = s, which may happen if and only if suppµ =
suppµ′, a contradiction.

We are left with the case # j = m− 1, that is, i = i′. Let L be as in Remark 4.2; then
the restrictions µ|L and µ′|L are usual cross ratios of the variables pj , pk, pr , ps and
pj ′ , pk′ , pr ′ , ps′ , respectively, and (µ|L) : (µ′|L) is such a cross ratio as well. By Lemma
4.3, #({j, k, r, s} ∩ {j ′, k′, r ′, s′}) = 3 and the ordered set {j ′, k′, r ′, s′} is obtained by
replacing one of the indices in the ordered set {j, k, r, s} with some index t , where t 6=
j, k, r, s (up to a Kleinian permutation). Consequently, #(suppµ ∩ suppµ′) = # i+ 3 =
m+ 2 and µ′ is one of the functions ei;j,k,r,t , ei;k,j,s,t , ei;r,s,j,t , ei;s,r,k,t . ut

4.1. S(n)-action in LM(En)

The S(n)-action in En induces an S(n)-action on the set L(En) of all non-constant holo-
morphic functions En→ C \ {0, 1}. Of course, this is the action on the set of all determi-
nant cross ratios that we dealt with in Lemma 2.14; thus, it is transitive. If µ, ν ∈ L(En)
and σ ∈ S(n), then the relations µ | ν and (σµ) | (σν) are equivalent. Hence the above
action induces a simplicial dimension preserving S(n)-action on LM(En), i.e. S(n) acts
on the sets of all simplices of any fixed dimension. Here we prove that on the set of all
simplices of any positive dimension this action has two orbits.

We use the notation (i, j) for the transposition of elements i, j ∈ {1, . . . , n}.
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Definition 4.5. For any s = m+ 3, . . . , n, set Is = (1, . . . , m+ 2, s). The t-simplex

∇
t
1 = {eIm+3; eIm+4; . . . ; eIm+3+t }

is called the normal t-simplex of the first type; such simplices do exist for 0 ≤ t ≤

n−m− 3. We say that a t-simplex is of the first type if it belongs to the S(n)-orbit of ∇ t1.
The t-simplex

∇
t
2 = {(m− t, m)eIm+3; (m− t + 1, m)eIm+3; . . . ; (m− 1, m)eIm+3; eIm+3}

is called the normal t-simplex of the second type; such simplices exist for 0 ≤ t ≤ m−1.
We say that a t-simplex is of the second type if it belongs to the S(n)-orbit of ∇ t2. Notice
that for t > 0 the simplices ∇ t1 and ∇ t2 belong to different orbits.

Remark 4.6. If 11 = {µ0, . . . , µt } and 12 = {ν0, . . . , νt } are of the same type and the
corresponding sets of functionsµ and ν both involve only the vector variables qi1 , . . . , qir ,
then 11 may be carried to 12 by σ ∈ S({i1, . . . , ir}) ⊂ S(n).

The following lemma shows that any t-simplex, t > 0, is of the first or of the second
type. Notice that, by Theorem 3.3, any vertex of LM(En) is a DCR.

Lemma 4.7. Let X be either Cm or CPm and n > m+ 2.

(a) Let 1 = {µs}l+1
s=1 ∈ LM(En) be an l-dimensional simplex and let suppµ1 = · · · =

suppµl+1. Then #(suppess µs ∩ suppess µt ) = m − 2 for all t 6= s and l ≤ m − 1.
Moreover, 1 is of the second type.

(b) Let 1 = {µs}l+1
s=1 ∈ LM(En) be an l-dimensional simplex. If suppµs0 6= suppµt0 for

some s0 6= t0, then suppµs 6= suppµt and suppess µs = suppess µt for all s 6= t .
Moreover, the simplex 1 is of the first type.

(c) dimLM(En) = max{n− (m+ 3),m− 1}.

Proof. (a) Suppose, to the contrary, that #(suppess µs∩suppess µt ) 6=m−2 for some s 6= t .
By Lemma 4.4, this means that #(suppess µs ∩ suppess µt ) > m− 2. Since # suppess µs =

# suppess µt = m − 1, we have suppess µs = suppess µt ; endow the latter set with some
order and denote it by i = (i1, . . . , im−1). Let L be as in Remark 4.2. Then µs |L and
µt |L are usual cross ratios of the variables pj , pk, ps, pt and pj ′ , pk′ , ps′ , pt ′ , respec-
tively, and (µs |L) : (µt |L) is such a cross ratio as well. By Lemma 4.3, #({j, k, s, t} ∩
{j ′, k′, s′, t ′}) = 3. Consequently, #(suppµs ∩ suppµt ) = # suppess µs + 3 = m + 2.
Since # suppµs = # suppµt = m+ 3, it follows that suppµs 6= suppµt , a contradiction.
Hence, for s 6= t we have #(suppess µs ∩ suppess µt ) = m − 2. Now let us show that
l ≤ m− 1.

Let j = (i1, . . . , im−2) = suppess µ1 ∩ suppess µ2. Then µ1 = ej,i;j,k,r,s with cer-
tain i, j, k, r, s. By Lemma 2.1 and a straightforward computation, one can show that
µ2 ∈ D = {ej,j ;i,k,r,s, ej,k;j,i,r,s, ej,r;j,k,i,s, ej,s;j,k,r,i}; the latter set contains no pair of
functions {ν, ν′} that are vertices of the same simplex.

If m = 2, then j = ∅ and we must have l ≤ 1, for otherwise it is easy to show
that µ3 ∈ D and µ2 could not be a proper divisor of µ3. Assume now that m > 2.
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Then #(suppess µ1 ∩ suppess µ2 ∩ suppess µt ) < m − 2 for any t > 2, since the equality
#(suppess µ1∩suppess µ2∩suppess µt ) = m−2 would imply j = suppess µ1∩suppess µ2 =

suppess µ1 ∩ suppess µt and µt ∈ D, which is impossible. Since the intersection of any
two of the three (m−1)-point sets suppess µ1, suppess µ2 and suppess µt consists ofm−2
points, the intersection of all of them contains at least m− 3 points. Thus, #(suppess µ1 ∩

suppess µ2 ∩ suppess µt ) = m− 3.
Furthermore, for any t > 2, there is a unique i′ ∈ suppess µ1 ∩ suppess µ2 such that

i′ 6∈ suppess µt . We shall show that µt is uniquely determined by i′.
Set i = (i1, . . . , im−3) = suppess µ1 ∩ suppess µ2 ∩ suppess µt and µ1 = ei,i,i′;j,k,r,s .

By Lemma 2.1 and a straightforward computation, one can show that µ2 belongs to
the set S = {ei,i′,j ;i,k,r,s, ei,i′,k;j,i,r,s, ei,i′,r;j,k,i,s, ei,i′,s;j,k,r,i}. Similarly, µt ∈ T =

{ei,i,j ;i′,k,r,s, ei,i,k;j,i′,r,s, ei,i,r;j,k,i′,s, ei,i,s;j,k,r,i′}. Neither S nor T contains a pair of
functions {ν, ν′} such that ν | ν′. Since #(suppess µ2 ∩ suppess µt ) = m − 2, for every
ν ∈ S there is only one ν′ ∈ T such that ν | ν′; this shows that µt is uniquely determined
by i′. It follows that l = dim1 ≤ m− 1.

Finally, in view of the above facts and the transitivity of the S(n)-action on 0-simplices
(see Lemma 2.14), the last statement of part (a) is obvious.

(b) By Lemma 4.4, for l < 2 the statement is obvious. Suppose that l ≥ 2. By
Lemma 4.4, suppess µs0 = suppess µt0 . Assume that suppµs̃ = suppµt̃ for some s̃ 6= t̃ .
Then, without loss of generality, we may assume suppµs̃ = suppµt̃ 6= suppµs0 . By
Lemma 4.4, this implies that suppess µs̃ = suppess µs and suppess µt̃ = suppess µs ; that
is, suppess µs̃ = suppess µt̃ , which contradicts part (a) of the lemma. Thus, suppess µ1 =

· · · = suppess µl+1.
Let us prove that 1 is of the first type. Set i = suppess µ1 = · · · = suppess µl+1,

µ1 = ei;j,k,r,s . By Lemma 4.4, #(suppµ1 ∩ suppµ2) = m + 2. There is a unique index
t ∈ suppµ2 such that t 6∈ suppµ1. Since µ1 |µ2, Lemma 4.4 shows that µ2 ∈ D =

{ei;j,k,r,t , ei;k,j,s,t , ei;r,s,j,t , ei;s,r,k,t }. After a Kleinian permutation of j, k, r and s in µ1,
which never changes such a function, and an appropriate renaming of the indices in both
µ1 and µ2, we may assume that µ1 = ei;j,k,r,s and µ2 = ei;j,k,r,t .

Let p > 2; let us prove that suppµ1 ∩ suppµ2 = suppµ1 ∩ suppµp = suppµ2 ∩

suppµp. First, we shall prove that t 6∈ suppµp. Suppose, on the contrary, that t ∈
suppµp. Since µ1 |µp, by Lemma 4.4, µp ∈ D. But D contains no pair of DCRs which
are proper divisors of each other, which contradicts µ2 |µp. Similarly, s 6∈ suppµp.
Simple combinatorics shows that suppµ1 ∩ suppµ2 = suppµ1 ∩ suppµp = suppµ2 ∩

suppµp. Thus, there is a unique tp ∈ suppµp such that tp 6∈ suppµ1. Since µ1 |µp, by
Lemma 4.4, µp ∈ {ei;j,k,r,tp , ei;k,j,s,tp , ei;r,s,j,tp , ei;s,r,k,tp }. Since s 6∈ suppµp, we have
µp = ei;j,k,r,tp . The group S(n) is n times transitive on the set {1, . . . , n}, thus, in view
of Lemma 2.14, there is σ ∈ S(n) such that {σµ1, . . . , σµl+1} = ∇

l
1. This completes the

proof of (b).
(c) Since the S(n)-orbit of a simplex contains a normal simplex (see (a) and (b)),

dimLM(En) = max{dim∇ t1, dim∇ t2} = max{n− (m+ 3),m− 1}. ut

Lemma 4.8. Let n > m + 3. The stabilizer StS(n)(∇n−m−3
1 ) of the simplex ∇n−m−3

1 in
the group S(n) coincides with the subgroup S(m− 1) = S({1, . . . , m− 1}) ⊂ S(n).
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Proof. Clearly S(m− 1) ⊂ StS(n)(∇n−m−3
1 ). Let σ ∈ StS(n)(∇n−m−3

1 ). Then

e{1,...,m−1};m,m+1,m+2,m+3 = σe{1,...,m−1};m,m+1,m+2,m+3

= e{σ(1),...,σ (m−1)};σ(m),σ (m+1),σ (m+2),σ (m+3),

hence σ is a disjoint product σ = φψθ , where φ ∈ S(m − 1), ψ is one of the four
Kleinian permutations Id, (m,m+1)(m+2, m+3), (m,m+2)(m+1, m+3), (m,m+3)
· (m + 1, m + 2) and θ ∈ S({m + 4, . . . , n}) (cf. Remark 2.13). For any t > m + 3 we
have

e{1,...,m−1};m,m+1,m+2,t = φψθe{1,...,m−1};m,m+1,m+2,t

= e{φ(1),...,φ(m−1)};ψ(m),ψ(m+1),ψ(m+2),θ(t)

= e{1,...,m−1};ψ(m),ψ(m+1),ψ(m+2),θ(t).

Consequently, ψ = Id and θ(t) = t ; since the latter is true for any t > m+ 3, we see that
θ = Id and σ = φ ∈ S(m− 1). ut

Lemma 4.9. The stabilizer StS(n)(∇m−1
2 ) of the ordered simplex ∇m−1

2 in the group S(n)
coincides with the subgroup S({m+ 4, . . . , n}) ⊂ S(n).

Proof. Of course, any element of S({m + 4, . . . , n}) does not change ∇m−1
2 . Let σ ∈

StS(n)(∇m−1
2 ). Define I = (1, . . . , m+ 3). Then ∇m−1

2 = {(i,m)eI }
m
i=1, where, as usual,

(i, t) denotes the transposition of two indices i, t ; furthermore, (i,m)eI = σ(i,m)eI . For
i = m this means that

e{1,...,m−1};m,m+1,m+2,m+3 = e{σ(1),...,σ (m−1)};σ(m),σ (m+1),σ (m+2),σ (m+3)

and hence σ is a disjoint product σ = θφψ , where θ ∈ S(m − 1), φ is one of the
four Kleinian permutations Id, (m,m + 1)(m + 2, m+ 3), (m,m + 2)(m + 1, m + 3),
(m,m+ 3)(m + 1, m + 2), and ψ ∈ S({m + 4, . . . , n}) (cf. Remark 2.13). For any
i = 1, . . . , m− 1,

e{1,...,i−1,m,i+1,...,m−1};i,m+1,m+2,m+3 = (i,m)e{1,...,m−1};m,m+1,m+2,m+3

= σ(i,m)eI = θφψ(i,m)eI = θφψ(i,m)e{1,...,m−1};m,m+1,m+2,m+3

= e{θ(1),...,θ(i−1),φ(m),θ(i+1),...,θ(m−1)};θ(i),φ(m+1),φ(m+2),φ(m+3).

The last equality is satisfied if and only if φ = Id and θ(i) = i; since the latter is true for
any i = 1, . . . , m− 1, we see that θ = Id and σ = ψ ∈ S({m+ 4, . . . , n}). ut

4.2. Maps of LM(En(X, gp)) induced by holomorphic self-maps

Here we show that an equivariant endomorphism f : En→ En induces a simplicial auto-
morphism f ∗ of LM(En). Then we prove that, for sufficiently large n, certainm simplices
are, up to a permutation of q1, . . . , qn, fixed points of f ∗.

Since the proof of the following lemma is identical to the proof of Lemma 6.1 and
Corollary 6.2 from [6], we shall skip it.
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Lemma 4.10. Let X = CPm or Cm. Let f : En(X, gp)→ En(X, gp) be an equivariant
holomorphic map. If λ ∈L(En(X, gp)) then λ ◦ f ∈L(En(X, gp)).

Corollary 4.11. Let X = CPm or Cm and n > m+ 2. Any equivariant endomorphism f

of En(X, gp) induces a simplicial map f ∗ whose restriction to each1 ∈ LM(En(X, gp))
is injective; hence f ∗ preserves the dimension of any simplex.

Proof. By Lemma 4.10, for any λ ∈ L(En(X, gp)) we have λ ◦ f ∈ L(En(X, gp)).
Thus f induces a map f ∗ : L(En(X, gp)) 3 λ 7→ f ∗(λ) = λ ◦ f ∈ L(En(X, gp)). If
λ,µ, ν ∈ L(En(X, gp)) and λ = µ/ν then f ∗(µ)/f ∗(ν) = f ∗(µ/ν) = f ∗(λ). Hence
f ∗ is a simplicial map, its restriction to each simplex 1 ∈ LM(En(X, gp)) is injective,
and the dimension of a simplex does not change under this transformation. ut

Lemma 4.12. Let X = CPm or Cm, n ≥ m + 3 and n 6= 2m + 2. For any equivariant
endomorphism f of En(X, gp), the induced simplicial map f ∗ is an automorphism of the
complex LM(En), which preserves the type of simplices.

Proof. The setL(En) of all vertices ofLM(En) is finite. Hence, to prove that the simplicial
map f ∗ is an automorphism of the complex LM(En), it suffices to show that the map
f ∗ : L(En)→ L(En) is surjective. Let α be the automorphism of S(n) associated to our
equivariant endomorphism f so that f (σq) = α(σ)f (q) and f ∗(σµ) = α−1(σ )[f ∗(µ)]
for all σ ∈ S(n) and µ ∈ L(En). Let µ ∈ L(En) and ν = f ∗(µ). By Lemma 2.14,
there is σ ∈ S(n) such that σν = µ. Set λ = α(σ)µ. Then µ = σν = σ(f ∗(µ)) =

f ∗(α(σ )µ) = f ∗(λ), which proves that f ∗ is surjective and therefore bijective. Hence,
f ∗ is a simplicial automorphism of LM(En).

Let us now prove that f ∗ preserves the type of simplices. First assume that n >

2m + 2. We start with the normal simplex ∇n−m−3
1 and its faces. Since f ∗ preserves

dimension, dim f ∗(∇n−m−3
1 ) = n − m − 3 > m − 1 and Lemma 4.7(a, b) shows that

the simplex f ∗(∇n−m−3
1 ) is of the first type. Any normal simplex of the first type ∇ l1

is a face of ∇n−m−3
1 , and any face of a simplex of the first type is also a simplex of

the first type (see Definition 4.5). Since f ∗(∇ l1) is a face of the simplex f ∗(∇n−m−3
1 )

which is of the first type, f ∗(∇ l1) is of the first type. Now let 1 ∈ LM(En) be any l-
simplex of the first type. It follows from Definition 4.5 that there is σ ∈ S(n) such that
σ∇ l1 = 1. Therefore the simplex f ∗(1) = f ∗(σ∇ l1) = α−1(σ )f ∗(∇ l1) is of the first
type. Thus, f ∗ carries simplices of the first type to simplices of the first type. Since the
simplicial map f ∗ is an automorphism of the finite complex LM(En), f ∗ is bijective on
the set of all simplices of positive dimension. By Lemma 4.7(a, b) and Definition 4.5, the
latter set is a disjoint union of two of its subsets consisting of all simplices of the first
and second type, respectively. Therefore, it follows from what was proved above that f ∗

carries simplices of the second type to simplices of the second type. This completes the
proof for n > 2m+ 2.

When n < 2m + 2, we consider the normal simplex ∇m−1
2 and its faces. Using a

similar argument, we see that f ∗ carries simplices of the second type to simplices of the
same type. This implies that f ∗ preserves the type of all simplices, which completes the
proof. ut
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Remark 4.13. Let α be the automorphism of S(n) associated to an equivariant endomor-
phism f of En. For any ρ ∈ S(n) and any function λ on En we have

(α(ρ)f )∗(λ) = λ ◦ [α(ρ)f )] = λ ◦ f ◦ ρ = ρ−1[λ ◦ f ] = ρ−1[f ∗(λ)], (13)

where ρ−1[λ◦f ] is the result of the action of the permutation ρ−1 on the function λ◦f =
f ∗(λ). Changing ρ to ρ−1, we obtain

ρ[f ∗(λ)] = (α(ρ−1)f )∗(λ) = λ ◦ [α(ρ−1)f )] = (α(ρ)λ) ◦ f = f ∗(α(ρ)λ). (14)

The following result plays an important part in the proof of Theorem 1.3.

Theorem 4.14. Let X = CPm or Cm, n ≥ m+ 3 and n 6= 2m+ 2. For any equivariant
holomorphic self-map f of En(X, gp) there is ρ∈S(n) such that (ρf )∗(em(r̂);r,m+1,m+2,s)

= em(r̂);r,m+1,m+2,s for any r ∈ {1, . . . , m} and s ∈ {m + 3, . . . , n}. In other words,
the map (ρf )∗ is identical on each of the simplices {em(1̂);1,m+1,m+2,s}

n
s=m+3, . . . ,

{em(m̂);m,m+1,m+2,s}
n
s=m+3.

Proof. First assume that n > m+ 3. To simplify the notation, for any s = m+ 3, . . . , n,
set Is = (1, . . . , m + 2, s); notice that Is is the support of em̂;m,m+1,m+2,s . Notice also
that the last simplex in the above list, namely

{eIs }
n
s=m+3 = {em(m̂);m,m+1,m+2,s}

n
s=m+3 = {em̂;m,m+1,m+2,s}

n
s=m+3 = ∇

n−m−3
1 ,

is the normal (n−m− 3)-simplex of the first type (see Definition 4.5).
By Lemma 4.12, f ∗ preserves the type of simplices; hence f ∗(∇n−m−3

1 ) is of the first
type and there is θ ∈ S(n) such that (θf )∗(∇n−m−3

1 ) = ∇n−m−3
1 . Clearly, it would be

sufficient to prove the theorem for the map θf . Therefore, without loss of generality, we
may assume from the very beginning that f ∗(∇n−m−3

1 ) = ∇n−m−3
1 . Since we deal with

ordered simplices, the last relation means that all vertices of ∇n−m−3
1 are fixed points

of f ∗, i.e.

f ∗(eIs ) = f
∗(em̂;m,m+1,m+2,s) = em̂;m,m+1,m+2,s = eIs ∀s = m+ 3, . . . , n. (15)

Since f is equivariant, there is α ∈ Aut S(n) such that f (σq) = α(σ)f (q) for every
σ ∈ S(n). Consequently, for 1 ≤ i < m and m ≤ t ≤ n we have f ∗((i, t)∇n−m−3

1 ) =

α−1((i, t))∇n−m−3
1 , where (i, t) is the transposition of i and t .

The permuted simplices

1s,1 = (m+ 3, s)∇m−1
2 = {(1, m)eIs , (2, m)eIs , . . . , (m− 1, m)eIs , eIs },

1s,2 = {(1, m+ 1)eIs , (2, m+ 1)eIs , . . . , (m− 1, m+ 1)eIs , eIs },
1s,3 = {(1, m+ 2)eIs , (2, m+ 2)eIs , . . . , (m− 1, m+ 2)eIs , eIs },
1s,4 = {(1, s)eIs , (2, s)eIs , . . . , (m− 1, s)eIs , eIs }

are simplices of the second type. By Lemma 4.12, all f ∗(1s,κ), κ = 1, 2, 3, 4, are sim-
plices of the second type. Since f ∗ preserves vertices of ∇n−m−3

1 , we have f ∗(eIs ) = eIs ,
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and hence each of the simplices f ∗(1s,κ), κ = 1, 2, 3, 4, contains the vertex eIs whose
essential support is m̂ = (1, . . . , m − 1). By Lemma 4.7(a), the essential supports of all
vertices of f ∗(1s,κ) but eIs are different from suppess eIs = m̂.

Claim. There is σ ∈ S({1, . . . , m− 1}) ⊂ S(n) such that for any s > m+ 2 the couple
of simplices f ∗(1s,2), f ∗(1s,3) coincides with the couple σ1s,2, σ1s,3.

Proof of Claim. We divide the proof into four steps.

Step 1. Pick some s ≥ m+ 3. Let

1s = f
∗(1s,2) = {f

∗((1, m+1)eIs ), f
∗((2, m+1)eIs ), . . . , f

∗((m−1, m+1)eIs ), eIs }.

Then1s is of the second type and Lemma 4.7(a, b) shows that supp f ∗((1, m+ 1)eIs ) =
· · · = supp f ∗((m − 1, m+ 1)eIs ) = supp eIs = Is . The simplex 1s,2 is also of the
second type and, according to Definition 4.5, it may be carried to 1s by a permuta-
tion φs ∈ S(n). The vertices of both these simplices depend only on the vector vari-
ables q1, . . . , qm+2, qs (see Section 2 and Definition 2.8); by Remark 4.6, φs may be
chosen in the subgroup S(Is) = S({1, . . . , m + 2, s}) ⊂ S(n) and, by Lemma 4.9,
such a permutation is unique. In particular, eIs = φseIs = φse{1,...,m−1};m,m+1,m+2,s ,
i.e. eIs = e{φs (1),...,φs (m−1)};φs (m),φs (m+1),φs (m+2),φs (s) and hence φs is a disjoint product
φs = σsθs , where σs ∈ S(m − 1) and θs is one of the four Kleinian permutations Id,
(m,m + 1)(m + 2, s), (m,m + 2)(m + 1, s), (m, s)(m + 1, m + 2) (cf. Remark 2.13).
Consequently, for any i = 1, . . . , m− 1 we have

θs(i,m+ 1)eIs = e{1,...,i−1,θs (m+1),i+1,...,m−1};θs (m),i,θs (m+2),θs (s); (16)

the last function, in turn, must be one of the following DCRs: (i,m+ 1)eIs , (i,m)eIs ,
(i, s)eIs , (i,m+ 2)eIs . This means that θs1s,2 = 1s,js for a certain js ∈ {1, 2, 3, 4} and
hence

1s = f
∗(1s,2) = σsθs1s,2 = σs1s,js . (17)

Since σs ∈ S(m−1) does not touch the indicesm,m+1, . . . , n, relation (17) determines
both js and θs ; moreover, js is uniquely determined by the value of θs on any one of the
numbers m,m+ 1, m+ 2, s. In particular, we see that the value θs(m+ 1) ∈ {m,m+ 1,
m+ 2, s} determines js ; more precisely,

(i) the ordered couple (js; θs(m+1)) is one of the four ordered couples (1;m), (2;m+1),
(3;m+ 2), (4; s).

Step 2. Let us now show that both σs ∈ S(m − 1) and js ∈ {1, 2, 3, 4} in (17) do not
depend on s, and moreover js 6= 4.

We start with σs . Fix some i ∈ {1, . . . , m − 1}. By Lemma 4.12, the sim-
plex f ∗((i,m + 1)∇n−m−3

1 ) is of the first type; the functions f ∗((i,m+ 1)eIm+3),
f ∗((i,m+ 1)eIm+4), . . . , f

∗((i,m+ 1)eIn) are its vertices, and, by Lemma 4.7(a, b),

suppess f
∗((i,m+ 1)eIm+3) = · · · = suppess f

∗((i,m+ 1)eIn). (18)



620 Yoel Feler

Moreover, the function f ∗((i,m+ 1)eIs ) is the ith vertex of the simplex f ∗(1s,2); by
(17), f ∗(1s,2) = σsθs1s,2 and therefore, by (16),

f ∗((i,m+ 1)eIs ) = σse{1,...,i−1,θs (m+1),i+1,...,m−1};θs (m),i,θs (m+2),θs (s)

= e{σs (1),...,σs (i−1),θs (m+1),σs (i+1),...,σs (m−1)};θs (m),σs (i),θs (m+2),θs (s).

Consequently, by (18), the set

6 := suppess f
∗((i,m+ 1)eIs )

= {σs(1), . . . , σs(i − 1), θs(m+ 1), σs(i + 1), . . . , σs(m− 1)}

does not depend on s. The only element of 6 that is not in {1, . . . , m − 1} is θs(m + 1);
hence θs(m+ 1) does not depend on s and the same is true for the set 6′ := {σs(1), . . . ,
σ̂s(i), . . . , σs(m − 1)} of all elements of 6 but θs(m + 1). In fact, 6′ consists of all
numbers 1, . . . , m − 1 but σs(i); thus, σs(i) also does not depend on s. Since this is the
case for any i ∈ {1, . . . , m − 1}, the permutation σ := σs ∈ S(m − 1) does not depend
on s.

Now we turn to the index js ∈ {1, 2, 3, 4}. θs is a Kleinian permutation of m,m+ 1,
m+ 2, s and we have already proved that the element θs(m+ 1) ∈ {m,m+ 1, m+ 2, s}
does not depend on s ∈ {m + 3, . . . , n}; thus, θm+3(m + 1) = · · · = θn(m + 1) ∈⋂n
s=m+3{m,m+ 1, m+ 2, s} = {m,m+ 1, m+ 2} and hence θs(m+ 1) 6= s. By (i), this

means that js 6= 4 and js does not depend on s.
Thus, as a result of Steps 1 and 2, we know that

(ii) there are a permutation σ ∈ S(m− 1) and j ∈ {1, 2, 3} such that

f ∗(1s,2) = σ1s,j for any s ∈ {m+ 3, . . . , n}. (19)

Step 3. In a similar way, one can show that

(ii′) there is a permutation σ ′ ∈ S(m− 1) and j ′ ∈ {1, 2, 3} such that

f ∗(1s,3) = σ
′1s,j ′ for any s ∈ {m+ 3, . . . , n}. (20)

Step 4. Let us now prove that σ = σ ′, j, j ′ 6= 1 and j 6= j ′. By Lemma 2.9(b), for any
s ∈ {m+ 3, . . . n} we have

eIs = ((i,m)eIs ) · ((i, s)eIs ) = ((i,m+ 1)eIs ) · ((i,m+ 2)eIs ). (21)

Hence, by (15),

eIs = f
∗(eIs ) = f

∗((i,m)eIs )f
∗((i, s)eIs ) = f

∗((i,m+ 1)eIs )f
∗((i,m+ 2)eIs ). (22)

Suppose that j = 1. Then, by (19), f ∗((i,m+ 1)eIs ) is the ith vertex of f ∗(1s,2) =
σ1s,1; hence f ∗((i,m+ 1)eIs ) = (σ (i),m)eIs . By (22) and (21),

f ∗((i,m+ 2)eIs ) =
eIs

f ∗((i,m+ 1)eIs )
=

eIs

(σ (i),m)eIs
= (σ (i), s)eIs .
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By (20), this implies that (σ (i), s)eIs must be the ith vertex of f ∗(1s,3) = σ ′1s,j ′ ; the
latter shows that j ′ = 4, which contradicts (ii′). Thus j 6= 1. The proof of j ′ 6= 1 is
similar. Consequently, j, j ′ ∈ {2, 3}.

Now we turn to the permutations σ and σ ′. Suppose first that j = 2. Then, by (19),
each f ∗((i,m + 1)eIs ), i = 1, . . . , m − 1, is a vertex of f ∗(1s,2) = σ1s,2; hence
f ∗((i,m+ 1)eIs ) = (σ (i),m+ 1)eIs . By (22) and (21), we obtain

f ∗((i,m+ 2)eIs ) =
eIs

f ∗((i,m+ 1)eIs )
=

eIs

(σ (i),m+ 1)eIs
= (σ (i),m+ 2)eIs .

By (20), the last equality implies that the function (σ (i),m+ 2)eIs must be the ith vertex
of the simplex f ∗(1s,3) = σ ′1s,j ′ . This shows that j ′ = 3 6= j and σ ′(i) = σ(i)

for any i and hence σ ′ = σ . Finally, for j = 3, in the same way as above, we obtain
j ′ = 2 6= j and σ ′ = σ . This completes Step 4 and proves the Claim.

Continuing the proof of the theorem, notice that by almost the same argument as in
Steps 1 and 2 above, one can show that there is a permutation ϑ ∈ S(m− 1) ⊂ S(n) and
an index l ∈ {1, 2, 3} such that

f ∗(1s,1) = ϑ1s,l for any s ≥ m+ 3. (23)

It follows from the Claim that either l = 1 or l ∈ {2, 3} = {j, j ′}, where j and j ′ are
defined by (ii) and (ii′) and, according to Step 4 of the proof above, are distinct elements
of the set {2, 3}. Thus, we must consider the following three cases: (a) l = 1, (b) l = j
and (c) l = j ′.

(a) In this case (23) takes the form f ∗(1s,1) = ϑ1s,1; therefore, using (13) for all
vertices µ of the simplex 1s,1 and the permutation ρ = ϑ , we obtain (α(ϑ)f )∗(1s,1) =
ϑ−1[f ∗(1s,1)] = ϑ−1ϑ1s,1 = 1s,1; in terms of the vertices of the ordered simplices,
this means that for any i = 1, . . . , m − 1 we have (α(ϑ)f )∗((i,m)eIs ) = (i,m)eIs
and (α(ϑ)f )∗(eIs ) = eIs for all s ≥ m + 3. Since eIm+3 , . . . , eIn are all the vertices of
∇
n−m−3
1 , we obtain (α(ϑ)f )∗(∇n−m−3

1 ) = ∇n−m−3
1 and (α(ϑ)f )∗((i,m)∇n−m−3

1 ) =

(i,m)∇n−m−3
1 for all i = 1, . . . , m− 1; this proves the theorem in case (a).

Let us now prove that cases (b) and (c) are impossible. Indeed, if l = j then (23) and
(ii) imply that f ∗(1s,1) = ϕ[f ∗(1s,2)] with the permutation ϕ = ϑσ−1

∈ S(m − 1) ⊂
S(n) that does not depend on s. Therefore, using (14) for the vertices µ of the simplex
1s,2 and the permutation ρ = ϕ, we obtain f ∗(1s,1) = f ∗(α(ϕ)1s,2); since f ∗ is
an automorphism of the complex LM(En) (see Lemma 4.12), the latter relation implies
1s,1 = α(ϕ)1s,2. Notice that eIs is the very last vertex of the (m − 1)-simplices 1s,1
and 1s,2; hence for all s ≥ m + 3 we have eIs = α(ϕ)eIs . Since eIm+3 , . . . , eIn are all
the vertices of ∇n−m−3

1 , we see that ∇n−m−3
1 = α(ϕ)∇n−m−3

1 . Lemma 4.8 implies that
α(ϕ) ∈ S(m−1) ⊂ S(n). Asm > 1, one can see from the definition of1s,1 and1s,2 that
1s,1 6= ψ1s,2 for any ψ ∈ S(m − 1), which contradicts the equality 1s,1 = α(ϕ)1s,2.
Case (c) may be treated similarly. This completes the proof for n > m+ 3.

When n = m + 3, the theorem asserts that there exists ρ ∈ S(n) such that
(ρf )∗(em(r̂);r,m+1,m+2,m+3) = em(r̂);r,m+1,m+2,m+3 for any r ∈ {1, . . . , m}. The func-
tions em(1̂);1,m+1,m+2,m+3, . . . , em(m̂);m,m+1,m+2,m+3 are all the vertices of the ordered
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simplex ∇m−1
2 . Thus, the statement in question says that (ρf )∗(∇m−1

2 ) = ∇m−1
2 for an

appropriate permutation ρ ∈ S(n). Since f is equivariant, this is equivalent to the ex-
istence of φ ∈ S(n) such that f ∗(∇m−1

2 ) = φ∇m−1
2 , which means precisely that the

simplex f ∗(∇m−1
2 ) is of the second type. The last property follows from Lemma 4.12,

which completes the proof. ut

5. The proof of Theorem 1.3

Here we prove the main result of this paper. We start with the following remark which is
similar to Remark 2.14 in [6].

Remark 5.1. For n ≥ m + 3, there is a non-empty Zariski open subset U ⊂ En(X, gp)
such that ifAq = σq for some q ∈ U ,A ∈ PSL(C, m+1) and σ ∈ S(n) thenA = Id and
σ = Id. Indeed, Lemma 2.5 implies that for any two points q = (q1, . . . , qn) and q ′ =
(q ′1, . . . , q

′
n) in En(X, gp), an element A ∈ PSL(C, m+1) is uniquely determined by the

requirement Aqi = q ′i for all i = 1, . . . , m+ 2. Since S(n) is finite, it follows that the set
S of all points q = (q1, . . . , qn) ∈ En(X, gp) such that for some A ∈ PSL(C, m + 1)
and some non-trivial permutation σ ∈ S(n) (both A and σ may depend on q) the point
Aq = (Aq1, . . . , Aqn) coincides with the point σq = (qσ−1(1), . . . , qσ−1(n)), is a proper
Zariski closed subset of En(X, gp). Its complement U = En(X, gp) \ S is the desired
non-empty Zariski open set.

Proof of Theorem 1.3. By Theorem 4.14, there is a permutation ρ such that

em(r̂);r,m+1,m+2,s(ρf (q)) = em(r̂);r,m+1,m+2,s(q) (24)

for all q ∈ En(X, gp), s = m+3, . . . , n and r = 1, . . . , m. Lemma 2.5 implies that there
is a map γ : En(CPm, gp) → PSL(C, m + 1) such that γ (q)q ∈ Mm,n (see Definition
2.4). Lemma 2.15 says that DCRs are PSL(C, m+ 1)-invariant; hence

em(r̂);r,m+1,m+2,s(γ (q)q) = em(r̂);r,m+1,m+2,s(q),

em(r̂);r,m+1,m+2,s(γ (ρf (q))ρf (q)) = em(r̂);r,m+1,m+2,s(ρf (q))
(25)

for all q ∈ En(X, gp), s ∈ {m+ 3, . . . , n} and r ∈ {1, . . . , m}. Comparing (24) and (25)
we see that

(∗) em(r̂);r,m+1,m+2,s(γ (q)q) = em(r̂);r,m+1,m+2,s(γ (ρf (q))ρf (q))

for any q ∈ En(X, gp) and all s ∈ {m + 3, . . . , n} and r ∈ {1, . . . , m}. Both points
γ (q)q and γ (ρf (q))(ρf (q)) are in Mm,n, and Lemma 2.17 says that the functions
em(r̂);r,m+1,m+2,s with s ∈ {m + 3, . . . , n} and r ∈ {1, . . . , m} separate points of
Mm,n. Consequently, (∗) implies that γ (ρf (q))ρf (q) = γ (q)q, or, which is the same,
ρf (q) = (γ (ρf (q)))−1γ (q)q. Set τ(q) = (γ (ρf (q)))−1γ (q). The map τ : En(X, gp) 3
q 7→ τ(q) ∈ PSL(C, m+1) is holomorphic and τ(q)q = ρf (q), that is, f (q) = στ(q)q
for all q ∈ En(X, gp), where σ = ρ−1

∈ S(n).
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To complete the proof, we must check that the morphism τ is S(n)-invariant. Let
α ∈ Aut S(n) be the automorphism associated to our equivariant map f . For every θ ∈
S(n) and all q ∈ En(X, gp) we have στ(θq)θq = f (θq) = α(θ)f (q) = α(θ)στ(q)q,
which can be written as [(τ (θq))−1

·τ(q)]q = σ−1α(θ−1)σθq, where (τ (θq))−1
·τ(q) is

a product in PSL(C, m+1). In view of Remark 5.1, this implies that σ−1α(θ−1)σθ = Id
and τ(θq) = τ(q) for all θ ∈ S(n) and all q in a non-empty Zariski open subset U ⊂
En(X, gp). Since τ is continuous, the last equality holds true for all q ∈ En(X, gp); since
θ ∈ S(n) was arbitrary, this shows that the morphism τ : En(X, gp) → PSL(C, m + 1)
is S(n)-invariant. This completes the proof. �

Theorem 1.3 and Definition 1.1 imply the following corollary.

Corollary 5.2. Let m > 1, n ≥ m+ 3 and n 6= 2m+ 2.

(a) Any holomorphic map F : Cn(CPm, gp) → Cn(CPm, gp) that can be lifted to an
equivariant holomorphic map f : En(CPm, gp)→ En(CPm, gp) is tame.

(b) Any holomorphic map F : Cn(Cm, gp)→ Cn(Cm, gp) that can be lifted to an equiv-
ariant holomorphic map f : En(Cm, gp)→ En(Cm, gp) is quasitame.
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