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for the composite membrane problem
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Abstract. We study the composite membrane problem in all dimensions. We prove that the mini-
mizing solutions exhibit a weak uniqueness property which under certain conditions can be turned
into a full uniqueness result. Next we study the partial regularity of the solutions to the Euler–
Lagrange equation associated to the composite problem and also the regularity of the free boundary
for solutions to the Euler–Lagrange equations.

Keywords. Free boundary, partial regularity, monotonicity formula, composite membrane, unique-
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1. Introduction

Our main concern will be the physical problem proposed in [CGI+00] which can be stated
as:

Problem (P). Build a body of prescribed shape out of given materials of varying density,
in such a way that the body has prescribed mass and so that the basic frequency (with
fixed boundary) is as small as possible.

By virtue of Theorem 13 in [CGI+00] this problem can be converted into the follow-
ing minimization problem. Given a bounded domain � ⊂ Rn with smooth boundary, fix
α > 0 and A ∈ [0, |�|]. For any measurable subset D ⊂ �, denote by λ�(α,D) the first
Dirichlet eigenvalue for the problem

−1u+ αχDu = λ�(α,D)u in �, u = 0 on ∂�. (1.1)

Define
3�(α,A) = inf

D⊂�, |D|=A
λ�(α,D). (1.2)

A minimizerD to (1.2) will be called an optimal configuration for the data (�, α,A).
For this D we denote the associated eigenfunction solution to (1.1) by u. The pair (u,D)
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will be called an optimal pair solution to the composite problem or for short a solution to
the composite problem.

A variational formulation of our problem is also possible and is given by (see
[CGI+00])

3�(α,A) = inf
u∈H 1

0 (�), |D|=A, ‖u‖2=1

∫
�

(|∇u|2 + αχDu
2). (1.3)

Theorem 1 in [CGI+00] establishes the basic properties of the existence and regularity
of optimal pairs.

Theorem 1.1 ([CGI+00]). For any α > 0 and A ∈ [0, |�|], there exists an optimal pair
(u,D). Moreover, it has the following properties:

(a) u ∈ C1,γ (�) ∩H 2(�) for every γ < 1.
(b) D is a sublevel set of u, that is, there exists c ≥ 0 such that D = {u ≤ c}.
(c) If α 6= 3�(α,A), then every level set {u = s} has measure zero.

See Remark 2.2 for additional comments regarding (c). From Theorem 13 in [CGI+00]
we also know that the physical problem (P) stated earlier is equivalent to the variational
problem (1.3) provided

α < 3�(α,A). (1.4)

In the following we shall always assume (1.4). Now putting together Theorem 1.1 and the
variational characterization (1.3) of the problem we see that the Euler–Lagrange equation
of our problem is

−1u+ αχ{u≤c}u = 3�(α,A)u in �, u = 0 on ∂�. (1.5)

In Section 2 we first turn to the problem of uniqueness of optimal pairs (u,D). A prin-
cipal result of [CGI+00] is that even in domains that exhibit symmetry, the optimal pair
need not be unique, and in fact uniqueness is known without any assumptions only if �
is the ball. Nevertheless, we establish that generically there is a sort of weak uniqueness.

Theorem 1.2 (Weak uniqueness). Assume (1.4). For almost every A ∈ (0, |�|), there
exists c > 0 such that for all optimizing pairs (ui,Di),

Di = {x : ui(x) ≤ c}.

Thus though there is non-uniqueness in the problem, the level height where one must cut
off the eigenfunction to get Di must generically be the same for all eigenfunctions.

Under additional assumptions, namely if eigenfunctions agree at one point to infinite
order or if � is convex in R2 with additional assumptions, the assertion of weak unique-
ness can be turned into a statement of true uniqueness. See, for example, Lemma 2.9 and
Theorem 2.1 in Section 2.

In Section 3 we turn to the regularity of the free boundary F , defined by

F = {x : u(x) = c}. (1.6)

We recall an initial result, Theorem 8 in [CGK00]:
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Theorem 1.3. Let x0 ∈ F . Assume ∇u(x0) 6= 0, that is, x0 is a regular point of the
free boundary. Then there exists a ball B(x0, r) of radius r > 0 centered at x0, and a
real-analytic function φ(x1, . . . , xn−1) such that

F ∩ B(x0, r) = {(x1, . . . , xn) : xn = φ(x1, . . . , xn−1)}.

That is, the free boundary in the neighborhood of a regular point is a hypersurface given
by the graph of a real-analytic function.

Subsequently Blank [Bla04] performed a blow-up analysis in dimension 2 to classify
the singular points of F , that is, those points on F where ∇u = 0. This analysis in
dimension 2 was completed by Shahgholian [Sha], who also obtained a condition that
guarantees that the singular points of F in dimension 2 are isolated.

The free boundary problem for the composite problem can be easily converted to an
equivalent problem (see e.g. [Sha]) given by

1v = f χ{v≥0} − gχ{v≤0}, f, g ∈ C1,γ , f > 0, g < 0, f + g < 0. (1.7)

Our main result concerning the structure of F in Section 3 is:

Theorem 1.4 (Structure of the free boundary of solutions (1.7)). For � ⊂ Rn, there is a
decomposition

F = F0 ∪ S
1
v ∪ S

2
v ,

where S2
v has Hausdorff dimension ≤ n − 2, Hn−1(S1

v ) ≤ C, and for all x0 ∈ F0, there
exists a ball B(x0, r) such that F ∩ B(x0, r) is a hypersurface given by the graph of a
real-analytic function.

The principal tool we use to perform our blow-up analysis and thereby get Theorem 1.4
is an energy functional introduced by Weiss [Wei98]. Set (f ≡ f0, g ≡ g0)

W(r) =
1
rn+2

∫
B(x0,r)

(|∇v|2 + 2(f0v
+
+ g0v

−))−
2
rn+3

∫
∂B(x0,r)

u2. (1.8)

Weiss showed that W(r) is increasing. We offer an alternative proof based in part on the
Rellich–Pokhozhaev identity which explicitly shows that no structural assumptions are
needed to get the monotonicity.

Next we proceed to classify the blow-up limits in the spirit of the paper by Monneau–
Weiss [MW07]. Two points are to be noted in contrast to [MW07]. First, in our case blow-
up limits are non-degenerate, and second, we have two types of blow-up limit solutions
that are homogeneous of degree 2. This is already evident in the work in dimension 2 by
Blank [Bla04] and Shahgholian [Sha].

Lastly, we address the question of C1,1 bounds. In general such bounds are not avail-
able for the composite problem if we only analyze the Euler–Lagrange equation (1.7). So-
called cross solutions arise from homogeneous harmonic polynomials of degree 2 with
corresponding failure of C1,1 bounds in dimension 2, as has been exhibited by Andersson
and Weiss [AW06] in the case f ≡ −1, g ≡ 0. The example of Andersson–Weiss can be
easily extended to all dimensions by the addition of dummy variables. We show that the
[AW06] construction extends to our setting (Remark 3.20). Our regularity result proved
in Section 3 is (see Theorem 3.4, Definition 3.16 and Remark 3.19):
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Theorem 1.5. We have F = G ∪ B, where in G we have pointwise C1,1 bounds and B
has Hausdorff dimension ≤ n− 2.

It remains open whether proceeding from the variational problem instead of (1.7) allows
one to get C1,1 bounds. It is readily seen that global assumptions on the boundary of �
do ensure that C1,1 bounds and full regularity are achieved. A result of this type proved
in Section 3 is (see Proposition 3.7):

Proposition 1.6. Assume � ⊂ R2 has two axes of symmetry, where symmetry is defined
in the sense of Theorem 4 in [CGI+00]. Then the free boundary F is a real-analytic curve
and u ∈ C1,1.

2. Uniqueness and weak uniqueness

Our goal in this section is to prove Theorem 1.2 of the introduction. We shall also show
that a weak uniqueness assertion as in Theorem 1.2 can be converted to a uniqueness
assertion on convex domains with additional assumptions. Let � ⊂ Rn be a bounded
domain with ∂� smooth. For α > 0, A ∈ [0, |�|], and D ⊂ �, let λ�(α,D) = λ be the
lowest eigenvalue of {

−1v + αχDv = λv on �,
v|∂� = 0.

(2.1)

The variational characterization of (2.1) gives

λ = inf
u∈H 1

0 (�)

∫
�
(|∇u|2 + αχDu

2)∫
�
u2 . (2.2)

Lemma 2.1. There exists a unique minimizer v ∈ H 1
0 of (2.2) with ‖v‖2 = 1, which is

non-negative.

Proof. By Theorem 8.38 in [GT83], the eigenvalue λ is simple and the eigenspace is
spanned by a non-negative eigenfunction. Since ‖v‖2 = 1, we have a unique non-negative
eigenfunction with ‖v‖2 = 1. ut

Define
3 = 3�(α,A) = inf

D⊂�, |D|=A
λ(α,A).

Remark 2.2. Assume α < 3. Then for the solution (u,D) to the composite problem
stated in the introduction, |{u = s}| = 0 for all s. This is Theorem 1(c) in [CGI+00].
Note that s = 0 is not covered by the proof in [CGI+00] but is easily ruled out by
superharmonicity of u.

Lemma 2.3. Let F = {x ∈ � : u = c}, where D = {x ∈ � : u ≤ c} and (u,D) is the
solution of our composite problem. Then ∇u 6≡ 0 on F . (In fact, ∇u cannot be identically
zero on the boundary of a connected component of cD.)
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Proof. Assume ∇u|F ≡ 0. Consider the open set O = {x : u > c}. Since A < |�|, by
Remark 2.2, |O| > 0. Let U be a connected component of O, and let{

−1w = µUw in U,
w|∂U = 0,

(2.3)

where µU is the first Dirichlet eigenvalue of U . We claim 3 ≤ µU . To check this extend
w to cU by setting w ≡ 0 in cU . The extended function will still be denoted by w and we
may normalize it so that ‖w‖2 = 1. Then

3 ≤

∫
�

|∇w|2 + α

∫
D

w2
=

∫
�

|∇w|2 = µU .

If3 = µU , then u = w by Lemma 2.1. Since w ≡ 0 onD, and since u is superharmonic,
so is w, hence w = u = 0, a contradiction. So, 3 < µU . Let v = ∂xj u for some fixed j.

In U ,
−1u = 3u, (2.4)

so that on differentiating (2.4), v satisfies{
−1v = 3v in U,
v|∂U ≡ 0, v ∈ Cγ (Ū).

(2.5)

We claim v ≡ 0. This will imply u ≡ c in U , which will contradict Remark 2.2. Since
3 < µU , using the Fredholm alternative we may solve

−1f −3f = −3 in U , f ∈ H 1
0 (U). (2.6)

Let h = f+ = max(f, 0). Clearly h ∈ H 1
0 (U). Multiplying (2.6) by h and integrating by

parts gives ∫
U

|∇h|2 −3

∫
U

h2
= −

∫
U

3h ≤ 0.

Thus, ∫
U

|∇h|2 ≤ 3

∫
U

h2. (2.7)

If
∫
U
h2
6= 0, then from (2.7), µU ≤ 3. This is a contradiction. Hence

∫
U
h2
= 0 and

h ≡ 0 in U. Thus f ≤ 0. Set ψ = 1− f . Then ψ ≥ 1, and from (2.6),

−1ψ −3ψ = 0.

By elliptic regularity, ψ ∈ C∞(U). Now find Uj b U with dist(∂Uj , ∂U)→ 0 and ∂Uj
smooth. So if x ∈ U , then x ∈ Uj for large enough j. Let φ = v/ψ , where v is defined
in (2.5). Note that, because ψ ≥ 1, and by (2.5) again,

sup
∂Uj

|φ| ≤ sup
∂Uj

|v| → 0 as j →∞. (2.8)
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Now,

∇φ =
∇v

ψ
−
v∇ψ

ψ2 =
ψ∇v − v∇ψ

ψ2

and

1φ =
∇ψ · ∇v + ψ1v −∇v · ∇ψ − v1ψ

ψ2 −
2
ψ3 (ψ∇v − v∇ψ) · ∇ψ

=
ψ1v − v1ψ

ψ2 −
2
ψ
∇ψ · ∇φ = −

2
ψ
∇ψ · ∇φ.

Thus φ satisfies

1φ +
2
ψ
∇ψ · ∇φ = 0 in Uj .

Hence by the maximum principle, and (2.8),

sup
Ūj

|φ| ≤ sup
∂Uj

|φ| → 0 as j →∞.

Consequently, φ ≡ 0 in U and hence v ≡ 0 in U . ut

Combining Theorem 8 in [CGK00] and Lemma 2.3, we have

Lemma 2.4. If (u,D) is a minimizing pair with α < 3�, then there exists x0 ∈ F =
{u = c} and a ball B(x0, r) = B such that B ⊂ � and

F ∩ B = {(x, φ(x)) : x ∈ Rn−1, φ : U ⊂ Rn−1
→ R},

with φ(x0) = 0,∇φ(x0) = 0 and φ real-analytic. Furthermore,

D ∩ B = {(x, y) : y < φ(x)} ∩ B,
cD ∩ B = {(x, y) : y > φ(x)} ∩ B.

Lemma 2.5. Let ψ = ψ(x′) : U ⊂ Rn−1
→ R be smooth, where U is open and

U ⊃ B = B(0, r). Assume ψ(0) = 0, ∇ψ(0) = 0, and let

D = {(x′, y) : y < ψ(x′)} ∩ B.

Then there exists ε0 > 0 and a smooth function

8(t, x) = 8t (x) : {|t | ≤ ε0} × B → B,

where x = (x′, y), such that:

(a) For each fixed t , 8t : B → B is a diffeomorphism with 8(0, x) = 80(x) = x.

(b) For all t with |t | ≤ ε0, and some 0 < δ < r/50,

8t |B\B(0,2δ) = x.
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(c) Let χDt (x) = χD(8−t (x)). Then

d

dt
|Dt |

∣∣∣∣
t=0
= 1.

Proof. Let f ∈ C∞0 (B(0, δ/100)) be a smooth cut-off function, f ≥ 0. Let ν(x′) denote
the unit outward normal to y = ψ(x′). We extend ν(x′) smoothly as a vector field X to
all points in B(0, δ/10). Now define

d8t

dt
(x) =

X(x)f (x)∫
∂D∩B(0,δ/10) f (σ) dσ

= V (x), 80(x) = x. (2.9)

Then (a) and (b) follow from (2.9). Note that a simple degree argument is needed to show
that 8t is a diffeomorphism. (c) follows from Appendix 1, by noting that

V |∂D =
ν(x′)f (x)∫
∂D
f (σ) dσ

.

Hence
∫
∂D
〈V, ν〉 = 1. ut

Lemma 2.6. Construct 8t (x) as in Lemma 2.5, and suppose x0 = 0 in Lemma 2.4.
Define φt : �→ � by

φt (x) =

{
8t (x), x ∈ B(0, 3δ),
x, x ∈ � \ B(0, 3δ).

(a) φt is a diffeomorphism of �.
(b) If Dt = {φt (x) : x ∈ D}, then

d

dt
|Dt | = 1.

(c) If (u,D) is a solution to the composite problem and

−1ut + αχDtut = λ(t)ut , ut |∂� = 0,

where D = {x ∈ � : u ≤ c} = D0, u0 = u, λ(0) = 3, then

λ′(0) = αc2.

Proof. Using (b) in (A1.10) and Lemma 2.5(c) we get (c); (b) follows from Lemma 2.5;
and (a) follows from the definition of φt (x) and Lemma 2.5(a). ut

Lemma 2.7. Assume that 3�(α,A) is differentiable at A = A0. Let (u,D) be a mini-
mizer. Construct domainsDt as in Lemma 2.6, where B = B(x0, r) is supplied by Lemma
2.4. Then

d

dA
3(α,A)

∣∣∣∣
A=A0

= αc2.
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Proof. Let |Dt | = m(t), with Dt as in Lemma 2.6. Let f (t) = 3(α,m(t)). Then f is
differentiable at t = 0 and

f ′(0) =
d3

dA
(α,A)

∣∣∣∣
A=A0

·m′(0) =
d3

dA
(α,A)

∣∣∣∣
A=A0

. (2.10)

Next for t > 0, by the definition of 3,

f (t)− f (0)
t

≤
λ(t)− f (0)

t
=
λ(t)− λ(0)

t
.

Letting t ↓ 0, we get f ′(0) ≤ λ′(0). Arguing similarly for t < 0, letting t ↑ 0, using the
differentiability of f and λ at t = 0 we get f ′(0) = λ′(0) = αc2 by Lemma 2.6. Thus
from (2.10),

d3

dA
(α,A)

∣∣∣∣
A=A0

= αc2. ut

Proof of Theorem 1.2. 3(α,A) is strictly increasing in A and Lipschitz in A [CGI+00,
Prop. 10]. Thus 3′(α,A) exists for a.e. A, and 3′(α,A) = αc2 by Lemma 2.7. Hence
if (u1,D1), (u2,D2) are two configurations with |Di | = A, where Di = {x : ui < ci},

then αc2
1 = αc

2
2. Hence c1 = c2. ut

We shall now show that under some conditions, the weak uniqueness conclusion of The-
orem 1.2 can be turned into a uniqueness result. We will restrict our attention to domains
� ⊂ R2.

Lemma 2.8. Let � ⊂ R2, and let{
−1u+ αχ{u≤c}(x)u = λu,

u|∂� = 0, ‖u‖2 = 1.
(2.11)

Then for any x0 ∈ R2,

1
2

∫
∂�

〈x − x0, ν〉

(
∂u

∂ν

)2

= λ− αc2
|
cD| − α

∫
D

u2,

where D = {x : u ≤ c}.

Proof. We use the Rellich–Pokhozhaev identity

−〈x − x0,∇u〉1u = −∇ · (〈x − x0,∇u〉∇u)+ |∇u|
2
+

1
2 (x − x0) · ∇(|∇u|

2).

Integrating it over � yields

−

∫
�

〈x − x0,∇u〉1u = −

∫
∂�

〈x − x0, ν〉

(
∂u

∂ν

)2

dσ +
1
2

∫
∂�

〈x − x0, ν〉

(
∂u

∂ν

)2

dσ

= −
1
2

∫
∂�

〈x − x0, ν〉

(
∂u

∂ν

)2

dσ. (2.12)
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From (2.11),
−1u = λu− αχDu. (2.13)

Substituting (2.13) into the left side of (2.12) we get∫
�

αχDu〈x − x0,∇u〉 −

∫
�

〈x − x0,∇u〉λu =
1
2

∫
�

〈x − x0, ν〉

(
∂u

∂ν

)2

.

Thus,

1
2

∫
�

〈x − x0, ν〉

(
∂u

∂ν

)2

= −
λ

2

∫
�

〈x − x0,∇(u
2)〉 +

α

2

∫
�

〈x − x0,∇(u
2)〉χD. (2.14)

The first integral on the right by integration by parts is

λ

∫
�

u2
= λ. (2.15)

For the second integral, since D = {x : u(x) ≤ c}, by Sard’s theorem there exist cj ↑ c
such that each cj is a regular value. Let Dj = {x : u(x) < cj }. Now by integration by
parts,∫
�

〈x − x0,∇(u
2)〉χDj = −2

∫
Dj

u2
+

∫
∂Dj∩�

〈x − x0, ν〉u
2

= −2
∫
Dj

u2
+

∫
∂Dj∩�

c2
j 〈x − x0, ν〉 = −2

∫
Dj

u2
− 2c2

j |
cDj |.

Letting j →∞ gives ∫
D

〈x − x0,∇(u
2)〉 = −2

∫
D

u2
− 2c2

|
cD|. (2.16)

Inserting (2.16) and (2.15) into (2.14) we get our result. ut

To obtain a true uniqueness assertion we first need a preliminary lemma which is valid
in all dimensions. We shall assume that our solutions are normalized by the condition
‖u‖2 = 1.

Lemma 2.9. Let (ui,Di), i = 1, 2, be two solutions of our composite problem. As-
sume that D1 is connected. Assume furthermore we have weak uniqueness, that is, Di =
{x ∈ � : ui ≤ c} and u1 − u2 vanishes at a single point x0 ∈ D1 to infinite order. Then
u1 ≡ u2 in �.

Proof. First we note u1(x0) = u2(x0) < c. Thus there is a ball B centered at x0 where
ui(x) < c, i = 1, 2. In this ball we have

−1ui + αui = 3ui, i = 1, 2. (2.17)
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Thus, w = u1−u2 also satisfies the equation (2.17) and w vanishes at x0 to infinite order.
Hence, w vanishes identically in B. Now consider the set

W = int{x ∈ D1 : u1 = u2}.

We have established that W is non-empty. We shall now show that W is both open and
closed in the relative topology of D1. Since D1 is connected we then get W = D1. Since
u1 = u2 < c on D̊1 we obtain D1 ⊂ D2. Since |D1| = |D2| we see right away that
D1 = D2.

Now by definition W is open. So let z0 ∈ W = F ∩ D1 where F is closed. Then
u1(z0) = u2(z0) < c and thus there is a ball B centered at z0 where (2.17) is satisfied.
Again w satisfies (2.17) and vanishes on some open set in B. This is because z0 is a
boundary point to W . So by unique continuation w vanishes in B. Thus z0 ∈ W . We
have checked W is also closed. Since now D1 = D2, applying Lemma 2.1 we obtain the
conclusion of our lemma. ut

Remark 2.10. The same result holds if x0 ∈ ∂�. The proof is similar, but slightly more
complicated.

Theorem 2.1. Assume � ⊂ R2 with smooth boundary. Assume that � is strictly convex.
Let (ui,Di) be two solutions to the composite problem with eigenvalue 3. Assume that:

(a)
∫
D1
u2

1 =
∫
D2
u2

2.

(b) Weak uniqueness holds: Di = {x ∈ � : ui(x) ≤ c}.
(c) The sets {x : u1(x) < u2(x)} and {x : u1(x) > u2(x)} are both connected.

Then u1 ≡ u2.

Proof. Since � is convex, it is simply connected, and since α < 3, by Theorem 2 of
[CGI+00] the sets Di are connected. Writing Lemma 2.8 for ui and subtracting the ex-
pression for u2 from that of u1, we get, after using the hypotheses (a), (b) above,∫

∂�

〈x − x0, ν〉

[(
∂u1

∂ν

)2

−

(
∂u2

∂ν

)2]
= 0.

We rewrite this as ∫
∂�

〈x − x0, ν〉
∂

∂ν
(u1 + u2)

∂

∂ν
(u1 − u2) = 0. (2.18)

Now in a tubular neighborhood of ∂� both u1, u2 satisfy (2.17). Hence u1 + u2 also
satisfies (2.17) with u1 + u2 > 0 in � and vanishing on ∂�. Thus by Hopf’s boundary
point lemma,

∂

∂ν
(u1 + u2) < 0. (2.19)

Now set ψ = u1 − u2. Let

E1 =

{
x ∈ ∂� :

∂ψ

∂ν
> 0

}
, E2 =

{
x ∈ ∂� :

∂ψ

∂ν
< 0

}
.
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We show both sets are empty. If we establish this result we have the conclusion of the
lemma. The reason is that if ∂ψ/∂ν = 0 on ∂�, since ψ = 0 on ∂� we deduce from the
Cauchy–Kovalevskaya theorem that ψ vanishes in a neighborhood of a boundary point,
and thus applying Lemma 2.9 we conclude u1 = u2 in �.

Case 1: Assume without loss of generality that E2 is empty and E1 is non-empty. Pick
any x0 ∈ �. Then by the strict convexity of ∂�, 〈x − x0, ν〉 > 0. Thus by (2.19) and
the choice of x0 we conclude that the integral in (2.18) is negative. This contradicts the
identity (2.18).

Case 2: We may now assume that both E1 and E2 are non-empty. Consider the com-
ponents of E1 and E2 on ∂�. These are intervals. We claim that the hypothesis (c) rules
out interlacing of intervals. That is, the intervals that make up the components of E1 must
share at least one boundary point, and likewise for E2. For assume there exist two inter-
vals I1, I2 which are components of E1 and two intervals J1, J2 which are components of
E2. Now we shall obtain a contradiction if we assume that I1, I2 lie in different compo-
nents of ∂� \ (J1 ∪ J2). Taking interior points in I1, I2 we can connect them by a curve
that lies entirely in � and in the set {u1 < u2}. Now it is easily seen that {u1 > u2}

is disconnected. This contradicts (c). Thus we have shown that ∂� consists of two arcs
γ1, γ2 such that γ1 and γ2 have common endpoints P,Q and ∂ψ/∂ν ≥ 0 on γ1, with
∂ψ/∂ν > 0 on some subinterval of γ1. Likewise, ∂ψ/∂ν ≤ 0 on γ2, with ∂ψ/∂ν < 0 on
some subinterval of γ2. Now consider the tangent lines to ∂� at P,Q.

If the tangent lines intersect at x0, apply (2.18) with this choice of x0. Notice that
by the strict convexity of ∂�, 〈x − x0, ν〉 > 0 (except possibly at P,Q) on γ1 and
〈x − x0, ν〉 < 0 on γ2. Thus using (2.19) and the behavior of ψ on γ1, γ2 we easily see
that the integral in (2.18) is negative. This is a contradiction.

Assume next that the tangent lines at P,Q are parallel and (with no loss of generality)
parallel to the x1-axis, x = (x1, x2). Set v(x) = (n1(x), n2(x)). Now (2.18) holds for
every x0. Set x0 = (x

0
1 , x

0
2). We may now differentiate (2.18) with respect to x0

1 to obtain∫
∂�

n1(x)
∂

∂ν
(u1 + u2)

∂ψ

∂ν
= 0.

We may assume that n1(x) > 0 on γ1 and n1(x) < 0 on γ2 except at P,Q by the
strict convexity of ∂�. Thus the integrand in (2.18) is non-positive by the use of (2.19).
Furthermore, from (2.19) and the behavior of ψ on the arcs γi there are arcs on ∂� where
the integrand is negative. This again contradicts (2.18). Thus both sets E1 and E2 are
empty. ut

3. Partial regularity

Our goal in this section is to prove Theorems 1.4 and 1.5 of the introduction. We fol-
low the works of Blank [Bla04], Shahgolian [Sha], Weiss [Wei98] and Monneau–Weiss
[MW07], with some necessary variants and extensions.
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The set-up. Let � ⊂ Rn be a bounded domain with ∂� smooth. For α > 0 and
A ∈ (0, |�|), we let (u,D) be a solution of the composite problem, so that{

−1u+ αχ{u≤c}u = 3u on �,
u|∂� = 0,

∫
�
u2
= 1,

(3.1)

where D = {u ≤ c}. Recall that u ≥ 0 in � and that we are assuming throughout that
α < 3. Note that u ∈ W 2,p(�) for all 1 ≤ p < ∞, and u ∈ C1,γ (�), 0 ≤ γ < 1,
with norm depending only on A, n, �, p, γ, α, and 3. Note also that c > 0 since if
u(x0) = 0 by superharmonicity of u, x0 ∈ ∂�, and |{u ≤ c}| = A > 0. Note also that
|{u = c}| = 0 by Remark 2.2. We next let v = c−u and write the equation for v, namely

1v = f χ{v≥0} − gχ{v<0}, (3.2)

where f = (3 − α)u, g = −3u. Fix a neighborhood U of F = {u = c}, the
free boundary, so that f > 0, g < 0 and f + g < 0 in U. We thus have a so-
lution v of (3.2) in U open, and functions f, g ∈ C1,γ (U) with norm bounded by
B̃1 = B̃1(γ, u, α,3,A,�) in U , also satisfying f, g ∈ W 2,p(U), with norm bounded by
B̃2 = B̃2(p, n, α,3,A,�) and with |1f |, |1g| bounded by B̃3 = B̃3(α,3), and such
that, for some η0 = η0(α,3,A, n,�) > 0, we have f ≥ η0 > 0, g ≤ −η0, f + g ≤ η0
in U. We also have ‖v‖C1,γ (U) + ‖v‖W 2,p(U) ≤ N = N(γ, p, n, x,3,A,�). Finally,
we fix r0 so small that B(x0, r0) ⊂ U for all x0 ∈ F . We still study the behavior of
Su = {x ∈ F : ∇u(x) = 0} = Sv = {x ∈ F : ∇v(x) = 0}, where F = {v = 0}. Note
that by [CGK00, Theorem 8] (see Theorem 1.3 here) for each x0 ∈ F \ Sv , there exists a
neighborhood Vx0 around x0 so that F is real-analytic in it, and v and u are real-analytic
in Vx0 ∩ D and Vx0 ∩

cD. One of our main tools in this section is an energy functional
introduced by Weiss:

W(r) =
1
rn+2

∫
B(x0,r)

(|∇v|2 + 2(f v+ + gv−))−
2
rn+3

∫
∂B(x0,r)

v2. (3.3)

In the next lemma we compute W ′(r) (see [Wei98], where the computation is also
carried out).

Lemma 3.1. Let x0 ∈ Sv and 0 < r < r0. Then, for 0 < r < r0,

W ′(r) =
2
rn+2

∫
∂Br

[
∂v

∂ν
− 2

v

r

]2

dσ + e(r), (3.4)

where for 0 ≤ γ < 1 and 0 < r < r0 we have

|e(r)| ≤ F(n, γ, ‖∇f ‖∞, ‖∇g‖∞, N)r
γ−1, (3.5)

with F(−, −, 0, 0, −) ≡ 0. (Here ν is the outward unit normal to ∂Br , and Br stands
for B(x0, r).)
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Proof. We can assume that x0 = 0. We have

∂

∂r

(
1
rn+2

∫
Br

|∇v|2
)
= −

n− 2
rn+3

∫
Br

|∇v|2 +
1
rn+2

∫
∂Br

|∇v|2.

Moreover, the Rellich–Pokhozhaev identity gives

div(x|∇v|2) = 2 div(x · ∇v∇v)+ (n− 2)|∇v|2 − 2x · ∇v1v,

and we also have the identities

(f χ{v≥0} − gχ{v<0})∇v = ∇(f v
+
+ gv−)−∇f v+ −∇gv−,∫

Br

x · ∇(f v+ + gv−) = r

∫
∂Br

(f v+ + gv−)− n

∫
Br

(f v+ + gv−),

so that∫
∂Br

|∇v|2 = 2
∫
∂Br

(
∂v

∂ν

)2

+
n− 2
r

∫
∂Br

|∇v|2 − 2
∫
Br

(f v+ + gv−)

+
2n
r

∫
Br

(f v+ + gv−)+
2
r

∫
Br

[(x · ∇f )v+ + (x · ∇g)v−]

and hence

∂

∂r

(
1
rn+2

∫
Br

|∇v|2
)
= −

4
rn+3

∫
∂Br

v
∂v

∂ν
+

2(n+ 2)
rn+3

∫
Br

(f v+ + gv−)

+
2
rn+2

∫
∂Br

(
∂v

∂ν

)2

−
2
rn+2

∫
∂Br

(f v+ + gv−)

+
2
rn+3

∫
Br

[(x · ∇f )v+ + (x · ∇g)v−], (3.6)

where we have also used the identity

−
4
rn+3

∫
Br

|∇v|2 = −
2
rn+3

∫
Br

[1(v2)− 2v1v]

= −
4
rn+3

∫
∂Br

v
∂v

∂ν
+

4
rn+3

∫
∂Br

(f v+ + gv−).

Since

∂

∂r

(
2
rn+2

∫
Br

(f v+ + gv−)

)
=
−2(n+ 2)
rn+3

∫
Br

(f v+ + gv−)+
2
rn+3

∫
∂Br

(f v+ + gv−) dσ

and
∂

∂r

(
2
rn+3

∫
∂Br

v2
)
= −

8
rn+3

∫
∂Br

v2
+

4
rn+3

∫
∂Br

v
∂v

∂ν
,
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(3.4) follows with

e(r) =
2
rn+3

∫
Br

[(x · ∇f )v+ + (x · ∇g)v−].

The estimate (3.5) is an immediate consequence of this formula and the fact that x0 ∈ Sv
and v ∈ C1,γ . ut

Corollary 3.2. If f = f0 and g = g0 are both constants, and W ′(r) = 0 for 0 < r < r0
then v(x0 + x) is homogeneous of degree 2 in x.

Proof. From the formula for W ′ and the fact that e ≡ 0 in this case. ut

Corollary 3.3. W1(r) = W(r) + Dr
γ (where D = D(n, γ, ‖∇f ‖∞, ‖∇g‖∞, N) ≥ 0,

D(−,−, 0, 0,−) ≡ 0) is increasing for 0 < r < r0.

For further use we will recall Kato’s inequality:

Lemma 3.4 (Kato [Kat73]). Assume that w ∈ W 2,2
loc (U). Then 1|w| ≥ (signw)1w in

the H 1
loc(U) sense, i.e. for all θ ∈ C∞0 (U), θ ≥ 0, we have

−

∫
∇|w| · ∇θ ≥

∫
(signw)1wθ.

Lemma 3.5. For 0 < r < r0 and x0 ∈ Sv, we have

∂

∂r

(
1

2rn+3

∫
∂Br

v2
)
=

1
r

[
W1(r)−

1
rn+2

∫
Br

[f v+ + gv−]−Drγ
]
.

Proof. Recall from the proof of Lemma 3.1 that

∂

∂r

(
1

2rn+3

∫
∂Br

v2
)
= −

2
rn+4

∫
∂Br

v2
+

1
rn+3

∫
∂Br

v
∂v

∂ν
.

But ∫
∂Br

v
∂v

∂ν
=

1
2

∫
∂Br

∂

∂r
(v2) =

1
2

∫
Br

1(v2)

=

∫
Br

[v1v + |∇v|2] =
∫
Br

|∇v|2 +

∫
Br

[f v+ + gv−]

and the lemma follows. ut

We now let, for 0 < r < r0,

vr(x) =
v(rx + x0)

r2 , fr(x) = f (rx + x0), gr(x) = g(rx + x0),

where x0 ∈ Sv. Note that 1vr = frχ{vr≥0} − grχ{vr<0} in B1 = B(0, r) (x0 = 0).
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Lemma 3.6. Let

v(1)r (x) = fr(x)v
+
r (x)+ (gr(x)+ η0/2)v−(x)− a1|x|

2, v(2)r (x) = v−r (x)+ a2|x|
2,

where ai = ai(n, B̃1, B̃2, B̃3, N, α,3) ≥ 0. Then:

(i) v(1)r is superharmonic in B1.

(ii) v(2)r is subharmonic and non-negative in B1.

(iii) v+r is subharmonic in B1.

Proof. All functions are continuous, so we just need to check the sign of the distributional
Laplacian. Note that

v(1)r (x) =
fr(x)+gr(x)+η0/2

2
|vr(x)|+

fr(x)−gr(x)−η0/2
2

vr(x)−a1|x|
2,

1v(1)r =
fr+gr+η0/2

2
1(|vr |)+

fr−gr−η0/2
2

1vr(x)

+2
∇(fr+gr)

2
∇(|vr |)+2

1(fr−gr)

2
vr

+
1(fr+gr)

2
|vr |+

1(fr−gr)

r
vr−a12n

≤
fr+gr+η0/2

2
(sign vr)(frχ{vr≥0}−grχ{vr<0})

+
fr−gr−η0/2

2
(sign vr)(frχ{vr≥0}−grχ{vr<0})+2B̃2N+2B̃2N−a12n

≤ B̃2
2 B̃

2
2+2B̃3N−a12n

and (i) follows. (Here we have used the fact that fr + gr + η0/2 < 0.) Also,

v(2)r (x) =
|vr(x)| − vr(x)

2
+ a2|x|

2,

so that

1v(2)r =
(sign vr)vr −1vr

2
+ 2na2

=
(frχ{vr≥0} − grχ{vr<0})− (frχ{vr≥0} − grχ{vr<0})

2
+ 2na2

≥ grχ{vr<0} + 2na2

and (ii) follows. For (iii) note that v+r = |v
+
r | + v

+
r /2, so that

1v+r ≥
(sign vr)1vr +1vr

2
+ 2na2

=
(frχ{vr≥0} + grχ{vr<0})+ (frχ{vr≥0} − grχ{vr<0})

2
= frχ{vr≥0} ≥ 0. ut



720 Sagun Chanillo, Carlos E. Kenig

Corollary 3.7. −
∫
B1

[frv+r + (gr + η0/2)v−r ] ≥ −a3, where a3 > 0 has the same
dependence as ai in Lemma 3.6.

Proof. v(1)r is superharmonic in B1 and v(1)r (0) = 0. Then

v(1)r (0) ≥ –
∫
B1

[frv+r + (gr + η0/2)v−r − a1|x|
2]

and the corollary follows. ut

We now define, for x0 ∈ Sv , 0 < r < r0,

S(r) =

(
–
∫
∂Br

v2
)1/2

.

Lemma 3.8 (Non-degeneracy). lim infr→0 S(r)/r
2 > 0.

Proof. Assume without loss of generality that x0 = 0. If the conclusion fails, we can find
ri → 0 such that S(ri)/r2

i → 0. Let vi(x) = v(rix)/r2
i , so that

∫
∂B1

v2
i → 0. Note that,

in B1, 1vi = friχ{vi≥0} − griχ{vi<0} ≥ η0 > 0. Also, |1vi | ≤ 2B̃1 and vi(0) = 0.
By subharmonicity of vi , we see that

∫
B1
v−i ≤

∫
B1
v+i . Since, by Lemma 3.6(iii), v+i is

subharmonic, ∫
B1

v+i ≤ cn

∫
∂B1

v+i ≤ cn

(∫
∂B1

(v+i )
2
)1/2

.

Thus,

∫
B1

|vi | ≤

∫
B1

v+i +

∫
B1

v−i ≤ 2
∫
B1

v+i ≤ 2cn

(∫
∂B1

(v+i )
2
)1/2

→ 0.

After passing to a subsequence, we have vi → v0, where the convergence is uniform on
compact subsets of B1 and in W 2,2

loc (B1). But then 1v0 ≥ η0 > 0, while
∫
B1
|v0| = 0,

a contradiction. ut

Remark 3.9. Note that the above proof shows that if S+(r) = ( –
∫
∂Br
(v+)2)1/2, then

lim infr→0 S
+(r)/r2 > 0.

We now turn to the classification of blow-up points, following the ideas of Monneau–
Weiss [MW07].

Lemma 3.10. Let −M = limr↓0W1(r). Assume that x0 ∈ Sv is such that M <∞. Then
there exists G = G(n, B̃1, B̃2, B̃3, N,M) such that sup0<r<r0 S(r)/r

2
≤ G.
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Proof. Note that, in view of Lemma 3.5, if 0 < r < r0 is such that

−
1
rn+2

∫
Br

[f v+ + gv−] > M +Drγ ,

then
∂

∂r

(
1
rn+2

∫
∂Br

v2
)
> 0.

Note that the last inequality is equivalent to (∂/∂r)(
∫
B1
v2
r ) > 0. Our first step in the proof

is to show that there exists C1 = C1(n, B̃1, B̃2, B̃3, N,�) such that for 0 < r < r0 we
have ∫

∂B1

(v+r )
2
≤ C1

{
1+

∫
∂B1

(v−r )
2
}
. (3.7)

In order to establish (3.7), we first prove an auxiliary claim:

Claim 3.11. For each R> 0, there exists ε0= ε0(R, n) such that if w(0)= 0, 1w+≥ 0,
0 ≤ 1w ≤ ε0,

∫
B1
|∇w|2 ≤ R,

∫
∂B1
(w−)2 ≤ ε0 and (

∫
∂B1

w2)1/2 ≤ 2, then
∫
∂B1

w2

≤ 1/2.

Proof of Claim 3.11. If not, we can find R > 0 and functions wj with wj (0) = 0, 0 ≤
1wj ≤ 1/j,

∫
B1
|∇wj |

2
≤ R, (

∫
∂B1

w2
j )

1/2
≤ 2,

∫
∂B1
(w−j )

2
≤ 1/j but

∫
∂B1

w2
j ≥ 1/2.

Since the w+j are subharmonic,
∫
B1
w+j ≤ cn

∫
∂B1

w+j ≤ 2cn. Since the wj are sub-
harmonic and wj (0) = 0,

∫
B1
w−j ≤

∫
B1
w+j ≤ 2cn. Hence, by Poincaré’s inequality,∫

B1
w2
j ≤ (R + 4cn)αn. Hence, we can find a subsequence (still indexed by j ) such

that wj → w uniformly on compact sets and
∫
B1
|∇w|2 ≤ R. Moreover, by compact-

ness in the trace theorem, we have
∫
∂B1

w2
≥ 1/2. We also have 1w = 0, w(0) = 0,

(
∫
∂B1

w2)1/2 ≤ 2 and
∫
∂B1

w− = 0. But then w ≥ 0, w(0) = 0 and 1w = 0 imply
w ≡ 0, a contradiction. ut

Suppose now that (3.7) fails for some fixed C1 > 1, to be determined. Then there exists
a sequence {rm} with 0 < rm < r0 so that

∫
∂B1
(v+rm)

2
≥ C1{1 +

∫
∂B1
(v−rm)

2
}. Using

Corollary 3.3, we see that∫
B1

|∇vrn |
2
− 2

∫
∂B1

v2
rn
≤ W1(r0)+ 2Drγ0 − 2

∫
B1

(f v+rn + gv
−
rn
)

≤ W1(r0)+ 2Drγ0 − 2
∫
B1

gv−rn . (3.8)

Consider now wn = vrn/(
∫
∂B1
(v+rn)

2)1/2. Note that wn(0) = 0, 1wn ≥ 0, and by

Lemma 3.6(iii), we have 1w+n ≥ 0. Also (
∫
∂B1

w2
n)

1/2
≤ (1 + 1/C1/2

1 ) ≤ 2,
∫
∂B1

w2
n ≥∫

∂B1
(w+n )

2
= 1, and |1wn| ≤ C/C

1/2
1 , where C = C(B̃1), since

∫
∂B1
(v+rn)

2
≥ C1.

Moreover, (
∫
∂B1
(w−n )

2)1/2 ≤ 1/C1/2
1 .
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But (3.8) shows that∫
B1

|∇wn|
2
≤ 2

∫
∂B1

w2
n +

W1(r0)∫
∂B1
(v+rn)

2
+

2Drγ0∫
∂B1
(v+rn)

2

+ 2cnB̃1 ·

(∫
∂B1

v−rn + a2

)/∫
∂B1

(v+rn)
2,

in view of Lemma 3.6(ii). Finally, since
∫
∂B1
(v+rn)

2
≥ C1 ≥ 1, (

∫
∂B1

w2
n)

1/2
≤ 2, and

∫
∂B1

(v−rn)
2
≤

(∫
∂B1

(v−rn)
2
)1/2

≤
1

C
1/2
1

(∫
∂B1

(v+rn)
2
)1/2

,

we see that
∫
B1
|∇wn|

2
≤ R = R(B̃1, B̃2, B̃3, n,N, r0) for all C1 ≥ 1. But if we now

choose C/C1 ≤ ε0, 1/C1/2
1 ≤ ε0, where ε0 is as in Claim 3.11, we reach a contradiction

to Claim 3.11, establishing (3.7).

We now proceed to the completion of the proof of Lemma 3.10. For 0 < r < r0 and
r̃ ∈ (r/2, r), we have W1(r)−W1(r̃) ≤ W1(r0)+M . But, by Lemma 3.1,

W1(r)−W1(r̃) =

∫ r

r̃

W ′1(s) ds

=

∫ r

r̃

2s
∫
∂B1

(∂svs)
2 ds +

∫ r

r̃

e(s) ds + γD

∫ r

r̃

sγ−1 ds

≥

∫ r

r̃

2s
∫
∂B1

(∂svs)
2 ds,

by our choice of D and the fact that

∂svs =
x · ∇v(sx + x0)

s3 −
2v(sx + x0)

s3 .

The right hand side of the inequality above is greater than r
∫ r
r̃

∫
∂B1
(∂svs)

2 dσds, which
by Cauchy–Schwarz is greater than

∫
∂B1
(vr − vr̃)

2 dσ. Hence, for 0 < r < r0 and
r̃ ∈ (r/2, r), we have ∫

∂B1

(vr − vr̃)
2
≤ W1(r0)+M. (3.9)

We next show:

Claim 3.12. There exists M̃ = M̃(n, B̃1, B̃2, B̃3, N,M, r0, η0) such that if
∫
∂B1

v2
r > M̃ ,

then ∂
∂r
(
∫
∂B1

v2
r ) > 0 for 0 < r < r0.
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To establish the claim note that in light of the remark at the beginning of the proof of
Lemma 3.10, we only need to show that

∫
∂B1

v2
r ≥ M̃ implies

−

∫
B1

[frv+r + grv
−
r ] > M +Drγ .

By Corollary 3.7,

−

∫
B1

[frv+r + (gr + η0/2)v−r ] ≥ −a3,

so it is enough to show that

η0

∫
B1

v−r > M +Drγ + a3. (3.10)

From Lemma 3.6(ii), we have (by interior estimates)(∫
1/2<|x|<3/4

(v−r + a2|x|
2)2
)1/2

≤ cn

∫
B1

(v−r + a2|x|
2),

so that ∫
B1

v−r ≥
1
cn

(∫
1/2<|x|<3/4

(v−r )
2
)1/2

− c̃n. (3.11)

But
∫

1/2<|x|<3/4(v
−
r )

2
≥ an

∫ 3/4
1/2

∫
∂B1
(v−rs)

2 dσds and∫
∂B1

(v−rs)
2
=

∫
∂B1

[v2
rs − (v

+
rs)

2] ≥
∫
∂B1

(vrs)
2
− C1 − C1

∫
∂B1

(v−rs)
2,

from (3.7). Thus, ∫
∂B1

(v−rs)
2
≥

1
1+ C1

∫
∂B1

v2
rs −

C1

C1 + 1
,

and so from (3.11) we obtain∫
B1

v−r ≥ dn

(∫ 3/4

1/2

∫
∂B1

v2
rs dσ ds

)
− C2,

with C2 having the same dependence as C1. If we now use (3.8) with r̃ = rs, we see,
using (3.9), that ∫

B1

v−r ≥ d̃n

(∫
∂B1

v2
r

)2

− bn(W1(r0)+M)
1/2
− C2,

and (3.10) holds for M̃ large enough.
We can now conclude the proof of Lemma 3.10: if S(r)/r2

≤ M̃ for 0 < r < r0, we
are done. If S(r)/r2 > M̃ for all 0 < r < r0, then by Claim 3.12 we have S(r)/r2

=∫
∂B1

v2
r < S(r0)/r

2
0 for 0 < r < r0 and we are also done. Note that if S(r1)/r2

1 > M̃ for
some 0 < r1 < r0, then S(r)/r2 > M̃ for all r1 < r < r0 by virtue of Claim 3.12. It is
now easy to show that S(r)/r2

≤ max(M̃, S(r0)/r0) for all 0 < r < r0. Thus, Lemma
3.10 follows. ut



724 Sagun Chanillo, Carlos E. Kenig

Corollary 3.13. Let M and G be as in Lemma 3.10. Then there exists G̃, with the same
dependence as G, such that, for all 0 < r < r0/2,

sup
|x|≤1
|vr(x)| +

(∫
B1

|∇vr |
2
)1/2

≤ G̃.

Proof. By Corollary 3.3, for 0 < r < r0 we have∫
B1

|∇vr |
2
≤ 2

∫
∂B1

v2
r − 2

∫
B1

(f v+r + gv
−
r )+ 2Drγ0 +W1(r0)

≤ 2
∫
∂B1

v2
r − 2

∫
B1

gv−r + 2Drγ0 +W1(r0).

Now Lemmas 3.6(ii) and 3.10 yield the gradient estimate. For the L∞ estimate, we use
Lemma 3.6(i), (ii) and the fact that for non-negative subharmonic functions, the L2 spher-
ical averages are increasing. Thus, for instance,

sup
|x|≤1
|v+r (x)| ≤ sup

|x|=1
|v+r (x)| ≤ c̃n

(∫
∂B1

|v+r |
2
)1/2

≤ cn

(∫
1/2<|x|<3/2

|v+r |
2
)1/2

≤ c̃n

(∫
∂B1

(v+2r)
2
)1/2

,

and similarly for v−r . ut

We are now ready, in analogy with [MW07], to state our classification of blow-up points.

Theorem 3.1. Assume that x0 ∈ Sv and W1(r) is defined in Corollary 3.3.

(i) If limr↓0W1(r) = −M, M < ∞, then S(r)/r2 and ‖vr‖W 2,p(B1)
, 1 < p < ∞,

remain bounded for 0 < r < r0/2. Moreover, if {rj } is a sequence tending to 0,
then after passing to a subsequence {rj ′}, the functions vrj ′ converge in C1,γ (B1),
0 ≤ γ < 1, and W 2,p(B1), 1 ≤ p < ∞, to a function v̄. The function v̄ solves the
equation

1v̄ = f0χ{v̄≥0} − g0χ{v̄<0} in Rn

with f0 = f (x0), g0 = g(x0), and is homogeneous of degree 2.
(ii) If limr↓0W1(r) = −∞, then limr↓0 S(r)/r

2
= +∞. Let rj ↓ 0 and define wj (x) =

v(rjx+ x0)/S(rj ) and Tj = S(rj )/r2
j . Then, after passing to a subsequence {rj ′}, the

wj ′ converge in C1,γ (B1) and W 2,p(B1), 0 ≤ γ < 1, 1 ≤ p < ∞, to a harmonic
function w̄ with w̄(0) = ∇w̄(0) = 0, which is non-zero and homogeneous of degree 2.

Proof. From Corollary 3.13, in case (i) it only remains to show that v̄ is homogeneous
of degree 2. But this follows from Corollary 3.2 since for any 0 < s < 1 we have
W(s) = W(s; 0; v̄) = limj ′→∞W1(srj ′ , x0, v) = −M. For case (ii), we must have

lim
r↓0

∫
B1

|∇vr |
2
+ 2

∫
B1

f v2
r + 2

∫
B1

gv−r − 2
∫
∂B1

v2
r = −∞.



The composite membrane problem 725

But then, since f > 0 and g < 0, we must have

lim
r→0

2
∫
∂B1

v2
r − 2

∫
B1

gv−r = +∞. (3.12)

By Lemma 3.6(ii),∫
B1

v−r ≤ cna2 + cn

∫
∂B1

v−r ≤ cna2 +

(∫
∂B1

(v−r )
2
)1/2

.

Since −g ≥ η0 and −g ≤ B̃1, we conclude from (3.12) that limr→0
∫
∂B1

v2
r +

∫
B1
v−r =

+∞, which in turn implies limr→0
∫
∂B1

v2
r = +∞, or limr→0 S(r)/r

2
= +∞. By Corol-

lary 3.3, dividing by T 2
j , we obtain

∫
B1

|∇wj |
2
≤
W1(r0)

T 2
j

+
2
Tj

∫
B1

[frjw
+

j + grjw
−

j ]+ 2
∫
∂B1

w2
j −

Dr
γ

j

T 2
j

. (3.13)

Also, for j large, |1wj | ≤ 1 in B1,
∫
∂B1

w2
j = 1, 1w+j ≥ 0, 1wj ≥ 0 and wj (0) = 0.

Then
∫
B1
w2
j ≤ C and from the formulae above,

∫
B1
|∇wj |

2
≤ 3 for j large. Thus, the

wj , after passing to a subsequence, converge uniformly on compacts and in C1,γ (B1)

and W 2,p(B1) to a w̄ which is harmonic in B1 with w̄(0) = ∇w̄(0) = 0. Also, by
compactness of the trace operator,

∫
∂B1

w̄2
= 1, so that w̄ is not zero. But, from (3.13),

we conclude that
∫
B1
|∇w̄|2 ≤ 2

∫
∂B1
|w̄|2. Hence by the Almgren monotonicity formula

(see for example Lemma 4.2 in [MW07]), w is homogeneous of degree 2. ut

Corollary 3.14 (No mixed asymptotics). For two sequences {rj }, {r̃j }, both tending to
zero, we cannot have

lim
j→∞

S(rj )

r2
j

= +∞, but sup
j

S(r̃j )

r̃2
j

< +∞.

Proof. If limr↓0W1(r) = −∞, then for all such sequences the limit is +∞. On the other
hand, if limr↓0W1(r) > −∞, we have boundedness near r = 0. In either case the mixed
asymptotic assumption leads to a contradiction. ut

We will next use these results to study partial regularity of the free boundary F . We start
with a 2-dimensional result, due to Shahgholian [Sha].

Theorem 3.2 ([Sha]). Let v be the solution of (3.2), when n = 2, under our assumptions.
Assume that x0 ∈ Sv is such that |{v < 0} ∩ B(x0, r)| ≥ c0r

2 for 0 < r < r(x0), with
c0 > 0. Then x0 is an isolated point of Sv.

We will provide a proof of this theorem (following [Sha]) for the reader’s convenience.
The key point is the following
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Lemma 3.15 ([Sha]). Assume that v̄ is a homogeneous (of degree 2) solution to (3.2) in
R2, with f = f0, g = g0, both constants. (As before, f0 > 0, g0 < 0, f0 + g0 < 0.)
Then Sv̄ = {0}, or, after rotation, Sv̄ = {(x1, x2) = (0, x2) : x2 ∈ R}. In this case
v̄ = (f0/2)x2

1 .

Proof. Recall that 1v̄ ≥ η0 > 0 (η0 = min(f0, g0)). Assume that Sv 6= {0}. After
rotation we can assume that, by the homogeneity of v̄, (0, 1) ∈ Sv̄ , so that λ(0, 1) ∈ Sv̄ ,
λ > 0. Assume first that v̄ ≥ 0 in a neighborhood of (0, 1). Then, in an angle, 1v̄ = f0.

Consider w = v̄ − (f0/2)x2
1 . Then, in this angle, by uniqueness for the Cauchy problem,

w ≡ 0. But this argument can be continued all around, so that v̄ = (f0/2)x2
1 . Thus, if

not, there exists a neighborhood of (0, 1) in which v̄ < 0 is non-empty. Assume, for
instance, that the negative point is in the top right quadrant. By homogeneity, the point
can be taken on the unit circle. But then all the points on the unit circle between this
point and the vertical axis are points where v̄ is negative, as otherwise we would have
a local maximum, contradicting the subharmonicity of v̄. Then, if we consider a small
half-ball in the top right quadrant, centered at (0, 1), the Hopf maximum principle yields
a contradiction to v̄(0, 1) = 0, ∇v̄(0, 1) = 0. ut

Proof of Theorem 3.2. We can assume that x0 = 0. Suppose we have xj ∈ Sv and
xj → 0. Let rj = |xj |. Assume first that limr↓0W1(r) = −∞. Then, by Theorem 3.1(ii),
v(rjx)/S(rj ), after passing to a subsequence, converges in C1,γ (B1) and in L2(∂B1) to
a harmonic polynomial w̄ homogeneous of degree 2 and non-zero. Moreover, xj/|xj | →
x̄ ∈ ∂B1, and w̄(x̄) = 0, ∇w̄(x̄) = 0. But, when n = 2, w̄ must be a rotate of
a(x2

1 − x
2
2) and hence Sw̄ = {0}, a contradiction. If limr↓0W1(r) > −∞, by Theo-

rem 3.1(i), v(rjx)/r2
j converges, after passing to a subsequence, to a v̄, a homogeneous

solution of degree 2, for f = f0, g = g0. Clearly |{v̄ < 0} ∩ B1| ≥ c0. Also, x̄ ∈ Sv̄ , so
that by Lemma 3.15, v̄ = (f0/2)x2

1 , after a rotation, which is a contradiction. ut

We will next extend Theorem 3.2 to n > 2. The argument is standard in the theory of
minimal surfaces (see Chapter 11 of [Giu84], whose notation for Hausdorff measures and
Hausdorff dimension we adopt). Similar arguments have been used by Weiss [Wei98] and
Monneau–Weiss [MW07] in the context of free boundary problems. Our result here is:

Theorem 3.3. Let v be a solution of (3.2), n ≥ 2, under our assumptions. Define S̃v =
{x0 ∈ Sv : |{v < 0} ∩ B(x0, r)| ≥ c0r

n for 0 < r < r0(x0)}. Then, for each fixed c0 > 0,
the Hausdorff dimension of S̃v is at most n− 2.

Proof. Fix k > n−2. We need to show thatHk(S̃v) = 0. Assume not, so thatHk(S̃v) > 0.
Consider the sets

S̃jv = {x0 ∈ Sv : |{v ≤ 0} ∩ B(x0, r)| ≥ c0r
n for 0 < r < 1/j}.

Then S̃v =
⋃
∞

j=j0
S̃
j
v , where 1/j0 < r0. Hence Hk(S̃

j̄
v ) > 0 for some j̄ ≥ j0. Thus by

Proposition 11.3 in [Giu84], for Hk-almost all x0 ∈ S̃
j̄
v , we have

lim sup
r→0

H∞k (S̃
j̄
v ∩ B(x0, r))

ωkrk
≥ 2−k. (3.14)
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Fix such an x0, which we assume, without loss of generality, to be 0. Choose a sequence
rn→ 0 such that for some ε > 0,

H∞k (S̃
j̄
v ∩ Brn)

ωkrkn
≥ 2−k − ε.

Consider vn(x) = v(rnx)/S(rn) and let v̄(x) be a blow-up limit of a subsequence of vn, in
the sense of Theorem 3.1. Fix a compact setK in B1 and U open⊂ B1 with U ⊃ K∩ S̃ j̄v̄ .

Assume that xn ∈ S̃
j̄
vn , xn ∈ K \ U and after passing to a subsequence, assume that

xn→ x̄ ∈ K \U. Then vn(xn)→ v̄(x̄) and ∇vn(xn)→ ∇v̄(x̄), so that x̄ ∈ Sv̄. Also, fix
0 < r < 1/j̄ . Then

|{v̄ ≤ 0} ∩ B(x̄, r)| = |{v̄ < 0} ∩ B(x̄, r)| = lim
n→∞
|{vn < 0} ∩ B(xn, r)| ≥ c0r

n,

and so x̄ ∈ S̃ j̄v̄ , but x̄ ∈ K \ U and K ∩ S j̄v̄ ⊂ U , which is a contradiction. Thus, we have
shown that there exists n0 so that, for n > n0,

U ⊃ K ∩ S̃ j̄vn . (3.15)

Then the proof of Lemma 11.5 in [Giu84] shows that for all K b B1,

H∞k (K ∩ S̃
j̄
v̄ ) ≥ lim sup

n→∞
H∞k (K ∩ S̃

j̄
vn
). (3.16)

We next claim that
{x/rn : x ∈ S̃jv } ⊂ S̃

j̃
vrn
. (3.17)

In fact, clearly vn(x/rn) = 0 and ∇vn(x/rn) = 0. Consider now {y : vn(y) < 0} ∩
B(x/rn, r), 0 < r < 1/j̄ . This equals {y : vn(y) < 0} ∩ {y : |y − x/rn| < r}. By the
transformation y = z/rn, this set equals

{z : v(z) < 0} ∩
{
z :
∣∣∣∣ zrn − x

rn

∣∣∣∣ < r

}
= {z : v(z) < 0} ∩ {z : |z− x| < rrn}.

Also, if 0 < r < 1/j̄ then rrn < 1/j̄ for n large. The Lebesgue measure of the set of
y’s equals r−nn times the Lebesgue measure of the set of z’s, which is then greater than

r−nn · c0(rrn)
n
= c0r

n, so that x/rn ∈ S̃
j̄
vn . But then

H∞k (B1 ∩ S̃
j̄
vn
) ≥

H∞k (Brn ∩ S̃
j̄
v )

ωkrkn
≥ 2−k − ε,

by our choice of rn. Hence, using (3.16), we see that

H∞k (B1 ∩ S̃
j̄
v̄ ) > 0. (3.18)

We now consider our classification of blow-ups. If limr↓0W1(r) = −∞, then,
by (ii), v̄ is a non-zero, harmonic polynomial homogeneous of degree 2. But then, as
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is well-known, Hn−2(Sv̄) < ∞, Sv̄ ⊃ S̃
j̄
v̄ , which contradicts (3.18) since k > n − 2.

If limr↓0W1(r) > −∞, then in view of Theorem 3.1(i) and Lemma 3.8, after pass-
ing to a further subsequence, we can assume that r2

n/S(rn) → α ∈ (0, ∞). Hence
αv̄ = v̄1, where v̄1 is a solution to (3.2) homogeneous of degree 2 with f = f0, g = g0
both constants. We can now do the dimension reduction. From (3.18), we know that
H∞k (B1 ∩ S̃

j̄
v̄ ) > 0. Using Lemmas 11.2 and 11.3 of [Giu84], we can find x̄ ∈ S̃ j̄v̄ \ {0}

such that

lim
r→0

H∞k (S̃
j̄
v̄ ∩ B(x̄, r))

ωkrk
≥ 2−k.

By homogeneity of v̄1, we can assume that x̄ ∈ ∂B1. We can pick a sequence rn → 0,
and consider a blow-up limit v̄1,0 at x̄ with respect to rn. By the homogeneity of v̄1, it
is easy to see that v̄1,0 is constant in the x̄ direction. After rotation, we can assume this

direction to be the xn direction. But it is easy to see that (x1, . . . , xn−1, xn) ∈ S̃
j̄

v̄1,0|Rn−1

and thatHk−1(S̃
j̄

v̄1,0|Rn−1) > 0. Proceeding in this way n−2 times, we find a contradiction
to Theorem 3.2, which concludes the proof. ut

We are now ready to establish partial C1,1 bounds.

Definition 3.16. Let f be a C1,γ function, 0 ≤ γ < 1, defined in a neighborhood of a
point x0. We say that f satisfies C1,1 bounds at x0 if

lim
r→0

sup
|x−x0|≤r

|f (x)− (x − x0)∇f (x0)− f (x0)|

r2 < +∞.

We call the above limit the C1,1 norm of f at x0.

Our next task is to show that our solutions v satisfy C1,1 bounds at all x0 ∈ F , except for
a set of Hausdorff dimension at most n− 2. We start out with some preliminary results.

Lemma 3.17. There exists a constant cn such that for all harmonic polynomials p ho-
mogeneous of degree 2 with p 6≡ 0, we have

|{p < 0} ∩ B1| ≥ cn.

Proof. We can assume
∫
B1
p2
= 1. If the conclusion fails, we can find a sequence pj

such that
∫
B1
p2
j = 1 and pj is a harmonic polynomial homogeneous of degree 2 with

|{pj < 0} ∩ B1| → 0 as j → 0. After passing to a subsequence, pj → p0 where p0 is
a harmonic polynomial homogeneous of degree 2,

∫
B1
p0 = 1 and |{p0 < 0} ∩ B1| = 0.

By homogeneity, p0 ≥ 0, but p0(0) = 0, so that p0 ≡ 0, a contradiction. ut

Lemma 3.18. Let cn be as in Lemma 3.17. Assume that v is a solution and x0 ∈ Sv.

Assume that sup|x−x0|<rj
|v(x)|/r2

j →∞ for some sequence rj → 0. Then

|{v < 0} ∩ B(x0, r)| ≥
cn

2
rn for 0 < r < r0(x0).
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Proof. If not, there exists r̃j → 0 such that

|{v < 0} ∩ B(x0, r̃j )| <
cn

2
r̃nj .

But, by the proof of Corollary 3.13, S(2r̃j )/(2r̃j )2 → +∞. By Corollary 3.14, S(r̃j )/r̃2
j

→+∞. Then, by Theorem 3.1(ii), v(r̃jx+x0)/S(r̃j ) converges, after passing to a subse-
quence, to a w̄ which is a non-zero harmonic polynomial homogeneous of degree 2. But
then |{w̄ < 0} ∩ B1| ≤ cn/2, which contradicts Lemma 3.17. ut

Theorem 3.4 (Pointwise C1,1 bounds on Sv). Let v be a solution. Then the Hausdorff
dimension of the set Bv = {x0 ∈ Sv : v does not have pointwise C1,1 bounds at x0} is at
most n− 2.

Proof. Combine Lemma 3.18 with Theorem 3.3. ut

Remark 3.19. If x0 ∈ F and ∇v(x0) 6≡ 0, then by [CGK00], F is real-analytic in a
neighborhood of x0 and by boundary elliptic regularity we obtain C1,1 bounds at x0.
Thus, the set of points in F for which v does have pointwise C1,1 bounds has Hausdorff
dimension at most n− 2.

Remark 3.20. The results in Theorems 3.2–3.4 and in Remark 3.19 are sharp. We show
this for the case f = f0, g = g0 constants. We first make some preliminary comments in
the case n = 2. In this case, Blank ([Bla04]) found all solutions homogeneous of degree 2
for which {v < 0} 6= ∅. The calculation in Appendix 2 shows that, for these solutions,
W(1) > −A, where A depends only on f0, g0. Shahgholian ([Sha]) observed that there
are other solutions homogeneous of degree 2, which are non-negative. In fact, any such
solution v̄ satisfies 1v̄ = f0, v̄ ≥ 0 in R2. Let w = v̄ − (f0/4)(x2

1 + x
2
2). This is a

harmonic polynomial homogeneous of degree 2, so that after rotation w = a(x2
1 − x

2
2) or

v̄ =

(
a +

f0

4

)
x2

1 +

(
f0

4
− a

)
x2

2 .

Since v̄ ≥ 0, we must have −f0/4 ≤ a ≤ f0/4. For those solutions we also find W(1) >
−A, A depending only on f0, g0. Combining these comments with Theorem 3.1, we see
that for n = 2 there exists A = A(f0, g0) such that if for v we have limr↓0W1(r) < −A,
then limr↓0W1(r) = −∞ and limr↓0 S(r)/r

2
= +∞. One can then use the argument in

[AW06] to see that by the Andersson–Weiss construction we can find solutions (taking
M large in [AW06]) so that W1(1) < −A, and hence solutions which do not have C1,1

bounds in any neighborhood of 0. In light of Lemma 3.17, this shows the sharpness of
Theorem 3.2 and of Theorem 3.4 when n = 2. To create higher-dimensional examples,
one just adds n − 2 dummy variables. It remains a challenging problem to see if such
pathology can hold for solutions of (3.2).

We now turn to the issue of uniform pointwise C1,1 bounds.
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Theorem 3.5. Let S(1)v = Sv/S
(2)
v , where

S(2),jv = {x0 ∈ Sv : |{v < 0} ∩ B(x, r)| ≥ rn/j, 0 < r < r0,j (x0)},

S(2)v =

∞⋃
j=1

S(2),jv .

By Theorem 3.3 the Hausdorff dimension of S(2)v is at most n − 2. Then for x0 ∈ S
(1)
v we

have uniform C1,1 estimates, i.e. there exists C = C(B̃1, B̃2, B̃3, n, η0, r0, N) > 0 such
that for all x0 ∈ S

(1)
v ,

sup
|x−x0|≤r
0<r<r0/2

|v(x)|

r2 ≤ C.

Proof. In light of Theorem 3.1, Lemma 3.17 and Corollary 3.13 it suffices to show that for
such x0, limr↓0W1(r) > −A, where A has the right dependence. Let v̄ be a blow-up limit
at such an x0. Clearly, v̄ ≥ 0. Thus, it suffices to show that, for such v̄, W(1, v̄) > −A.
But 1v̄ = f0 and ∫

B1

1v̄ = ωnf0 =

∫
∂B1

∂v̄

∂ν
= 2

∫
∂B1

v̄,

since v̄ is homogeneous of degree 2. Thus,
∫
∂B1

v̄ = ωnf0/2. Since v̄ is non-negative
and subharmonic,

∫
B1
v̄ ≤ cnf0ωn/2. The rest of the proof follows easily from interior

estimates and homogeneity. ut

Remark 3.21. Similarly, ifK b {x0 ∈ F : ∇v(x0) 6= 0}we also have uniform pointwise
C1,1 bounds on K . (See Remark 3.19.)

Our final result is a partial regularity result for F .

Theorem 3.6. Let v be a solution of (3.2) satisfying our assumptions. Then F = F0 ∪

S
(1)
v ∪ S

(2)
v , where S(2)v has Hausdorff dimension at most n − 2, S(1)v is (n − 1)-regular,

i.e. Hn−1(S
(1)
v ) ≤ C = C(B̃1, B̃2, B̃3, N, η0, r0, n), F0 is relatively open, and for each

x0 ∈ F there exists a neighborhoodUx0 such thatF∩Ux0 is a real-analytic hypersurface.

Proof. F0 = {x0 ∈ F : ∇v(x0) 6= 0} and S(1)v , S
(2)
v are defined in Theorem 3.5. From

Theorem 3.5 we know that the Hausdorff dimension of S(2)v is at most n−2, so it remains
to show that S(1)v is (n− 1)-regular (in light of Theorem 8 in [CGK00], which shows the
desired property of F0). In order to show this, we make some preliminary claims.

Claim 3.22. If x0 ∈ S
(1)
v (without loss of generality, we take x0 = 0) then |∇v(x)| ≤ Cr

for 0 < r < r0/4 and x ∈ Br , with C as in the statement of Theorem 3.6.

In order to establish the claim, note that |v(x)| ≤ C|x|2 for x ∈ B2r , by Theorem 3.5.
Next, we use Lemma 3.6(ii), (iii) to obtain∫

Br

|∇v+|2 ≤ cnCr
n+2 and

∫
Br

|∇v−|2 ≤ cn{C + a2}r
n+2,
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so that
∫
Br
|∇v|2 ≤ cn(C + a2)r

n+2. Next, consider vr on B1. We have
∫
B1
|vr |

2
≤ C,∫

B1
|∇vr |

2
≤ C, and |1vr | ≤ C. From this it is easy to see that |∇vr | ≤ C for |x| ≤ 1/2,

which is our claim. ut

The next step is:

Claim 3.23. Let x0 ∈ Sv , let ei be a fixed coordinate direction, and set vei = ei · ∇v.

Then, for h ≥ 0 small, ∫
B(x0,r0/2)∩{x:|∇v|≤h}

|∇vei |
2
≤ Ch.

To establish Claim 3.23, we first introduce a truncation v̄ei of vei ∈ W
1,2(U) ∩ Cγ (U),

where

v̄ei =


vei if −h < vei < −δ or δ < vei < h,

0 if |vei | ≤ δ,
h if |vei | ≥ h.

Let ψ be a standard mollifier and for 0 < ε � δ, consider the mollifier vei ∗ ψε . We will
apply Green’s theorem to∫

Br

∇v̄ei · ∇(vei ∗ ψε) for r0/2 < r < r0,

where we have assumed that x0 = 0. Since |F | = 0 (see Theorem 1.1(c)), this integral
equals ∫

Br∩{v>0}
∇v̄ei · ∇(vei ∗ ψε)+

∫
Br∩{v<0}

∇v̄ei · ∇(vei ∗ ψε).

On Sv, ∇v = 0, so that v̄ei will vanish on a neighborhood of Sv . In fact, if |vei (x)| ≥ δ
and z0 ∈ Sv , then δ ≤ |vei (x)−vei (z0)| ≤ C|x−z0|

γ . InF \nbd(Sv),we have analyticity
of F and a well-defined normal, so that we can integrate by parts in the above integrals,
using Green’s theorem, to obtain for the above sum the expression

−

∫
Br∩{v>0}

v̄ei1(vei ∗ ψε)−

∫
Br∩{v<0}

v̄ei1(vei ∗ ψε)+

∫
∂Br

v̄ei
∂

∂ν
(vei ∗ ψε)

+

∫
Br∩∂{v>0}

v̄ei
∂

∂ν
(vei ∗ ψε)+

∫
Br∩∂{v<0}

v̄ei
∂

∂ν
(vei ∗ ψε).

The last two integrals cancel each other since the normals point in opposite directions, in
pieces of a real-analytic surface. Thus, we have obtained∫

Br

∇v̄ei · ∇(vei ∗ ψε) = −

∫
Br∩{v>0}

v̄ei1(vei ∗ ψε)

−

∫
Br∩{v<0}

v̄ei1(vei ∗ ψε)+

∫
∂Br

v̄ei
∂

∂ν
(vei ∗ ψε).
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We next average this identity over r ∈ (r0/2, 3r0/4). We first estimate the averaged last
term. Its absolute value is bounded by

cnh

∫
r0/2≤|x|≤3r0/4

|∇vei ∗ ψε | ≤ cnCh.

We next consider the absolute value of the averaged left hand side as ε → 0. It converges
to ∣∣∣∣ 4

r0

∫ 3r0/4

r0/2

∫
Br

∇v̄ei · ∇vei

∣∣∣∣ −−→
δ→0

∣∣∣∣ 4
r0

∫ 3r0/4

r0/2

∫
Br

∇ṽei · ∇vei

∣∣∣∣,
where

ṽei =

{
vei if |vei | ≤ h,
h otherwise.

This last expression is bounded from below by cn
∫
Br0/2
|∇ṽei |

2.
The absolute value of the sum of the averaged first two terms on the right hand side

converges (upon letting first ε → 0 and then δ→ 0) to∣∣∣∣ 4
r0

∫ 3r0/4

r0/2

∫
Br∩{v>0}

ṽei1vei +
4
r0

∫ 3r0/4

r0/2

∫
Br∩{v<0}

ṽei1vei

∣∣∣∣.
But on {v > 0}, 1vei = ∂eif, and on {v < 0}, 1vei = −∂eig. Hence, the above sum is
bounded by

h

(∫
Br0∩{v>0}

|1vei | +

∫
Br0∩{v<0}

|1vei |

)
≤ Ch.

Finally, gathering terms and using the fact that∫
Br0/2

|∇ṽei |
2
=

∫
Br0/2∩{|vei |≤h}

|∇vei |
2,

we obtain Claim 3.23.

We next complete the proof of the bound Hn−1(S
(1)
v ) ≤ C. Fix z0 ∈ S

(1)
v . It suffices

to prove our bound for S(1)v ∩ B(z0, r0/4). Consider the cover of S(1)v ∩ B(z0, r0/4) by
the balls B(x0, r) with x0 in S(1)v ∩ B(z0, r0/4) and 0 < r < r0/100. It has a finite
subcover, and by the Vitali covering lemma, we can find r and Ñ disjoint balls B(xi, r)
with xi ∈ S

(1)
v ∩B(z0, r0/4) so that S(1)v ∩B(z0, r0/4) ⊂

⋃Ñ
i=1 B(xi, 5r). The disjointness

of {B(xi, r)} gives
∑Ñ
i=1 χB(xi ,5r)(x) ≤ cn. By Claim 3.22, |∇v(x)| ≤ Cr in B(xi, 5r).

By (3.2), |1v| ≥ C. We then have

cnÑcr
n
≤

∑
i

∫
B(xi ,5r)

(1v)2 ≤

∫
{|∇v(x)|≤cr}

(1v)2
Ñ∑
i=1

χB(xi ,5r)

≤ cn

∫
B(z0,r0/2)∩{|∇v(x)|≤cr}

(1v)2 ≤ Cr,

by Claim 3.23. Thus, Ñrn−1
≤ C, which gives our Hausdorff measure bound.
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To conclude this paper we give a simple result in the direction of showing that better
regularity results can hold for solutions of the composite problem than for solutions of
(3.2) (see the end of Remark 3.20). We will prove that geometric assumptions on � can
ensure that for all solutions of the composite problem, Su = ∅ and thus F is real-analytic
and u is C1,1.

Proposition 3.7. Let � ⊂ R2 have two axes of symmetry. Then for all solutions u of
the composite problem (1.1), (1.2) we have Su = ∅ and hence F is real-analytic and
u ∈ C1,1.

Proof. We recall (see [CGI+00]) that we say that � has an axis of symmetry L (which
we take to be {x1 = 0}) if whenever (x1, x2) belongs to �, so does (−x1, x2) and the
set {x1 : (x1, x2) ∈ �} is either ∅ or an interval (−c, c) for each x2. Let us give the
proof, for simplicity, in the case when the two axes L1, L2 are the x1- and x2-axis. It is
shown in [CGI+00, Theorem 4] that any solution u is symmetric with respect to x1 (and
x2) and u is strictly decreasing in x1, for x1 ≥ 0 (in x2, for x2 ≥ 0). (The strict decrease
follows from α < 3, see [CGI+00, bottom of p. 326]). Because of the strict decrease,
∂
∂x1
u(x1, x2) 6= 0 for x1 6= 0 and ∂

∂x2
u(x1, x2) 6= 0 for x2 6= 0. Thus, the only possible

point in Su is (0, 0). But, by the increase and decrease described before, u(0, 0) = sup� u.
Recall that D = {0 ≤ u ≤ c} and F = {u = c}. If c = sup� u then D = �, which
contradicts |D| = A < |�|. Thus, (0, 0) /∈ F and the proposition follows. ut

Appendix I

The results (A1.9), (A1.10) below can be found in [CP]. They are reproduced here for the
reader’s benefit.

We have the equation
−1ut + αχDtut = λ(t)ut (A1.1)

and the corresponding one for u0 = u, given by

−1u+ αχDu = λu (A1.2)

where λ(0) = λ. We also note that by our definition of Dt ,

χDt (x) = χD(φ−t (x)). (A1.3)

We set

V (x) =
dφt (x)

dt

∣∣∣∣
t=0

and assume that V ∈ C2(�) and that V is supported in a compact set S.
Multiplying (A1.1) by u, (A1.2) by ut and subtracting we get

ut1u− u1ut + α(χD(φ−t (x))− χD(x))uut = (λ(t)− λ)uut . (A1.4)
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We integrate (A1.4) over �. Since u = ut = 0 on ∂�, we get∫
�

[ut1u− u1ut ] = 0.

Thus the integral over � of (A1.4) becomes∫
�

α(χD(φ−t (x))− χD(x))uut = (λ(t)− λ)

∫
�

uut . (A1.5)

Now from (A1.1) we notice that if we normalize our functions: ‖ut‖2 = 1, as we certainly
can, we always have ‖ut‖2,2 ≤ C. Now,∣∣∣∣∫

�

(uut − u
2)

∣∣∣∣ ≤ ∫
�

u|u− ut |.

In a tubular neighborhood U of ∂� we have∫
U
u|u− ut | ≤ C

(∫
U
u2
)1/2

≤ ε.

Outside U by the uniformW 2,2 bounds of ut we have strong convergence of ut to u in L2,
and

lim
t→0

∫
�

uut =

∫
�

u2
= 1. (A1.6)

Now we change variables in the left side of (A1.5). We set φ−t (x) = y. Thus, x =
φ−1
−t (y), and the left side of (A1.5) becomes

α

∫
�

χD(x)(ht (φ
−1
−t (x))Jt (x)− ht (x)) dx.

Here we have set ht = uut and Jt (x) is the Jacobian of the transformation y = φ−1
−t (x).

Since φ0 is the identity, it is well-known that

Jt (x) = 1+ t divV +O(t2). (A1.7)

See for example Lemma 1 (p. 69) in [Arn97]; in fact (A1.7) is an elementary consequence
of the fact that for an n × n matrix B, det(I − tB)−1

= 1 + t trace(B) + O(t2). Since
ht ∈ C

1,β , we see that

ht (φ
−1
−t (x))Jt (x)− ht (x) = t ((V · ∇)ht (x)+ ht (x) divV )+ o(t).

Thus on division by t and letting t → 0 we see easily that

lim
t→0

ht (φ
−1
−t (x))Jt (x)− ht (x)

t
= (V · ∇)(u2)+ u2 divV.
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The term on the right above is div(V u2). Thus dividing (A1.5) by t and using (A1.6) we
easily get

λ′(0) = α
∫
D

div(V u2) = α

∫
D∩S

div(V u2).

By the hypothesis that the part of the boundary of ∂D that lies inside the support of V
is regular enough to have a bona fide unit outer normal ν, and Green’s theorem, the last
integral above yields

λ′(0) = α
∫
S∩∂D

〈V, ν〉u2. (A1.8)

Now consider

|Dt | − |D| =

∫
�

(χD(φ−t (x))− χD(x)) dx.

Change variables in the integral above as before to get∫
D

(Jt (x)− 1) dx.

By (A1.7) again we see the integral above is

t

∫
D

divV dx +O(t2).

Thus we easily get

d

dt
|Dt |

∣∣∣∣
t=0
=

∫
D

divV dx =
∫
S∩∂D

〈V, ν〉 dσ. (A1.9)

If u = c along ∂D, combining (A1.8) and (A1.9) we get

λ′(0) = αc2 d

dt
|Dt |

∣∣∣∣
t=0
= αc2

∫
∂D

〈V, ν〉 dσ. (A1.10)

Appendix II

We now prove the assertions made in Remark 3.20. We use Blank’s [Bla04] notation. We
have

f1(θ) = C+ sin(2θ +D+)+ γ, f1 > 0,

and also
f2(θ) = C− sin(2θ +D−)+ µ, f2 < 0.

Now we focus on the interval [0, 2π/3]. First for θ0 ∈ (0, 2π/3), we know f1(θ0) =

f2(θ0) = 0 and f ′1(θ0) = f
′

2(θ0) = 0. We get

C+ sin(2θ0 +D+)+ γ = C− sin(2θ0 +D−)+ µ = 0
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and
C+ cos(2θ0 +D+) = C− cos(2θ0 +D−).

After squaring and adding both equations, this leads to

C2
+ − C

2
− = γ

2
− µ2. (A2.1)

Next because f1(0) = f1(θ0) = 0, we get

C+ sin(D+) = −γ, D+ = arcsin(−γ /C+) (A2.2)

and so
θ0 = π/2+ arcsin(γ /C+). (A2.3)

Since f2(θ0) = 0, inserting the value of θ0 from (A2.3) in the expression for f2, we see
that

D− = arcsin(µ/C−)− 2 arcsin(γ /C+). (A2.4)

Lastly, f2(2π/3) = 0, so
C− sin(4π/3+D−) = −µ

and we get
C− = µ/sin(π/3+D−). (A2.5)

Now assume |C+| > 106(|γ | + |µ|). Then |C−| > 106(|γ | + |µ|) by (A2.1). Thus,
|D−| ≤ π/20 from (A2.4). From (A2.5) we get

|C−| ≤ 2|µ|,

and we get a bound on |C+| from (A2.1) again.
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