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Abstract. We consider the operator −d2/dr2
− V in L2(R+) with Dirichlet boundary condition

at the origin. For the moments of its negative eigenvalues we prove the bound

tr
(
−
d2

dr2 − V

)γ
−

≤ Cγ,α

∫
R+

(
V (r)−

1
4r2

)γ+(1+α)/2
+

rα dr

for any α ∈ [0, 1) and γ ≥ (1 − α)/2. This includes a Lieb–Thirring inequality in the critical
endpoint case.

1. Introduction

In this paper we consider inequalities for moments of negative eigenvalues of one-dimen-
sional Schrödinger operators. If V is a real-valued function on R which vanishes at infinity
(at least in some averaged sense) then the negative spectrum of −d2/dx2

− V consists
of discrete eigenvalues of finite multiplicities. The celebrated Lieb–Thirring inequality
states that

trL2(R)

(
−
d2

dx2 − V

)γ
−

≤ Lγ

∫
R
V (x)

γ+1/2
+ dx (1.1)

holds with a constant Lγ independent of V if and only if γ ≥ 1/2. Here and in what
follows, v± := max{±v, 0} denotes the positive or negative part of v. In the non-critical
case γ > 1/2, bound (1.1) was proved in [11], and the sharp values of the constants Lγ
for γ ≥ 3/2 were found in [11] and [3]. The inequality in the endpoint case γ = 1/2
was established much later by Weidl [13]. In this case, Hundertmark–Lieb–Thomas [10]
determined the sharp value of the constant L1/2. The sharp constants for 1/2 < γ < 3/2
are still unknown.

Egorov–Kondrat’ev [6] studied weighted versions of inequality (1.1). For any α > 0
they show that

trL2(R)

(
−
d2

dx2 − V

)γ
−

≤ CEKγ,α

∫
R
V (x)

γ+(1+α)/2
+ |x|α dx (1.2)
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holds if and only if γ > (1+ α)/2. Note that the endpoint case is excluded in contrast to
the case α = 0 and that the potential V can only appear with a power strictly larger than
one. Of course, the location of the origin in (1.2) is arbitrary and can be optimized over.

Let us turn to half-line Schrödinger operators −d2/dr2
− V in L2(R+) where R+ =

(0,∞). Throughout we impose a Dirichlet boundary condition at the origin. By the varia-
tional principle, inequalities (1.1) and (1.2) remain valid for these operators with the same
constants, i.e.,

trL2(R+)

(
−
d2

dr2 − V

)γ
−

≤ CEKγ,α

∫
R+
V (r)

γ+(1+α)/2
+ rα dr. (1.3)

For α > 0 it was shown in [6] that (1.3) holds even for smaller values of γ than (1.2),
namely for all γ > max{(1 − α)/2, 0}. However, the validity in the endpoint case γ =
(1− α)/2 if 0 ≤ α < 1 was left open.

In this paper we shall prove a substantially stronger inequality in this endpoint case.
Our main result, Theorem 2.1, says that

trL2(R+)

(
−
d2

dr2 −
1

4r2 − V

)γ
−

≤ Cγ,α

∫
R+
V (r)

γ+(1+α)/2
+ rαdr (1.4)

for any 0 ≤ α < 1 and γ ≥ (1− α)/2. Since the eigenvalues of −d2/dr2
− V decrease

if we subtract 1/4r2, inequality (1.4) extends (1.3) to the endpoint case. Conversely, it is
not difficult to see that both (1.3) and (1.4) fail if γ < (1 − α)/2 and 0 ≤ α < 1 (see
Remark 2.5).

The main advantage of (1.4) over (1.3) lies, however, in the Hardy term 1/4r2. First
of all, recall the (sharp) Hardy inequality

1
4

∫
R+

|u|2

r2 dr ≤

∫
R+
|u′|2 dr, u ∈ C∞0 (R+). (1.5)

This implies that the operator−d2/dr2
−1/4r2 is non-negative and that the constant 1/4

is maximal with respect to this property. Now it is illuminating to rewrite (1.4) as

tr
(
−
d2

dr2 − V

)γ
−

≤ Cγ,α

∫
R+

(
V (r)−

1
4r2

)γ+(1+α)/2
+

rα dr. (1.6)

This is an inequality of the same form as (1.3) but with a different right hand side. In-
equality (1.6) shows that only the part of the potential which is larger than the Hardy
weight is necessary to control negative eigenvalues. In particular, it follows from (1.5)
that−d2/dr2

−V has no negative eigenvalues if V (r) ≤ 1/4r2 for all r . This is reflected
in (1.6) but not in (1.3).

In the case α = 0 the right hand side of (1.3) coincides, up to a constant, with the
semi-classical phase-space integral

1
2π

∫∫
R×R+

(k2
− V (r))

γ
− dk dr.
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However, this semi-classical approximation does not take the repulsive Dirichlet condi-
tion at the origin into account. This is achieved by (1.6), which decreases the relevant
phase-space integral considerably. Inequality (1.6) can indeed be viewed as an infinite
phase-space renormalization.

Note also that the operator −d2/dr2
− 1/4r2 appears as the radial part of the two-

dimensional Laplacian or the critical d-dimensional operator−1−(d−2)2/4|x|2 after the
natural change of measure. Hence (1.4) estimates moments of eigenvalues of the operator
−1− (d − 2)2/4|x|2 − V (|x|) in L2(Rd) corresponding to angular momentum zero.

Our interest in inequality (1.4) originates partially from our previous work [7], where
we proved a similar inequality in the case α ≥ 1 and γ > 0. This was the main tool
to extend the multi-dimensional version of (1.1) in the same way as (1.4) extends (1.3).
Note, however, that in these considerations the endpoint case γ = 0 is naturally excluded.
We also mention the recent alternative proof [9] of the main result of [7].

The proof of (1.4) in the endpoint case γ = (1− α)/2 encounters several difficulties.
The proof in [10] of (1.1) for γ = 1/2 relies heavily on the translation invariance of the
whole-line operator. The earlier proof of [13] does so too, but to a lesser extent, and its
generalization to our non-translation invariant setting requires additional ideas both on a
conceptual and on a technical level. One crucial ingredient in our proof is the combina-
tion of Neumann bracketing with the ground-state representation. Despite this (certainly
non-optimal) approach we obtain reasonable values for the constant Cγ,α in (1.4). In the
important special case α = 0, γ = 1/2 we work out upper and lower bounds which differ
by less than a factor 2.25.

In the final section of this paper we show how our main result can be applied to
yield a Lieb–Thirring inequality for the operator associated with the generalized Hardy
inequality

(σ − 1)2

4

∫
R+

|u|2

r2−σ dr ≤

∫
R+
rσ |u′(r)|2 dr (1.7)

for suitable u. We mention in closing that inequality (1.4) was useful when proving Lieb–
Thirring inequalities on regular metric trees [8].

2. Main result

Let V : R+ → R with V− ∈ L1,loc(R+) and V+ ∈ Lp(R+, rαdr) for some α ≥ 0 and
some 1 ≤ p <∞. The Schrödinger operator−d2/dr2

−1/4r2
−V in L2(R+) is defined

via the closure of the quadratic form∫
R+

(
|u′|2 −

|u|2

4r2 − V |u|
2
)
dr

on C∞0 (R+). (The fact that this form is bounded from below will follow as soon as we
have proved (2.1) for, say, all bounded V with compact support.) Our main result is
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Theorem 2.1. Let γ > 0 and α ∈ [0, 1) such that γ + (1+ α)/2 ≥ 1. Then

tr
(
−
d2

dr2 −
1

4r2 − V

)γ
−

≤ Cγ,α

∫
R+
V (r)

γ+(1+α)/2
+ rα dr (2.1)

with a constant Cγ,α independent of V . In the special case α = 0, γ = 1/2 the sharp
constant in this inequality satisfies 0.533 ≤ C1/2,0 ≤ 1.185.

Our result can also be stated in terms of the operator −d2/dr2
− V , defined similarly

with a Dirichlet boundary condition at the origin. Then Theorem 2.1 implies (see [7] for
a careful argument)

Corollary 2.2. Let γ > 0 and α ∈ [0, 1) such that γ + (1+ α)/2 ≥ 1. Then

tr
(
−
d2

dr2 − V

)γ
−

≤ Cγ,α

∫
R+

(
V (r)−

1
4r2

)γ+(1+α)/2
+

rα dr

with the constant Cγ,α from (2.1).

Remark 2.3. The most important estimate in Theorem 2.1 is that for the critical case
γ = (1 − α)/2 when V appears with the exponent 1 on the right hand side of (2.1). It
shows that eigenvalue moments of any order 0 < γ ≤ 1/2 can be estimated linearly
in V . (For scaling reasons, however, the integral of V now has to include a weight.) This
is in sharp contrast to the whole-line case (1.1) and (1.2), where only moments of order
γ = 1/2 can be estimated linearly, and where moreover the inclusion of a weight does
not allow for smaller values of γ .

Remark 2.4. The operator H0 := −d2/dr2
− 1/4r2 has a virtual level, in the sense that

H0 − V has a negative eigenvalue for any non-negative V 6≡ 0. This shows immediately
that it is impossible to estimate the number of negative eigenvalues of H0−V in terms of
a (weighted) Lp-norm of V . In particular, the critical case γ = 0 is excluded in (2.1) for
α ≥ 1. In order to estimate eigenvalue moments of arbitrarily small order γ > 0 in terms
of a (weighted) Lp-norm of V it is necessary that the lowest eigenvalue λ(β) ofH0−βV

disappears faster than any polynomial as β → 0+. Indeed, λ(β) is exponentially small in
our case (see [7] for details).

Remark 2.5. The condition γ ≥ (1 − α)/2 in Theorem 2.1 is sharp. Indeed, if γ <

(1 − α)/2 then V appears with a sublinear power on the right hand side of (2.1). Hence
if we choose a sequence of potentials Vn := nχ(R,R+n−1) with R > 0 arbitrary, then
the right hand side of (2.1) tends to zero as n → ∞. On the other hand, the sequence
−d2/dr2

− 1/4r2
− Vn converges in norm resolvent sense to the operator −d2/dr2

−

1/4r2
− δR , which has a negative eigenvalue. (This can be proved along the lines of [4,

Theorem 3.2.3].) Hence the limit of the left hand side of (2.1) is positive.

Remark 2.6. The bounds on C1/2,0 are based on numerical evaluation of Bessel func-
tions. Note that the upper bound differs from the lower bound by less than a factor 2.25.
It is remarkable that C1/2,0 is strictly larger than 1/2, which is the sharp constant in (1.1)
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for d = 1 and γ = 1/2. This means that the (repulsive) Dirichlet boundary condition
at the origin cannot completely compensate the (attractive) potential 1/4r2. In particular,
we prove that a potential well V situated near a finite R may have a lower ground-state
energy than the same well translated to R = ∞.

3. Proof of the Lieb–Thirring inequality

This section contains the proof of our main result, Theorem 2.1. It will be given in Sub-
section 3.2 after stating two basic ingredients in Subsection 3.1.

3.1. Operators on a finite interval

Throughout this section we fix a constant b > 0. We define the operatorHb inL2(b, b+1)
via the quadratic form

hb[u] :=
∫ b+1

b

∣∣∣∣ ddr
(
u(r)
√
r

)∣∣∣∣2r dr, u ∈ H 1(b, b + 1).

Note that this can also be written as

hb[u] =
∫ b+1

b

(
|u′|2 −

|u|2

4r2

)
dr −

|u(b + 1)|2

2(b + 1)
+
|u(b)|2

2b
. (3.1)

It follows that Hb acts as −d2/dr2
− 1/4r2 on functions satisfying the natural boundary

conditions

u′(b)−
u(b)

2b
= u′(b + 1)−

u(b + 1)
2(b + 1)

= 0. (3.2)

As an aside we remark that Hb coincides with the two-dimensional Neumann Laplacian
in {x ∈ R2 : b < |x| < b + 1} restricted to radially symmetric functions.

For any k > 0 the resolvent (Hb+ k2)−1 exists and is an integral operator with kernel
Gb(·, ·, k), i.e.,

((Hb + k
2)−1u)(r) =

∫ b+1

b

Gb(r, s, k)u(s) ds, (3.3)

for r ∈ [b, b + 1] and u ∈ L2(b, b + 1). We shall need

Lemma 3.1. For any b ≤ r ≤ b + 1 the function Gb(r, r, · ) : R+ → R is continuous,
non-negative and non-increasing.

Using the explicit expression of Gb in terms of Bessel functions we shall establish
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Proposition 3.2. Let k > 0 and 0 ≤ α < 1. Then there is a constant Cα(k) > 0 such
that for all b > 0 and b ≤ r ≤ b + 1 one has

Gb(r, r, k) ≤ Cα(k) r
α. (3.4)

For α = 0 and k = 3.555 one may choose C0(3.555) = 1/3.

The proof of this proposition will be given in Subsection 4.1 below. Now we use the result
to estimate the lowest eigenvalue of the Schrödinger operator Hb − V on the interval
(b, b + 1).

Corollary 3.3. Assume that V 6≡ 0 is a non-negative function on (b, b+ 1) that satisfies∫ b+1

b

V (r)rα dr ≤ Cα(k)
−1 (3.5)

for some k > 0, some 0 ≤ α < 1 and Cα(k) from (3.4). Then the lowest eigenvalue λ of
the operator Hb − V satisfies

−λ ≤ k2.

Proof. By a standard approximation argument we may assume that V is continuous. Tak-
ing u(r) =

√
r as a trial function we see that λ < 0. We denote by N(t2) the number of

eigenvalues of Hb − V less than −t2. By the Birman–Schwinger principle (see, e.g., [5])
we have

N(t2) ≤ tr
√
V (Hb + t

2)−1
√
V =

∫ b+1

b

V (r)Gb(r, r, t) dr.

(Here we used the continuity of V for the evaluation of the trace.) Now we let t2 → −λ
from below, recall that the lowest eigenvalue is simple and use dominated convergence
for the right hand side. Denoting

Fb(t) := max
b≤r≤b+1

r−αGb(r, r, t)

we find

1 ≤
∫ b+1

b

V (r)Gb(r, r,
√
−λ) dr ≤ Fb(

√
−λ)

∫ b+1

b

V (r)rα dr.

Combining this with assumption (3.5) we arrive at

Cα(k) ≤ Fb(
√
−λ).

On the other hand, Proposition 3.2 is equivalent to Fb(k) ≤ Cα(k). Since Fb is a non-
increasing function by Lemma 3.1, we conclude that

√
−λ ≤ k, as claimed. ut

The second ingredient in the proof of Theorem 2.1 is the following Poincaré–Sobolev
inequality.
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Proposition 3.4. Let 0 ≤ α < 1. Then there exists a constant Sα > 0 such that for all
b > 0 and for all v ∈ H 1(b, b + 1) with

∫ b+1
b

v(r)r dr = 0 one has

max
b≤r≤b+1

|v(r)|2r1−α
≤ Sα

∫ b+1

b

|v′(r)|2r dr. (3.6)

For α = 0 the sharp constant is S0 = 1/3.

The proof of this proposition will be given in Subsection 4.2. We remark that as b grows
the function

√
r on the interval (b, b+1) becomes ‘almost constant’, so at least intuitively

one recovers the inequality

max
0≤x≤1

|v(x)|2 ≤
1
3

∫ 1

0
|v′(x)|2 dx,

∫ 1

0
v(x) dx = 0,

which played an important role in [13]. Note that allowing for finite values of b does not
increase the constant.

Now we deduce from Proposition 3.4 an integral condition on V that guarantees that
the operator Hb − V has only one negative eigenvalue.

Corollary 3.5. Assume that V 6≡ 0 is a non-negative function on (b, b + 1) satisfying∫ b+1

b

V (r)rα dr ≤ S−1
α (3.7)

for some 0 ≤ α < 1 and Sα from (3.6). Then the operatorHb−V has exactly one negative
eigenvalue.

Proof. The existence of a negative eigenvalue has already been established in the proof of
Corollary 3.3. To prove the uniqueness we note that in view of Proposition 3.4 we have,
for all u ∈ H 1(b, b + 1) with

∫ b+1
b

u(r)
√
r dr = 0, the inequality

hb[u]−
∫ b+1

b

V (r)|u(r)|2 dr ≥

(
1− Sα

∫ b+1

b

V (r)rα dr

)
hb[u].

Since this is non-negative by (3.7), we deduce by the variational principle that Hb − V
has at most one negative eigenvalue. ut

3.2. Proof of the main theorem

Throughout this section we fix 0 ≤ α < 1. Our proof follows and extends the ideas of
[13]. We divide it into four steps.

Step 1. It suffices to prove Theorem 2.1 in the case γ = γc := (1 − α)/2. Indeed, the
case γ > γc is already contained in [7] or, alternatively, may be deduced from the result
for γ = γc by the argument of Aizenman–Lieb [3]. The latter is based on the identity

Bs,tλ
s
− =

∫
R+
µs−t−1(λ+ µ)t− dµ, s > t,
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with some finite constant Bs,t (which can be expressed in terms of the beta function).
Using it twice and assuming that the result is proven in the critical case one obtains, for
any γ > γc,

tr
(
−
d2

dr2 −
1

4r2 − V

)γ
−

≤B−1
γ,γc

∫
R+
µγ−γc−1 tr

(
−
d2

dr2 −
1

4r2 − V + µ

)γc
−

dµ

≤B−1
γ,γc

Cγc,α

∫
R+

∫
R+
µγ−γc−1(V (r)− µ)

γc+(1+α)/2
+ dµ rα dr

=B−1
γ,γc

Bγ+(1+α)/2,γc+(1+α)/2Cγc,α

∫
R+
V (r)

γ+(1+α)/2
+ rα dr.

This is inequality (2.1), and so it remains to prove the result for γ = γc.

Step 2. Now we begin the main argument. The basic strategy is to divide R+ into in-
tervals such that the restriction of −d2/dr2

− 1/4r2
− V to these intervals has at most

one negative eigenvalue. The choice of boundary conditions for the restricted operators is
essential to achieve this. We choose boundary conditions (3.2) which come naturally with
the groundstate representation formula (see (3.9) below).

We may assume that V 6≡ 0 is non-negative and, by standard approximation ar-
guments, that it has compact support in R+. Fix k > 0 arbitrary and let 9α(k) :=
max{Sα, Cα(k)} where Sα , Cα(k) are the constants from Propositions 3.4 and 3.2. We
set a1 := min suppV and define a sequence a1 < a2 < · · · recursively by∫ aj+1

aj

V (r)rα dr =
1

9α(k)(aj+1 − aj )1−α
. (3.8)

This recursion stops when aN ≥ max suppV . The sequence is always finite since aj+1 −

aj ≥ (9α(k)‖V ‖L1(rαdr))
−1/(1−α) > 0, and it clearly covers suppV . We set a0 := 0 and

aN+1 := ∞.
As in the previous section, we define operators Lj in L2(aj , aj+1) via the quadratic

form ∫ aj+1

aj

∣∣∣∣ ddr
(
u(r)
√
r

)∣∣∣∣2r dr
with domain H 1(aj , aj+1) if 1 ≤ j ≤ N . If j = 0 we consider the closure of this form
defined on C∞0 (0, a1]. Note that for u ∈ C∞0 (R+) one has∫

R+

(
|u′|2 −

|u|2

4r2

)
dr =

∫
R+

∣∣∣∣ ddr
(
u(r)
√
r

)∣∣∣∣2r dr. (3.9)

The variational principle implies that imposing natural boundary conditions does not in-
crease the operator, i.e., in the sense of quadratic forms

−
d2

dr2 −
1

4r2 − V ≥

N⊕
j=0

(Lj − V ).
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Since L0 − V = L0 ≥ 0 and similarly for j = N , we find that

tr
(
−
d2

dr2 −
1

4r2 − V

)(1−α)/2
−

≤

∑
1≤j≤N−1

tr (Lj − V )
(1−α)/2
− . (3.10)

It remains to estimate tr (Lj − V )
(1−α)/2
− for fixed 1 ≤ j < N . We shall implement

a unitary change of variables in order to obtain an operator on an interval of unit length
and then apply the results from Subsection 3.1. We put

lj := aj+1 − aj , bj := aj/lj ,

and introduce the unitary operator Uj : L2(aj , aj+1)→ L2(bj , bj + 1),

(Uju)(r) :=
√
lju(lj r).

One obtains the unitary equivalence

U−1
j (Hbj − Vj )Uj = l

2
j (Lj − V )

where Vj (r) := l2j V (lj r). Note that this potential satisfies∫ bj+1

bj

Vj (r)r
α dr = 9α(k)

−1

by (3.8). The definition of 9α(k) together with Corollaries 3.5 and 3.3 implies that
Hbj − Vj has exactly one negative eigenvalue, and that its modulus does not exceed k2.
Combining this with the above unitary equivalence and using (3.8) once more we obtain

tr (Lj − V )
(1−α)/2
− ≤ l−1+α

j k1−α
= k1−α9α(k)

∫ aj+1

aj

V (r)rα dr.

In view of (3.10) this concludes the proof of inequality (2.1).

Step 3. We next prove the upper bound C1/2,0 ≤ 1.185. For this we note that the above
proof yields

C(1−α)/2,α ≤ inf
k>0

k1−α max {Sα, Cα(k)} .

If α = 0 we choose k = 3.555 and use Propositions 3.2 and 3.4 to get the claimed
estimate. See Remark 4.1 concerning this choice.

Step 4. Finally, we prove the lower bound C1/2,0 ≥ 0.533. We shall first establish

C(1−α)/2,α ≥ sup
R>0

R1−αI0(R)K0(R), 0 ≤ α < 1. (3.11)

For β,R > 0 one can define the operator −d2/dr2
− 1/4r2

− βδR in a standard way
via a quadratic form. It follows from general principles that this operator has at most one
negative eigenvalue. Moreover, one easily establishes that for any given R there exists a
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unique β = β(R) such that the operator has −1 as an eigenvalue. Solving the eigenvalue
equation explicitly we obtain

u(r) =

{√
r I0(r)K0(R), 0 < r < R,
√
r K0(r)I0(R), R < r,

and simplifying with the help of the Wroński identity

I1(r)K0(r)+ I0(r)K1(r) = 1/r (3.12)

(see [1, 9.6.15]), we find

β(R) =
u′(R−)− u′(R+)

u(R)
=

1
R I0(R)K0(R)

.

By an approximation argument as in Remark 2.5 one easily obtains the lower bound
(3.11).

Now assume that α = 0. Using the asymptotic behavior of I0K0 [1, 9.7.5] one finds
that β(R) → 2 from below as R → ∞, hence C1/2,0 > 1/2. To obtain an explicit
estimate on the constant we choose R = 1.1 and use β(1.1)−1 > 0.533 (see [1, Table
9.8]). (Indeed, numerically, one finds that β has a global minimum close to 1.075.)

This concludes the proof of Theorem 2.1.

4. The operators on a finite interval

4.1. Green’s function

By Sturm–Liouville theory (see, e.g., [14]) we find that the resolvent kernel (3.3) is given
by

Gb(r, s, k) =


gb(r, k)gb+1(s, k)

Wb(k)
, b ≤ r ≤ s ≤ b + 1,

gb+1(r, k)gb(s, k)

Wb(k)
, b ≤ s ≤ r ≤ b + 1,

(4.1)

where

gc(r, k) :=
√
r (I1(ck)K0(kr)+K1(ck)I0(kr)) , c ∈ {b, b + 1},

Wb(k) := I1((b + 1)k)K1(bk)− I1(bk)K1((b + 1)k).

Here In and Kn denote the modified Bessel functions of the first and second kinds of
order n (see [1, Chapter 9]).

Now we give the simple

Proof of Lemma 3.1. The continuity of Gb(r, r, k) in k follows from (4.1) by the conti-
nuity of the Bessel functions. Moreover, for any f ∈ L2(b, b+ 1) and any k ≥ t ≥ 0 one
has

0 ≤ ((Hb + k2)−1f, f ) ≤ ((Hb + t
2)−1f, f ).
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Choosing f as an approximate delta-function one easily finds that the resolvent kernel is
non-negative on the diagonal and non-increasing in the spectral parameter. ut

Now we turn to the

Proof of Proposition 3.2. For fixed k > 0 and 0 ≤ α < 1 we define

gα(x, b) := (b + x)−αGb(b + x, b + x, k)

= (b + x)1−α(I1(bk)K0((b + x)k)+ I0((b + x)k)K1(bk))

× (I1((b + 1)k)K0((b + x)k)+ I0((b + x)k)K1((b + 1)k))

× (I1((b + 1)k)K1(bk)− I1(bk)K1((b + 1)k))−1

for x ∈ [0, 1], b > 0. We have to prove that there exists a constant Cα(k) > 0 such that
for all x ∈ [0, 1], b > 0 one has

gα(x, b) ≤ Cα(k). (4.2)

We begin with the case α = 0. Using the asymptotic behavior of the Bessel functions
[1, 9.6.7, 9.6.8, 9.7.1, 9.7.2] one finds that, uniformly in x ∈ [0, 1],

g0(x, 0) := lim
b→0

g0(x, b) =
xI0(kx)(I1(k)K0(kx)+K1(k)I0(kx))

I1(k)
(4.3)

and

g0(x,∞) := lim
b→∞

g0(x, b) =
cosh(kx) cosh(k(1− x))

k sinh k
.

Both limiting functions g0(·, 0) and g0(·,∞) are uniformly bounded on [0, 1]. Since g0
is continuous on [0, 1]× R+ we obtain the bound (4.2) for α = 0.

The statement is proved similarly for 0 < α < 1. Indeed, for b ≥ 1 the statement is
weaker than for α = 0. To treat small b one notices that gα(x, b) ∼ −(b+x)1−α log(b+x)
as (x, b)→ (0, 0).

Finally, we give a numerical estimate of C0(k) for the special choice k = 3.555. The
function g0 can be maximized numerically on [0, 1] × [0,∞). (Simple estimates show
that one can restrict oneself to a compact subset.) Using MATHEMATICA’s Nelder-Mead
based method one finds that the maximum is attained at (x, b) = (1, 0) and one has

sup g0 = g0(1, 0) < 1/3.

Hence C0(3.555) < 1/3. ut

Remark 4.1. Numerical calculations suggest that the Green’s function on the diagonal
Gb(r, r, k) attains its maximum at the right endpoint r = b + 1 for any value of b and k.
This would imply that

max
x∈[0,1]

g0(x, b) = g0(1, b), b > 0. (4.4)
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Moreover, one can check that the function g0(1, ·) attains its supremum in the limit
b→ 0. By (4.3) and (3.12) one finds the value g(1, 0) = I0(k)/kI1(k). Hence we believe
that the sharp constant in (3.4) for α = 0 is given by

C0(k) =
I0(k)

kI1(k)
.

Note that the RHS is a decreasing function and that k = 3.555 in the above proof is
chosen (almost) maximal with the property that I0(k)/kI1(k) ≤ 1/3.

4.2. A Poincaré–Sobolev inequality

We turn now to the proof of Proposition 3.4. The core is contained in

Lemma 4.2. Let b > 0 and b ≤ c ≤ b + 1. Then for all v ∈ H 1(b, b + 1) satisfying∫ b+1
b

v(r)r dr = 0 one has

|v(c)|2 ≤ 8(b, c)

∫ b+1

b

|v′(r)|2r dr

with the sharp constant

8(b, c) :=
1

4(2b + 1)2
(4(b + 1)4 log(b + 1)− 4b4 log b

− (2b + 1)(3+ 6b + 6b2
− 4c2

+ 4(2b2
+ 2b + 1) log c)).

Proof. We shall assume b < c < b + 1. The remaining cases b = c and b = c + 1 are
proved similarly. We consider the functional

F [v] :=

∫ b+1
b
|v′(r)|2r dr

|v(c)|2

on the domain

D[F ] :=
{
v ∈ H 1(b, b + 1) :

∫ b+1

b

v(r)r dr = 0, v(c) 6= 0
}
.

From the compactness of the embedding H 1(b, b + 1) ⊂ C([b, b + 1]) (see, e.g., [2]), it
follows that F has a minimizer v. We may normalize v by

1
v(c)

∫ b+1

b

v′(r)2r dr = 1.
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In a standard way we derive the Euler–Lagrange equation (v′(r)r)′ = 2r/(2b + 1) for
r ∈ (b, c) ∪ (c, b + 1) and the boundary conditions v′(r) = 0 for r ∈ {b, b + 1}. We
conclude that

v(r) =


D −

b2

2b + 1
log r +

r2

2(2b + 1)
, b ≤ r ≤ c,

D + log c −
(b + 1)2

2b + 1
log r +

r2

2(2b + 1)
, c ≤ r ≤ b + 1,

where

D :=
1

4(2b + 1)2
(4(b + 1)4 log(b + 1)− 4b4 log b

− (2b + 1)(3+ 6b + 6b2
− 2c2

+ 4(b + 1)2 log c)).

For the minimal value of the functional we obtain F [v] = v(c)−1
= 8(b, c)−1, as

claimed. ut

Proof of Proposition 3.4. For x ∈ [0, 1], b > 0, 0 ≤ α < 1 we put

φα(x, b) := (b + x)1−α8(b, b + x)

=
(b + x)1−α

4(2b + 1)2
(4(b + 1)4 log(b + 1)− 4b4 log b

− (1+ 2b)(3+ 6b + 6b2
− 4(b + x)2))

−
2b2
+ 2b + 1

2b + 1
(b + x)1−α log(b + x).

We have to prove that there exists a constant Sα > 0 such that for all x ∈ [0, 1], b > 0
one has

φα(x, b) ≤ Sα. (4.5)

First we note that φα can be extended continuously to the boundary {b = 0}. Indeed,
uniformly in x ∈ [0, 1],

φα(x, 0) := lim
b→0

φα(x, b) =

{
x1−α (

− log x + x2
− 3/4

)
if x 6= 0,

0 if x = 0.

Similarly, one finds that uniformly in x ∈ [0, 1],

φα(x,∞) := lim
b→∞

φα(x, b) =

{
1/3− x + x2 if α = 0,
0 if 0 < α < 1.

Hence the continuity of φα implies that (4.5) holds with some finite constant Sα .
Finally, we turn to the issue of the sharp value of the constant for α = 0. The proof

that S0 = 1/3 is elementary but tedious. We shall write φ instead of φ0. Note that the
limit of φ(·, b) as b→∞ implies that the sharp constant cannot be less than 1/3.
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To prove the opposite inequality one checks first that φ(0, ·) is an increasing function
with φ(0, 0) = 0 and φ(0,∞) = 1/3. Similarly, φ(1, ·) is an increasing function with
φ(1, 0) = 1/4 and φ(1,∞) = 1/3. Now we distinguish according to whether φ(·, b) has
a local maximum in (0, 1) or not. In the latter case we use the facts mentioned above to
get

max
x∈[0,1]

φ(x, b) = max{φ(0, b), φ(1, b)} ≤ 1/3.

Now consider the case where x0 ∈ (0, 1) is a local maximum. Again by the facts men-
tioned above it suffices to prove that

φ(x0, b) ≤ 1/3. (4.6)

We first claim that one necessarily has

0 ≤ x0 ≤ 1/
√

6 and 0 ≤ b ≤ (1+
√

5)/4. (4.7)

Indeed, note that

∂2
xφ0 =

1
(2b + 1)(b + x)

(6(b + x)2 − (2b2
+ 2b + 1)).

Since x0 is a local maximum, we conclude that

0 ≤ x0 ≤

√
(1+ 2b + 2b2)/6− b and

√
(1+ 2b + 2b2)/6 ≥ b, (4.8)

which is easily seen to imply (4.7).
To proceed, we decompose φ(x, b) = φ(1)(x, b)+ φ(2)(x, b), where

φ(1)(x, b) :=
2b2
+ 2b + 1

6(2b + 1)
(−6(b + x) log(b + x)+ 6(x + b − 1)

+ 3(x + b − 1)2 − (x + b − 1)3).

We can estimate φ(1)(x, b) ≤ 0 for all (x, b) satisfying (4.7) (with x0 replaced by x).
Now we note that φ(2)(·, b) is a polynomial of degree three. A tedious but elementary
calculation shows that it has a local maximum x1(b) and a local minimum x2(b) satisfying
x1(b) < 0 < 1/

√
6 < 1/2 < x2(b) for 0 ≤ b ≤ (1 +

√
5)/4. Hence we conclude that

φ(2)(x, b) ≤ φ(2)(0, b) ≤ 1/3 for all (x, b) satisfying (4.7) (with x0 replaced by x). This
proves (4.6). ut

Remark 4.3. What we actually have shown in the preceding proof is that the minimizer
v∗ of the problem

max
b≤r≤b+1

|v(r)|2r ≤ 8(b)

∫ b+1

b

|v′(r)|2r dr

satisfies maxb≤r≤b+1 |v∗(r)|
2r = |v∗(b+1)|2(b+1). The proof of Proposition 3.4 would

be simplified if we could prove this a priori.
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5. A class of half-line operators

Let σ ∈ R. We consider the quadratic form

hσ [u] :=
∫

R+

(
rσ |u′(r)|2 −

(σ − 1)2|u(r)|2

4r2−σ

)
dr (5.1)

defined on C∞0 (R+) if σ < 1 and on C∞0 (R+) if σ ≥ 1. The generalized Hardy inequal-
ity (1.7) implies that the forms hσ are non-negative on their respective domains. (We
shall essentially reprove this in the proof of Theorem 5.1.) Moreover, they are closable in
L2(R+) and thus generate self-adjoint operators Hσ . Note that the operator H0 coincides
with the operator −d2/dr2

− 1/4r2 treated in previous sections.
Our main result in this section are Lieb–Thirring inequalities on the moments of neg-

ative eigenvalues of the Schrödinger-type operator Hσ − V .

Theorem 5.1. Let γ > 0. Assume that either

σ > 2, α ≤ −σ/2, γ −
1+ α
σ − 2

≥ 1,

or
σ < 2, α ≥ −σ/2, γ +

1+ α
2− σ

≥ 1.

Then

tr (Hσ − V )
γ
− ≤

∣∣∣∣ 2
2− σ

∣∣∣∣ 2α+σ
2−σ

C
γ, 2α+σ

2−σ

∫
R+
V (r)

γ+ 1+α
2−σ

+ rα dr, (5.2)

where the constant Cγ,α is given in Theorem 2.1.
Finally, let σ = 2 and assume that either γ ≥ 1/2 and α = 0, or γ > 0 and α > 0

with γ + (1+ α)/2 > 1+ α. Then

tr (H2 − V )
γ
− ≤ C

EK
γ,α

∫
R+
V (r)

γ+(1+α)/2
+ |log r|αr−1 dr, (5.3)

where the constant CEKγ,0 = Lγ is given in (1.1) and CEKγ,α in (1.2).

Proof. We shall first consider the case σ 6= 2 and introduce the unitary operators Uσ in
L2(R+),

(Uσu)(r) :=
∣∣∣∣2− σ2

∣∣∣∣1/2r−σ/4u(r(2−σ)/2).
We note that the adjoint operators U∗σ map C∞0 (R+) into itself and, for σ ≥ 1, map
C∞0 (R+) into the form domain of H0. Moreover, one easily verifies that

hσ [u] =
(

2− σ
2

)2

h0[U∗σu].
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This relation, proved initially for u ∈ C∞0 (R+) if σ < 1—or for u ∈ C∞0 (R+) if σ ≥ 1—
extends to the closure of hσ and implies that

U∗σHσUσ =

(
2− σ

2

)2

H0.

For given V we define

Vσ (r) :=
(

2
2− σ

)2

V (r2/(2− σ))

and find that

tr (Hσ − V )
γ
− =

∣∣∣∣2− σ2

∣∣∣∣2γ tr (H0 − Vσ )
γ
− .

Hence (5.2) follows from our main result, Theorem 2.1.
In the case σ = 2 we define the unitary operator U2 : L2(R) → L2(R+) by

(U2u)(r) := r−1/2u(log r). Similarly to the above one checks that

U∗2H2U2 = −
d2

dx2

and hence with V2(x) := V (ex),

trL2(R+)(H2 − V )
γ
− = trL2(R)

(
−
d2

dx2 − V2

)γ
−

.

Inequality (5.3) now follows from (1.1) and (1.2). ut

Remark 5.2. Note that the sharp constants CEKγ,0 = Lγ in (5.3) with α = 0 are known if
γ = 1/2 or γ ≥ 3/2.

Remark 5.3. The method of the previous proof allows one to obtain rather complete
information on the behavior of weakly coupled eigenvalues. Assume for simplicity that V
is bounded with compact support in R+.1 ThenHσ −βV has a negative eigenvalue for all
β > 0 if and only if V 6≡ 0 and

∫
R+ V (r)r

1−σ dr ≥ 0. In the case
∫
R+ V (r)r

1−σ dr > 0
there is a unique eigenvalue λ(β) for all sufficiently small β, and one has

lim
β→0

β−1
|log |λ(β)||−1

=
1

2− σ

∫
R+
V (r)r1−σ dr, σ 6= 2,

lim
β→0

β−2λ(β) = −
1
4

(∫
R+
V (r)

dr

r

)2

, σ = 2.

As in the proof of Proposition 5.1, this assertion is reduced to the operators H0 and
−d2/dx2, for which the assertion is known (see [12] and [7]). One can treat the case
where

∫
R+ V (r)r

1−σ dr = 0 in a similar manner, but we omit the details.

1 It will be sufficient that
∫
R+ |V (r)|

1+δr1−σ dr+
∫
R+ |V (r)|(1+ r

(2−σ)δ/2)r1−σ dr <∞ for

some δ > 0 if σ 6= 2, and that
∫
R+ |V (r)|(1+ r)

dr
r <∞ if σ = 2.
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