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Abstract. We prove that the one-dimensional Euler–Poisson system driven by the Poisson forcing
together with the usual γ -law pressure, γ ≥ 1, admits global solutions for a large class of initial
data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2×2 p-system.
Global regularity is shown to depend on whether or not the initial configuration of the Riemann
invariants and density crosses an intrinsic critical threshold.
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1. Introduction

It is well known that the systems of Euler equations for compressible flows can and will
break down at a finite time even if the initial data are smooth. A prototype example for
such systems is provided by the 2× 2 system of isentropic gas dynamics{

ρt + (ρu)x = 0,
(ρu)t + (ρu

2)x = −px,
(1.1)

where the pressure p = p(ρ) is given by the usual γ -law, p(ρ) = Aργ . By using the
method introduced in [La64] to deal with pairs of conservation laws, it can be shown that
(1.1) will lose the C1-smoothness due to the appearance of shock discontinuities unless
its two Riemann invariants are nondecreasing. Thus, the finite-time breakdown of (1.1) is
generic in the sense that it holds for all but a “small” set of initial data.

On the other hand, if we replace the pressure by Poisson forcing, then we arrive at the
system of Euler–Poisson equations{

ρt + (ρu)x = 0,
(ρu)t + (ρu

2)x = −kρϕx, k > 0,
(1.2)

subject to initial data (u0, ρ0 > 0). Here ϕ = ϕ(ρ) is the potential, which is dictated by
the (one-dimensional) Poisson equation,ϕxx = −ρ. In this case, there is a “large” set of
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initial configurations which yield global smooth solutions. More precisely, [ELT01] have
shown that (1.2) admits a global smooth solution if and only if

u0x(x) > −
√

2kρ0(x). (1.3)

Thus, following the terminology of [LT02], the curve u0x +
√

2kρ0 = 0 is a “critical
threshold” in configuration space which separates between initial configurations leading
to finite-time breakdown and a “large” set of subcritical initial configurations which yield
global smooth solutions. In particular, (1.3) allows negative velocity gradients (depending
on the local amplitude of the density), which otherwise are excluded in the case of inviscid
Burgers equations, corresponding to k = 0.

In this paper we turn our attention to the full Euler–Poisson equations driven by both
pressure and Poisson forcing,

ρt + (ρu)x = 0,
(ρu)t + (ρu

2)x = −p(ρ)x − kρϕx, k > 0,
−ϕxx = ρ.

(1.4)

These equations govern different phenomena, ranging from the largest scale of, e.g.,
the evolution gravitational collapse in stars, to applications in the smallest scale of, e.g.,
semiconductors. There is a considerable amount of literature available on the local and
global behavior of Euler–Poisson and related problems. Consult [Ma86] for local exis-
tence in the small H s-neighborhood of a steady state of self-gravitating stars, [CW96]
for global existence of weak solutions with geometrical symmetry, [Gu98] for global
existence for 3-D irrotational flow, [MN95] for isentropic case, and [JR00], [PRV95] for
isothermal case. Consult [Pe90], [MP90], [Si85], [En96], [WC98], [BW98], and in partic-
ular [En96] (more about that below), for nonexistence results and singularity formation.
The question of global smoothness vs. finite breakdown was studied in a recent series
of works of Engelberg, Liu and Tadmor, in terms of a critical threshold phenomena for
1-D “pressure-less” Euler–Poisson equations [ELT01] and 2-D restricted Euler–Poisson
equations [LT02, LT03].

The natural question that arises in the present context of full Euler–Poisson equations
(1.4) is whether the pressure enforces a generic finite-time breakdown, or whether the
presence of Poisson forcing preserves global regularity for a “large” set of initial configu-
rations. We answer this question of “competition” between pressure and Poisson forcing,
proving that the Euler–Poisson equations (1.4) with γ ≥ 1 admit global smooth solutions
for a “large” set of subcritical initial data such that

u0x(x) > −K0
√
ρ0(x)+

√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2
, γ ≥ 1. (1.5)

Here, K0 is a constant depending on k, γ and the initial data. In the particular (and im-
portant) case of isothermal equations, γ = 1, we have K0 =

√
2k and (1.5) amounts to a

sharp critical threshold,

u0x(x) ≥ −
√

2kρ0(x)+
√
A
|ρ0x(x)|

ρ0(x)
, γ = 1. (1.6)
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The inequalities (1.5), (1.6) quantify the competition between the destabilizing pressure
effects, as the range of subcritical initial configurations shrinks with the growth of the am-
plitude of the pressure, A, while the stabilizing effect of the Poisson forcing increases the
subcritical range with a growing k. In particular, (1.6) with A = 0 recovers the pressure-
free critical threshold (1.3).

Formation of singularities and global regularity of (1.4) were addressed earlier by
Engelberg in [En96]. His results show finite-time breakdown if the quantity u0x(x) −√
Aγ |ρ0x(x)|ρ0(x)

(γ−3)/2 is “sufficiently negative” at some point. Our contribution here
is to quantify the critical threshold behind this asymptotic statement. To fully appreci-
ate this quantified threshold, we turn to the converse statement in [En96, Theorem 2]:
it asserts the global regularity of (1.4) for a class of initial data such that u0x(x) −√
Aγ |ρ0x(x)|ρ0(x)

(γ−3)/2 > 0. It is a “nongeneric” class (in the sense of requiring both
Riemann invariants at t = 0 to be globally increasing). In fact, by (1.5) one has a negative
threshold, −K0

√
ρ0, implying the existence of a “large” class of subcritical initial data

with global regularity.
The paper is organized as follows. In Section 2, we reformulate the system (1.4) with

its Riemann invariants as a preparation for the analysis carried out in Sections 3 and 4. In
Section 3, we prove our main results, providing sufficient conditions for “large” sets of
subcritical initial configurations which yield global smooth solution. In Section 4, we give
examples of finite-time breakdown for supercritical initial data. Combining our results in
Sections 3 and 4, they confirm the existence of a critical threshold phenomena for the full
Euler–Poisson equations (1.4).

2. Riemann invariants

2.1. The Euler–Poisson equations with γ -law pressure: γ > 1

We begin by rewriting the Euler–Poisson equations (1.4) as a first order quasilinear system(
ρ

u

)
t

+ J

(
ρ

u

)
x

=

(
0
−kϕx

)
, (2.1)

where the Jacobian J :=
( u ρ

Aγργ−2 u

)
has two different eigenvalues

λ := u−
√
Aγρ(γ−1)/2 < µ := u+

√
Aγρ(γ−1)/2,

and let R and S denote the Riemann invariants of the corresponding Euler system (1.1),

R := u−
2
√
Aγ

γ − 1
ρ(γ−1)/2 and S := u+

2
√
Aγ

γ − 1
ρ(γ−1)/2. (2.2)

They satisfy the system of equations

Rt + λRx = −kϕx, (2.3a)
St + µSx = −kϕx, (2.3b)
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coupled through the Poisson equation −φxx = ρ. If we set r := Rx, s := Sx then upon
differentiation of (2.3) we get

rt + λrx + λSrs + λRr
2
= kρ, (2.4a)

st + µsx + µSs
2
+ µRrs = kρ. (2.4b)

Next, we observe that λ = R+S
2 −

γ−1
4 (S − R) and µ = R+S

2 +
γ−1

4 (S − R). Hence,
expressed in terms of θ := (γ − 1)/2, we have, for γ ≥ 1,

λR = µS =
1+ θ

2
, λS = µR =

1− θ
2

, θ :=
γ − 1

2
≥ 0,

and the pair of equations (2.4) is recast into the form

r 8 +
1+ θ

2
r2
+

1− θ
2

rs = kρ, (2.5a)

s′ +
1+ θ

2
s2
+

1− θ
2

rs = kρ. (2.5b)

Here and below, {}8 := ∂t + λ∂x and {}′ := ∂t + µ∂x denote differentiation along the λ
and µ particle paths,

0λ := {(x, t) | ẋ(t) = λ(ρ(x, t), u(x, t))}, 0µ := {(x, t) | ẋ(t) = µ(ρ(x, t), u(x, t))}.

To continue, we rewrite the equation for ρ as

(ρt + λρx)+
µ− λ

2
ρx + ρ

s + r

2
= 0. (2.6)

Since s − r = Sx − Rx = 2
√
Aγρ(γ−3)/2ρx , it enables us to express

µ− λ

2
ρx =

√
Aγρ(γ−1)/2ρx = ρ

s − r

2
,

so that the ρ equation (2.6) can be written along the λ particle path as ρ8
+ ρs = 0.

Similarly, it can be written along the µ particle path as ρ′ + ρr = 0. Assembling the
above equations together, we arrive at the following system governing r , s and ρ: r 8 +

1+ θ
2

r2
+

1− θ
2

rs = kρ,

ρ8
+ ρs = 0,

(2.7a)

and  s′ +
1+ θ

2
s2
+

1− θ
2

rs = kρ,

ρ′ + ρr = 0.
(2.7b)

Finally, we use the integration factors 1/
√
ρ and r/2ρ

√
ρ in the first and second equations

of each pair in (2.7), to conclude(
r
√
ρ

)8

+
1+ θ

2
r2
√
ρ
−
θ

2
rs
√
ρ
= k
√
ρ, (2.8a)(

s
√
ρ

)′
+

1+ θ
2

s2
√
ρ
−
θ

2
rs
√
ρ
= k
√
ρ. (2.8b)
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2.2. The isothermal case γ = 1

In this case, the two eigenvalues are λ = u−
√
A < µ = u+

√
A with the corresponding

Riemann invariants R = u −
√
A ln ρ and S = u +

√
A ln ρ. Their derivatives, r and s,

satisfy the pair of equations, corresponding to (2.8a), (2.8b) with θ = (γ − 1)/2 = 0,

(
r
√
ρ

)8

+
1
2
r2
√
ρ
= k
√
ρ, (2.9a)(

s
√
ρ

)′
+

1
2
s2
√
ρ
= k
√
ρ. (2.9b)

3. Global smooth solutions for subcritical initial data

For the pressure-less Euler–Poisson equations (1.2), the evolution of ux and ρ could be
traced backwards along the same particle path to their initial data at t = 0. The scenario
becomes more complicated with the additional pressure term, due to the coupling of r
and s along different particle paths which are traced back to different neighborhoods of
the initial line t = 0. This is the main obstacle in finding the sharp critical threshold
of the full Euler–Poisson system (1.4). To this end, we will seek invariant regions for
the coupled system, governing the Riemann invariants. We begin this section with the
following lemma.

Lemma 3.1. If the total charge E0 :=
∫
∞

−∞
ρ0(x) dx is finite, then ρ(x, t) and u(x, t)

remain uniformly bounded for all t > 0.

Proof. Under the given condition, we can set (e.g., [ELT01, p. 116])

ϕx(x, t) =
1
2

(∫ x

−∞

ρ(ξ, t) dξ −

∫
∞

x

ρ(ξ, t) dξ

)
,

which satisfies −E0 ≤ ϕx(x, t) ≤ E0 for all t ≥ 0 and x ∈ R.
Recall the transport equations (2.3a), (2.3b) which govern the Riemann invariants

along different characteristics R8
+ kϕx = S′ + kϕx = 0. Since ϕx is bounded, these

transport equations tell us that R and S remain uniformly bounded with at most a linear
growth in time. Indeed, for all M � 1 we have

sup
|x|≤M

{|R(x, t)|, |S(x, t)|} ≤ C0 + kE0t, C0 := sup
|x|≤M+u∞t

{|R0(x)|, |S0(x)|} . (3.1)

Take the sum and difference of S and R to find that u(x, t) and ρ(x, t) in (2.2) remain
bounded, namely, there exists a constant (depending on 1/A) such that

u∞ := sup
|x|≤M

|u(x, t)| ≤ C0 + kE0t,

sup
|x|≤M

ρ(x, t) ≤ const ·
{
(C0 + kE0t)

2/(γ−1), γ > 1,
exp(kE0t), γ = 1.

(3.2)

ut
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We note in passing that the time growth asserted in (3.2) is probably not sharp; the esti-
mate can be improved after taking into account the uniform bounds ofRx/

√
ρ and Sx/

√
ρ

discussed in Theorems 3.1 and 3.2 below.

Remark 3.1. According to [ELT01, Theorem 2.2], the breakdown of the “pressure-less”
Euler–Poisson equations (1.2) occurs when −ux(x, t) and ρ(x, t) approach +∞ simul-
taneously at the critical time, t ↑ tc. In contrast, Lemma 3.1 tells us that the addition of
pressure prevents the concentration of the density. Thus, the only breakdown for the full
Euler–Poisson system (1.4) occurs through the formation of shock discontinuities, where
|ux | and/or |ρx | blow up as t ↑ tc, but neither u nor ρ will concentrate at any critical
point.

3.1. Critical threshold for isothermal case: γ = 1

We begin with the isothermal case, γ = 1, which plays an important role in various
applications. Compared with the general case (2.8), the isothermal case becomes simpler
due to the fact that θ = 0 decouples the dependence on r and s through the mixed term
θrs, which disappears from the left hand side of (2.9). Here we prove the following sharp
characterization of the critical threshold phenomena.

Theorem 3.1. Consider the isothermal Euler–Poisson system (1.4) with pressure forc-
ing p(ρ) = Aρ, and subject to initial data u0, ρ0 > 0 with finite total charge, E0 =∫
∞

−∞
ρ0(x) dx <∞. The system admits a global C1-smooth solution if and only if

u0x(x) ≥ −
√

2kρ0(x)+
√
A
|ρ0x(x)|

ρ0(x)
, ∀x ∈ R. (3.3)

Remark 3.2. Expressed in terms of the Riemann invariants ux ±
√
Aρx/ρ, specified in

§2.2, Theorem 3.1 states that the isothermal Euler–Poisson equations admit global smooth
solutions for subcritical initial conditions,

s0 ≥ −
√

2kρ0 and r0 ≥ −
√

2kρ0. (3.4)

Proof of Theorem 3.1. We define X := r/
√
ρ and Y := s/

√
ρ. Equations (2.9a), (2.9b)

then read

X8
=

√
ρ

2
(2k −X2), (3.5a)

Y ′ =

√
ρ

2
(2k − Y 2). (3.5b)

It follows that

X8


> 0, X ∈ (−

√
2k,
√

2k ),
= 0, |X| =

√
2k,

< 0, |X| >
√

2k,
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and similarly,

Y ′


> 0, Y ∈ (−

√
2k,
√

2k ),
= 0, |Y | =

√
2k,

< 0, |Y | >
√

2k.

Thus, starting with (3.4), X0, Y0 ≥ −
√

2k, we find that X and Y remain bounded within
the invariant region [−

√
2k,
√

2k], or otherwise, they are decreasing outside this interval.
We conclude that

X(·, t), Y (·, t) ≤ max{
√

2k,X0(·), Y0(·)}.

Lemma 3.1 tells us that ρ is bounded. The boundedness of X, Y and ρ implies that
r = X

√
ρ and s = Y

√
ρ remain bounded for all t < ∞, and hence the Euler–Poisson

system (1.4) admits a global C1-smooth solution.
Conversely, suppose that there exists X0 = X(x0) < −

√
2k. We will show that this

value will evolve along 0λ(x0, 0) so that X(·, t) will tend to −∞ at a finite time. To
this end, assume that Y is well behaved, i.e., Y0(·) ≥ −

√
2k so that Y (·, t) ≤ Y1 :=

max{Y0(·),
√

2k} for all t’s (otherwise, the finite time blow up of Y can be argued along
the same lines). It follows that s = Y

√
ρ ≤ Y1

√
ρ and inserting this into ρ8

= −ρs, we
find ρ8

≥ −Y1ρ
3/2. This yields the lower bound

ρ ≥

(
2

Y1t + 2/
√
ρ0

)2

,

and together with (3.5a), we conclude thatX(·, t) satisfies the following Riccati inequality
along the 0λ-path:

X8
≤ −

X1

Y1t + 2/
√
ρ0
X2, X1 := (X2

0 − 2k)/X2
0 > 0. (3.6)

Integration of (3.6) yields

X(·, t) ≤
Y1

X1 ln
(
1+
√
ρ0Y1t/2

)
+ Y1X0

. (3.7)

Thus, starting with X0 < −
√

2k < 0 it follows that there exists a finite critical time
tc > 0 such that X(t ↑ tc) tends to −∞. ut

The critical threshold condition (3.3) reflects the competition between the Poisson forcing
and the pressure. It yields global smooth solutions for a “large” set of initial configurations
allowing negative velocity gradients. In the particular case where there is no pressure,
A = 0, (3.3) is reduced to the critical threshold condition of the “pressure-less” Euler–
Poisson equations, u0x > −

√
2kρ0(x), of [ELT01].
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3.2. Critical threshold for γ > 1

The equations for the Riemann invariants (2.8a), (2.8b) are coupled through the mixed
term, θrs/2. We note in passing that it is possible to get rid of this mixed term when
integrating (2.7a), (2.7b) with the integration factors ρ(γ−3)/4 and rρ(γ−7)/4(3− γ )/4 in
the first and second equations in each pair, yielding

(rρ(θ−1)/2)8 +
1+ θ

2
r2ρ(θ−1)/2

= kρ(1+θ)/2,

(sρ(θ−1)/2)′ +
1+ θ

2
s2ρ(θ−1)/2

= kρ(1+θ)/2.

Nevertheless, it will prove useful to use the same integration factors, 1/
√
ρ and r/2ρ

√
ρ,

which led to (2.8). The main task is to identify the invariant region associated with (2.8),
corresponding to the isothermal invariant region [−

√
2k,
√

2k] discussed in Theorem 3.1.

Theorem 3.2. Consider the Euler–Poisson system (1.4) with γ -law pressure p(ρ) =
Aργ , γ >1, subject to initial data u0, ρ0 > 0 with finite total charge, E0=

∫
∞

−∞
ρ0(x) dx

< ∞. Then there exists a constant K0 > 0, depending on k, γ and the initial conditions
(specified in (3.9b) below), such that the Euler–Poisson equations (1.4) admit a global
C1-smooth solution if

u0x(x) ≥ −K0
√
ρ0(x)+

√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2
. (3.8)

Before we turn to the proof of this theorem, several remarks are in order.

Remark 3.3. Expressed in terms of the Riemann invariants, r = ux−
√
Aγρ0x/ρ

(3−γ )/2
0

and s = ux +
√
Aγρ0x/ρ

(3−γ )/2
0 , the critical threshold (3.8) reads

r0(x)
√
ρ0(x)

,
s0(x)
√
ρ0(x)

≥ −K0. (3.9a)

The constant K0 is given by

K0 =
−θM0 +

√
θ2M2

0 + 8k(1+ θ)

2(1+ θ)
, M0 = max

x

{
√

2k,
r0(x)
√
ρ0(x)

,
s0(x)
√
ρ0(x)

}
.

(3.9b)

We mention two simplifications which are summarized in the following two corollar-
ies. We first observe that if the initial configurations satisfy the upper bound r0(x), s0(x)
≤
√

2kρ0(x) then (3.9b) yields M0 =
√

2k, hence K0 =
√

2k/(1+ θ), and Theorem 3.2
implies the following.
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Corollary 3.1. Consider the Euler–Poisson system (1.4) with p(ρ) = Aργ , γ > 1,
subject to initial data u0, ρ0 > 0 with E0 =

∫
∞

−∞
ρ0(x) dx <∞. Then the Euler–Poisson

equations (1.4) admit a global C1-smooth solution if for all x ∈ R,

|u0x(x)| ≤

√
2kρ0(x)

1+ θ
−
√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2
. (3.10)

The next result follows from the trivial inequality

−K0 ≤
θM0 − (θM0 +

√
8k(1+ θ))/

√
2

2(1+ θ)
.

Corollary 3.2. Consider the Euler–Poisson system (1.4) with p(ρ) = Aργ , γ > 1,
subject to initial data u0, ρ0 > 0 with E0 =

∫
∞

−∞
ρ0(x) dx <∞. Then the Euler–Poisson

equations (1.4) admit a global C1-smooth solution if for all x ∈ R,

u0x(x) ≥−

√
2kρ0(x)

γ + 1

+

(
1−

1
√

2

)
γ − 1

2(γ + 1)
max
x

{√
2kρ0(x), u0x(x)+

√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2

}
+
√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2
. (3.11)

Remark 3.4. We observe that as in the isothermal case, the critical threshold in its var-
ious versions (3.8)–(3.11) allows a “large” set of initial configurations with negative ve-
locity gradient, due to the competition between the stabilizing Poisson forcing kρφ(ρ)x
and the destabilizing pressureA(ργ )x . In the extreme case where Poisson forcing is miss-
ing, k = 0, the breakdown of the system is generic unless u0x is positive enough (so that
r0, s0 > 0). In the other extreme of a “pressure-less” Euler–Poisson, A = 0, γ = 1, the
critical thresholds (3.8), (3.10) are reduced to u0x(x) > −

√
2kρ0(x), which coincides

with the “pressure-less” critical threshold (1.3) found in [ELT01].

Proof of Theorem 3.2. Expressed in terms of X := r/
√
ρ and Y := s/

√
ρ, equations

(2.8) read

X8
=
√
ρ

(
k −

1+ θ
2

X2
+
θ

2
XY

)
, (3.12a)

Y ′ =
√
ρ

(
k −

1+ θ
2

Y 2
+
θ

2
XY

)
. (3.12b)

We seek an invariant region of the form [−K0,M0], with K0,M0 > 0 yet to be deter-
mined. To this end we construct a “buffer zone” in which positive values of X, Y must



766 Eitan Tadmor, Dongming Wei

decrease and hence remain upper bounded. We begin by noticing that if X, Y ≤ M then1

X+Y ≤ M
2, and recalling that θ ≥ 0, (3.12) then yields

X8
≤
√
ρ

(
k −

1+ θ
2

X2
+
θ

2
M2

)
, X > 0, (3.13a)

Y ′ ≤
√
ρ

(
k −

1+ θ
2

Y 2
+
θ

2
M2

)
, Y > 0. (3.13b)

This in turn implies that

X resp. Y is decreasing whenever X ∈ IM resp. Y ∈ IM .

Here IM is the interval (C+(M),M)whereC+(M) :=
√
(2k + θM2)/(1+ θ) is dictated

by the largest root of the quadratics on the right of (3.13). Observe that for IM to be
nonempty we need M >

√
2k. We therefore set Mε := maxx{

√
2k + ε,X0(x), Y0(x)}.

We claim that X = X(·, t) and Y = Y (·, t) remain bounded at later time, X, Y ≤ Mε :
indeed, either X, Y ≤ C+(Mε) < Mε or, if X, Y > C+(Mε), then they must decrease
being “trapped” inside IMε and hence X, Y ≤ Mε . Letting ε ↓ 0 we end up with the
upper bound

X(·, t), Y (·, t) ≤ M0, M0 := max
x
{
√

2k,X0(x), Y0(x)}. (3.14)

In a similar manner, we study the lower bound of the invariant region. (3.14) and (3.12)
yield

X8
≥
√
ρ

(
k −

1+ θ
2

X2
+
θ

2
M0X

)
, X < 0, (3.15a)

Y ′ ≥
√
ρ

(
k −

1+ θ
2

Y 2
+
θ

2
M0Y

)
, Y < 0, (3.15b)

which in turn imply that

X and Y are increasing if 0 ≥ X, Y > −K0, (3.16a)

where K0 is the smallest root of the quadratics on the right of (3.15),

K0 :=
−θM0 +

√
θ2M2

0 + 8k(1+ θ)

2(1+ θ)
. (3.16b)

The critical threshold condition (3.8) tells us that at t = 0, X0, Y0 ≥ −K0, and (3.16a)
implies that X(·, t) and Y (·, t) remain above the same lower bound, (3.8). As before, the
bounds of X, Y and ρ imply that r = X

√
ρ and s = Y

√
ρ remain bounded, and hence

the Euler–Poisson system (1.4) a global C1-smooth solution. ut

1 We let Z+ = max{X, 0} and Z− = min{Z, 0} denote the positive and negative part of Z.
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4. Finite-time breakdown for supercritical initial data

Consider the Euler–Poisson system (1.4) with a γ -law pressure, γ ≥ 1, and subject to
initial data such that r0(x), s0(x) ≤

√
2k. Then, according to Corollary 3.1, the following

critical threshold is sufficient for the existence of global smooth solutions:

u0x(x) ≥ −
√

2kρ0(x)+
√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2
.

In this section we show that this critical threshold is also necessary for global regularity.

Theorem 4.1. Consider the Euler–Poisson system (1.4) with γ -law pressure p(ρ) =
Aργ , γ ≥ 1, subject to initial data u0, ρ0 > 0. The system loses the C1-smoothness
if there exists an x ∈ R such that

u0x(x) < −
√

2kρ0(x)+
√
Aγ

|ρ0x(x)|

ρ0(x)(3−γ )/2
. (4.1)

Remark 4.1. Expressed in terms of the Riemann invariants, r = ux−
√
Aγρ0x/ρ

(3−γ )/2
0

and s = ux +
√
Aγρ0x/ρ

(3−γ )/2
0 , the condition (4.1) reads

∃x ∈ R r0(x) < −
√

2kρ0(x) or s0(x) < −
√

2kρ0(x). (4.2)

The lack of smoothness in this case was shown in Theorem 3.1 for γ = 1 and is extended
for γ > 1 below.

Proof of Theorem 4.1. Recall equations (3.12) for X := r/
√
ρ and Y := s/

√
ρ,

X8
=
√
ρ

(
k −

1+ θ
2

X2
+
θ

2
XY

)
, (4.3a)

Y ′ =
√
ρ

(
k −

1+ θ
2

Y 2
+
θ

2
XY

)
. (4.3b)

In the proof of Theorem 3.2, we have shown that X and Y have an upper bound

X(·, t), Y (·, t) ≤ M0, M0 := max
x
{
√

2k,X0(x), Y0(x)}. (4.4)

Suppose that there exists X0 = X(x0) < −
√

2k. We will show that this value will evolve
along 0λ(x0, 0) in such a way that X(·, t) will tend to −∞ at a finite time. To this end,
assume that Y is well behaved, i.e., Y0(·) ≥ −

√
2k so that Y (·, t) ≤ M0 for all t’s

(otherwise, the finite time blow up of Y can be deduced along the same lines). It follows
that along 0λ(x0, 0),

X8
=
√
ρ

(
k −

1+ θ
2

X2
+
θ

2
XY

)
<
√
ρ

(
k −

1
2
X2
)
. (4.5)
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Following exactly what we have done in the proof of Theorem 3.1, we obtain the inequal-
ity

X(·, t) ≤
M0

X1 ln(1+
√
ρ0M0t/2)+M0X0

, (4.6)

where X1 := (X2
0 − 2k)/X2

0 > 0. Thus, starting with X0 < −
√

2k < 0 it follows that
there exists a finite critical time tc > 0 such that X(t ↑ tc) tends to −∞. ut

We conclude with an example for a finite-time breakdown.

Example. Suppose at t = 0, u0(x) = 0 and

ρ0(x) =

 1, x < 0,
1− x/2ε, 0 ≤ x ≤ ε,
1/2, x > ε.

Thus

s0(x) =

{
−
√
Aγ (1− x/2ε)/2ε, 0 < x < ε,

0, elsewhere.

If we choose ε small enough, then s0(x) < −
√

2kρ0(x) for 0 < x < ε. According to
Theorem 4.1, the system (1.4) will break down in a finite time. This example shows that
even if the fluid is near rest at t = 0, the pressure itself could still lead to collision.
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