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Abstract. We prove that an L1 vector field whose components satisfy some condition on k-th order
derivatives induce linear functionals on the Sobolev space W1,n(Rn). Two proofs are provided,
relying on the two distinct methods developed by Bourgain and Brezis (J. Eur. Math. Soc., 2007)
and by the author (C. R. Math. Acad. Sci. Paris, 2004) to prove the same result for divergence-free
vector fields and partial extensions to higher-order conditions.
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1. Introduction

1.1. Known L1 estimates for vector fields

The classical Sobolev embedding theorem states that the Sobolev space W1,p(Rn) is con-
tinuously embeddeded in Lnp/(n−p)(Rn) if p < n and in the space of Hölder continuous
functions C0,1−n/p(Rn) if p > n. The case p = n is more delicate. When n > 1,
there is no embedding of W1,n(Rn) in L∞(Rn). By duality, a function f ∈ L1(Rn) need
not be in the dual Sobolev space W−1,n/(n−1)(Rn). However, in a recent work, Bour-
gain and Brezis established that if f ∈ L1(Rn;Rn) is a divergence-free vector field, then
f ∈W−1,n/(n−1)(Rn;Rn):

Theorem 1 (Bourgain and Brezis [3, 4]). For every vector field f ∈ L1(Rn;Rn) and
u ∈ (W1,n

∩ L∞)(Rn;Rn), if div f = 0 in the sense of distributions, then∣∣∣∣∫Rn
f · u

∣∣∣∣ ≤ C‖f ‖L1 ‖∇u‖Ln ,

where the constant C only depends on the dimension of the space n.

When n = 2, this estimate is a dual statement of the classical Gagliardo–Nirenberg–
Sobolev inequality

‖u‖L2 ≤ C‖∇u‖L1 .
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In higher dimensions, this estimate implies the classical Gagliardo–Nirenberg–Sobolev
inequality

‖u‖Ln/(n−1) ≤ C‖∇u‖L1 , (1)

as well as the inequality
‖U‖Ln/(n−1) ≤ C‖curlU‖L1 (2)

for every divergence-free vector field U . When n ≥ 4, there are intermediate interesting
inequalities for k-forms with 2 ≤ k ≤ n − 2 [6, 4]. While the inequality (1) is still a
consequence of (2) by duality, there is no direct way to deduce (2) from (1). However
Theorem 1 and inequality (2) can be easily deduced from each other.

Theorem 1 was obtained by Bourgain and Brezis by a Littewood–Paley decomposi-
tion. It also has an elementary proof based on the Sobolev–Morrey embedding [10].

A natural question is whether the condition on the divergence can be replaced by
conditions on higher-order derivatives. In a previous work, we obtained

Theorem 2 (Van Schaftingen [11]). For every vector field f = (f11, f12, f22) ∈

L1(R2
;R3) and u ∈ (W1,n

∩ L∞)(R2
;R3), if

∂11f11 + ∂12f12 + ∂22f22 = 0

in the sense of distributions, then∣∣∣∣∫R2
f · u

∣∣∣∣ ≤ C‖f ‖L1 ‖∇u‖Ln .

This inequality is dual to the Korn–Sobolev inequality of Strauss [8]: For every u ∈
W1,1(R2

;R2),
‖u‖L2 ≤ C‖Du+Du

t
‖L1 ,

whereDut denotesDu transposed. Theorem 2 was obtained with the same strategy as the
elementary proof of Theorem 1 in [10]. The same method could also handle some vector
fields (fij )1≤i≤2, i≤j≤n ∈ L1(Rn;R2n−1) satisfying the second-order condition∑

1≤i≤2
i≤j≤n

∂i∂jfij = 0.

When n ≥ 3, this condition is not at all natural since there are n(n+1)/2 distinct second-
order partial derivatives, and since the condition does not have any property of invariance
under the isometries of Rn.

Theorem 1 was also extended by Bourgain and Brezis to higher-order conditions:

Theorem 3 (Bourgain and Brezis [4]). For every vector field f ∈ L1(Rn;Rn) and u ∈
(W1,n

∩ L∞)(Rn;Rn), if
n∑
i=1

∂ki fi = 0
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in the sense of distributions, then∣∣∣∣∫Rn
f · u

∣∣∣∣ ≤ C‖f ‖L1 ‖∇u‖Ln ,

where the constant C only depends on the dimension n of the space and on k.

When k > 1, the condition of Theorem 3 is not invariant under rotations of Rn.

1.2. New estimates under higher-order conditions

In this paper, we generalize Theorem 1 to vector fields satisfying a natural and invariant
condition on higher-order derivatives:

Theorem 4. Let k ≥ 1. For every vector field f = (fα)|α|=k ∈ L1(Rn;Rm) with m =(
n+k−1
k

)
and u = (uα)|α|=k ∈ (W1,n

∩ L∞)(Rn;Rm), if∑
|α|=k

∂αfα = 0 (3)

in the sense of distributions, then∣∣∣∣∫Rn
f · u

∣∣∣∣ ≤ C‖f ‖L1 ‖∇u‖Ln ,

where the constant C only depends on the dimension of the space n and on the order k.

The condition (3) is invariant: For any change of coordinates of Rn, there is a change
of coordinates in Rm such that the transformed vector field still satisfies (3). Standard
linear algebra manipulations show that any translation-invariant condition on k-th order
derivatives ensuring that vector fields are in W−1,n/(n−1) can be reduced to condition (3).

Theorem 4 generalizes Theorems 2 and 3. It can be proved by the method developed
by Bourgain and Brezis [4] to prove Theorem 3 and by the elementary method of [11, 10].

With their method, Bourgain and Brezis [4] have obtained in fact a very nice result,
much stronger than Theorem 3: If f ∈ L1(Rn;Rn), then one has f ∈W−1,n/(n−1) if and
only if

n∑
i=1

∂ki fi ∈W−(k+1),n/(n−1).

Applying their method, we deduce similarly that, for f ∈ L1(Rn;Rm), one has f ∈
W−1,n/(n−1) if and only if ∑

|α|=k

∂αfα ∈W−(k+1),n/(n−1)

(see Theorem 9 below).
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On the other hand, the elementary method of [10] gives the estimate for a wider range
of critical Sobolev spaces: If f satisfies the assumptions of Theorem 4, then∣∣∣∣∫Rn

f · u

∣∣∣∣ ≤ C‖f ‖L1 |u|Ws,p (4)

for 0 < s < 1 and p > n such that sp = n, where the constant C only depends on n, k
and s and where

|u|
p
Ws,p =

∫
Rn

∫
Rn

|u(x)− u(y)|p

|x − y|n+sp
dx dy

is the fractional Sobolev seminorm. As Bourgain and Brezis explain [4], it is not known
whether their method extends to fractional Sobolev spaces. This leads to

Open Problem 1. Let 0 < s < 1 and q = n/(n − s). Does one have f ∈ W−s,q if and
only if ∑

|α|=k

∂αfα ∈W−(s+k),q ?

As explained in Section 3.4, the elementary method also allows a slight perturbation
of the condition (3).

A crucial elementary observation in both proofs consists in rephrasing the statement
as

Theorem 5. Let k ≥ 1 and let (ai)1≤i≤n+k−1 ⊂ Rn be such that every n-element subset
of {ai}i∈{1,...,n−k+1} is a basis of Rn. For every vector field

f = (f i1···ik )1≤i1<···<ik≤n+k−1 ∈ L1(Rn;Rm),

with m =
(
n+k−1
k

)
and

u = (ui1...ik )1≤i1<···<ik≤n+k−1 ∈ (W1,n
∩ L∞)(Rn;Rm),

if ∑
1≤i1<···<ik≤n+k−1

∂kf i1···ik

∂ai1 · · · ∂aik
= 0 (5)

in the sense of distributions, then∣∣∣∣∫Rn
f · u

∣∣∣∣ ≤ C‖f ‖L1 ‖∇u‖Ln ,

where the constant C only depends on the dimension n of the space and on k.

This formulation allows one either to perform suitable integrations by parts or to apply a
powerful lemma of Bourgain and Brezis [4, Theorem 23] (see Theorem 7 below).
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1.3. Organization of the paper

Section 2 gives some handy notations to handle condition (5) and shows how Theorems 4
and 5 can be deduced from each other.

Sections 3 and 4 are completely independent and give proofs of Theorem 5 using
either an elementary method or the tools of Bourgain and Brezis.

Section 3 gives a proof in the spirit of [9–11]. It also shows how the arguments go on
to fractional critical Sobolev spaces and to the case where the condition (5) is perturbed.
The crucial novelty is the integration by parts formula for vector fields satisfying a higher-
order condition of Lemma 3.2.

The proof of Section 4 uses the tools of [3, 4] that trace back to [2, 5]. The new
arguments that we introduce consist in the definition of a suitable projector and the proof
of its properties in Theorem 8.

2. Notations and equivalence between formulations

2.1. Notations

The set of compactly supported smooth functions on Rn is denoted by C∞c (Rn). The
directional derivative with respect to the direction a is

∂av = lim
t→0

v(x + ta)− v(x)

t

(and the corresponding distribution when v is merely a distribution).
We also need some notations in order to alleviate manipulations of condition (5). Let

I(n, k) = {I ⊆ {1, . . . , n+ k − 1} : I has k elements},
S(n, k) = {α ∈ Nn : |α| = k},

and I c = {1, . . . , n+ k − 1} \ I .
If I ⊆ J are finite sets, we identify RI with the following subspace of RJ :

{x ∈ RJ : xj = 0 if j 6∈ I };

we also identify Rm and R{1,...,m}.
The index I used as a subscript will always indicate that some formal product is

performed over the set I : If I = {i1, . . . , ik}, then

∂aI v = ∂ai1
· · · ∂aik

v, (aI |ξ) = (ai1 |ξ) · · · (aik |ξ).
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2.2. Representation of the k-th order derivative

The main idea behind the equivalence between Theorems 4 and 5 is that both (∂αf )|α|=k
and (∂aI f )I∈I(n,k) completely characterize the k-th order derivative when the family of
vectors {ai}1≤i≤n+k−1 is suitably chosen.

Lemma 2.1. If every n-element subset of {ai}i∈{1,...,n−k+1} ⊂ Rn is a basis of Rn, then
there exists an invertible linear operator M : RS(n,k) → RI(n,k) such that, for every
α ∈ S(n, k), for every u ∈ Ck(Rn;R) and x ∈ Rn,

(∂αu(x))α∈S(n,k) = M((∂aI u(x))I∈I(n,k)).

In particular, if f ∈ Ck(Rn;RS(n,k)), then∑
α∈S(n,k)

∂αfα(x) =
∑

I∈I(n,k)
∂aI (M

∗f (x))I ,

where M∗ : RI(n,k)→ RS(n,k) is the adjoint of M .

Proof. For a fixed x the mapping

(∂αu(x))α∈S(n,k) 7→ (∂aI u(x))I∈I(n,k)

clearly gives a well-defined linear operator from RS(n,k) to RI(n,k). We need to prove that
it is one-to-one and onto. Since RS(n,k) and RI(n,k) have the same dimension

(
n+k−1
k

)
, it

is sufficient to prove that the mapping is injective.
Assume that, for every I ∈ I(n, k), ∂aI u = 0. Fix J ∈ I(n, k − 1). Since any subset

of n elements of {a1, . . . , an+k−1} forms a basis of Rn, one has, for every J ∈ I(n, k−1),
∂aJDu = 0. Thus, by induction, Dku = 0, so that ∂αu = 0 for every α ∈ S(n, k). This
proves the first claim; the second follows by standard linear operators theory. ut

Remark 1. Lemma 2.1 merely states in the language of differential operators that the
family {(aI |ξ)}I∈I(n,k) is a basis of the space of homogeneous polynomials in ξ of de-
gree k.

Until the end of this paper, we fix (ai)1≤i≤n+k−1 ⊂ Rn such that every n-element
subset of {ai}i∈{1,...,n−k+1} forms a basis of Rn. Also set, for x ∈ Rn+k−1,

Ax =
∑

1≤i≤n+k−1

aixi,

and note that

∂aif ◦ A = ∂i(f ◦ A). (6)
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3. Elementary method

3.1. Strategy of proof

In the previous elementary proofs of Theorems 1 and 2 [9–11], the key observation was
that a function in W1,n(Rn) is Hölder continuous on almost every hyperplane. This al-
lowed one to obtain good estimates on hyperplanes which could then be integrated to
obtain the conclusion by Hölder’s inequality.

In the current setting, the estimate on hyperplanes is given by

Lemma 3.1 (Hölder estimate). Let 0 < γ < 1 and f ∈ L1(Rn;RI(n,k)). If∑
J∈I(n,k)

∂aJ f
J
= 0, (7)

then for every I ∈ I(n, k) and for every ϕ ∈ C0,γ (A(RI c )),∣∣∣∣∫
A(RIc )

f Iϕ

∣∣∣∣ ≤ C‖f ‖γL1‖f
I
‖

1−γ
L1(A(RIc ))|ϕ|C0,γ .

Here
|ϕ|C0,γ = sup

x,y∈Rn

|ϕ(x)− ϕ(y)|

|x − y|γ
.

Before proving Lemma 3.1 in Section 3.3, let us see how the estimate on the space follows
from the estimate on the hyperplanes.

Proof of Theorem 5. It is sufficient to estimate, for every I ∈ I(n, k),∫
Rn
f IuI .

Up to a change of variables and a permutation, we can assume that I = {n, . . . , n+k−1}
and that, for 1 ≤ i ≤ n− 1, the vector ai is the i-th element of the canonical basis of Rn.
We thus have ∫

Rn
f IuI =

∫
R

∫
Rn−1

f I (y, t)uI (y, t) dy dt.

For almost every t ∈ R, the inner integral can be estimated by Lemma 3.1 together with
the Sobolev–Morrey embedding W1,n(Rn−1) ⊂ C0,1/n(Rn−1):∣∣∣∣∫Rn−1

f I (y, t)uI (y, t) dy

∣∣∣∣ ≤ C‖f ‖1/nL1 ‖f (·, t)‖
1−1/n
L1 ‖∇u(·, t)‖Ln .

One concludes by Hölder’s inequality and Fubini’s theorem. ut

Remark 2. The proof of the estimate (4) is similar: the embedding W1,n(Rn−1) ⊂

C0,1/n(Rn−1) should be replaced by the embedding Ws,p(Rn−1) ⊂ C0,γ (Rn−1) with
γ = s − (n− 1)/p and one should recall that∫

R
|u(·, t)|

p
Ws,p dt ≤ C|u|

p
Ws,p

(see e.g. [1]).
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3.2. Integration by parts

The formula∫
Rn−1

f n(x, 0)ψ(x, 0) dx =
∫

Rn−1

∫
R+
f (x, t) · ∇ψ(x, t) dt dx, (8)

when f ∈ L1(Rn;Rn) is divergence-free and ψ ∈W1,∞(Rn), played a crucial role in the
counterpart of Lemma 3.1 of the elementary proof of Theorem 1 in [10]. The treatment
of second-order operators required a similar formula [11, Lemma 3]. In this section, we
establish a counterpart of (8) under higher-order conditions.

Lemma 3.2. Assume f ∈ (L1
∩C)(Rn;RI(n,k)), let I ∈ I(n, k) and let ψ ∈ L∞(Rn)∩

C(Rn) ∩ Ck(Rn \ A(RI )) be such that for every 1 ≤ j ≤ k,

sup
x∈Rn

dist(x,A(RI ))j−1
|Djψ(x)| <∞.

If (7) holds, then∫
RIc
(f Iψ) ◦ A = −

∑
L∈I(n,k)

∑
L\I⊆J⊆L
J 6=∅

(−1)|J |
∫

RIc×R(I∩J )∪(I\L)+

(f L∂aJψ) ◦ A. (9)

In particular,∣∣∣∣∫
A(RIc )

f Iψ

∣∣∣∣ ≤ C‖f ‖L1 max
1≤j≤k

sup
x∈Rn

dist(x,A(RI ))j−1
|Djψ(x)|, (10)

where the constant C only depends on the dimension n of the space and on the order k.

Remark 3. Lemma 3.2 allows us to define f |A(RIc ) by (9) as a distribution of order k
when f ∈ L1(Rn;RI(n,k)) satisfies condition (7).

Lemma 3.3. For every u ∈ C∞(RI ) and v ∈ C∞c (RI ), one has∫
RI+
v∂eI u =

∑
J⊆I

(−1)|J |
∫

RJ+
u∂eJ v,

where (ei)i∈I is the canonical basis of RI .

Proof. This is proved by integration by parts and by induction on the number of elements
of I . ut

The other ingredient will be
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Lemma 3.4. Let k ≥ 0, H ⊆ Rn be a vector subspace, d(x) = dist(x,H) and ψ ∈
L∞(Rn) ∩ C1(Rn) ∩ Ck(Rn \H). If, for every 1 ≤ j ≤ k,

sup
x∈Rn

d(x)j−1
|Djψ(x)| <∞,

then there exists a sequence (ψm) ⊆ Ckc (Rn) such that, for every x ∈ Rn,

ψm(x)→ ψ(x) for every x ∈ Rn,

Djψm(x)→ Djψ(x) for every 1 ≤ j ≤ k and x ∈ Rn \ A(RI
c

),

sup
m∈N
‖ψm‖L∞ <∞, sup

m∈N
sup
x∈Rn

d(x)j−1
|Djψm(x)| <∞ for every 1 ≤ j ≤ k.

Proof. Let ρ ∈ C∞c (Rn) be such that
∫
Rn ρ = 1, supp ρ ⊂ B(0, 1), and set ρε(x) =

ε−nρ(x/ε). Also let η ∈ C∞c (Rn) be such that η(x) = 1 when |x| ≤ 1 and η(x) = 0
when |x| ≥ 2. Set ηε(x) = η(εx) and define

ψε = ηε(ρε ∗ ψ).

The convergences ψε(x)→ ψ(x) and Djψε(x)→ Djψ(x) follow immediately.
If d(x) ≤ 2ε, one has, for every 1 ≤ i ≤ k,

|Di(ρε ∗ ψ)(x)| = |D
i−1(ρε ∗Dψ)(x)| ≤

C

εi−1 ‖Dψ‖L
∞ ≤

2i−1C

d(x)i−1 ‖Dψ‖L
∞ ,

while, if d(x) ≥ 2ε,

|Di(ρε ∗ ψ)(x)| ≤ sup
d(y)≥d(x)−ε

|Diψ(y)| ≤
2i−1

d(x)i−1 sup d(y)i−1
|Diψ(y)|.

Hence,
sup

x∈Rn\H
d(x)i−1

|Di(ρε ∗ ψ)(x)| ≤ C <∞. (11)

On the other hand, for i ≥ 0,

|Diηε(x)| ≤
C

|x|i
≤

C

d(x)i
(12)

and, for i ≥ 1 and ε ≤ 1,

|Diηε(x)| ≤
C

|x|i−1 ≤
C

d(x)i−1 . (13)

Since
|Djψε(x)| ≤ C

∑
0≤i≤j

|Di(ρε ∗ ψ)(x)| |D
j−iηε(x)|,

one concludes with (11), (12), (13) and the boundedness of ψ . ut
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Proof of Lemma 3.2. Let us first assume that f ∈ C∞(Rn) and ψ ∈ C∞c (Rn). By condi-
tion (7), we have ∑

L∈I(n,k)

∫
RIc×RI+

(ψ ∂aLf
L) ◦ A = 0. (14)

Integrating by parts and developing each term according to Lemma 3.3, we obtain∫
RIc×RI+

(ψ∂aLf
L) ◦ A = (−1)|L\I |

∫
RIc×RI+

(∂aL∩I f
L ∂aL\Iψ) ◦ A

= (−1)|L\I |
∑

K⊆I∩L

(−1)|K|
∫

RIc×RK∪(I\L)+

(f L ∂aK∪(L\I )ψ) ◦ A

=

∑
L\I⊆J⊆L

(−1)|J |
∫

RIc×R(I∩J )∪(I\L)+

(f L ∂aJψ) ◦ A.

Putting this into (14), we obtain (9).
In the case where f is merely continuous, one obtains (9) by approximation by con-

volution and by Lebesgue’s dominated convergence theorem. In the general case, note
that since ai 6∈ A(RI

c
) for i ∈ I and since J and (I ∩ J )∪ (I \L) have the same number

of elements, one has ∫
RIc×RJ+

|f ◦ A|

dist(Ax,A(RI c ))|J |−1 ≤ C‖f ‖L1 .

Approximating ψ by Lemma 3.4 with H = A(RI c ), we conclude by Lebesgue’s domi-
nated convergence theorem.

The estimate (10) follows immediately. ut

3.3. The Lipschitz and Hölder estimates

Using the integration by parts formula of Lemma 3.2 we can now go on to the proof of
Lemma 3.1.

Lemma 3.5. Let f ∈ L1(Rn;RI(n,k)). If (7) holds, then for every I ∈ I(n, k) and for
every ϕ ∈W1,∞(A(RI c )), ∣∣∣∣∫

A(RIc )
f Iϕ

∣∣∣∣ ≤ C‖f ‖L1‖∇ϕ‖L∞ .

Lemma 3.6. LetH ⊂ Rn be a hyperplane. If ϕ ∈ C1(Rn−1) is such that ∇ϕ is bounded,
then there exists ψ ∈ C1(Rn) ∩ C∞(Rn \ Rn−1) such that ψ(x, 0) = ϕ(x), ‖ψ‖L∞ =
‖ϕ‖L∞ , and for every k ≥ 1,

sup
x∈Rn

dist(x,H)k−1
|Dkψ(x)| ≤ Ck‖∇ϕ‖L∞ .
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Proof. Choose the coordinate axes in such a manner that H = Rn−1
× {0}. Let ρ ∈

C∞c (Rn−1) be such that
∫
Rn ρ = 1 and let ρt (x) = ρ(x/t)/tn−1. Define ψ as

ψ(x, t) = (ρt ∗ ϕ)(x).

The estimates then follow directly (see e.g. similar estimates in [7, Chapter V, §4]). ut

We are now in a position to obtain the Lipschitz estimate and to deduce therefrom the
Hölder estimate.

Proof of Lemma 3.5. Extend ϕ to ψ according to Lemma 3.6 and apply the estimate (10)
of Lemma 3.2. ut

Proof of Lemma 3.1. The conclusion is obtained by interpolation between the elementary
inequality ∣∣∣∣∫

A(RIc )
f Iϕ

∣∣∣∣ ≤ C‖f I‖L1(A(RIc ))‖ϕ‖L∞

and the estimate ∣∣∣∣∫
A(RIc )

f Iϕ

∣∣∣∣ ≤ C‖f ‖L1(Rn)‖∇ϕ‖L∞

that was obtained in Lemma 3.5. For every ε > 0, there exists ϕε ∈ C1(RI ), constructed
e.g. by standard mollification, such that

‖ϕ − ϕε‖L∞ ≤ Cε
γ
|ϕ|C0,γ , ‖∇ϕε‖L∞ ≤ Cε

γ−1
|ϕ|C0,γ .

Taking ε = ‖f ‖L1/‖f ‖L1(A(RIc )) yields the conclusion. ut

3.4. Estimates under perturbations

The elementary proof of Theorem 1 given in [10] allows some perturbation on the di-
vergence-free condition. Indeed, in [10] it was proved that if f ∈ L1(Rn;Rn), div f ∈
L1(Rn) and u ∈ (W1,n

∩ L∞)(Rn;Rn), then∣∣∣∣∫Rn
f · u

∣∣∣∣ ≤ C(‖f ‖L1‖∇u‖Ln + ‖div f ‖L1‖u‖Ln).

Similar results can be obtained for higher-order operators.
Performing the same computations as in Lemma 3.2, one has

Lemma 3.7. Let f ∈ (L1
∩ C)(Rn;RI(n,k)), gl ∈ L1(Rn;RI(n,l)) for 0 ≤ l ≤ k − 1,

I ∈ I(n, k), and let ψ ∈ L∞(Rn) ∩ C(Rn) ∩ Ck(Rn \ A(RI )) be such that for every
1 < l < k,

sup
x∈Rn

dist(x,A(RI ))l−1
|Dlψ(x)| <∞.
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If ∑
J∈I(n,k)

∂aJ f
J
=

k−1∑
l=0

∑
J∈I(n,l)

∂aJ g
J
l ,

then∫
RIc
(f Iψ) ◦ A = −

∑
L∈I(n,k)

∑
L\I⊆J⊆L
J 6=∅

(−1)|J |
∫

RIc×R(I∩J )∪(I\L)+

(f L ∂aJψ) ◦ A

+

k−1∑
l=0

∑
L∈I(n,l)

∑
L\I⊆J⊆L

(−1)|J |
∫

RIc×R(I∩J )∪(I\L)+

(gLl ∂aJψ) ◦ A.

In particular,

∣∣∣∣∫
A(RIc )

f Iψ

∣∣∣∣ ≤ C[‖f ‖L1 max
1≤j≤k

sup
x∈Rn

dist(x,A(RI ))j−1
|Djψ(x)|

+

∑
0≤l≤k−1

‖gl‖L1 max
0≤j≤l

sup
x∈Rn

dist(x,A(RI ))k−l+j−1
|Djψ(x)|

]
,

where the constant C only depends on the dimension n of the space and on the order k,
and where gl = (gLl )L∈I(n,l).

The proof of Lemma 3.7 is similar to that of Lemma 3.2 and allows us to extend Theo-
rem 5 to

Theorem 6. Assume f ∈ L1(Rn;RI(n,k)), gj ∈ L1(Rn;RI(n,l)) for max(0, k − n) ≤
l ≤ k − 1, and let u ∈ (W1,n

∩ L∞)(Rn;RI(n,k)). If∑
L∈I(n,k)

∂aI f =
∑

0≤l≤k−1
l≥k−n

∑
L∈I(n,l)

∂aLg
L
l , (15)

then ∣∣∣∣∫Rn
f · u dx

∣∣∣∣ ≤ C[‖f ‖L1 ‖∇u‖Ln +
∑

0≤l≤k−1
l≥k−n

‖gl‖L1‖u‖Ln/(k−l)

]
, (16)

where the constant C only depends on the dimension n of the space and on k.

Remark 4. As for Theorem 5, ‖∇u‖Ln can be replaced by |u|Ws,p in (16).

Theorem 6 is proved just as Theorem 5 once one has the following estimate:
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Lemma 3.8. Let f ∈ L1(Rn;RI(n,k)) and gj ∈ L1(Rn;RI(n,l)) for max(0, k − n) ≤
l ≤ k − 1. If (15) holds, then for every I ∈ I(n, k) and for every ϕ ∈ (C0,γ

∩⋂
0≤l≤k−1
l≥k−n

Ln/(k−l))(A(RI c )),∣∣∣∣∫
A(RIc )

f Iϕ

∣∣∣∣ ≤ C[‖f ‖γL1‖f
I
‖

1−γ
L1(A(RIc ))|ϕ|C0,γ

+

∑
0≤l≤k−1
l≥k−n

(‖f I‖L1(A(RIc ))/‖f ‖L1)
1−(k−l)/n

‖gl‖L1‖ϕ‖Ln/(k−l)

]
.

Proof. The proof goes as the proof of Lemma 3.1. Replacing Lemma 3.2 by Lemma 3.7,
one obtains the counterpart of (3.5):∣∣∣∣∫

A(RIc )
f Iϕ

∣∣∣∣ ≤ C[‖f ‖L1‖∇ϕ‖L∞ +
∑

0≤l≤k−1
l≥k−n

‖gl‖L1‖ϕ‖L(n−1)/(k−l−1)

]
.

The parameter ε is then chosen exactly in the same way and the additional terms are
controlled by Young’s convolution inequality. ut

Remark 5. When k ≥ n+ 1, an unnatural restriction l ≥ k − n appears in the statement
of Theorem 6. This restriction does not come from the integration by parts of Lemma 3.7,
but from the estimate of Lemma 3.8. In the latter lemma, one needs to find a norm on ϕ
that plays the role of ‖ϕ‖L(n−1)/(k−l−1) when (n− 1)/(k− l − 1) < 1. In order to make the
proof work this norm should satisfy some kind of Hölder-type inequality and some kind
of Fubini theorem. While the Lebesgue spaces L(n−1)/(k−l−1) and the real Hardy space
H(n−1)/(k−l−1) have the right homogeneity, they do not seem to have properties that could
play the role of Hölder’s inequality or Fubini’s theorem.

4. The Bourgain–Brezis approach

4.1. Estimate on the torus

The proof of Theorem 3 by Bourgain and Brezis was based on the following result:

Theorem 7 (Bourgain and Brezis [4]). Let X ⊆ L2(Tn;Rr) be an invariant function
space and assume that the orthogonal projection P on X satisfies

‖Pf ‖Lp ≤ Cp

r∑
s=1

‖AsRfs‖Lp for all 1 < p <∞

for some fixed singular matrices As ∈ Qn×n (1 ≤ s ≤ r) and where R denotes the
vector-valued Riesz transform. Then, for every u ∈W−1,n/(n−1)(Tn,Rr),

‖u‖W−1,n/(n−1) ≤ C(‖u‖L1 + dist(u,X)),

where dist denotes the distance in W−1,n/(n−1).
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Remark 6. Theorem 7 is an easy variant of Theorem 23 in [4]. In the spirit of the remarks
preceding Theorem 10′ therein, Theorem 10 can be replaced in the proof of Theorem 23
by a variant of Theorem 10′ where Rn would be replaced by the torus Tn and As would
be assumed to be rational singular matrices.

In order to state the higher-order estimate on the torus, define, for a1, . . . , an+k−1
∈ Rn and u ∈ L1(Tn;RI(n,k)), the operator

Tf =
∑

I∈I(n,k)
∂aI f

I .

Theorem 8. Assume that ai ∈ Qn and every n-element subset of {ai}1≤i≤n+k−1 is
a basis of Qn. If f ∈ L1(Tn;RI(n,k)) and Tf ∈ W−(k+1),n/(n−1)(Tn), then f ∈

W−1,n/(n−1)(Tn;RI(n,k)) and

‖f ‖W−1,n/(n−1) ≤ C(‖f ‖L1 + ‖Tf ‖W−(k+1),n/(n−1)).

Remark 7. If f ∈ W−1,n/(n−1)(Tn;RI(n,k)), one has Tf ∈ W−(k+1),n/(n−1)(Tn). The
condition Tf ∈W−(k+1),n/(n−1)(Tn) is thus necessary and sufficient.

Proof of Theorem 8. Consider the invariant space

X = {f ∈ L2(Tn;RI(n,k)) : Tf = 0}.

The orthogonal projection P : L2(Tn;RI(n,k))→ X is

(P̂f )I (ξ) = f̂ I (ξ)−
(aI |ξ)

3(ξ)

∑
J∈I(n,k)

(aJ |ξ)f̂
J (ξ)

for I ∈ I(n, k), where
3(ξ) =

∑
J∈I(n,k)

(aJ |ξ)
2.

One also has

(P̂f )I (ξ) =
∑

J∈I(n,k)\{I }

(aJ |ξ)

3(ξ)
((aJ |ξ)f̂

I (ξ)− (aI |ξ)f̂
J (ξ)).

Since every n-element subset of {ai}1≤i≤n+k−1 is a basis of Qn, for every ξ ∈ Rn \{0}
there is I ∈ I(n, k) such that (ai |ξ) 6= 0 for every i ∈ I . Therefore 3(ξ) 6= 0. Setting

mJ (ξ) =
(aJ |ξ)|ξ |

k

3(ξ)
,

one sees thatmJ is dilation-invariant andm ∈ C∞(Rn\{0}) and therefore acts boundedly
on Lp(Rn) (see e.g. [7, Theorem 6 in Chapter 3, §3.5, together with Theorem 3 in Chapter
2, §4.2]). Recalling moreover that R is a bounded operator on Lp(Rn), we obtain

‖Pf ‖Lp ≤ C
∑

I,J∈I(n,k)
I 6=J

∥∥(aJ |R)f I∥∥Lp ≤ C
′
∑

I∈I(n,k)

∑
1≤s≤n+k−1

s 6∈I

∥∥(as |R)f I∥∥Lp
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(where (a|R)v = (a|Rv)). Therefore P satisfies the assumptions of Theorem 7. Hence

‖f ‖W−1,n/(n−1) ≤ C(‖f ‖L1 + dist(f,X )).

Since
̂(f − Pf )I (ξ) = mI (ξ)

T̂f (ξ)

|ξ |k
,

recalling that mI acts boundedly on Lp, one concludes that

dist(f,X ) ≤ ‖f − Pf ‖W−1,n/(n−1) ≤ C‖Tf ‖W−(k+1),n/(n−1) . ut

Remark 8. The choice of the condition (5) instead of (3) has given to the space of vector
fields a norm for which the orthogonal projector satisfies the assumptions of Theorem 7.
Since M given by Lemma 2.1 need not be an isometry, the projection on

X̃ =
{
f ∈ L2(Tn;RS(n,k)) :

∑
|α|=k

∂αfα = 0
}

is not related to the projection on X and need not have its good properties.

4.2. Estimates on the whole space

As in [4], Theorem 8 can be transported from the torus Tn to the euclidean space Rn.

Theorem 9. Assume that ai ∈ Rn and every n-element subset of {ai}1≤i≤n+k−1 is
a basis of Rn. If f ∈ L1(Rn;RI(n,k)) and Tf ∈ W−(k+1),n/(n−1)(Rn), then f ∈

W−1,n/(n−1)(Rn;RI(n,k)) and

‖f ‖W−1,n/(n−1) ≤ C(‖f ‖L1 + ‖Tf ‖W−(k+1),n/(n−1)).

Proof. By Lemma 2.1, it suffices to prove the result for ai ∈ Qn.
The proof is the same as in [4, Corollary 24′]. We just sketch the idea. Fix ϕ ∈ Cc(Rn)

such that suppϕ ⊂ ]−1, 1[n ∼= Tn and let u ∈ (W1,n
∩ L∞)(Rn;RI(n,k)). Defining, for

R ≥ 1, fR ∈ L1(Tn;RI(n,k)) and uR ∈W1,n(Tn;RI(n,k)) by

fR(x) = ϕ(Rx)f (Rx), uR(x) = u(Rx)ϕ(Rx),

one has, by Theorem 8,∣∣∣∫
Tn
fRuR

∣∣∣ ≤ C(‖fR‖L1 + ‖TfR‖W−(k+1),n/(n−1))‖u‖W1,n .

Since

Rn
∫

Tn
fRuR →

∫
Rn
f u, Rn‖fR‖L1(Tn)→ ‖f ‖L1(Rn),

Rn‖TfR‖W−(k+1),n/(n−1)(Tn)→ ‖Tf ‖W−(k+1),n/(n−1)(Rn), ‖uR‖W1,n(Tn)→ ‖Du‖Ln(Rn),

as R→∞, the conclusion follows. ut
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