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Abstract. We prove the logarithmic convexity of certain quantities, which measure the quadratic
exponential decay at infinity and within two characteristic hyperplanes of solutions of Schrödinger
evolutions. As a consequence we obtain some uniqueness results that generalize (a weak form of)
Hardy’s version of the uncertainty principle. We also obtain corresponding results for heat evolu-
tions.
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1. Introduction

In this paper we continue the study initiated in [11] and [2] on unique continuation prop-
erties of solutions of Schrödinger evolutions

i∂tu+1u = V (x, t)u in Rn × [0, 1]. (1.1)

The goal is to obtain sufficient conditions on a solution u, the potential V and the behavior
of the solution at two different times, t0 = 0 and t1 = 1, which guarantee that u ≡ 0 in
Rn × [0, 1].

One of our motivations comes from a well known result due to G. H. Hardy [16, pp.
131] (see also [1] for a recent survey on this topic), which concerns the decay of a function
f and its Fourier transform,

f̂ (ξ) = (2π)−n/2
∫

Rn
e−iξ ·xf (x) dx,
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and states:
If f (x) = O(e−|x|

2/β2
), f̂ (ξ) = O(e−4|ξ |2/α2

), and αβ < 4, then f ≡ 0. Also, if
αβ = 4, thenf is a constant multiple of e−|x|

2/β2
,

This result can be rewritten in terms of the free solution of the Schrödinger equation
in Rn × (0,+∞), i∂tu+1u = 0, with initial data f ,

u(x, t) = (4πit)−n/2
∫

Rn
ei|x−y|

2/4tf (y) dy = (2πit)−n/2ei|x|
2/4t ̂

ei| · |
2/4tf

(
x

2t

)
in the following way:

If u(x, 0) = O(e−|x|
2/β2

), u(x, T ) = O(e−|x|
2/α2

), and αβ < 4T , then u ≡ 0. Also,
if αβ = 4T , then u has as initial data a constant multiple of e−(1/β

2
+i/4T )|y|2 .

The corresponding result in terms of L2-norms and established in [15] is the follow-
ing:

If e|x|
2/β2

f and e4|ξ |2/α2
f̂ are in L2(Rn) and αβ ≤ 4, then f ≡ 0.

If e|x|
2/β2

u(x, 0) and e|ξ |
2/α2

u(x, T ) are in L2(Rn) and αβ ≤ 4T , then u ≡ 0.
In our previous paper [2] we proved a uniqueness result in this direction for potentials

which satisfy

lim
R→+∞

∫ 1

0
‖V (t)‖L∞(Rn\BR) dt = 0. (1.2)

More precisely, we proved that the only solution to (1.1) in C([0, 1], H 2(Rn)) which
together with its gradient decays faster than any quadratic exponential at times 0 and
1 is the zero solution when V is bounded in Rn × [0, 1], (1.2) holds, and ∇xV is in
L1
t L
∞
x (Rn× [0, 1]). This linear result was then applied to show that two regular solutions

u1 and u2 of non-linear equations of the type

i∂tu+1u = F(u, u) in Rn × [0, 1], (1.3)

for very general non-linearities F , must agree in Rn× [0, 1] when u1−u2 and its gradient
decay faster than any quadratic exponential at times 0 and 1. This replaced the assumption
that the solutions coincide on large subdomains of Rn at two different times, which was
previously studied in [11, 7], and showed that weaker variants of Hardy’s theorem hold
even in the context of non-linear Schrödinger evolutions.

Our main result in this paper is the following one.

Theorem 1. Assume that u in C([0, 1], L2(Rn)) satisfies

∂tu = i(1u+ V (x, t)u) in Rn × [0, 1],

α and β are positive, αβ < 2, ‖e|x|
2/β2

u(0)‖L2(Rn) and ‖e|x|
2/α2

u(1)‖L2(Rn) are both
finite, the potential V is bounded, and either V (x, t) = V1(x) + V2(x, t) with V1 real-
valued and

sup
[0,1]
‖e

|x|2

(αt+β(1−t))2 V2(t)‖L∞(Rn) < +∞,

or limR→+∞ ‖V ‖L1([0,1],L∞(Rn\BR)) = 0. Then u ≡ 0.
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As a direct consequence of Theorem 1 we get the following straightforward result con-
cerning the uniqueness of solutions for non-linear equations of the form (1.3).

Theorem 2. Let u1 and u2 be C([0, 1], H k(Rn)) strong solutions of the equation (1.3)
with k ∈ Z+, k > n/2, F : C2

→ C, F ∈ Ck , and F(0) = ∂uF(0) = ∂ūF(0) = 0. If
there are α and β positive with αβ < 2 such that

e|x|
2/β2

(u1(0)− u2(0)) and e|x|
2/α2

(u1(1)− u2(1))

are in L2(Rn), then u1 ≡ u2.

Notice that the condition αβ < 2 is independent of the size of the potential or the dimen-
sion and that we do not assume any decay of the gradient neither of the solutions or of
time-independent potentials or any regularity of the potentials.

Our improvement over the results of [2] comes from a better understanding of the
solutions to (1.1) which have a Gaussian decay. We started the study of this particular
type of solutions in our recent work [3], where we consider free waves (i.e. V (x, t) = 0
in (1.1)) and among other results we proved the following:

Assume that u in C([0, 1], L2(Rn)) is a solution of

∂tu− i1u = 0 in Rn × [0, 1],

and that ‖eγ |x|
2
u(0)‖, ‖eγ |x|

2
u(1)‖ are both finite. Set f = eγ |x|

2
u and H(t) = (f, f ).

Then logH(t) is a convex function.
The proof of Theorem 1 relies first on extending the above convexity properties to

the non-free case, and secondly on a modification of the definition of the function H as
follows: for e1 = (1, 0, . . . , 0), R > 0 and 0 < µ < γ set

f = eµ|x+Rt(1−t)e1|
2
u (1.4)

and H(t) = (f, f ). Then it is easy to prove at a formal level that

∂2
t logH(t) ≥ −

R2

4µ
.

Therefore H(t)e−R
2t (1−t)/8µ is logarithmically convex in [0, 1] and

H(t) ≤ H(0)1−tH(1)teR
2t (1−t)/8µ.

Taking t = 1/2 and letting µ increase towards γ , we have∫
e2γ |x+(R/4)e1|

2
|u(1/2)|2 dx ≤ ‖eγ |x|

2
u(0)‖ ‖eγ |x|

2
u(1)‖eR

2/32γ .

Thus, ∫
BεR/4

|u(1/2)|2 dx ≤ ‖eγ |x|
2
u(0)‖ ‖eγ |x|

2
u(1)‖eR

2(1−4γ 2(1−ε)2)/32γ

when 0 < ε < 1, which implies that u ≡ 0 by letting R tend to infinity, when γ > 1/2.
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The path that goes from the formal level to a rigorous one is not an easy one. In fact,
in Section 6 we will give explicit examples of functions H(t) such that logH is formally
convex but the corresponding inequalities lead to false statements. Therefore most of this
paper is devoted to making the above argument rigorous. The starting point is to prove
similar properties to those obtained in [4] for free solutions. One of the results we get is
the following one.

Theorem 3. Assume that u in C([0, 1], L2(Rn)) satisfies

∂tu = i(1u+ V (x, t)u) in Rn × [0, 1],

V = V1(x) + V2(x, t), V1 is real-valued, ‖V1‖∞ ≤ M1, and there are positive numbers
α and β such that

‖e|x|
2/β2

u(0)‖, ‖e|x|
2/α2

u(1)‖, sup
[0,1]
‖e

|x|2

(αt+(1−t)β)2 V2(t)‖∞ < +∞.

Then ‖e
|x|2

(αt+(1−t)β)2 u(t)‖αt+(1−t)β is “logarithmically convex” in [0, 1] and there is N =
N(α, β) such that

‖e
|x|2

(αt+(1−t)β)2 u(t)‖ ≤ eN(M1+M2+M
2
1+M

2
2 )‖e|x|

2/β2
u(0)‖

β(1−t)
αt+β(1−t) ‖e|x|

2/α2
u(1)‖

αt
αt+β(1−t)

when 0 ≤ t ≤ 1 and M2 = sup[0,1] ‖e
|x|2

(αt+β(1−t))2 V2(t)‖∞ e
2 sup[0,1] ‖ImV2(t)‖∞ . Moreover,

‖

√
t (1− t) e

|x|2

(αt+(1−t)β)2 ∇u‖L2(Rn×[0,1])

≤ NeN(M1+M2+M
2
1+M

2
2 )[‖e|x|

2/β2
u(0)‖ + ‖e|x|

2/α2
u(1)‖].

In order to prove this theorem we have to approximate the solution using some artificial
diffusion. The corresponding results are interesting in themselves and can be found in
Section 2. As a byproduct we get examples of solutions to (1.1) which have Gaussian
decay, when the potential V is time independent. It is enough to consider as initial data
the solution, at say time one, of the corresponding heat equation that at time zero is a
Gaussian. This property was already established in [4] for free solutions, and it turned
out to be a characterization of those Gaussian solutions. It would be interesting to prove
similar characterizations for variable coefficient Hamiltonians. Also in Section 2 we give
an abstract result, Lemma 2, that shows how to get logarithmic convexity properties from
the positivity of some specific commutators. It turns out that these commutators are the
same as the ones that appear in the proof of the L2-Carleman estimates we used in our
previous paper [2]. In fact, the weight µ|x + Re1t (1 − t)|2 that appears in (1.4) is a
refinement of the ones used in [2].

We are indebted to E. Zuazua for pointing out the application of Hardy’s uncertainty
principle to prove the following optimal decay result for solutions of the free heat equation
(see also [10, Section 5]):
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If f and e|x|
2/δ2

e1f are in L2(Rn) for some δ ≤ 2, then f ≡ 0.

In fact, applying Hardy’s uncertainty principle to e1f shows that e|x|
2/δ2

e1f and
e4|ξ |2/22

ê1f = f̂ are in L2(Rn), and 2δ ≤ 4 implies e1f ≡ 0. Then backward unique-
ness arguments (see for instance [13, Chapter 3, Theorem 11] or [5, Chapter 3]) show
that f ≡ 0. Here, we prove the following weaker extension of this result for parabolic
operators with variable coefficients.

Theorem 4. Let u in L∞([0, 1], L2(Rn)) ∩ L2([0, T ], H 1(Rn)) satisfy{
∂tu = 1u+ V (x, t)u in Rn × (0, 1],
u(0) = f,

where V is bounded in Rn× [0, 1], and assume that f and e|x|
2/δ2

u(1) are in L2(Rn) for
some δ < 1. Then f ≡ 0 in Rn.

It is natural to expect that the Hardy uncertainty principle holds for Schrödinger and heat
evolutions with bounded potentials and with parameters α, β or δ satisfying the condition
of the free case.

In the sketch of the proof of Theorem 1 that we have given above we have assumed
that α = β. That one can easily reduce to this case is proved in Section 3 using the so
called conformal transformation or Appell transform. In Section 4 we prove Theorem 3,
in Section 5 we give the proof of Theorem 1, in Section 6 we give some examples of some
misleading convex functions, and in Section 7 we prove Theorem 4.

2. A few lemmas

In the following,

(f, g) =

∫
Rn
f g dx, ‖f ‖2 = (f, f ), f+ = max {f, 0}

and ‖f ‖∞ denotes the L∞-norm of f over Rn.

Lemma 1. Assume that u in L∞([0, 1], L2(Rn)) ∩ L2([0, 1], H 1(Rn)) satisfies

∂tu = (A+ iB)(1u+ V (x, t)u+ F(x, t)) in Rn × (0, 1],

A > 0 and B ∈ R. Then

e−MT ‖e
γA|x|2

A+4γ (A2+B2)T u(T )‖

≤ ‖eγ |x|
2
u(0)‖ +

√
A2 + B2‖e

γA|x|2

A+4γ (A2+B2)t F(t)‖L1([0,T ],L2(Rn))

when γ ≥ 0, 0 ≤ T ≤ 1 and MT = ‖A(ReV )+ − B ImV ‖L1([0,T ],L∞(Rn)).
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Proof. Write v = eϕu, where ϕ is a real-valued function to be chosen later. The function
v satisfies

∂tv = Sv +Av + (A+ iB)eϕF in Rn × (0, 1],

where the symmetric and skew-symmetric operators S and A are given by

S = A(1+ |∇ϕ|2)− iB(2∇ϕ · ∇ +1ϕ)+ (∂tϕ + AReV − B ImV ),

A = iB(1+ |∇ϕ|2)− A(2∇ϕ · ∇ +1ϕ)+ i(B ReV + A ImV ).

To prove Lemma 1 we use the energy method and try to keep track of the decay of the
L2(Rn)-norm of v. Formally,

∂t‖v‖
2
= 2 Re (Sv, v)+ 2 Re ((A+ iB)eϕF, v)

when t ≥ 0. Again, a formal integration by parts gives

Re (Sv, v) = − A
∫

Rn
|∇v|2 dx +

∫
Rn
(A|∇ϕ|2 + ∂tϕ)|v|

2 dx

+ 2B Im
∫

Rn
v∇ϕ · ∇v dx +

∫
Rn
(AReV − B ImV )|v|2 dx (2.1)

and the Cauchy–Schwarz inequality implies that

∂t‖v(t)‖
2
≤ 2‖A(ReV (t))+ − B ImV (t)‖∞‖v(t)‖

2
+ 2

√
A2 + B2‖eϕF(t)‖ ‖v(t)‖

when
(A+ B2/A)|∇ϕ|2 + ∂tϕ ≤ 0 in Rn+1

+ . (2.2)

When ϕ(x, t) = a(t)φ(x), it suffices that

a(t)2(A+ B2/A)|∇φ(x)|2 + a′(t)φ(x) ≤ 0.

At the end we shall require that φ(x) = |x|2. In that case the latter holds when{
a′(t) = −4(A+ B2/A)a(t)2,

a(0) = γ.
(2.3)

To formalize the integration by parts and calculations carried out above, given γ > 0,
we truncate |x|2 as

φR(x) =

{
|x|2, |x| ≤ R,

R2, |x| > R,

regularize φR with a radial mollifier θρ and set

ϕρ,R(x, t) = a(t) θρ ∗ φR(x), vρ,R = e
ϕρ,Ru,

where
a(t) =

γA

A+ 4γ (A2 + B2)t

is the solution to (2.3).



Hardy’s uncertainty principle 889

Because the right hand side of (2.1) only involves the first derivatives of ϕ, φR is
Lipschitz and bounded at infinity,

θρ ∗ φR ≤ θρ ∗ |x|
2
= |x|2 + C(n)ρ2,

and (2.2) holds uniformly in the variables ρ and R, when ϕ is replaced by ϕρ,R , it follows
(and now rigorously) that the estimate

‖vρ,R(T )‖ ≤ e
MT (‖eγ |x|

2
u(0)‖ +

√
A2 + B2‖eϕρ,RF‖L1([0,T ],L2(Rn)))

holds uniformly in ρ andR. Lemma 1 follows after letting ρ tend to zero andR to infinity.
ut

Lemma 2. Suppose that S is a symmetric operator, A is skew-symmetric, both are al-
lowed to depend on the time variable, G is a positive function, f (x, t) is a reasonable
function,

H(t) = (f, f ), D(t) = (Sf, f ), ∂tS = St , N(t) =
D(t)

H(t)
.

Then

∂2
t H = 2∂t Re (∂tf − Sf −Af, f )+ 2(Stf + [S,A]f, f )

+ ‖∂tf −Af + Sf ‖2 − ‖∂tf −Af − Sf ‖2 (2.4)

and
Ṅ(t) ≥ (Stf + [S,A]f, f )/H − ‖∂tf −Af − Sf ‖2/2H.

Moreover, if

|∂tf −Af − Sf | ≤ M1|f | +G in Rn × [0, 1], St + [S,A] ≥ −M0, (2.5)

and
M2 = sup

[0,1]
‖G(t)‖/‖f (t)‖

is finite, then logH(t) is “logarithmically convex” in [0, 1] and there is a universal con-
stant N such that

H(t) ≤ eN(M0+M1+M2+M
2
1+M

2
2 )H(0)1−tH(1)t when 0 ≤ t ≤ 1. (2.6)

Proof. Formally,

Ḣ (t) = 2 Re (∂tf, f ) = 2 Re (∂tf − Sf −Af, f )+ 2(Sf, f )

and
Ḣ (t) = 2 Re (∂tf − Sf −Af, f )+ 2D(t). (2.7)

Also,

Ḣ (t) = Re (∂tf + Sf, f )+ Re (∂tf − Sf, f ),

D(t) =
1
2

Re (∂tf + Sf, f )−
1
2

Re (∂tf − Sf, f ),
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and multiplying the last two formulae gives

Ḣ (t)D(t) =
1
2
(Re (∂tf + Sf, f ))2 −

1
2
(Re (∂tf − Sf, f ))2.

Adding a skew-symmetric operator does not change the real parts, and so

Ḣ (t)D(t) =
1
2
(Re (∂tf −Af + Sf, f ))2 −

1
2
(Re (∂tf −Af − Sf, f ))2. (2.8)

Differentiating D(t), we obtain

Ḋ(t) = (Stf, f )+ (S∂tf, f )+ (Sf, ∂tf ) = (Stf, f )+ 2 Re (∂tf, Sf )
= (Stf + [S,A]f, f )+ 2 Re (∂tf −Af, Sf ),

and the polarization identity gives

Ḋ(t) = (Stf + [S,A]f, f )+
1
2
‖∂tf −Af + Sf ‖2 −

1
2
‖∂tf −Af − Sf ‖2. (2.9)

The formula (2.4) for the second derivative ofH follows from (2.7) and (2.9). The identity

Ṅ(t) = (Stf + [S,A]f, f )/H

+
1
2

[‖∂tf −Af + Sf ‖2‖f ‖2 − (Re (∂tf −Af + Sf, f ))2]/H 2

+
1
2

[(Re (∂tf −Af − Sf, f ))2 − ‖∂tf −Af − Sf ‖2‖f ‖2]/H 2

follows from (2.8) and (2.9). The first inequality in Lemma 2 follows from the positive-
ness of the second line (Cauchy–Schwarz inequality) and of the first term on the last line
of the previous identity.

When (2.5) holds, the first part in Lemma 2 shows that

Ṅ(t) ≥ −(M0 +M
2
1 +M

2
2 ),

and from (2.7),
∂t (logH(t)+ O(1)) = 2N(t).

Altogether,
∂2
t (logH(t)+ O(1)) ≥ 0 when 0 ≤ t ≤ 1,

where O(1) is a function satisfying |O(1)| ≤ N(M0 +M1 +M2 +M
2
1 +M

2
2 ) in [0, 1].

The integration of the inequality

∂s(logH(s)+ O(1)) ≤ ∂τ (logH(τ)+ O(1)) when 0 ≤ s ≤ t ≤ τ ≤ 1

over the intervals 0 ≤ s ≤ t and t ≤ τ ≤ 1 implies (2.6). ut
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Lemma 3. Assume that u in L∞([0, 1], L2(Rn)) ∩ L2([0, 1], H 1(Rn)) satisfies

∂tu = (A+ iB)(1u+ V (x, t)u+ F(x, t)) in Rn × [0, 1], (2.10)

where A > 0, B ∈ R, V is complex-valued, γ > 0, and sup[0,1] ‖V (t)‖∞ ≤ M1. Set

M2 = sup
[0,1]
‖eγ |x|

2
F(t)‖/‖u(t)‖

and assume that ‖eγ |x|
2
u(0)‖, ‖eγ |x|

2
u(1)‖ and M2 are finite. Then ‖eγ |x|

2
u(t)‖ is “log-

arithmically convex” in [0, 1] and there is a universal constant N such that

‖eγ |x|
2
u(t)‖

≤ eN [(A2
+B2)(γM2

1+M
2
2 )+
√
A2+B2(M1+M2)]‖eγ |x|

2
u(0)‖1−t‖eγ |x|

2
u(1)‖t (2.11)

when 0 ≤ t ≤ 1.

Proof. Let f = eγ ϕu, where ϕ = ϕ(x, t) is to be chosen. The function f satisfies

∂tf = Sf +Af + (A+ iB)(Vf + eγ ϕF) in Rn+1
+ , (2.12)

with symmetric and skew-symmetric operators S and A,

S = A(1+ γ 2
|∇ϕ|2)− iBγ (2∇ϕ · ∇ +1ϕ)+ γ ∂tϕ,

A = iB(1+ γ 2
|∇ϕ|2)− Aγ (2∇ϕ · ∇ +1ϕ).

(2.13)

A calculation shows that

St + [S,A] = γ ∂2
t ϕ + 4γ 2A∇ϕ · ∇∂tϕ − 2iBγ (2∇∂tϕ · ∇ +1∂tϕ)

− γ (A2
+ B2)[4∇ · (D2ϕ∇ )− 4γ 2D2ϕ∇ϕ · ∇ϕ +12ϕ]. (2.14)

At the end we shall require that ϕ(x, t) = |x|2; then

St + [S,A] = −γ (A2
+ B2)[81− 32γ 2

|x|2]

and

(Stf + [S,A]f, f ) = γ (A2
+ B2)

∫
Rn
(8|∇f |2 + 32γ 2

|x|2|f |2) dx. (2.15)

This identity, the boundedness of V , and (2.12) imply that

|∂tf − Sf −Af | ≤
√
A2 + B2(M1|f | + e

γ ϕ
|F |), St + [S,A] ≥ 0, (2.16)

and if we knew that the quantities and calculations involved in the proof of Lemma 2
were finite and correct when f = eγ |x|

2
u, we would have the “logarithmic convexity” of

H(t) = ‖eγ |x|
2
u(t)‖2 and get (2.11) from Lemma 2.
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To justify the validity of the previous arguments, given a and ρ in (0, 1), define

ϕa(x) =

{
|x|2, |x| < 1,
(2|x|2−a − a)/(2− a), |x| ≥ 1,

and replace ϕ = |x|2 by ϕa,ρ = θρ ∗ϕa , where θ in C∞0 (R
n) is a radial function. Observe

that ϕa is a C1,1(Rn) convex function, ϕa,ρ ≤ |x|2 + C(n)ρ2, ϕa,ρ is convex and grows
at infinity not faster than |x|2−a . At the same time,

1ϕa(x) =

{
2n, |x| ≤ 1,
2(n− a)|x|−a, |x| ≥ 1,

and the distribution ∂j1ϕa , j = 1, . . . , n, is equal to

−2axj dσ − 2a(n− a)xj |x|−a−2χRn\B1 ,

where dσ is the surface measure on ∂B1. This and the identity

12ϕa,ρ =

n∑
j=1

∂j θρ ∗ ∂j1ϕa

show that
‖12ϕa,ρ‖∞ ≤ C(n, ρ)a. (2.17)

Set then fa,ρ = eγ ϕa,ρu and Ha,ρ(t) = ‖fa,ρ‖2 in Lemma 2. The decay bound in
Lemma 1 and the interior regularity for solutions of (2.10) (here we use that A is positive)
can now be used qualitatively to make sure that the quantities or calculations involved in
the proof of Lemma 2 are finite and correct for fa,ρ . In this case, fa,ρ satisfies

∂tfa,ρ = Sa,ρfa,ρ +Aa,ρfa,ρ + (A+ iB)(Vfa,ρ + e
γ ϕa,ρF) in Rn × [0, 1], (2.18)

with symmetric and skew-symmetric operators Sa,ρ and Aa,ρ given by (2.13) with ϕ
replaced by ϕa,ρ . The formula for the operator

S
a,ρ
t + [Sa,ρ,Aa,ρ]

in (2.14), the convexity of ϕa,ρ , and the bounds (2.17) and (2.18) imply the inequalities

|∂tfa,ρ − Sa,ρfa,ρ −Aa,ρfa,ρ | ≤
√
A2 + B2(M1|fa,ρ | + e

γ ϕa,ρF),

S
a,ρ
t + [Sa,ρ,Aa,ρ] ≥ 0,

and M2(a, ρ) ≤ e
C(n)ρ2

M2 when 0 < a, ρ < 1. In particular, Ha,ρ is “logarithmically
convex” in [0, 1] and

Ha,ρ(t) ≤ e
N [(A2

+B2)(M2
1+M

2
2 )+
√
A2+B2(M1+M2)]Ha,ρ(0)1−tHa,ρ(1)t . (2.19)

Then (2.11) follows after taking first the limit when a tends to zero in (2.19), and then
when ρ tends to zero. ut
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Lemma 4. Assume that A+ iB, u, and V are as in Lemma 3, and γ > 0. Then

‖

√
t (1− t) eγ |x|

2
∇u‖L2(Rn×[0,1]) + ‖

√
t (1− t) |x|eγ |x|

2
u‖L2(Rn×[0,1])

≤ N [(1+M1) sup
[0,1]
‖eγ |x|

2
u(t)‖ + sup

[0,1]
‖eγ |x|

2
F‖L2(Rn×[0,1])], (2.20)

where N remains bounded when γ and A2
+ B2 are bounded below.

Proof. A formal integration by parts shows that∫
Rn
(|∇f |2 + 4γ 2

|x|2|f |2) dx =

∫
Rn
e2γ |x|2(|∇u|2 − 2nγ |u|2) dx

when f = eγ |x|
2
u, while either well known properties of Hermite functions [17] or inte-

gration by parts, the Cauchy–Schwarz inequality, and the identity n = ∇ · x give∫
Rn
(|∇f |2 + 4γ 2

|x|2|f |2) dx ≥ 2γ n
∫

Rn
|f |2 dx.

The sum of the last two formulae gives the inequality

2
∫

Rn
(|∇f |2 + 4γ 2

|x|2|f |2) dx ≥

∫
Rn
e2γ |x|2

|∇u|2 dx. (2.21)

Integration over [0, 1] of t (1− t) times the formula (2.4) for the second derivative of
H(t) = ‖f (t)‖2 and integration by parts show that in the general framework of Lemma 2,

2
∫ 1

0
t (1− t)(Stf + [S,A]f, f ) dt + 2

∫ 1

0
H(t) dt

≤ H(1)+H(0)+ 2
∫ 1

0
(1− 2t)Re (∂tf − Sf −Af, f ) dt

+

∫ 1

0
t (1− t)‖∂tf −Af − Sf ‖2 dt. (2.22)

Assuming again that the last two calculations are justified for f = eγ |x|
2
u, (2.22),

(2.15), (2.16), (2.21) and the identity ∇f = eγ |x|
2
(∇u+ 2γ xu) imply the lemma.

The interior regularity of the solutions to (2.10) (here we use again that A > 0) shows
that the calculations leading to (2.21) and (2.22) are justified when f = e(γ−ρ)|x|

2
u,

0 < ρ < γ , and the right-hand side of (2.20) is finite. The lemma follows on letting ρ
tend to zero. ut
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3. The conformal or Appell transformation

Lemma 5. Assume that u(y, s) satisfies

∂su = (A+ iB)(1u+ V (y, s)u+ F(y, s)) in Rn × [0, 1],

A+ iB 6= 0, α and β are positive, γ ∈ R, and set

ũ(x, t) =

( √
αβ

α(1− t)+ βt

)n/2
u

( √
αβ x

α(1− t)+ βt
,

βt

α(1− t)+ βt

)
e

(α−β)|x|2
4(A+iB)(α(1−t)+βt) .

Then ũ satisfies

∂t ũ = (A+ iB)(1ũ+ Ṽ (x, t )̃u+ F̃ (x, t)) in Rn × [0, 1],

with

Ṽ (x, t) =
αβ

(α(1− t)+ βt)2
V

( √
αβ x

α(1− t)+ βt
,

βt

α(1− t)+ βt

)
,

F̃ (x, t) =

( √
αβ

α(1− t)+ βt

)n/2+2

F

( √
αβ x

α(1− t)+ βt
,

βt

α(1− t)+ βt

)
e

(α−β)|x|2
4(A+iB)(α(1−t)+βt) .

Moreover,

‖eγ |x|
2
F̃ (t)‖ =

αβ

(α(1− t)+ βt)2
‖e

[
γαβ

(αs+β(1−s))2
+

(α−β)A

4(A2+B2)(αs+β(1−s))

]
|y|2

F(s)‖

and

‖eγ |x|
2
ũ(t)‖ = ‖e

[
γαβ

(αs+β(1−s))2
+

(α−β)A

4(A2+B2)(αs+β(1−s))

]
|y|2

u(s)‖

when s = βt
α(1−t)+βt and γ ∈ R.

Proof. When u satisfies

∂su = (A+ iB)(1u+H(y, s)) in Rn × [0, 1], (3.1)

the function u1(x, t) = u(
√
rx, rt + τ) satisfies

∂tu1 = (A+ iB)(1u1 + rH(
√
rx, rt + τ)),

and u2(x, t) = t
−n/2u(x/t, 1/t)e

|x|2
4(A+iB)t is a solution to

∂tu2 = −(A+ iB)(1u2 + t
−n/2−2H(x/t, 1/t)e

|x|2
4(A+iB)t ).

These two facts and the sequence of changes of variables below prove the lemma when
α > β:

u

(√
αβ

α − β
x,

αβ

α − β
t −

β

α − β

)
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is a solution to the same non-homogeneous equation but with right-hand side

αβ

α − β
H

(√
αβ

α − β
x,

αβ

α − β
t −

β

α − β

)
.

The function

1
(α − t)n/2

u

( √
αβ x

√
α − β(α − t)

,
αβ

(α − β)(α − t)
−

β

α − β

)
e

|x|2
4(A+iB)(α−t)

satisfies (3.1) with right-hand side

αβ

(α − β)(α − t)n/2+2H

( √
αβ x

√
α − β(α − t)

,
αβ

(α − β)(α − t)
−

β

α − β

)
e

|x|2
4(A+iB)(α−t) .

Replacing (x, t) by (
√
α − β x, (α − β)t), we find that

1
(α(1− t)+βt)n/2

u

( √
αβ x

α(1− t)+βt
,

αβ

(α−β)(α(1− t)+βt)
−

β

α−β

)
e

(α−β)|x|2
4(A+iB)(α(1−t)+βt)

(3.2)
is a solution to (3.1) but with right-hand side

αβ

(α+β−αt)n/2+2H

( √
αβ x

α(1− t)+βt
,

αβ

(α−β)(α(1− t)+βt)
−

β

α−β

)
e

(α−β)|x|2
4(A+iB)(α(1−t)+βt) .

(3.3)
Finally, observe that

s =
βt

α(1− t)+ βt
=

αβ

(α − β)(α(1− t)+ βt)
−

β

α − β

and multiply (3.2) and (3.3) by (
√
αβ)n/2.

The case β > α follows by reversing the time with the changes of variables s′ = 1−s
and t ′ = 1 − t . The relations between the different norms of ũ, u, F̃ , and F follow by
undoing the changes of variables and using the identity

√
αβ

α(1− t)+ βt
=
αs + β(1− s)
√
αβ

. ut

4. Variable coefficients. Proof of Theorem 3

Proof of Theorem 3. We may assume that α 6= β. The case α = β follows from the
former by replacing β by β + δ, δ > 0, and letting δ tend to zero. We may also assume
that α < β. Otherwise, replace u by u(1−t). Set thenH = 1+V1(x) and let et (A+iB)Hu0
denote the C([0, 1], L2(Rn)) solution to{

∂tv = (A+ iB)(1v + V1(x)v) in Rn × [0, 1],
v(0) = u0,
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when Re(A+ iB) ≥ 0. The Duhamel principle shows that

u(t) = eitHu(0)+ i
∫ t

0
ei(t−s)H (V2(s)u(s)) ds in Rn × [0, 1]. (4.1)

For 0 ≤ ε ≤ 1, set

Fε(t) =
i

ε + i
eεtH (V2(t)u(t)), (4.2)

uε(t) = e
(ε+i)tHu(0)+ (ε + i)

∫ t

0
e(ε+i)(t−s)HFε(s) ds. (4.3)

Then uε is in L∞([0, 1], L2(Rn)) ∩ L2([0, 1], H 1(Rn)) and satisfies{
∂tuε = (ε + i)(Huε + Fε(t)) in Rn × [0, 1],
uε(0) = u(0).

The identities [14]

e(z1+z2)H = e(z2+z1)H = ez1H ez2H when Re z1,Re z2 ≥ 0, (4.4)

(4.1), (4.2) and (4.3) show that

uε(t) = e
εtHu(t) when 0 ≤ t ≤ 1. (4.5)

In particular,
uε(1) = eεHu(1),

and Lemma 1 with A+ iB = ε, γ = 1/β2, F ≡ 0 and the fact that uε(0) = u(0) imply
that

‖e
|x|2

β2+4ε uε(1)‖ ≤ eε‖V1‖L∞(Rn)‖e|x|
2/β2

u(1)‖, ‖e|x|
2/α2

uε(0)‖ = ‖e|x|
2/α2

u(0)‖.

A second application of Lemma 1 with A+ iB = ε, F ≡ 0, γ = 1/(αt + β(1− t))2 and
(4.2) show that

‖ε
|x|2

(αt+β(1−t))2+4εt Fε(t)‖ ≤ e
ε‖V1‖∞‖ε

|x|2

(αt+β(1−t))2 V2(t)‖∞‖u(t)‖

when 0 ≤ t ≤ 1. If we set αε = α + 2ε and βε = β + 2ε, the last three inequalities give

‖e|x|
2/β2

e uε(1)‖ ≤ eε‖V1‖∞‖e|x|
2/β2

u(1)‖, ‖e|x|
2/α2

ε uε(0)‖ ≤ ‖e|x|
2/α2

u(0)‖, (4.6)

‖e
|x|2

(αε t+βε (1−t))2 Fε(t)‖ ≤ e
ε‖V1‖∞‖e

|x|2

(αt+β(1−t))2 V2(t)‖∞‖u(t)‖. (4.7)

A third application of Lemma 1 with A + iB = ε, F ≡ 0, γ = 0, and (4.2), (4.5) imply
that

‖Fε(t)‖ ≤ e
ε‖V1‖∞‖V2(t)‖L∞(Rn)‖u(t)‖, ‖uε(t)‖ ≤ e

ε‖V1‖∞‖u(t)‖ (4.8)
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when 0 ≤ t ≤ 1. Set then γε = 1/αεβε and let

ũε(x, t)

=

( √
αεβε

αε(1− t)+ βε t

)n/2
uε

( √
αεβε x

αε(1− t)+ βε t
,

βε t

αε(1− t)+ βε t

)
e

(αε−βε )|x|
2

4(ε+i)(αε (1−t)+βε t)

be the function associated to uε in Lemma 5 when A + iB = ε + i and α, β are
replaced respectively by αε and βε . Because α < β, ũε is in L∞([0, 1], L2(Rn)) ∩
L2([0, 1], H 1(Rn)) and satisfies

∂t ũε = (ε + i)(1ũε + Ṽ
ε
1 (x, t )̃uε + F̃ε(x, t)) in Rn × [0, 1],

where Ṽ ε1 is real-valued,

Ṽ ε1 (x, t) =
αεβε

(αε(1− t)+ βε t)2
V1

( √
αεβε x

αε(1− t)+ βε t

)
, sup

[0,1]
‖Ṽ ε1 (t)‖∞ ≤

β

α
M1,

(4.9)

F̃ε(x, t)=

( √
αεβε

αε(1−t)+βε t

)n/2+2

Fε

( √
αεβε x

αε(1−t)+βε t
,

βε t

αε(1−t)+βε t

)
e

(αε−βε )|x|
2

4(ε+i)(αε (1−t)+βε t) ,

‖eγε |x|
2
F̃ε(t)‖ ≤

β

α
‖ε

|x|2

(αε t+βε (1−t))2 Fε(s)‖, ‖F̃ε(t)‖ ≤
β

α
‖Fε(s)‖, (4.10)

and

‖eγε |x|
2
ũε(t)‖ = ‖e

[
1

(αε s+βε (1−s))2
+

(αε−βε )A

4(A2+B2)(αε s+βε (1−s))

]
|y|2

uε(s)‖,

‖ũε(t)‖ ≤ ‖uε(s)‖,
(4.11)

when s = βε t
αε(1−t)+βε t

. The above identity when t is zero or one and (4.6) show that

‖eγε |x|
2
ũε(0)‖ ≤ ‖e|x|

2/β2
u(0)‖, ‖eγε |x|

2
ũε(1)‖ ≤ eε‖V

+
‖∞‖e|x|

2/β2
u(1)‖. (4.12)

On the other hand,

N−1
1 ‖u(0)‖ ≤ ‖u(t)‖ ≤ N1‖u(0)‖ when 0 ≤ t ≤ 1, N1 = e

sup[0,1] ‖ImV2(t)‖∞ ,

(4.13)
and the equation satisfied by ũε and the energy method imply that

∂t‖ũε(t)‖
2
≤ 2ε‖Ṽ ε1 (t)‖∞‖ũε(t)‖

2
+ 2‖F̃ε(t)‖ ‖ũε(t)‖. (4.14)

Let 0 = t0 < t1 < t2 < · · · < tm = 1 be a uniformly distributed partition of [0, 1]
where m will be chosen later. The inequality (4.14), (4.9), the inequality in (4.11), the
second inequality in (4.10), (4.8), and (4.13) imply that there is N2, which depends on
β/α, ‖V1‖L∞(Rn) and sup[0,1] ‖V2(t)‖∞, such that

‖ũε(ti)‖ ≤ e
(εβ/α)‖V1‖∞‖ũε(t)‖ +N2

√
ti − ti−1‖u(0)‖ (4.15)
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when ti−1 ≤ t ≤ ti , 0 < ε ≤ 1 and i = 1, . . . , m. Choose now m so that

N2 max
1≤i≤m

√
ti − ti−1 ≤

1
4N1

, (4.16)

where N1 was defined in (4.13). From limε→0+ ‖ũε(t)‖ = ‖u(s)‖ when s = βt
α(1−t)+βt ,

and (4.13), we see that there is ε0 such that

‖ũε(ti)‖ ≥
1

2N1
‖u(0)‖ when 0 < ε ≤ ε0, i = 1, . . . , m, (4.17)

and now (4.17), (4.16) and (4.15) show that

‖ũε(t)‖ ≥
1

4N1
‖u(0)‖ when 0 < ε ≤ ε0, 0 ≤ t ≤ 1. (4.18)

It is now simple to verify that (4.18), the first inequality in (4.10), (4.7), and (4.13) imply
that

sup
[0,1]

‖eγε |x|
2
F̃ε(t)‖

‖ũε(t)‖
≤

4β
α
M2(ε), 0 < ε ≤ ε0, (4.19)

where

M2(ε) = e
2 sup[0,1] ‖ImV2(t)‖∞+ε‖V1‖∞ sup

[0,1]
‖e

|x|2

(αt+β(1−t))2 V2(t)‖∞.

We can use Lemma 3, (4.12), (4.9) and (4.19) to show that ‖eγε |x|
2
ũε(t)‖ is “logarithmi-

cally convex” in [0, 1] and that

‖eγε |x|
2
ũε(t)‖ ≤ e

N(M1+M2(ε)+M
2
1+M2(ε)

2)
‖e|x|

2/β2
u(0)‖1−t‖e|x|

2/α2
u(1)‖t (4.20)

when 0 ≤ t ≤ 1 and 0 < ε ≤ ε0 and with N = N(α, β). Then Lemma 4 gives

‖

√
t (1− t) eγε |x|

2
∇ũε‖L2(Rn×[0,1]) + ‖

√
t (1− t) |x|eγε |x|

2
∇ũε‖L2(Rn×[0,1])

≤ NeN(M1+M2(ε)+M
2
1+M2(ε)

2)[‖e|x|
2/β2

u(0)‖ + ‖e|x|
2/α2

u(1)‖]

when 0 < ε ≤ ε0, and the “logarithmic convexity” and regularity of u follow from
the limit of the identity in (4.11), the final limit relation between the variables s and t ,
s =

βt
α(1−t)+βt , and letting ε tend to zero in (4.20) and in the above inequality. ut

Remark 1. We thank R. Killip for pointing out the following application of Lemma 1
and the identities (4.4) to generate Gaussian decaying solutions of ∂t = iH when H =
1 + V1(x) and V1 satisfy the conditions in Theorem 3. In fact, if eγ |x|

2
u0 is in L2(Rn)

and u(t) = eitH (eHu0), we have u(t) = e(1/t+i)tHu0, and from Lemma 1,

‖e
γ |x|2

1+4γ (1+t2) u(t)‖ ≤ e‖V1‖∞‖eγ |x|
2
u0‖ when t ≥ 0.

Next, we recall the following result established in [11]:
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Lemma 6. There are N and ε0 > 0 such that the following holds: If λ is in Rn, V is a
complex-valued potential, ‖V ‖L1([0,1],L∞(Rn)) ≤ ε0 and u ∈ C([0, 1], L2(Rn)) satisfies

∂tu = i(1u+ V (x, t)u+ F(x, t)) in Rn × [0, 1],

then

sup
[0,1]
‖eλ·xu(t)‖ ≤ N [‖eλ·xu(0)‖ + ‖eλ·xu(1)‖ + ‖eλ·xF(t)‖L1([0,1],L2(Rn))].

Theorem 5. Assume that u in C([0, 1], L2(Rn)) satisfies

∂tu = i(1u+ V (x, t)u) in Rn × [0, 1],

where V is in L∞(Rn × [0, 1]), limR→+∞ ‖V ‖L1([0,1],L∞(Rn\BR)) = 0, α and β are

positive, and ‖e|x|
2/β2

u(0)‖, ‖e|x|
2/α2

u(1)‖ are finite. Then there is N = N(α, β) such
that

sup
[0,1]
‖e

|x|2

(αt+(1−t)β)2 u(t)‖ + ‖
√
t (1− t)e

|x|2

(αt+(1−t)β)2 ∇u‖L2(Rn×[0,1])

≤ NeN sup[0,1] ‖V (t)‖∞ [‖e|x|
2/β2

u(0)‖ + ‖e|x|
2/α2

u(1)‖ + sup
[0,1]
‖u(t)‖].

Proof. Set γ = 1/αβ and let

ũ(x, t) =

( √
αβ

α(1− t)+ βt

)n/2
u

( √
αβ x

α(1− t)+ βt
,

βt

α(1− t)+ βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) (4.21)

denote the function associated in Lemma 5 to u when A + iB = i. This function is in
C([0, 1], L2(Rn)) and satisfies

∂t ũ = i(1ũ+ Ṽ (x, t )̃u) in Rn × [0, 1]

with

Ṽ (x, t) =
αβ

(α(1− t)+ βt)2
V

( √
αβ x

α(1− t)+ βt
,

βt

α(1− t)+ βt

)
,

sup
[0,1]
‖Ṽ (t)‖∞ ≤ max

{
α

β
,
β

α

}
sup
[0,1]
‖V (t)‖∞, lim

R→+∞
‖Ṽ ‖L1([0,1],L∞(Rn\BR)) = 0,

and

‖eγ |x|
2
ũ(t)‖ = ‖e

|x|2

(αs+β(1−s))2 u(s)‖,

‖ũ(t)‖ = ‖u(s)‖ when s =
βt

α(1− t)+ βt
.

(4.22)

Choose R > 0 such that ‖Ṽ ‖L1([0,1],L∞(Rn\BR)) ≤ ε0. Then

∂t ũ = i(1ũ+ ṼR(x, t )̃u+ F̃R(x, t))
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with ṼR(x, t) = χRn\BR Ṽ (x, t), F̃R = χBR Ṽ (x, t )̃u, and Lemma 6 yields

sup
[0,1]
‖eλ·x ũ(t)‖ ≤ N [‖eλ·x ũ(0)‖ + ‖eλ·x ũ(1)‖ + e|λ|R sup

[0,1]
‖Ṽ (t)‖∞ sup

[0,1]
‖ũ(t)‖].

Replace λ by λ
√
γ in the above inequality, square both sides, multiply all by e−|λ|

2/2 and
integrate both sides with respect to λ in Rn. This and the identity∫

Rn
e2
√
γ λ·x−|λ|2/2 dλ = (2π)n/2e2γ |x|2

imply the inequality

sup
[0,1]
‖eγ |x|

2
ũ(t)‖ ≤ N [‖eγ |x|

2
ũ(0)‖ + ‖eγ |x|

2
ũ(1)‖ + e2γR2

sup
[0,1]
‖Ṽ (t)‖∞ sup

[0,1]
‖ũ(t)‖].

This inequality and (4.22) imply that

sup
[0,1]
‖eγ |x|

2
ũ(t)‖

≤ N [‖e|x|
2/β2

u(0)‖ + ‖e|x|
2/α2

u(1)‖ + sup
[0,1]
‖V (t)‖∞ sup

[0,1]
‖u(t)‖] (4.23)

for some new constant N .
To prove the regularity of uwe proceed as in (4.1)–(4.3). The Duhamel formula shows

that

ũ(t) = eit1ũ(0)+ i
∫ t

0
ei(t−s)1(Ṽ (s)̃u(s)) ds in Rn × [0, 1]. (4.24)

For 0 < ε < 1, set

F̃ε(t) =
i

ε + i
eεt1(Ṽ (t )̃u(t)), (4.25)

ũε(t) = e
(ε+i)t1ũ(0)+ (ε + i)

∫ t

0
e(ε+i)(t−s)1F̃ε(s) ds. (4.26)

The identities [14]

e(z1+z2)1 = e(z2+z1)1 = ez11ez21 when Re z1,Re z2 ≥ 0,

(4.24), (4.25) and (4.26) show that

ũε(t) = e
εt1ũ(t) when 0 ≤ t ≤ 1, (4.27)

and from Lemma 1 with A+ iB = ε, (4.27) and (4.25),

sup
[0,1]
‖eγε |x|

2
ũε(t)‖ ≤ sup

[0,1]
‖eγ |x|

2
ũ(t)‖,

sup
[0,1]
‖eγε |x|

2
F̃ε(t)‖ ≤ e

sup[0,1] ‖Ṽ (t)‖∞ sup
[0,1]
‖eγ |x|

2
ũ(t)‖,

(4.28)
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when γε =
γ

1+4γ ε . Then Lemma 4, (4.28), and (4.23) show that

‖

√
t (1− t) eγε |x|

2
∇ũε‖L2(Rn×[0,1]) + ‖

√
t (1− t) |x|eγε |x|

2
ũε‖L2(Rn×[0,1])

≤ NeN sup[0,1] ‖V (t)‖∞ [‖e|x|
2/β2

u(0)‖ + ‖e|x|
2/α2

u(1)‖ + sup
[0,1]
‖u(t)‖].

The lemma follows from this inequality, (4.22), (4.23), (4.21), and letting ε tend to zero.
ut

5. A Hardy type uncertainty principle. Proof of Theorem 1

As we mentioned in the introduction, the motivation behind the Carleman inequality in
Lemma 7 below is the following monotonicity or frequency function argument related to
Lemma 2:

If u in C([0, 1], L2(Rn)) is a free solution to the free Schrödinger equation

∂tu− i1u = 0 in Rn × [0, 1],

‖eγ |x|
2
u(0)‖, ‖eγ |x|

2
u(1)‖ are both finite, f = eµ|x+Rt(1−t)e1|

2
−R2t (1−t)/8µu and H =

(f, f ), then logH is logarithmically convex in [0, 1] when 0 < µ < γ .
The formal application of the above argument to a C([0, 1], L2(Rn)) solution to

∂tu− i(1u+ V (x, t)u) = 0 in Rn × [0, 1] (5.1)

implies a similar result when V is a bounded potential, though the justification of the
correctness of the manipulations involved in the corresponding formal application of
Lemma 2 is not obvious to us. In fact, we can only justify these manipulations when
the potential V satisfies the first condition in Theorem 1 or when we can obtain the ad-
ditional regularity of the gradient of u in the strip, as in Theorem 5. Here, we choose to
prove Theorem 1 using the Carleman inequality in Lemma 7 in place of the above con-
vexity argument. The reason for our choice is that it is simpler to justify the correctness
of the application of the Carleman inequality to a C([0, 1], L2(Rn)) solution to (5.1) than
the corresponding monotonicity or logarithmic convexity of the solution.

Lemma 7. The inequality

R

√
ε

8µ
‖eµ|x+Rt(1−t)e1|

2
−(1+ε)R2t (1−t)/16µg‖L2(Rn+1)

≤ ‖eµ|x+Rt(1−t)e1|
2
−(1+ε)R2t (1−t)/16µ(∂t − i1)g‖L2(Rn+1)

holds when ε > 0, µ > 0, R > 0, and g ∈ C∞0 (R
n+1).
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Proof. Let f = eµ|x+Rt(1−t)e1|
2
−(1+ε)R2t (1−t)/16µg. Then

eµ|x+Rt(1−t)e1|
2
−(1+ε)R2t (1−t)/16µ(∂t − i1)g = ∂tf − Sf −Af,

and from (2.12)–(2.14) with γ = 1, A+ iB = i and

ϕ(x, t) = µ|x + Rt(1− t)e1|
2
−
(1+ ε)R2t (1− t)

16µ
,

we have

S = − 4µi(x + Rt(1− t)e1) · ∇ − 2µni

+ 2µR(1− 2t)(x1 + Rt(1− t))−
(1+ ε)R2(1− 2t)

16µ
,

A = i1+ 4µ2i|x + Rt(1− t)e1|
2,

St + [S,A] = − 8µ1+ 32µ3
|x + Rt(1− t)e1|

2
− 4µR(x1 + Rt(1− t))

+ 2µR2(1− 2t)2 +
(1+ ε)R2

8µ
− 4iµR(1− 2t)∂x1

and

(Stf + [S,A]f, f ) = 32µ3
∫ ∣∣∣∣x + Rt(1− t)e1 −

R

16µ2 e1

∣∣∣∣2|f |2 dx + εR2

8µ

∫
|f |2 dx

+ 8µ
∫
|∇x′f |

2 dx + 8µ
∫ ∣∣∣∣i∂x1f −

R(1− 2t)
2

f

∣∣∣∣2 dx
≥
εR2

8µ

∫
|f |2 dx. (5.2)

Following the standard method to handleL2-Carleman inequalities [6], the symmetric
and skew-symmetric parts of ∂t − S − A, as a space-time operator, are respectively −S

and ∂t −A, and its space-time commutator [−S, ∂t −A] is St + [S,A]. Thus,

‖∂tf − Sf −Af ‖2
L2(Rn+1)

= ‖∂tf −Af ‖2
L2(Rn+1)

+ ‖Sf ‖2
L2(Rn+1)

− 2 Re
∫∫

Sf ∂tf −Af dx dt

≥

∫∫
[−S, ∂t −A]f f dx dt =

∫
(Stf + [S,A]f, f ) dt, (5.3)

and the lemma follows from (5.3) and (5.2). ut

Proof of Theorem 1. Let u be as in Theorem 1 and ũ, Ṽ the corresponding functions
defined in Lemma 5 when A+ iB = i. Then ũ is in C([0, 1], L2(Rn)),

∂t ũ = i(1ũ+ Ṽ (x, t )̃u) in Rn × [0, 1],
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‖eγ |x|
2
ũ(0)‖, ‖eγ |x|

2
ũ(1)‖ are finite for γ = 1/αβ and γ > 1/2. The proofs of Theorem

3 or 5 show that in either case

Nγ = sup
[0,1]
‖eγ |x|

2
ũ(t)‖ + ‖

√
t (1− t) eγ |x|

2
∇ũ‖L2(Rn×[0,1]) < +∞. (5.4)

For given R > 0, choose µ and ε such that

(1+ ε)3/2

2(1− ε)3
< µ ≤

γ

1+ ε
(5.5)

and let θM and ηR be smooth functions satisfying θM(x) = 1 when |x| ≤ M , θM(x) = 0
when |x| > 2M , M ≥ R, ηR ∈ C∞0 (0, 1), 0 ≤ ηR ≤ 1, ηR(t) = 1 in [1/R, 1− 1/R] and
ηR = 0 in [0, 1/2R] ∪ [1− 1/2R, 1]. Then

g(x, t) = θM(x)ηR(t )̃u(x, t)

is compactly supported in Rn × (0, 1) and

∂tg − i(1g + Ṽ g) = θMη
′

Rũ− i(2∇θM · ∇ũ+ ũ 1θM)ηR. (5.6)

The first term on the right-hand side of (5.6) is supported where

µ|x + Rt(1− t)e1|
2
≤ µ(1+ ε)|x|2 + µ(1+ 1/ε) ≤ γ |x|2 + γ /ε,

and the second inside B2M \ BM × [1/2R, 1− 1/2R], where

µ|x + Rt(1− t)e1|
2
≤ γ |x|2 + γR2/ε.

Apply now Lemma 7 to g with the values of µ and ε chosen in (5.5). This, the bounds
for µ|x +Rt(1− t)e1|

2 in each of the parts of the support of ∂tg − i(1g + Ṽ g), and the
natural bounds for ∇θM , 1θM , and η′R show that there is a constant Nε such that

R‖eµ|x+Rt(1−t)e1|
2
−(1+ε)R2t (1−t)/16µg‖L∞(Rn×[0,1])

≤Nε‖Ṽ ‖L∞(Rn×[0,1])‖e
µ|x+Rt(1−t)e1|

2
−(1+ε)R2t (1−t)/16µg‖L2(Rn×[0,1])

+NεRe
γ /ε sup

[0,1]
‖eγ |x|

2
ũ(t)‖

+NεM
−1eγR

2/ε
‖eγ |x|

2
(|̃u| + |∇ũ|)‖L2(Rn×[1/2R,1−1/2R]). (5.7)

The first term on the right-hand side of (5.7) can be hidden in the left-hand side when
R ≥ 2Nε‖Ṽ ‖L∞(Rn×[0,1]), while the last one tends to zero when M tends to infinity
by (5.4). This and the fact that g = ũ in Bε(1−ε)2R/4 × [(1− ε)/2, (1+ ε)/2], where

µ|x + Rt(1− t)e1|
2
−
(1+ ε)R2t (1− t)

16µ
≥

R2

16µ
(4µ2(1− ε)6 − (1+ ε)3),



904 L. Escauriaza et al.

and (5.5) show that

ReC(γ,ε)R
2
‖ũ‖L2(BR/8×[(1−ε)/2,(1+ε)/2]) ≤ Nγ,εR (5.8)

when R ≥ 2Nε‖Ṽ ‖L∞(Rn×[0,1]). At the same time,

N−1
‖ũ(0)‖ ≤ ‖ũ(t)‖ ≤ N‖ũ(0)‖ when 0 ≤ t ≤ 1, N = esup[0,1] ‖Im Ṽ (t)‖∞ , (5.9)

and from (5.4),

‖ũ(t)‖ ≤ ‖ũ(t)‖L2(BR/8)
+ e−γR

2/64Nγ when 0 ≤ t ≤ 1. (5.10)

Then (5.8)–(5.10) show that there is a constant Nγ,ε,V , which depends on Nγ , ε and
sup[0,1] ‖V (t)‖∞, such that

eC(γ,ε)R
2
‖ũ(0)‖ ≤ Nγ,ε,V .

Let then R tend to infinity to derive that u ≡ 0. ut

6. A positive commutator and a misleading frequency function

If f = ea(t)|x|
2
u and u is a solution to the free Schrödinger equation in R× [−1, 1], then

f satisfies ∂tf = Sf +Af with symmetric and skew-symmetric operators

S = −4ia(x∂x + 1/2)+ a′x2, A = i(∂2
x + 4a2x2).

In this case (see (2.14))

St + [S,A] = (2a′/a)S− 8a∂2
x + (32a3

+ a′′ − 2a′2/a)x2,

and if a is a positive and even solution of

32a3
+ a′′ − 2a′2/a = 0 in [−1, 1], (6.1)

the formal calculations in Lemma 2 show that Ha(t) = ‖ea(t)x
2
u(t)‖2 satisfies

∂t (a
−2∂t logHa(t)) ≥ 0 in [−1, 1],

and the integration of the inequality

a(τ)2∂s logHa(s) ≤ a(s)2∂τ logHa(s) when −1 ≤ s ≤ 0 ≤ τ ≤ 1

implies that
Ha(0) ≤ Ha(−1)1/2Ha(1)1/2. (6.2)

On the other hand, if a solves{
32a3
+ a′′ − 2a′2/a = 0,

a(0) = 1, a′(0) = 0,
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then a is positive, even and limR→+∞ Ra(R) = 0. Moreover, aR(t) = Ra(Rt) also
solves (6.1), and if the formal calculation is correct for HaR , (6.2) would imply that

‖eRx
2
u(0)‖2 ≤ ‖eRa(R)x

2
u(−1)‖ ‖eRa(R)x

2
u(1)‖.

In particular, u ≡ 0; but

u(x, t) = (t − i)−1/2e
i|x|2

4(t−i)

contradicts this.
This shows that there are functions ϕ which make non-negative the commutator of the

symmetric and skew-symmetric parts of eϕ(∂t − i∂2
x )e
−ϕ and such that it is not possible

to plug in or enter in the associated Carleman inequality or frequency function some rea-
sonable solutions of the free Schrödinger equation. It also shows that the rather complex
arguments we used to derive the logarithmic convexity of

H(t) =

∫
Rn
e2γ |x|2

|u(t)|2 dx

are in fact necessary when u in C([0, 1], L2(Rn)) is a solution satisfying the conditions
in Lemma 3, until a more suitable representation formula for these solutions is available.
By suitable we mean a formula which allows deriving the quadratic exponential decay of
the solution in the interior of a time slab from the known decay of the solution at the top
and bottom of the slab.

7. Parabolic analog. Proof of Theorem 4

Assume that u satisfies the conditions in Theorem 4 and let ũ be the conformal or Appell
transformation of u defined in Lemma 5 with A+ iB = 1, α = 1 and β = 1+ 2/δ. Then
ũ is in L∞([0, 1], L2(Rn)) ∩ L2([0, T ], H 1(Rn)), satisfies

∂t ũ = 1ũ+ Ṽ (x, t )̃u in Rn × (0, 1]

with Ṽ a bounded potential in Rn × [0, 1], and if γ = 1/2δ, we have

‖eγ |x|
2
ũ(0)‖ = ‖u(0)‖, ‖eγ |x|

2
ũ(1)‖ = ‖e|x|

2/δ2
u(1)‖.

From Lemmas 3 and 4 with A+ iB = 1, we have

sup
[0,1]
‖eγ |x|

2
ũ(t)‖ + ‖

√
t (1− t)eγ |x|

2
∇ũ‖L2(Rn×[0,1])

≤ eN(M1+M
2
1 )(‖eγ |x|

2
ũ(0)‖ + ‖eγ |x|

2
ũ(1)‖), (7.1)

where M1 = ‖Ṽ ‖L∞(Rn×[0,1]). The proof is finished by plugging in

g(x, t) = θM(x)ηR(t )̃u(x, t)

in the Carleman inequality below and in complete analogy with the argument we used to
prove Theorem 1.
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Lemma 8. The inequality

R

√
ε

8µ
‖eµ|x+Rt(1−t)e1|

2
+R2t (1−t)(1−2t)/6−(1+ε)R2t (1−t)/16µg‖L2(Rn+1)

≤ ‖eµ|x+Rt(1−t)e1|
2
+R2t (1−t)(1−2t)/6−(1+ε)R2t (1−t)/16µ(∂t −1)g‖L2(Rn+1)

holds when ε > 0, µ > 0, R > 0, and g ∈ C∞0 (R
n+1).

Proof. Let f = eµ|x+Rt(1−t)e1|
2
+R2t (1−t)(1−2t)/6−(1+ε)R2t (1−t)/16µg. Then

eµ|x+Rt(1−t)e1|
2
+R2t (1−t)(1−2t)/6−(1+ε)R2t (1−t)/16µ(∂t −1)g = ∂tf − Sf −Af,

and from (2.12)–(2.14) with γ = 1, A+ iB = 1 and

ϕ(x, t) = µ|x + Rt(1− t)e1|
2
+ R2t (1− t)(1− 2t)/6− (1+ ε)R2t (1− t)/16µ,

we have

S = 1+ 4µ2
|x + Rt(1− t)e1|

2
+ 2µR(1− 2t)(x1 + Rt(1− t))

+ (t2 − t + 1/6)R2
− (1+ ε)R2(1− 2t)/16µ,

A = − 4µ(x + Rt(1− t)e1) · ∇ − 2µn,

St + [S,A] = − 8µ1+ 32µ3
|x +Rt(1− t)e1|

2
+ 2µR2(1− 2t)2

+ 4µR(4µ(1− 2t)− 1)(x1 +Rt(1− t))+ (2t − 1)R2
+ (1+ ε)R2/8µ

and

(Stf + [S,A]f, f ) = 32µ3
∫ ∣∣∣∣x + Rt(1− t)e1 +

(4µ(1− 2t)− 1)R
16µ2 e1

∣∣∣∣2|f |2 dx
+ µ

∫
|∇f |2 dx +

εR2

8µ

∫
|f |2 dx

≥
εR2

8µ

∫
|f |2 dx. (7.2)

Finally,

ϕ(x, 1/2) = µ
∣∣∣∣x + R4 e1

∣∣∣∣2 − (1+ ε)R2

64µ
≥ (4µ2(1− ε)2 − (1+ ε))

R2

64µ

when |x| ≤ εR/4, and it is positive for µ > 1/2 and ε > 0 small. ut

Remark 2. (7.1), (7.2), and the interior regularity of parabolic equations show that the
formal calculations in Lemma 2 to prove the logarithmic convexity of

Hµ(t) =

∫
Rn
e2µ|x+Rt(1−t)e1|

2
+R2t (1−t)(1−2t)/3−R2t (1−t)/8µ

|̃u(t)| dx
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are correct when µ < γ . In particular,

Hµ(1/2) ≤ eN(M1+M
2
1 )Hµ(0)1/2Hµ(1)1/2,

and letting µ increase to γ and then R tend to infinity, one also finds that ũ ≡ 0 in
Rn × [0, 1] when γ > 1/2.

Acknowledgments. The first and fourth authors are supported by MEC grant MTM2004-03029, the
second and third authors by NSF grants DMS-0456583 and DMS-0456833 respectively.

References

[1] Bonami, A., Demange, B.: A survey on uncertainty principles related to quadratic forms.
Collect. Math. 2006, Vol. Extra, 1–36 Zbl 1107.30021 MR 2264204

[2] Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L.: On uniqueness properties of solutions
of Schrödinger equations. Comm. Partial Differential Equations 31, 1811–1823 (2006)
Zbl 1124.35068 MR 2273975

[3] Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L.: On uniqueness properties of solutions of the
k-generalized KdV. J. Funct. Anal. 244, 504–535 (2007) Zbl 1122.35124 MR 2297033

[4] Escauriaza, L., Kenig, C. E., Ponce, G., Vega, L.: Convexity of free solutions of Schrödinger
equations with Gaussian decay. To appear

[5] Evans, L. C.: Partial Differential Equations. Amer. Math. Soc. (1998) Zbl 0902.35002
MR 1625845
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