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Abstract. We consider the derivative NLS equation with general quadratic nonlinearities. In [2]
the first author has proved a sharp small data local well-posedness result in Sobolev spaces with a
decay structure at infinity in dimension n = 2. Here we prove a similar result for large initial data
in all dimensions n ≥ 2.

1. Introduction

The general Cauchy problem for the semilinear Schrödinger equation has the form{
iut −1u = P(u, ū,∇u,∇ū), t ∈ R, x ∈ Rn,
u(x, 0) = u0(x),

(1)

where u : Rn × R → Cm and P : C2n+2
→ Cm. Assuming that P is a polynomial

containing terms of order at least κ ≥ 2 and higher, one is interested in studying the local
well-posedness for this evolution in a suitable Sobolev space.

In the simpler case when P does not depend on ∇u,∇ū this problem is rather well
understood, and the Strichartz estimates for the linear Schrödinger equation play a proem-
inent role.

Here we are interested in nonlinearities which contain derivatives. This problem was
considered in full generality in the work of Kenig–Ponce–Vega [8]. Due to the need to
regain one derivative in multilinear estimates, they use in an essential fashion the local
smoothing estimates for the linear Schrödinger equation. Their results make it clear that
one needs to differentiate two cases.

If κ ≥ 3 then they prove local well-posedness for initial data in a Sobolev space HN

withN sufficiently large. However, if quadratic nonlinearities are present, i.e. κ = 2, then
the local well-posedness space also incorporates decay at infinity, namely

HN,N
= {xNu ∈ L2 : DNu ∈ L2

}
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with N large enough. The need for decay is motivated by work of Mizohata [10]. He
proves that a necessary condition for the L2 well-posedness of the problem{

iut −1u = b1(x)∇u, t ∈ R, x ∈ Rn,
u(x, 0) = u0(x),

(2)

is the uniform bound

sup
x∈Rn, ω∈Sn−1, R>0

∣∣∣∣Re
∫ R

0
b1(x + rω) · ω dr

∣∣∣∣ <∞. (3)

The idea behind this condition is that Re b1 contributes to exponential growth of the so-
lution along the Hamilton flow of the linear Schrödinger operator.

If κ ≥ 3 then naively one needs such bounds for expressions which are quadratic in u.
If u ∈ HN then u2

∈ WN,1 and the above integrability can be gained. However, if κ = 2
then one would want similar bounds for linear expressions in u; but this cannot follow
from square integrability, therefore one compensates by adding decay at infinity.

In this work we consider the case of quadratic nonlinearities, precisely the problem{
iut −1u = B((u, ū), (∇u,∇ū)),

u(x, 0) = u0(x).
(4)

Here B is a generic bilinear form which contains one differentiated and one undiffer-
entiated factor, and also may have complex conjugates. Our results easily transfer via
differentiation to the similar problem with two derivatives in the nonlinearity,{

iut −1u = B((∇u,∇ū), (∇u,∇ū)),

u(x, 0) = u0(x),
(5)

The initial data u0 is assumed to be locally in Sobolev spaces H s but with some
additional decay at infinity. In what follows λ is a dyadic index. For a function u we
consider a Littlewood–Paley decomposition in frequency

u =
∑
λ≥1

uλ, uλ = Sλu,

where all the frequencies smaller than 1 are included in u1. Then following [2] we define
the spaces DH s by

‖u‖2DH s =

∑
λ≥1

λ2s
‖uλ‖

2
DL2

λ

,

where the dyadic norms DL2
λ are defined in a manner somewhat similar to (3), namely

‖v‖DL2
λ
= sup
x0∈Rn

sup
ω∈Sn−1

∑
k∈N
‖1{|λ−1(x−x0)−kω|<1}u‖L2 .
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This definition is consistent with the speed of propagation properties for the linear Schrö-
dinger equation. Waves with frequency λ have speed λ, and therefore move about λwithin
a unit time interval. Hence the linear Schrödinger equation is well-posed1 in DH s .

If one considers the low regularity well-posedness for (4) and (5) in DH s then a
natural threshold is given by scaling, namely sc = n/2− 1 for (4), and sc = n/2 for (5).
However, it turns out that the obstruction identified in Mizohata’s work is much stronger
and leads to additional restrictions. In [3] Chihara obtains some better results on this
problem, lowering the threshold for (5) to s = n/2 + 4. However, this is still far from
optimal. Indeed, a sharp small data result is obtained by the first author in a recent paper:

Theorem 1 (Bejenaru [2]). If n = 2, the equations (4) and (5) are locally well-posed
for initial data which is small in DH s for all s > sc + 1.

Although the above theorem was proved in dimension two, the same result can be derived
in all dimensions n ≥ 2. In addition, if some limited spherical symmetry is imposed on
the data then the above exponents can be relaxed up to scaling (see [1]).

The goal of this paper is to obtain a local well-posedness result for the same initial
data space as in [2], but for large initial data. Our main result is

Theorem 2. Let n ≥ 2 and s > sc + 1. Then the equations (4) and (5) are locally well-
posed for initial data in DH s . More precisely, there is C > 0 so that for each initial data
u0 ∈ DH s there is a unique solution

u ∈ C(0, T ;DH s), T = e−C‖u0‖DHs .

In addition, the solution has a Lipschitz dependence on the initial data.

We believe that this result is sharp for generic nonlinearities. However, there are special
cases when one is able to obtain stronger results (see for instance [4]–[7], [12]). These
results consider nonlinearities of the type B((u, ū),∇ū) and B(∇ū,∇ū) in various di-
mensions and show that the regularity threshold for the initial data can be lowered all the
way to the scaling.

The step from small to large data is entirely nontrivial. The difficulty is related to the
infinite speed of propagation for the linear Schrödinger equation. Precisely, a large low
frequency component of the solution produces an exponentially large perturbation in the
high frequency flow even for an arbitrarily short time. Thus one needs to add the low
frequency part of the data to the linear equation and only then do a perturbative analysis
for the high frequencies. A somewhat similar analysis has been carried out before for
related problems (see [8], [3]); however, in both works the full initial data becomes part
of the nonlinearity, leading to considerable technical difficulties. What also differentiates
the present work is that the perturbed linear equation is very close to Mizohata’s necessary
condition.

Another interesting feature of this work is the choice of the function spaces for the
perturbative analysis. It has been known for some time that the Xs,b spaces are not good

1 The operator norm of the evolution in DH s will grow polynomially in time, though.



960 Ioan Bejenaru, Daniel Tataru

enough in order to study the local theory for derivative NLS equation. This is due to the
need to regain one derivative in the bilinear estimates, which leads to logarithmic losses.
In [2] the first author introduced a refinement of the Xs,b spaces which removes this
difficulty. In this article we provide an alternative modification of the Xs,b spaces which
seems better suited for the study of variable coefficient equations. This is based on a wave
packet type decomposition of solutions on the uncertainty principle scale.

2. Scaling and the perturbative argument

Differentiating once the equation (5) we obtain an equation of type (4). Thus in what
follows we restrict our analysis to (4). We set

M = ‖u0‖DH s .

Our equation is invariant with respect to the scaling

uε(x, t) = εu(εx, ε2t), uε0(x) = εu0(εx). (6)

It is natural to seek to decrease the size of the initial data by rescaling with a sufficiently
small parameter ε. However, there is a difficulty arising from the fact that we are using
inhomogeneous Sobolev spaces. This is why the result in [2] does not work for large
initial data.

We split the rescaled initial data uε0 into low and high frequencies,

uε0 = u
ε
0,≤1 + u

ε
0,>1.

It is not too difficult to estimate their size:

Proposition 1. Assume that s > n/2. Then the components uε0,≤1 and uε0,>1 of uε0 satisfy
the pointwise bounds

‖uε0,≤1‖L∞ + ‖u
ε
0,>1‖L∞ . εM (7)

and the estimates2

‖uε0,≤1‖DL2 . M, ‖∇uε0,≤1‖DL2 . max{ε, εs−n/2}M, (8)

‖uε0,>1‖DH s . εs−n/2M. (9)

The low frequency component is large but has the redeeming feature that it does not
change much on the unit time scale; hence we freeze it in time modulo small errors. On the
other hand, the high frequency component is small, therefore we can treat it perturbatively
on a unit time interval. To write the equation for the function

vε = uε − uε0,≤1

2 The constant in the second bound needs to be adjusted to ε|ln ε| if s = n/2+ 1.
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we decompose the quadratic nonlinearity B depending on whether the gradient factor is
complex conjugate or not,

B((u, ū), (∇u,∇ū)) = B0((u, ū),∇u)+ B1((u, ū),∇ū).

Then vε satisfies{
ivt −1v − Av = B((v, v̄), (∇v,∇v̄))+ A1v +N(u

ε
0,≤1),

v(0) = uε0,>1,
(10)

where
Av = B0((u

ε
0,≤1, ū

ε
0,≤1),∇v)

is a linear term which is included in the principal part,

A1v = B((v, v̄), (∇u
ε
0,≤1,∇ū

ε
0,≤1))+ B1((u

ε
0,≤1, ū

ε
0,≤1),∇v̄)

is a linear term which can be treated perturbatively, and

N(uε0,≤1) = B((u
ε
0,≤1, ū

ε
0,≤1), (∇u

ε
0,≤1, ∇̄u

ε
0,≤1))+1u

ε
0,≤1

represents the time independent contribution of the low frequency part of the data.
To solve this we need some Banach spaces Xs , DXs for the solution v, and Y s , DY s

for the inhomogeneous term in the equation. These are defined in Section 3.
Instead of working with the linear Schrödinger equation we need to consider lower

order perturbations of it of the form{
ivt −1v − a(t, x,D)v = f (x, t),

v(x, 0) = g(x).
(11)

Given any M ≥ 1 we introduce a larger class CM of pseudodifferential operators so
that for a ∈ CM we can solve (11). To motivate the following definition, we note that
the imaginary part of the symbol a can produce exponential growth in (11). We want to
be able to control the growth in the phase space along the Hamilton flow of the linear
Schrödinger equation, which leads to a (possibly large) bound on the integral of a along
the flow. We also want the integral of a along the flow to give an accurate picture of the
evolution. To ensure this we impose a smallness condition on the integral of derivatives
of a along the flow. This motivates the following

Definition 1. Let M ≥ 1. The symbol a(x, ξ) belongs to the class CM if it satisfies the
following conditions:

M = sup
x,ξ

∫ 1

0
|a(t, x + 2tξ, ξ)| dt <∞, (12)

sup
x,ξ

∫ 1

0
|∂αx ∂

β
ξ a(t, x + 2tξ, ξ)| dt ≤ Cα,βδ, |α| + |β| ≥ 1, (13)

with δeM � 1.
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Then our main linear result has the form:

Theorem 3. Let s ∈ R and a ∈ CM . Then the solution v of the equation (11) satisfies the
estimate

‖χ[0,1]v‖DXs . eM(‖f ‖DY s + ‖g‖DH s ). (14)

To apply this theorem in our context we need to show that

Proposition 2. For u0 ∈ DH s as above, set

a(x, ξ) = B0((u
ε
0,≤1, ū

ε
0,≤1), ξ).

If ε ≤ e−CM with C sufficiently large then a ∈ CcnM with cn depending only on the
dimension n.

In order to iteratively solve the equation (10) we want bounds for the right hand side
terms. The main one is a bilinear estimate:

Theorem 4. The following bilinear estimate holds:

‖B((u, ū), (∇v,∇v̄))‖DY s . ‖u‖DXs‖v‖DXs , s > n/2. (15)

For the linear term A1 we use the following estimates:

Proposition 3. Let A1 be defined as above. Then

‖A1v‖Y s . ‖uε0,≤1‖L∞‖v‖Xs , ‖A1v‖DY s . ‖uε0,≤1‖L∞‖v‖DXs . (16)

We also apply an estimate for the time independent term:

Proposition 4. If s > 1 then

‖B(uε0,≤1,∇u
ε
0,≤1)+1u

ε
0,≤1‖DH s . min(ε, εs−n/2)M2. (17)

Using the results above we are able to conclude the proof of Theorem 2. We choose
ε = e−CM with C large enough (depending on s). Then we solve the rescaled problem
(10) on a unit time interval using the contraction principle in the space Xs .

We define the operator T1 by w = T1f to be the solution of the inhomogeneous
Schrödinger equation with zero initial data:{

iwt −1w − A(x,D)w = f,

w(x, 0) = 0.
(18)

We also denote by T2g the solution to the homogeneous equation{
iwt −1w − A(x,D)w = 0,
w(x, 0) = g,

(19)
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With these notations the equation (10) can be rewritten in the form

v = T v, T v = T2u
ε
0,>1 + T1(B(v,∇v)+ A1v + B(w

ε
0,∇w0

ε)+1wε0).

We define the set

K = {w ∈ DXs : ‖w‖DXs ≤ εσ }, 0 < σ < s − n/2,

and prove that T : K → K and that T is a contraction on K . This give us the existence
of a fixed point for T which is the solution of our problem in the interval [0, 1].

To prove the invariance of K under the action of T we use the results in Theorem 3:

‖T v‖DXs . ecnM(‖uε0,>1‖DH s + ‖B(v,∇v)‖DY s + ‖A1v‖DY s

+ ‖B(uε0,≤1∇u
ε
0,≤1)+1u

ε
0,≤1‖DH s ).

Using the estimates (9) and (15)–(17) then yields

‖T v‖DXs . M2ecnM(εs−n/2 + ‖v‖2DXs ).

If v ∈ K then we use the smallness of ε to obtain

‖T v‖DXs . εσM2ecnM(εs−n/2−σ + εσ ) ≤ εσ ,

which shows that T v ∈ K .
To prove that T is a contraction we write

T v1 − T v2 = T1(B(v1,∇(v1 − v2)))+ T1(B(v1 − v2,∇v2))

and estimate in a similar manner:

‖T v1 − T v2‖DXs . (‖v1‖DXs + ‖v2‖DXs )‖v1 − v2‖DXs

. 2εσ‖χ[0,1](v1 − v2)‖DXs <
1
2
‖χ[0,1](v1 − v2)‖DXs .

3. The function spaces

Let (x0, ξ0) ∈ R2n. To describe functions which are localized in the phase space on the
unit scale near (x0, ξ0) we use the space

H
N,N

x0,ξ0 := {f : 〈D − ξ0
〉
Nf ∈ L2, 〈x − x0

〉
Nf ∈ L2

}.

We work with the lattice Zn both in the physical and Fourier space. We consider a
partition of unity in the physical space,∑

x0∈Zn
φx0 = 1, φx0(x) = φ(x − x0),
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where φ is a smooth bump function with compact support. We use a similar partition of
unity on the Fourier side: ∑

ξ0∈Zn
ϕξ0 = 1, ϕξ0(ξ) = ϕ(ξ − ξ0).

Let H be a Hilbert space. Let V 2H be the space of right continuous H -valued func-
tions on R with bounded 2-variation

‖u‖2
V 2H
= sup
(ti )∈T

∑
i

‖u(ti+1)− u(ti)‖
2
H ,

where T is the set of finite increasing sequences in R. The V 2 spaces are close to the
homogeneous Sobolev space Ḣ 1/2 in the sense that

Ḃ
1/2
2,1 ⊂ V

2
⊂ Ḃ

1/2
2,∞. (20)

Let U2H be the atomic space defined by the atoms:

u =
∑
i

hiχ[ti ,ti+1),
∑
i

‖hi‖
2
H = 1,

for some (ti) ∈ T . We have the inclusion U2H ⊂ V 2H but actually these spaces are very
close. There is also a duality relation between V 2H and U2H , namely

(DU2H)∗ = V 2H, (21)

where DU2H represents the space of derivatives of U2H functions with the induced
norm.

We can associate similar spaces to the Schrödinger flow by pulling back functions to
time 0 along the flow, e.g.

‖u‖V 2
1L

2 = ‖e
it1u‖V 2L2 .

This turns out to be a good replacement for theX0,1/2 space associated to the Schrödinger
equations. Such spaces originate in unpublished work of the second author on the wave-
map equation, and have been succesfully used in various contexts so far (see [9] and [11]).

In the present paper we consider a wave packet type refinement of this structure. We
begin with spatial localization, and introduce the space X of functions in [0, 1]×Rn with
norm

‖u‖2X =
∑
x0∈Zn

‖φx0e
it1u‖2

V 2
t L

2
x
.

It is easy to see that this is a stronger norm than the V 2
1L

2 norm,

‖u‖V 2
1L

2 . ‖u‖2X. (22)

The X norm is usually applied to functions which are also frequency localized on the
unit scale. This is consistent with the spatial localization. Precisely, we have the straight-
forward bound

‖ϕξ (D)u‖X . ‖u‖X (23)
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For a function u : [0, 1]× Rn→ C we decompose

u =
∑
ξ0∈Zn

uξ0 , uξ0 = ϕξ0(D)u,

and set
‖u‖2Xs =

∑
ξ0∈Zn
〈ξ0〉

2s
‖uξ0‖

2
X.

An immediate consequence of (22) is that

‖u‖V 2
1L

2 . ‖u‖2
X0 . (24)

We also denote by Xλ the subspace of functions in X0 which are localized at fre-
quency λ. It is easy to see that Xs has an l2 dyadic structure,

‖u‖2Xs ≈
∑
λ≥1

λ2s
‖uλ‖

2
Xλ

This is the most compact definition of Xs . Some equivalent formulations of the norm
on X turn out to be more helpful in some estimates. We dedicate the next few paragraphs
to such formulations. The first such formulation simply adds regularity and decay:

Proposition 5. Let N ∈ N. Then

‖uξ0‖
2
X ≈

∑
x0∈Zn

‖φx0e
it1uξ0‖

2
V 2H

N,N
x0,ξ0

. (25)

Proof. Set vξ0 = e
it1uξ0 . Then it suffices to show that∑

x0∈Zn
‖φx0vξ0‖

2
V 2H

N,N
x0,ξ0

.
∑
x0∈Zn

‖φx0vξ0‖
2
V 2L2 .

This in turn follows by summation from

‖φx0vξ0‖V 2H
N,N
x0,ξ0

.
∑
y0∈Zn
〈x0 − y0〉

−N
‖φy0vξ0‖V 2L2 .

We can translate both in space and in frequency and reduce the problem to the case when
x0 = 0 and ξ0 = 0. Then we need to show that

‖xNφ0v0‖V 2L2 + ‖D
N (φ0v0)‖V 2L2 .

∑
y0∈Zn
〈y0〉
−N
‖φy0v0‖V 2L2 .

The derivatives which fall on v0 can be truncated at frequencies larger than 1. Then a
more general formulation of the above bound is

‖ψ0χ0(D)v0‖V 2L2 .
∑
y0∈Zn
〈y0〉
−N
‖φy0v0‖V 2L2 , (26)
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where both ψ0 and χ0 are bump functions concentrated at 0. We write

ψ0χ0(D)v0 =
∑
y0∈Zn

ψ0χ0(D)φy0v0,

It remains to show that

‖ψ0χ0(D)φy0‖L2→L2 . 〈y0〉
−N .

which is straightforward since χ0(D) has a bounded and rapidly decreasing kernel. ut

The next equivalent definition of our function spaces relates the Schrödinger evolution to
the associated Hamilton flow,

(x0, ξ0) 7→ (x0 − 2tξ0, ξ0)

We begin by linearizing the symbol of −1 near ξ0,

ξ2
= Lξ0(ξ)+O((ξ − ξ0)

2), Lξ0(ξ) = ξ
2
0 + 2ξξ0

The evolution generated by L is simply the transport along the Hamilton flow,

eitLξ0u(x) = eitξ
2
0 u(x − 2tξ0).

Our next characterization of the frequency localized X norm asserts that we can replace
−1 by Lξ0 .

Proposition 6. We have

‖uξ0‖
2
X ≈

∑
x0∈Zn

‖φx0e
−itLξ0uξ0‖

2
V 2L2 (27)

and
‖uξ0‖

2
X ≈

∑
x0∈Zn

‖φx0e
−itLξ0uξ0‖

2
V 2H

N,N
x0,ξ0

. (28)

Proof. Setting as before vξ0 = e
it1uξ0 we can write

e−itLξ0uξ0 = e
it (D2

−Lξ0 )vξ0 = χξ0(t,D)vξ0 ,

where the symbol χ(t, ξ) is a unit bump function in ξ around ξ0 and smooth in t . There
is also a similar formula with Lξ0 andD2 interchanged. Hence for (27) it suffices to show
that ∑

x0∈Zn
‖φx0χξ0(t,D)vξ0‖

2
V 2L2 .

∑
x0∈Zn

‖φx0vξ0‖
2
V 2L2 .

Without any restriction in generality we can take ξ0 = 0. Using a Fourier series in t
we can also replace χξ0(t, ξ) by an expression of the form a(t)χξ0(ξ) with a smooth. It
remains to show that∑

x0∈Zn
‖φx0χξ0(D)vξ0‖

2
V 2L2 .

∑
x0∈Zn

‖φx0vξ0‖
2
V 2L2 .

But this follows as in Proposition 5 from (26).
Finally, the proof of (28) uses the same argument as in Proposition 25. ut
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For each ξ0 we define the set Tξ0 of tubes of the form

Q = {(t, x) : |x − (xQ − 2tξ0)| ≤ 1}, xQ ∈ Zn.

They are the image of unit cubes centered at xQ at time 0 along the Lξ0 flow. These tubes
generate the decomposition

[0, 1]× Rn =
⋃
Q∈Tξ0

Q.

Now we can state our last equivalent formulation of theX norm for functions localized
at frequency ξ0 in terms of a wave packet decomposition associated to tubes Q ∈ Tξ0 :

Proposition 7. Let uξ0 ∈ X. Then it can be represented as the sum of a rapidly conver-
gent series

uξ0(t, x) =
∑
j

eixξ0eitξ
2
0
∑
Q∈Tξ0

a
j
Q(t)χ

j (x − xQ − 2tξ0) (29)

with χ j uniformly bounded in HN,N , supported in B(0, 2), and∑
Q∈Tξ0

‖a
j
Q‖

2
V 2 . j−N‖uξ0‖X.

Proof. The pull back to time 0 of the above representation using the Lξ0 flow is

e−itLξ0uξ0(t, x) =
∑
j

eixξ0
∑
x0∈Zn

a
j
Q(t)χ

j (x − x0).

We define v0 = e
−ixξ0e−itLξ0uξ0 and use (28) for the Xξ0 norm. Then it suffices to show

that for fixed x0 we can represent

φx0v0 =
∑
j

aj (t)χ j (x − x0),

where χ j are uniformly bounded in HN,N and

‖aj‖V 2 . j−N‖φx0v0‖V 2H
CN,CN
x0

.

Without any restriction in generality we take x0 = 0. We take χ j to be the Hermite
functions with the HN,N normalization (see e.g. [13]). Then the V 2 functions aj are the
Fourier coefficients of φx0v0. They decay rapidly due to the additional regularity of φx0v0.

Finally, to ensure that the χj ’s have compact support we can truncate the Fourier series
outside the support of φx0 . ut
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We follow a similar path to define the Y s structure:

‖u‖2Y s =
∑
ξ0∈Zn
〈ξ0〉

2s
‖uξ0‖

2
Y ,

where Y is defined by

‖f ‖2Y =
∑
x0∈Zn

‖φx0e
−itD2

f ‖2
DU2

t L
2
x
.

All the equivalent definitions for the X have a counterpart for Y by simply replacing
the V 2

t structure by the DU2
t one.

There are two key relations between the Xs and Y s spaces. The first one is concerned
with solvability for the linear Schrödinger equation:

Proposition 8. The solution u to the linear Schrödinger equation

iut −1u = f, u(0) = u0,

satisfies
‖u‖Xs . ‖u0‖H s + ‖f ‖Y s . (30)

This is stated here only for the sake of completeness, as in the next section we prove a
stronger estimate in Theorem 3.

The second relation is a duality relation:

Proposition 9. We have the duality relation (Y s)∗ = X−s .

Proof. (a) We first verify that X−s ⊂ (Y s)∗. For this we need the bound∣∣∣∣∫ 1

0

∫
uf̄ dx dt

∣∣∣∣ . ‖u‖X−s‖f ‖Y s .

We decompose ∫ 1

0

∫
uf̄ dx dt =

∑
ξ∈Zn

∫ 1

0

∫
uξ f̄ξ dx dt.

Due to the definition of the Xs and Y s norms, it suffices to show that∣∣∣∣∫ 1

0

∫
uξ f̄ξ dx dt

∣∣∣∣ . ‖uξ‖X‖fξ‖Y .

For this we write∫ 1

0

∫
uξ f̄ξ dx dt =

∫ 1

0

∫
eit1uξ eit1fξ dx dt =

∑
x0∈Zn

∫ 1

0

∫
φx0e

it1uξ eit1fξ dx dt

and use the duality relation (21) together with the definition of the X and Y norms.
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(b) We now show that (Y s)∗ ⊂ X−s . Let T be a bounded linear functional on Y s .
Then we have

|Tf | . ‖f ‖Y s .
(∑
ξ∈Zn
〈ξ〉2s‖fξ‖

2
Y

)1/2
.
( ∑
x0∈Zn

∑
ξ∈Zn
〈ξ〉2s‖φx0e

it1fξ‖
2
DU2L2

)1/2
.

By the Hahn–Banach theorem we can extend T to a bounded linear functional on the
space l2

〈ξ〉sDU
2L2. By (21) this implies that we can represent T in the form

Tf =
∑
x0∈Zn

∑
ξ∈Zn

∫ 1

0

∫
vx0,ξφx0e

it1fξ dx dt,

where ∑
x0∈Zn

∑
ξ∈Zn
〈ξ〉−2s

‖vx0,ξ‖
2
V 2L2 . ‖T ‖2(Y s )∗ .

Due to the above representation we can identify T with the function

uT =
∑
x0∈Zn

∑
ξ∈Zn

φξ (D)e
−it1φx0vx0,ξ .

It remains to show that

‖uT ‖
2
X−s

.
∑
x0∈Zn

∑
ξ∈Zn
〈ξ〉−2s

‖vx0,ξ‖
2
V 2L2 .

This reduces to the fixed ξ bound∥∥∥ ∑
x0∈Zn

ϕξ (D)e
−it1φx0vx0,ξ

∥∥∥2

X
.

∑
x0∈Zn

‖vx0,ξ‖
2
V 2L2

with a modified ϕξ . Using the definition of the X norm we rewrite this as∑
y0∈Zn

∥∥∥ ∑
x0∈Zn

φy0ϕξ (D)φx0vx0,ξ

∥∥∥2

V 2L2
.

∑
x0∈Zn

‖vx0,ξ‖
2
V 2L2 .

But this follows by Cauchy–Schwarz from the rapid decay

‖φy0ϕξ (D)φx0‖L2→L2 . 〈x0 − y0〉
−N . ut

We still need to add the decay structure to theXs and Y s spaces. Given λ ≥ 1, we roughly
want to ask for l1 summability of frequency λ norms along collinear cubes of size λ. We
define the DXλ norm by

‖u‖DXλ = sup
x0∈Rn

sup
ω∈Sn−1

∞∑
k=−∞

‖χ(λ−1(x − x0)− kω)u‖Xλ , (31)
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where χ is a compactly supported bump function. We note that this norm can only be
meaningfully used for functions at frequency λ. Summing up with respect to λ we also
set

‖u‖2DXs =
∑
λ≥1

‖uλ‖
2
DXλ .

In a completely similar way we can define DYλ and DY s .
A useful tool in our analysis is a family of embeddings which correspond to the

Strichartz estimates for the Schrödinger equation.

Proposition 10. Let p and q be indices which satisfy

2
p
+
n

q
=
n

2
, 2 < p ≤ ∞, 2 ≤ q ≤ ∞.

Then we have the embedding
X0
⊂ L

p
t L

q
x .

By (24) these embeddings are a direct consequence of the Strichartz estimates for the
Schrödinger equation (see [9, proof of Proposition 6.2]). By Sobolev embeddings we also
obtain bounds with larger p, q for frequency localized solutions.

Corollary 1. Let p and q be indices which satisfy

2
p
+
n

q
≤
n

2
, 2 < p ≤ ∞, 2 ≤ q ≤ ∞.

Then we have the embedding

S<µX
0
⊂ µn/2−2/p−n/qL

p
t L

q
x ,

where S<µ can be replaced with a multiplier localizing in frequency to an arbitrary cube
of size µ.

In this article we use only the case p = q, more precisely

X0
⊂ L2(n+2)/n, S<µX

0
⊂ µn/2−1Ln+2. (32)

Finally, we introduce modulation localization operators, which we can define in two
equivalent ways. The first method is as multipliers,

M̂<σu = s<σ (τ − ξ
2)û.

The second is obtained by conjugation with respect to the Schrödinger flow,

eitD
2
(M<σu)(t) = s<σ (Dt )(e

itD2
u(t)).

The operators s<σ (Dt ) are bounded on V 2. On the other hand, for the remainder, by
(20), we have a good L2 bound:

‖s>σ (Dt )a‖L2 . σ−1/2
‖a‖V 2 .

By the second definition of the modulation localization operators above we obtain
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Proposition 11. (a) The operators M<σ are bounded on X0.
(b) The following estimate holds:

‖M>σu‖L2 . σ−1/2
‖u‖X0 .

We note that in fact, by using both inclusions in (20), one can relate our Xs spaces to the
traditional Xs,b spaces, namely

Ẋs,1/2,1 ⊂ Xs ⊂ Ẋs,1/2,∞. (33)

4. Linear estimates

This section is devoted to the study of the linear equation (11) with a ∈ CM . Precisely, we
aim to prove Theorem 3. We define

La = i∂t −1− a(t, x,D).

We begin our analysis with a heuristic computation. Suppose we have a solution ux0,ξ0 to

(i∂t −1− a(t, x,D))u = 0

which is localized on the unit scale near the bicharacteristic t 7→ (x0 + 2tξ0, ξ0). Then
we can freeze the symbol of a(t, x,D) along the ray and write

a(t, x,D)u = a(t, x0 + 2ξ0, ξ0)u+ error.

Thus ux0,ξ0 approximately solves

(i∂t −1− a(t, x0 + 2ξ0, ξ0))ux0,ξ0 ≈ 0.

This implies that we can represent ux0,ξ0 in the form

ux0,ξ0(t) ≈ e
∫ t

0 a(s,x0+2sξ0,ξ0) dsvx0,ξ0 ,

where vx0,ξ0 solves the equation

(i∂t −1)v
x0,ξ0 = 0.

Hence along each wave packet we can use the above exponential to approximately con-
jugate the variable coefficient equation to the flat flow.

Using this idea we produce wave packet approximate solutions for the equation (11).
By orthogonality these combine into general approximate solutions to (11). The exact
solutions are obtained via a Picard iteration.

We first consider the regularity of the exponential weight. By (12) we have∫ 1

0
|a(t, x0 + 2tξ0, ξ0)| dt ≤ M,
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which implies a W 1,1 bound for the exponential,∥∥∥∥ ddt e∫ t0 a(s,x0+2sξ0,ξ0) ds

∥∥∥∥
L1
≤ eM . (34)

Since W 1,1
⊂ V 2 this yields a similar V 2 bound,∥∥∥e∫ t0 a(s,x0+2sξ0,ξ0) ds

∥∥∥
V 2
≤ eM . (35)

We continue our analysis with the localized equation

Lau = fx0,ξ0 , u(0) = gx0,ξ0 . (36)

According to the above heuristics, an approximate solution for this should be given by
Duhamel’s formula,

ux0,ξ0 = e
∫ t

0 a(s,x0+2sξ0,ξ0) dse−it1gx0,ξ0 +

∫ t

0
e
∫ t
s a(τ,x0+2τξ0,ξ0) dτ e−i(t−s)1fx0,ξ0(s) ds.

We prove that this is indeed the case:

Proposition 12. The function ux0,ξ0 is an approximate solution for (36) in the sense that

‖eit1ux0,ξ0‖
V 2H

N,N
x0,ξ0

. eM(‖gx0,ξ0‖H
N,N
x0
+ ‖eit1fx0,ξ0‖DU2H

N,N
x0

) (37)

and

‖eit1(Lau
x0,ξ0 − fx0,ξ0)‖L1H

N,N
x0,ξ0

. δeM(‖gx0,ξ0‖H
N+2n+1,N+2n+1
x0,ξ0

+ ‖eit1fx0,ξ0‖DV 2H
N+2n+1,N+2n+1
x0,ξ0

). (38)

Proof. For the first bound we shorten the notation

a0(s) := a(s, x0 + 2sξ0, ξ0)

and compute

eit1ux0,ξ0 = e
∫ t

0 a0(s) dsgx0,ξ0 +

∫ t

0
e
∫ t
s a0(τ ) dτ eis1fx0,ξ0(s) ds.

The first term is estimated directly by (35). Setting

F(t) =

∫ t

0
eis1fx0,ξ0(s) ds

and integrating by parts we write the second term in the form

F(t)−

∫ t

0

d

ds
e
∫ t
s a0(τ ) dτF(s) ds.
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We have
‖F‖

V 2H
N,N
x0,ξ0

. ‖eis1fx0,ξ0(s)‖DU2H
N,N
x0,ξ0

,

while the V 2 norm of the second part is controlled by its W 1,1 norm, namely∥∥∥∥∫ t

0

d

ds
e
∫ t
s a(0τ) dτF(s) ds

∥∥∥∥
V 2H

N,N
x0,ξ0

.

∥∥∥∥ ddt
∫ t

0

d

ds
e
∫ t
s a0(τ ) dτF(s) ds

∥∥∥∥
L1H

N,N
x0,ξ0

.
∫ 1

0
|a0(t)|

(
1+

∫ t

0

∣∣∣∣ dds e∫ ts a0(τ ) dτ

∣∣∣∣ ds) dt ‖F‖L∞HN,N
x0,ξ0

.
∫ 1

0
|a0(t)|

(
1+

∫ t

0
|a0(s)|e

∫ t
s |a0(τ )| dτ ds

)
dt ‖F‖

L∞H
N,N
x0,ξ0

.
∫ 1

0
|a0(t)|e

∫ t
0 |a0(τ )| dτ dt ‖F‖

L∞H
N,N
x0,ξ0

. eM‖F‖
L∞H

N,N
x0,ξ0

. eM‖F‖
V 2H

N,N
x0,ξ0

.

This concludes the proof of (37).
It remains to prove (38). A direct computation yields

(i∂t −1− a(t, x,D))u
x0,ξ0 − fx0,ξ0 = b(t, x,D)u

x0,ξ0 ,

where
b(t, x, ξ) = a(t, x0 + 2tξ0, ξ0)− a(t, x, ξ).

By (37) it suffices to show that

‖eit1b(t, x,D)ux0,ξ0‖
L1H

N,N
x0,ξ0

. δ‖eit1ux0,ξ0‖
L∞H

N+2n+1,N+2n+1
x0,ξ0

Since the flat Schrödinger flow has the mapping property

‖eit1f ‖
H
N,N
x0,ξ0
≈ ‖f ‖

H
N,N
x0+2tξ0,ξ0

,

this is equivalent to

‖b(t, x,D)ux0,ξ0‖
L1H

N,N
x0+2tξ0,ξ0

. δ‖ux0,ξ0‖
L∞H

N+3,N+3
x0+2tξ0,ξ0

. (39)

We begin with a straightforward consequence of the S00 calculus:

Lemma 1. Let k be a nonnegative integer and c be a symbol which satisfies

|∂αx ∂
β
ξ c(x, ξ)| ≤ cα,β〈(x − x0, ξ − ξ0)〉

k, |α| + |β| ≥ 0.

Then for all N ∈ N we have

‖c(x,D)u‖
H
N,N
x0,ξ0

. ‖u‖
H
N+k,N+k
x0,ξ0

.
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In order to use this lemma for the operator b above we need the following Sobolev em-
bedding:

Lemma 2. Let R > 1 and c ∈ W 2n,1(BR(x0, ξ0)). Then

|c(x, ξ)| .
∑

0≤|α|≤2n

‖∂αc‖L1(BR(x0,ξ0))

and
|c(x, ξ)− c(x0, ξ0)| .

∑
1≤|α|≤2n

‖∂αc‖L1(BR(x0,ξ0))
.

As a consequence, we obtain

Lemma 3. Let c ∈ W 2n,1
loc (R2n). Then

|c(x, ξ)|

〈(x − x0, ξ − ξ0)〉2n+1 .
∫

R2n

∑
0≤|α|≤2n

|∂αc(x, ξ)|

〈(x − x0, ξ − ξ0)〉2n+1 dx dξ

and
|c(x, ξ)− c(x0, ξ0)|

〈(x − x0, ξ − ξ0)〉2n+1 .
∫

R2n

∑
1≤|α|≤2n

|∂αc(x, ξ)|

〈(x − x0, ξ − ξ0)〉2n+1 dx dξ.

Applying these inequalities to the symbol b above we obtain pointwise bounds for b,

|b(t, x, ξ)|

〈(x − x0 − 2tξ0, ξ − ξ0)〉2n+1 .
∫

R2n

∑2n
|α|=1 |∂

αa(t, x, ξ)|

〈(x − x0 − 2tξ0, ξ − ξ0)〉2n+1 dx dξ,

and also for its derivatives,

|∂kb(t, x, ξ)|

〈(x − x0 − 2tξ0, ξ − ξ0)〉2n+1 .
∫

R2n

∑2n+k
|α|=k |∂

αa(t, x, ξ)|

〈(x − x0 − 2tξ0, ξ − ξ0)〉2n+1 dx dξ.

Then by Lemma 1 it follows that

‖b(t, x,D)‖
H
N+2n+1,N+2n+1
x0+2tξ0,ξ0

→H
N,N
x0+2tξ0,ξ0

.
∫

R2n

∑N0
|α|=1 |∂

αa(t, x, ξ)|

〈(x − x0, ξ − ξ0)〉2n+1 dx dξ

with N0 sufficiently large. Integrating in t and changing coordinates in the integral gives

‖b(t, x,D)‖
L∞H

N+2n+1,N+2n+1
x0+2tξ0,ξ0

→L1H
N,N
x0+2tξ0,ξ0

.
∫

R2n

∫ 1

0

N0∑
|α|=1

|∂αa(t, x + 2tξ, ξ)|
〈(x − x0, ξ − ξ0)〉2n+1 dt dx dξ.

By (13) we can bound each time integral by δ and the remaining weight is integrable in x
and ξ . Hence (39) follows. ut

Next we produce approximate solutions for the frequency localized data,

Lau = fξ0 , u(0) = gξ0 . (40)
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We denote the approximate solution by uξ0 ; the notation uξ0 continues to be reserved for
a frequency localized part of a function u.

Proposition 13. There is an approximate solution uξ0 to the equation (40), localized at
frequency ξ0, with u(0) = gξ0 , which satisfies the bounds

‖uξ0‖X . eM(‖gξ0‖L2 + ‖fξ0‖Y ) (41)

and
‖Sξ (Lau

ξ0 − fξ0)‖Y . δ〈ξ − ξ0〉
−NeM(‖gξ0‖L2 + ‖fξ0‖Y ). (42)

Proof. We decompose

gξ0 =

∑
x0

gx0,ξ0 , fξ0 =

∑
x0

fx0,ξ0 ,

and solve the problem (36) for which we have the estimates (37) and (38). We define our
approximate solution to be the sum of the approximate solutions ux0,ξ0 :

uξ0 =

∑
x0

ux0,ξ0 .

Using (37) we obtain

‖uξ0‖
2
X =

∑
y0

‖φy0e
−it1uξ0‖

2
V 2L2 .

∑
y0

(∑
x0

‖φy0e
−it1ux0,ξ0‖V 2L2

)2

.
∑
y0

(∑
x0

〈x0 − y0〉
−N
‖e−it1ux0,ξ0‖

V 2H
N,N
x0,ξ0

)2

.
∑
x0

‖e−it1ux0,ξ0‖
2
V 2L

N,N
x0,ξ0

. eM
∑
x0

‖gx0,ξ0‖
2
H
N+2n+1,N+2n+1
x0,ξ0

+ ‖e−it1fx0,ξ0‖
2
DU2H

N+2n+1,N+2n+1
x0,ξ0

. eM(‖gξ0‖
2
L2 + ‖fξ0‖

2
Yξ0
).

We continue now with the estimates for the error, using (38) instead of (37). We have

‖Sξ (Lau
ξ0 − fξ0)‖

2
Y =

∑
y

‖φye
it1Sξ (Lau

ξ0 − fξ0)‖
2
DU2L2

.
∑
y

(∑
x0

‖φySξ e
it1(Lau

x0,ξ0 − fx0,ξ0)‖L1L2

)2

.
∑
y

(∑
x0

‖eit1(Lau
x0,ξ0 − fx0,ξ0)‖L1H

N,N
x0,ξ0

〈(y − x0 − 2tξ0, ξ − ξ0)〉N

)2

. 〈ξ − ξ0〉
n−2N

∑
x0

‖eit1(Lau
x0,ξ0 − fx0,ξ0)‖

2
L1H

N,N
x0,ξ0

.

Then (42) follows from (38). ut
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The next stage is to consider data which is localized at frequency λ,

Lau = fλ, u(0) = gλ. (43)

Summing up the frequency localized solutions we obtain as above a dyadic approximate
solution:

Proposition 14. There is an approximate solution uλ to the equation (43), localized at
frequency λ, with u(0) = gλ, which satisfies the bounds

‖uλ‖Xλ . eM(‖gλ‖L2 + ‖fλ‖Yλ) (44)

and

‖Sµ(Lau
λ
− fλ)‖Yµ . (min{µ/λ, λ/µ})NδeM(‖gλ‖L2 + ‖fλ‖Yλ). (45)

The construction of the functions uλ involves only the constant coefficient Schrödinger
flow at frequency λ. This has spatial speed of propagation λ, therefore it can spread by at
most O(λ) in a unit time interval. Thus the above construction can be trivially localized
on the λ spatial scale, leading to the bounds

‖uλ‖DXλ . eM(‖gλ‖DL2
λ
+ ‖fλ‖DY λ) (46)

and

‖Sµ(Lau
λ
− fλ)‖DYµ . (min{µ/λ, λ/µ})NδeM(‖gλ‖DL2

λ
+ ‖fλ‖DY λ). (47)

After an addition dyadic summation we obtain a global parametrix:

Proposition 15. There is an approximate solution u to the equation (11), with u(0) = g,
which satisfies the bounds

‖u‖DXs . eM(‖g‖DH s + ‖f ‖DY s ) (48)

and

‖(i∂t −1− a(t, x,D))u− f )‖DY s . δeM(‖g‖DH s + ‖f ‖DY s ). (49)

Of course the similar result without decay is also valid.
If δ � e−M then the constant in (49) is less than 1. Then one can iterate to obtain an

exact solution u to (11) which still satisfies (46). Theorem 3 follows.
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5. Low frequency bounds

Here we prove Propositions 1–4.

Proof of Proposition 1. For simplicity we set f = u0. The pointwise bounds (7) follow
from Sobolev type estimates and scaling,

‖f ε‖L∞ = ε‖f ‖L∞ . ε‖f ‖DH s , s > n/2.

We now move to the L2 bounds. The effect of scaling on the DL2
λ norms is easy to

compute,
‖f ε‖DL2

λ
= ε1−n/2

‖f ‖DL2
ελ
. (50)

Hence the first bound in (8) can be rewritten in the form

ε1−n/2
‖f<ε−1‖DL2

ε
. ‖f ‖DH s . (51)

We have
f≤ε−1 =

∑
1≤λ≤ε−1

fλ.

For each such λ we have three relevant spatial scales,

ε ≤ λ−1
≤ λ.

The middle one arises due to the uncertainty principle; namely, this is the scale on which
fλ is smooth. Then we can write the sequence of inequalities

‖fλ‖DL2
ε

. (ελ)−1εn/2‖fλ‖DL∞
λ−1

. (ελ)−1εn/2λn/2‖fλ‖DL2
λ−1

. (ελ)−1εn/2λn/2λ‖fλ‖DL2
λ
= εn/2−1λn/2‖fλ‖DL2

λ
.

All these bounds are obtained by comparing tubes with the same orientation ω. The first
step uses Hölder’s inequality to switch from the ε scale to the λ−1 scale; theDL∞ norm is
defined in the same way as theDL2 norm. The second takes advantage of the localization
at frequency λ. Finally, the third step uses Hölder’s inequality to switch from the λ−1

scale to the λ scale. Summing up with respect to λ we obtain (51),

‖f<ε−1‖DL2
ε

.
∑

1≤λ≤ε−1

‖fλ‖DL2
ε

. εn/2−1
∑

1≤λ≤ε−1

λn/2‖fλ‖DL2
λ

. εn/2−1
‖f ‖DH s

for s > n/2.
Consider now the second part of (8). The analogue of (50) is

‖∇f ε‖DL2
λ
= ε2−n/2

‖∇f ‖DL2
ελ
,

and therefore we have to show that

ε2−n/2
‖∇f<ε−1‖DL2

ε
. max{ε, εs−n/2}‖f ‖DH s .
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We proceed as above:

‖∇f<ε−1‖DL2
ε

.
∑

1≤λ≤ε−1

λ‖fλ‖DL2
ε

. εn/2−1
∑

1≤λ≤ε−1

λn/2+1
‖fλ‖DL2

λ
.

The bound for the last sum is straightforward and depends on the relative positions of s
and n/2+ 1.

It remains to consider the high frequency estimate (9), for which we only need the
scaling relation (50) and Hölder’s inequality:

‖f ε>1‖
2
DH s =

∑
λ>1

λ2s
‖(f ε)λ‖

2
DL2

λ

= ε2−n
∑
λ>1

λ2s
‖fε−1λ‖

2
DL2

ελ

. ε2−n
∑
λ>1

ε−2λ2s
‖fε−1λ‖

2
DL2

ε−1λ
= ε2s−n(ε−1λ)2s . ε2s−n

‖f ‖2DH s . ut

Proof of Proposition 2. It suffices to consider the ã(t, x, ξ) = uε0,≤1ξ part of the symbol,
since ∇uε0,≤1 is obtained from ã by differentiation. The main ingredient of the proof is

Lemma 4. Let s > n/2. Then

sup
x0∈Rn

sup
|ω0|=1

∫
∞

−∞

|f (x0 + tω0)| dt ≤ ‖f ‖DH s . (52)

Proof. For each dyadic component fλ of f we have∫
∞

−∞

|fλ(x0 + tω0)| dt =
∑
k∈Z

∫ λ(k+1)

λk

|fλ(x0 + tω0)| dt

. λ1/2
∑
k∈Z

(∫ λ(k+1)

λk

|f 2
λ (x0 + tω0)| dt

)1/2

. λn/2
∑
k∈Z
‖1{|λ−1(x−x0)−kω|<1}fλ‖L2 . λn/2‖fλ‖DL2

λ
.

At the second step we have used Hölder’s inequality and at the third we have used the
frequency localization. The summation with respect to λ gives the desired result. ut

We return to the proof of the proposition. A change of variables combined with Lemma 4
and the first part of (8) gives

sup
x,ξ

∫ 1

0
|ã(t, x + 2tξ, ξ)| dt = sup

x,ξ

∫ 2|ξ |

0
|uε0,≤1(x + tω0)| dt . ‖uε0,≤1‖DH s . M,

where ω0 = ξ/|ξ |.
For x derivatives of ã we use the second part of (8) instead:∫ 1

0
|∂x ã(x + 2tξ, ξ)| dt . ‖∇uε0,≤1‖DH s . max{ε, εs−n/2}M.
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For ξ derivatives we use the pointwise bound (7):∫ 1

0
|∂ξ ã(x + 2tξ, ξ)| dt =

∫ 1

0
|uε0,≤1(x + 2tξ )| dt . εM.

Since uε0,≤1 is supported at frequencies . 1, we obtain similar bounds for higher order
derivatives. ut

Proof of Proposition 3. We neglect the gradients applied to uε0,≤1. Also for the estimate
involving v̄ we retain only the stronger bound3 involving ∇v̄. Then we need to show that

‖uε0,≤1v‖Y s . ‖uε0,≤1‖L∞‖v‖Xs , (53)

‖uε0,≤1∇v̄‖Y s . ‖uε0,≤1‖L∞‖v‖Xs . (54)

In (53) we use orthogonality with respect to unit frequency cubes to reduce it to

‖uε0,≤1vξ0‖Y . ‖uε0,≤1‖L∞‖vξ0‖X.

By duality this becomes∣∣∣∣∫ uε0,≤1vξ0w̄ξ0 dx dt

∣∣∣ . ‖uε0,≤1‖L∞‖vξ0‖X‖wξ0‖X.

Hence it suffices to show that∫
|vξ0 | |wξ0 | dx dt . ‖vξ0‖X‖wξ0‖X.

By orthogonality with respect to Tξ0 tubes (see Proposition 7) it remains to verify that
given a ξ tube Q we can integrate a bump function on Q,∫

1Q dx dt . 1,

which is trivial.
Similarly, (54) reduces to the frequency localized bound∣∣∣∣∫ uε0,≤1vξ0w−ξ0 dx dt

∣∣∣∣ . |ξ0|
−1
‖uε0,≤1‖L∞‖vξ0‖Y ‖wξ0‖Y .

We use a modulation decomposition of vξ0 and w−ξ0 at modulation ξ2/8. Due to the
Fourier localization, the integral corresponding to the low modulation parts vanishes,∫

uε0,≤1M<ξ2
0 /4
vξ0M<ξ2

0 /4
w−ξ0 dx dt = 0.

On the other hand, we use Proposition 11 to estimate∣∣∣∣∫ uε0,≤1M>ξ2
0 /4
vξ0w−ξ0 dx dt

∣∣∣∣ . ‖uε0,≤1‖L∞‖M>ξ2
0 /4
vξ0‖L2‖w−ξ0‖L2

. |ξ0|
−1
‖uε0,≤1‖L∞‖vξ0‖X0‖w−ξ0‖X0 . ut

Proof of Proposition 4. This is a direct consequence of the estimates in (8) and (7). ut

3 This is because we do not differentiate between frequencies 1 and less than 1 in what follows.
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6. The bilinear estimate

Here we prove Theorem 4. After a Littlewood–Paley decomposition it suffices to prove a
bound for the high-low frequency interactions

‖uµvλ‖DYλ . λ−1µn/2(lnµ)1/2‖uµ‖DXµ‖vλ‖DXλ , 1 ≤ µ� λ, (55)

as well as4 for high-high frequency interactions

‖Sµ(uλvλ)‖DYµ . λn−1µ−n/2‖uλ‖DXλ‖vλ‖DXλ , 1 ≤ µ . λ, (56)

and similar bounds where one or both of the factors are replaced by their complex conju-
gates.

Both bounds can be localized on the λ spatial scale. Thus the decay structures in the
twoDXλ spaces can be factored out in the first bound, and neglected in the second. Then,
by the duality result in Proposition 9, (55) can be rewritten as∣∣∣∣∫ uµvλwλ dx dt

∣∣∣∣ . λ−1µn/2(lnµ)1/2‖uµ‖DXµ‖vλ‖Xλ‖wλ‖Xλ . (57)

On the other hand, in (56) we can replace the l1 summation by an l2 summation on
the µ spatial scale by losing a λ1/2µ−1/2 factor. Thus it remains to show that

‖Sµ(uλvλ)‖Yµ . λn−3/2µ−(n−1)/2
‖uλ‖Xλ‖vλ‖Xλ .

By the duality result in Proposition 9 this is equivalent to∣∣∣∣∫ uλvλwµ dx dt

∣∣∣∣ . λn−3/2µ−(n−1)/2
‖uλ‖Xλ‖vλ‖Xλ‖wµ‖Xµ ,

which is easily seen to be weaker than (57).
It remains to prove (57) where we allow 1 ≤ µ ≤ λ in order to include both cases

above, and where we allow any combination of complex conjugates. The seemingly large
number of cases is reduced by observing that the bound rests unchanged if we conjugate
the entire product. Hence we can assume without any restriction in generality that at most
one factor is conjugated. Hence it suffices to consider the following three cases:

(i) The product uµvλwλ with 1 ≤ µ ≤ λ. This is the main case, where all three factors
can simultaneously concentrate in frequency near the parabola.

(ii) The product uµvλwλ with 1 ≤ µ � λ. Because the high frequency factors can-
not simultaneously concentrate on the parabola, the estimate turns essentially into a
bilinear L2 estimate.

(iii) The product uµvλwλ with 1 ≤ µ . λ. This is very similar to the second case.

Case 1: Here we prove (57) exactly as stated, for 1 ≤ µ ≤ λ. This follows by summation
with respect to ξ , η in the following result:

4 Strictly speaking, we should consider products of the form uλ1vλ2 with λ1 ≈ λ2, but this makes
no difference.
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Proposition 16. (a) Let 1 ≤ µ ≤ λ and ξ, η ∈ Rn with

|ξ | ≈ λ, |η| ≈ µ, |ξ + η| ≈ λ.

Then ∣∣∣∣∫ SηuSξvSξ+ηw dx dt

∣∣∣∣ .
‖Sηu‖Xη‖Sξv‖Xξ ‖Sξ+ηw‖Xξ+η

µ1/2(λ+min{|ξ · η|, |ξ ∧ η|})1/2
. (58)

(b) Assume in addition that µ . λ1/2. Then∣∣∣∣∫ SηuSξvSξ+ηw dx dt

∣∣∣∣ .
‖Sηu‖DiXη‖Sξv‖Xξ ‖Sξ+ηw‖Xξ+η

λ1/2µ−1/2(λ+ |ξ · η|)1/2
. (59)

We first show how to use the proposition to conclude the proof of (57). We decompose
uµ, vλ and wλ in unit frequency cubes,

uµ =
∑
|η|≈µ

Sηuµ, vλ =
∑
|ξ |≈λ

Sξvλ, wλ =
∑
|ζ |≈λ

Sζwλ,

and use the corresponding decomposition of the integral in (57).
We consider two cases. If µ ≥ λ1/2 then we use (58) to estimate∣∣∣∣∫ uµvλwλ dx dt

∣∣∣∣ .
|ξ+η|≈λ∑
|ξ |≈λ, |η|≈µ

‖Sηuµ‖Xη‖Sξvλ‖Xξ ‖Sξ+ηwλ‖Xξ+η

µ1/2(λ+min{|ξ · η|, |ξ ∧ η|})1/2
.

By the Cauchy–Schwarz inequality this is bounded by( |ξ+η|≈λ∑
|ξ |≈λ, |η|≈µ

‖Sηuµ‖
2
Xη
‖Sξ+ηwλ‖

2
Xξ+η

)1/2
( |ξ+η|≈λ∑
|ξ |≈λ, |η|≈µ

‖Sξvλ‖
2
Xξ

µ(λ+min{|ξ · η|, |ξ ∧ η|})

)1/2

and further by

‖uµ‖Xµ‖vλ‖Xλ‖wλ‖Xλ

(
sup
|ξ |≈λ

|ξ+η|≈λ∑
|η|≈µ

1
µ(λ+min{|ξ · η|, |ξ ∧ η|})

)1/2

,

which gives (57) since

|ξ+η|≈λ∑
|η|≈µ

1
µ(λ+min{|ξ · η|, |ξ ∧ η|})

≈
µn lnµ
µ2λ

and µ2
≥ λ. We note that the bound improves as µ increases.

If µ ≤ λ1/2 then the argument is similar but using (59) instead of (58). This concludes
the proof of (57).

Proof of Proposition 16. We decompose each of the factors in wave packets,

Sηu =
∑
P∈Tη

uP , Sξv =
∑
Q∈Tξ

vQ, Sξ+ηw =
∑

R∈Tξ+η

wR.

We first prove a bound with Q,R fixed.
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Lemma 5. For ξ and η as above the following estimate holds:∣∣∣∣∫ ∑
P∈Tη

uP vQwR dx

∣∣∣∣ .
(P∩Q∩R 6=∅∑

P∈Tη

‖uP ‖
2
Xη

)1/2 ‖vQ‖Xξ ‖wR‖Xξ+η

µ1/2(λ+ |ξ · η|)1/2
, (60)

Proof. By Proposition 7 we can assume without any restriction in generality that

uP = aP (t)e
−itη2

χP (x − 2tη), vQ = aQ(t)e
−itξ2

χQ(x − 2tξ ),

wR = aR(t)e
it (ξ+η)2χR(x − 2t (ξ + η))

with the χ ’s being unit bumps and the a’s in V 2. Then the integral has the form∫ 1

−1
e4itξηaQ(t)aR(t)

∑
P

aP (t)

∫
Rn
χP (x − 2tη)χQ(x − 2tξ )χR(x − 2t (ξ + η)) dx dt.

The tubes Q and R differ in speed by η, therefore they intersect in a time interval I
of length at most µ−1. The tubes P and R differ in speed by ξ , therefore they intersect in
a time interval of length at most λ−1. Thus there are about λµ−1 tubes P which intersect
both Q and R.

For fixed P the x integral above is a smooth bump function on a λ−1 interval. Thus
we can express the above integral in the form∫

I

e4itξηaQ(t)aR(t)
∑
P

aP (t)bP (t) dt,

where bP are smooth bump functions on essentially disjoint λ−1 intervals. For the sum
with respect to P we can estimate∥∥∥∑

P

aP (t)bP (t)

∥∥∥2

L2
. λ−1

∑
‖aP ‖

2
L∞

and ∥∥∥∑
P

aP (t)bP (t)

∥∥∥2

V 2
.
∑
‖aP ‖

2
V 2 .

We consider two possibilities. If |ξ · η| . λ then we use Hölder’s inequality to bound the
integral by

µ−1/2λ−1/2
∑
P

‖aP ‖L∞‖aQ‖L∞‖aR‖L∞ .

If |ξ · η| & λ then we use the algebra property for V 2. It remains to prove that∣∣∣∣∫ µ−1

0
a(t)eitσ dt

∣∣∣∣ . µ−1/2
|σ |−1/2

‖a‖V 2 , σ = 4ξη.
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After rescaling this becomes∣∣∣∣∣
∫ 1

0
a(t)eitσ dt

∣∣∣∣∣ . |σ |−1/2
‖a‖V 2 .

This follows by Hölder’s inequality from the bound

‖S≥σa(t)‖L2 . σ−1/2
‖a‖V 2 . ut

Now we prove part (a) of the proposition. Three tubes P,Q,R contribute to the integral
only if they intersect. We consider the intersection pattern of ξ and ξ + η tubes. For
any ξ tube Q, all ξ + η tubes intersecting it are contained in a larger slab obtained by
horizontally translating Q in the η direction,

H = 2(Q+ {0} × [−2η, 2η]).

We denote by H a locally finite covering of [−1, 1] × Rn with such slabs. Then we use
the lemma to bound the integral in (58) by

µ−1/2(λ+ |ξ · η|)−1/2
∑
H∈H

∑
Q,R⊂H

‖uQ‖Xξ ‖uR‖Xξ+η

(P∩Q∩R 6=∅∑
P∈Tη

‖uP ‖
2
Xη

)1/2
.

Using Cauchy–Schwarz in the second sum with respect to (Q,R) we bound this by

N1/2

µ1/2(λ+ |ξ · η|)1/2

(∑
P∈Tη

‖uP ‖
2
Xη

)1/2 ∑
H∈H

(∑
Q⊂H

‖uQ‖
2
Xξ

)1/2(∑
R⊂H

‖uR‖
2
Xξ+η

)1/2
,

where
N = max

H,P
|{(Q,R) : Q,R ⊂ H, P ∩Q ∩ R 6= ∅}|.

An additional Cauchy–Schwarz allows us to estimate the above sum by

N1/2

µ1/2(λ+ |ξ · η|)1/2

(∑
P∈Tη

‖uP ‖
2
Xη

)1/2(∑
Q

‖uQ‖
2
Xξ

)1/2(∑
R

‖uR‖
2
Xξ+η

)1/2
.

To conclude the proof it remains to establish a bound for N , namely

N .
|ξ | |η|

|ξ | + |ξ ∧ η|
.

Both P ∩ R and P ∩ Q have a λ−1 time length and are uniquely determined by this
intersection up to finite multiplicity. It follows that

N . λ|I |,

where I is the time interval whereH and P intersect. Given the definition ofH it follows
that I has the form

I = {t : |x0 + tξ + sη| ≤ 2 for some s ∈ [−1, 1]}.
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Symmetrizing we can assume that x0 = 0. Taking inner and wedge products with η it
follows that t must satisfy

|t | ≤ |η|2|ξ · η|−1, |t | ≤ |η| |ξ ∧ η|−1,

which lead to the desired bound for N .
(b) We first note that both Q and R are contained in spatial strips of size µ × λ

oriented in the ξ direction. Hence by orthogonality it suffices to prove the estimate in a
single such strip. Then we can take advantage of the l1 summability in the DXµ norm to
further reduce the estimate to the case when the η tubes are spatially concentrated in a
single µ× µ cube Z.

A ξ or a ξ + η tube needs a time of µλ−1 to move through such a cube. On the other
hand, the tubes Q and R need a larger time µ−1 to separate. Hence within Z we can
identify the ξ tubes and the ξ + η tubes. By orthogonality it suffices to consider a single
Q and a single R. Consequently, the conclusion follows from the following counterpart
of Lemma 5.

Lemma 6. For ξ and η as in part (b) of the proposition the following estimate holds:∣∣∣∣∫ P⊂Z∑
P∈Tη

uP vQwR dx

∣∣∣∣ .
(P∩Q∩R 6=∅∑

P∈Tη

‖uP ‖
2
Xη

)1/2 ‖vQ‖Xξ ‖wR‖Xξ+η

λ1/2µ−1/2(λ+ |ξ · η|)1/2
. (61)

The proof is almost identical with the proof of Lemma 5, the only difference is that we
now have |I | ≈ µλ−1.

Case 2: Here we consider the product uµvλwλ with 1 ≤ µ � λ, and prove a stronger
bound, namely ∣∣∣∣∫ uµvλwλ dx dt

∣∣∣∣ . λ−1µn/2−1
‖uµ‖Xµ‖vλ‖Xλ‖wλ‖Xλ . (62)

We use the modulation localization operators S<λ2/100 to split each of the factors in two,

uµ = M<λ2/100uµ + (1−M<λ2/100uµ)

etc. We observe that∫
M<λ2/100uµM<λ2/100vλM<λ2/100wλ dx dt = 0

due to the time frequency localizations. Precisely, the first factor is frequency localized
in the region {|τ | < λ2/50}, while the other two are frequency localized in the region
{τ > λ2/8}. Hence it remains to consider the case when at least one factor has high
modulation. For that factor we have a favorable L2 bound as in Proposition 11,

‖M>λ2/100uµ‖L2 . λ−1
‖uµ‖Xµ ,

and similarly for the other factors. Then it remains to prove that

‖ūµvλ‖L2 . µn/2−1
‖uµ‖DXµ‖vλ‖Xλ
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and
‖Sµ(vλwλ)‖L2 . µn/2−1

‖vλ‖Xλ‖wλ‖Xλ .

For this we need the Strichartz estimates in Proposition 10 (see also (32)).
For the first bound we use the L2(n+2)/n estimate for vλ, and the Ln+2 estimate for ūµ.
For the second we first observe that by orthogonality it suffices to prove it when

both vλ and wλ are frequency localized to cubes of size µ. Then we use the L2(n+2)/n

estimate for both factors to derive L4 bounds by Sobolev embeddings.

Case 3: Here we consider the product uµvλwλ with 1 ≤ µ . λ. This is treated exactly
as above, and an estimate similar to (62) is obtained. ut
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