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Abstract. We prove that the Cayley graphs of SL2(Z/pnZ) are expanders with respect to the
projection of any fixed elements in SL2(Z) generating a Zariski dense subgroup.

1. Introduction

Expanders are highly-connected sparse graphs widely used in computer science, in areas
ranging from parallel computation to complexity theory and cryptography; recently they
have also found some remarkable applications in pure mathematics; see [15, 17, 20] and
references therein. Given an undirected d-regular graph G and a subset X of V , the ex-
pansion of X, c(X), is defined to be the ratio |∂(X)|/|X|, where ∂(X) = {y ∈ G :
dist(y,X) = 1}. The expansion coefficient of a graph G is defined as follows:

c(G) = inf
{
c(X) : |X| <

1
2
|G|
}
.

A family of d-regular graphs Gn,d forms a family of C-expanders if there is a fixed posi-
tive constant C such that

lim inf
n→∞

c(Gn,d) ≥ C. (1.1)

The adjacency matrix of G, A(G), is the |G| by |G| matrix, with rows and columns
indexed by vertices of G, such that the x, y entry is 1 if x and y are adjacent, and 0
otherwise.

Using the discrete analogue of the Cheeger–Buser inequality, proved by Alon and
Milman, the condition (1.1) can be rewritten in terms of the second largest eigenvalue of
the adjacency matrix A(Gn,d) as follows:

lim sup
n→∞

λ1(A(Gn,d)) < d. (1.2)

J. Bourgain: School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA;
e-mail: bourgain@math.ias.edu
A. Gamburd: Department of Mathematics, University of California at Santa Cruz, 1156 High Street,
Santa Cruz, CA 95064, USA, and School of Mathematics, Institute for Advanced Study, Princeton,
NJ 08540, USA; e-mail: agamburd@ucsc.edu



988 Jean Bourgain, Alex Gamburd

Given a finite groupGwith a symmetric set of generators S, the Cayley graph G(G, S)
is a graph which has elements of G as vertices and which has an edge from x to y if and
only if x = σy for some σ ∈ S. Let S be a set of elements in SL2(Z). If 〈S〉, the group
generated by S, is a finite index subgroup of SL2(Z), Selberg’s theorem [22] implies
(see e.g. [17, Theorem 4.3.2]) that G(SL2(Z/NZ), πN (S)) (where πN (S) is the natural
projection of S modulo N ) form a family of expanders as N → ∞. A basic problem,
posed by Lubotzky [17, 18] and Lubotzky and Weiss [19], is to what extent expansion
is a property of the family of groups alone, independent of the choice of generators. In
[23] Shalom gave an example of an infinite-index subgroup in PSL2(Z[ω]) (where ω is a
primitive third root of unity) yielding a family of SL2(Fp) expanders. In [12] it is proved
that if S is a set of elements in SL2(Z) such that the Hausdorff dimension of the limit set
is greater than 5/6, then G(SL2(Z/pZ), πp(S)) form a family of expanders (in fact, the
proof given in [12] for prime modulus p easily generalizes to arbitrary modulus).

In [3] it is shown that G(SL2(Z/pZ), πp(S)), where p is a prime, form a family of
expanders if S generates a nonelementary subgroup of SL2(Z) (this is clearly a necessary
condition); in [6] this result is extended to square-free moduli q. In the present paper we
extend the results from [3, 6] to the case of SL2(Z/pnZ), where p is a fixed prime and n
tends to infinity; the question of uniform expansion bounds for this family was raised by
Shalom in [24].

Theorem 1.1. Let S be a symmetric set of elements in SL2(Z) generating a Zariski
dense subgroup. Let p be a fixed sufficiently large prime. The family of Cayley graphs
G(SL2(Z/pnZ), πpn(S)) forms a family of expanders.

Remark. The prime p must be chosen sufficiently large to ensure that πp(S) generates
SL2(Z/pZ).

As in [3, 6], the proof, following the approach of Sarnak and Xue [21], is based on ex-
ploiting high multiplicity of nontrivial eigenvalues, together with the sharp upper bound
on the number of short closed geodesics. The proof of the required multiplicity bound
is presented in Section 7. As in [6], the starting point for the proof of the upper bound
is the appropriate sum-product estimate—in our case we need the sum-product estimate
for Z/pnZ recently established in [2]. In fact, we need a slight strengthening of a result
in [2], presented in Section 2. The proof in [6] then proceeds by establishing the gener-
alization of Helfgott’s product theorem [14] in SL2(Z/qZ) for q square-free. In [14, 6]
sum-product estimates enter via trace amplification. The proof in the present paper is dif-
ferent, relying on a “multi-scale” approach, reminiscent of the Solovay–Kitaev algorithm
in quantum computation [11] (see [13] for an SL2(Z/pnZ) analogue, yielding uniform
polylog diameter bounds). The “multi-scale” structure in SL2(Z/pnZ) is encapsulated in
the identity

(I +QA)(I +QB) ≡ I +Q(A+ B) (modQ2),

which allows for immediate exploitation of the sum structure. The exploitation of the
product structure is based on producing a large set of commuting elements, diagonalized
in the appropriate basis, and then proceeding by conjugation. To execute this argument
we need to produce elements outside of proper subvarieties, which is accomplished by
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analyzing the random walk in SL2(Z) based on the generating set S and using the ex-
pansion property modulo p (established in [3]). In Section 9 we outline an alternative ap-
proach, based on the theory of products of random matrices and generalizing to arbitrary
rank. As in [3], the required upper bound is obtained from a measure convolution result
(Section 3), which is established using noncommutative product-set estimates due to Tao
[25, 26].

The generalization of Theorem 1.1 to SLd(Z/pnZ) with d > 2 will be presented
in [5].

2. The sum-product theorem in Zq , q = pn

We consider Zq = Z/qZ, q = pn, with p 6= 2 fixed. For A ⊂ Zq and r, s ∈ Z+, we
denote by rA(s) the r-fold sumset of the s-fold product set A(s) of A.

Recall the result from [2] (the Corollary on p. 6).

Proposition 2.1. Given δ > 0 and τ > 0, there are ε > 0 and r, s ∈ Z+ such that the
following holds. Let q be as above and A ⊂ Zq satisfying

|πq1(A)| > qδ1 for all q1 | q, q1 > qε. (2.1)

Then there is Q | q, Q < qτ , such that

rA(s) ⊃ QZq . (2.2)

We may derive from Proposition 2.1 the following consequence, where the assumption
(2.1) has been weakened.

Proposition 2.2. Given δ > 0, there is ε > 0 and positive integers r, s < C(δ) such that
if q is as above, q1 | q, q1 < qε and A ⊂ Zq satisfies

|πq1(A)| > qδ1 (2.3)

then
πq4(rA

(s)
− rA(s)) ⊃ q5Zq4 (2.4)

for some divisors q5 | q4, q4 | q with q4/q5 > q
δ/4
1 and log q4 < C(δ) log q1.

Proof. As will be clear from what follows, it is important that ε < ε(δ). We make the
following construction.

Take q2 | q1 maximal such that

max
ξ∈Zq2

|{x ∈ πq1(A) : πq2(x) = ξ}| > q
−δ/2
2 |πq1(A)|. (2.5)

Since (2.3) implies that q1/q2 > q
−δ/2
2 qδ1 , it follows that q3 = q1/q2 > q

δ/2
1 .
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If ξ ∈ Zq2 satisfies (2.5), it follows from the maximality of q2 that if q ′ | q3 we have

(q2q
′)−δ/2|πq1(A)| ≥ max

ξ ′∈Zq2q
′

πq2 (ξ
′)=ξ

|{x ∈ πq1(A) : πq2q ′(x) = ξ
′
}|

≥
|{x ∈ πq1(A) : πq2(x) = ξ}|

|{πq2q ′(x) : x ∈ πq1(A), πq2(x) = ξ}|
, (2.6)

and hence by (2.5),

|{πq2q ′(x) : x ∈ A, πq2(x) = ξ}| > (q ′)δ/2. (2.7)

Therefore, defining
B = {x ∈ Zq/q2 : q2x ∈ A− A},

we get
|πq ′(B)| ≥ (q

′)δ/2 if q ′ | q3. (2.8)

We now apply Proposition 2.1 with modulus q3 to the set πq3(B), replacing δ by δ/2 and
letting τ = 1/2, ε = 0. Thus by (2.2), there is Q | q, Q < q

1/2
3 , such that for some

r, s ∈ Z+, r, s < C(δ), we have

πq3(rB
(s)) ⊃ QZq3 , (2.9)

and therefore
πqs2q3(r(A− A)

(s)) ⊃ Qqs2Zqs2q3 . (2.10)

We assume here
(s + 1)ε < C(δ)ε < 1, (2.11)

so that q4 = q
s
2q3 < q. Setting q5 = Qq

s
2 , we thus have

q5 | q4 and q4/q5 > q
δ/4
1 , (2.12)

and therefore, by (2.9), we obtain

πq4(r2
s−1A(s) − r2s−1A(s)) ⊃ πq4(r(A− A)

(s)) ⊃ q5Zq4 . (2.13)

ut

Remarks. (i) Proposition 2.1 (respectively 2.2) holds equally well if instead of a single
subset A ⊂ Zq we consider s distinct sets A1, . . . , As ⊂ Zq satisfying condition (2.1)
(respectively (2.3)).

(ii) In Section 5 we will actually rely on Proposition 2.1 and the initial construction
in the proof of Proposition 2.2.
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3. Measure convolution

The following result is proven using the noncommutative Balog–Szemerédi–Gowers the-
orem due to Tao (see [25, 26]). The argument is analogous to the one in the proof of
Proposition 2 in [3].

Lemma 3.1. Let G be a finite group, N = |G|. Suppose µ ∈ P(G) is a symmetric
probability measure on G and assume

‖µ‖∞ < N−γ , (3.1)

‖µ‖2 > N−1/2+γ (3.2)

with γ > 0 an arbitrary given constant. Assume further that

‖µ ∗ µ‖2 > N−ε‖µ‖2 (3.3)

with 0 < ε < ε(γ ). Then there exists a subset H ⊂ G with the following properties:

H = H−1 and there exists a subset X ⊂ G, |X| < Nε′ ,

such that H.H ⊂ X.H and H.H ⊂ H.X;
(3.4)

µ(x0H) > N−ε
′

for some x0 ∈ G; (3.5)

|H | < N1−γ (3.6)

and where ε′ ∼ ε.

Remark. In [26], any H satisfying (3.4) is called an Nε′ -approximate subgroup ofG. In
particular, H satisfies the product set estimates

|H (s)
| = |H . . .H︸ ︷︷ ︸

s-fold

| < q(s−1)ε′
|H | for s ≥ 1. (3.7)

Our measure µ will be obtained as a convolution µ = ν(`) = ν ∗ · · · ∗ ν︸ ︷︷ ︸
`-fold

, where ν is a

symmetric probability measure on G, |supp ν| < C and ` ∼ logN .
Assume µ satisfies (3.1)–(3.3) and takeH ⊂ G satisfying (3.4)–(3.6). Fix `0 < ` and

write
N−ε

′ (3.5)
< µ(x0H) =

∑
y∈G

ν(`−`0)(y)ν(`0)(y−1x0H),

implying
ν(`0)(x1H) > N−ε

′

for some x1 ∈ G. (3.8)

Hence

ν(2`0)(H.H) ≥
∑

y∈x1H,z∈H−1H

ν(`0)(y)ν(`0)(zy−1) ≥
∑

y∈x1H,w∈H

ν(`0)(y)ν(`0)(w−1x−1
1 )

= [ν(`0)(x1H)]2 (3.8)
> N−2ε′ . (3.9)
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4. Random walks in SL2(Z)

Fix a symmetric set 0 ⊂ SL2(Z), |0| = 2k, generating a free group. We consider the
probability measure

ν =
1

2k

∑
g∈0

δg.

We denote by Mat2(R) the two by two matrices with entries in the ring R, and by
SL2(q) the group SL2(Z/qZ). For q ∈ Z+, let πq : SL2(Z) → SL2(q) be the quotient
map. Let πq [ν] be the image measure of ν on SL2(q); when there is no possibility of
confusion we will denote it again by ν.

Lemma 4.1. Let f = f (g1, . . . , gr) be a given polynomial on Mat2(Z)r , with integer
coefficients (we identify Mat2(Z) with Z4). Assume that f does not vanish identically on
SL2(Z)r . Then ∑

f (g1,...,gr )=0

ν(`)(g1) · · · ν
(`)(gr) < cf e

−c0`. (4.1)

Proof. We will use the expansion property of πP [ν] for P prime (see [3]); see Section 9
for an argument relying only on the Zariski density of 〈supp ν〉 ⊂ SL2(Z) and generaliz-
ing to arbitrary rank.

Fix a prime P such that

` > logP > c0`, (4.2)

max
z∈SL2(P )

πp[ν(`)](z) < 2/P 3 (4.3)

(we use here the result from [3]).
Define

S = {(z1, . . . , zr) ∈ SL2(P )
r : f (z1, . . . , zr) = 0 (modP)}.

It follows from our assumption on f that for P large enough

|S| < cfP
3r−1. (4.4)

Since f (g1, . . . , gr) = 0 implies f (g1, . . . , gr) ≡ 0 (modP), the left side of (4.1) is
bounded by∑

(z1,...,zr )∈S

πP [ν(`)](z1) · · ·πP [ν(`)](zr)
(4.3)
<

2r

P 3r |S|
(4.4)
<

Cf

P

(4.2)
< Cf e

−c0`. ut

There is the obvious consequence:

Corollary 4.1. Let f = f (g1, . . . , gr) be as in Lemma 4.1. Then for

` < c(0, f ) log q (4.5)

we have ∑
f (g1,...,gr )≡0 (mod q)

ν(`)(g1) · · · ν
(`)(gr) < Cf e

−c0`. (4.6)
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We now apply the considerations from Section 3 with G = SL2(q) (hence |G| ∼ q3) to
obtain the following corollary. We use the same notation.

Corollary 4.2. Let fi = fi(g1, . . . , gr) (1 ≤ i ≤ j) be a given set of polynomials each
satisfying the assumptions of Lemma 4.1. Let ε be as in (3.3), and (assuming q large and
ε small enough) take `0 satisfying

c(0, f ) log q > `0 > Cf + rC0ε log q. (4.7)

There are elements z1, . . . , zr ∈ H.H ∩ {πq(g) : ‖g‖ < C
`0
0 } such that

fi(z1, . . . , zr) 6= 0 for i = 1, . . . , j.

Proof. Considering f =
∏j

i=1 fi , we may take j = 1.
If the conclusion fails to hold, then from (3.9) and (4.6), assuming `0 satisfies (4.5),

we have

Cf e
−c0`0 >

∑
f (z1,...,zr )=0

ν(`0)(z1) · · · ν
(`0)(zr) ≥ [ν(`0)(H.H)]r > q−2rε′ , (4.8)

contradicting the second inequality in (4.7). ut

Corollary 4.3. There are elements g1, g2, g3 ∈ H.H satisfying

‖gi‖ < qCε, (4.9)
det(1, g1, g2, g3) 6= 0. (4.10)

Proof. Apply Corollary 4.2 with r = 3 considering the polynomial f (g1, g2, g3) =

det(1, g1, g2, g3), which obviously satisfies the condition of Lemma 4.1 . ut

Note that if g ∈ Mat2(q) satisfies

Tr g = Tr g1g = Tr g2g = Tr g3g = 0 (mod q)

then
det(1, g1, g2, g3) · g = 0 (mod q).

Hence, if {g1, g2, g3} satisfy (4.9), (4.10), it follows that the map

Mat2(q)→ Z4
q : g 7→ (Tr g,Tr g1g,Tr g2g,Tr g3g) (4.11)

has multiplicity at most qCε.

Proposition 4.1. Let a1, . . . , aj ∈ Z, and let q0 | q and ξ1, . . . , ξj ∈ Mat2(Z) be such
that

πq0(ξi) 6= 0 (1 ≤ i ≤ j). (4.12)

Let q1 | q, q1 > qCεq0. There is g ∈ H.H , ‖g‖ < qCε, satisfying

Tr ξig 6= ai (mod q1) for i = 1, . . . , j. (4.13)
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Proof. Fix ξ ∈ Mat2(Z), πq0(ξ) 6= 0. Take `0 ∼ ε log q and define

S = {g ∈ Mat2(Z) : ‖g‖ < C`0 and Tr ξg = a (mod q1)}. (4.14)

It follows that for g0, g1, g2, g3, g4 ∈ S we have

det(g1 − g0, g2 − g0, g3 − g0, g4 − g0) · ξ = 0 (mod q1). (4.15)

Assuming
C4`0q0 < q1, (4.16)

we conclude from our assumption on ξ that

det(g1 − g0, g2 − g0, g3 − g0, g4 − g0) = 0. (4.17)

Choosing the constant C in (4.14) appropriately, it follows from (4.1) that

[ν(2`0)(S)]5 < Ce−c`0 . (4.18)

Hence, for appropriate choice of `0,

ν(2`0)(S) < q−Cε. (4.19)

Recalling also (3.9), the conclusion easily follows. ut

Remark. Here and in the sequel, all constants may depend on 0.

There is the following variant of Proposition 4.1.

Proposition 4.2. Let q0 | q and ξ1, . . . , ξj ∈ Mat2(Z) be such that

πq0(ξi) 6= 0 (1 ≤ i ≤ j). (4.20)

Let q1 | q, q1 > qCεq0. For
Cε log q < `1 < ` (4.21)

we have
|{g ∈ H.H : ‖g‖ < C`1 and Tr ξig 6= ai (mod q1)}| > ec`1 . (4.22)

Proof. For `0 < `1 < ` and `0 as in the proof of Proposition 4.1, write∑
Tr ξg≡0 (mod q1)

ν(2`1)(g) =
∑
g1

ν(2`1−2`0)(g1)
∑

Tr ξg≡0 (mod q1)

ν(2`0)(g−1
1 g)

≤ max
g1∈SL2(Z)

∑
Tr ξg1g′≡0 (mod q1)

ν(2`0)(g′)

< q−Cε (4.23)

(by (4.19)). By (3.9) (applied with `1)

ν(2`1)(H.H) > q−2ε′ > q−
1
2Cε. (4.24)

Hence, from (4.23), (4.24),

ν(2`1){g ∈ H.H : Tr ξ1g 6= ai (mod q1) for i = 1, . . . , j} > q−Cε, (4.25)

and since 0 generates a free group, applying Kesten’s theorem [16], (4.22) follows. ut
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Proposition 4.3. Let ξ ∈ Mat2(Z) be such that

Tr ξ = 0, (4.26)
πp(ξ) 6= 0. (4.27)

There are g1, g2 ∈ H.H satisfying

‖gi‖ < qCε, (4.28)

det(1, ξ, g1ξg
−1
1 , g2ξg

−1
2 ) 6= 0 (mod q0) for some q0 | q, q0 < qCε. (4.29)

Remark. An important point to note here is that ξ is only subject to assumptions (4.26),
(4.27), while ‖ξ‖ may be arbitrarily large (in particular, ‖ξ‖ may be larger than qCε).

Proof of Proposition 4.3. Fix q1 | q, q1 = q
Cε, to be specified below. We distinguish two

cases.

Case 1: det ξ 6= 0 (mod q1). It will suffice to find g1, g2 ∈ H.H such that (4.28) holds
and

det(1, ξ, g1ξg
−1
1 − g

−1
1 ξg1, g2ξg

−1
2 − g

−1
2 ξg2) 6= 0 (mod q0). (4.30)

Since
gξg−1

− g−1ξg = (Tr g)[g, ξ ],

we impose the conditions

Tr g1 6= 0 (mod q2), (4.31)
Tr g2 6= 0 (mod q2), (4.32)

det(1, ξ, [g1, ξ ], [g2, ξ ]) 6= 0 (mod q2). (4.33)

We take q2 such that
q3

2 | q0 and q6
1 | q2. (4.34)

Assume (4.33) fails to hold, thus det(1, ξ, [g1, ξ ], [g2, ξ ]) = 0 (mod q2). Then there are
α, β, γ, δ ∈ Z such that (α, β, γ, δ) = 1 and

α + βξ + γ [g1, ξ ]+ δ[g2, ξ ] = 0 (mod q2). (4.35)

Since
Tr ξ = Tr[g1, ξ ] = Tr[g2, ξ ] = Tr ξ [g1, ξ ] = Tr ξ [g2, ξ ] = 0

and Tr ξ2
= −2 det ξ , we deduce from (4.35) that

α = 0 (mod q2) and β = 0
(

mod
q2

q1

)
.

Hence

γ [g1, ξ ]+ δ[g2, ξ ] = 0
(

mod
q2

q1

)
,
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implying

γ Tr([g1, ξ ]g2) = 0
(

mod
q2

q1

)
.

In order to get a contradiction, we require

[g1, ξ ] 6= 0 (mod q1), (4.36)
[g2, ξ ] 6= 0 (mod q1), (4.37)

Tr([g1, ξ ]g2) 6= 0 (mod q2
1 ). (4.38)

Summarizing, we need g1, g2 to satisfy (4.31), (4.32), (4.36), (4.37), (4.38). This is ac-
complished by applying Proposition 4.1. First take g1 ∈ H.H , ‖g1‖ < qCε, satisfying
(4.31), (4.36). Then take g2 ∈ H.H , ‖g2‖ < qCε, and such that (4.32), (4.37) hold. This
is possible indeed if q1 > qCε.

Case 2: det ξ = 0 (mod q1). Thus ξ2
= 0 (mod q1). Recalling (4.27), take e ∈

{(1, 0), (0, 1)} such that πp(ξe) 6= 0. Making a base change T : (e1, e2) 7→ (ξe, e),
we obtain

T −1ξT = ξ̃ =

(
0 1
0 0

)
(mod q1). (4.39)

Setting also g̃ = T −1gT =
(
a b
c d

)
, we have (mod q1)

g̃ξ̃ (g̃)−1
= a2ξ̃ + c

(
−a 0
−c a

)
. (4.40)

Hence

det(1, ξ, g1ξg
−1
1 , g2ξg

−1
2 )

= det(1, ξ̃ , g̃1ξ̃ (g̃1)
−1, g̃2ξ̃ (g̃2)

−1) = 2c1c2(a1c2 − a2c1) (mod q1). (4.41)

Assume e = (1, 0). Hence
ξ2,1 6= 0 (modp).

For i = 1, 2 we have

ci = 〈g̃ie1, e2〉 = 〈giT e1, (T
−1)∗e2〉 =

1
ξ21

〈
gi

(
ξ11
ξ21

)
,

(
ξ21
−ξ11

)〉
(4.42)

and

a1c2 − a2c1 =
1
ξ21

det
(
g2

(
ξ11
ξ21

)
, g1

(
ξ11
ξ21

))
. (4.43)

Take g1 ∈ H.H, ‖g1‖ < gCε, such that〈
g1

(
ξ11
ξ21

)
,

(
ξ21
−ξ11

)〉
6= 0 (mod q3) (4.44)

with q3 | q, q3 < qCε.
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Next, take g2 ∈ H.H , ‖g2‖ < qCε, with〈
g2

(
ξ11,

ξ21

)
,

(
ξ21
−ξ11

)〉
6= 0 (mod q3), (4.45)

det
(
g2

(
ξ11
ξ21

)
, g1

(
ξ11
ξ21

))
6= 0 (mod q3). (4.46)

Recalling (4.41), take q1 > q3
3 .

This completes the proof of Proposition 4.3. ut

5. Sets of commuting elements

We first obtain a large set of commuting elements by an argument similar to that in Section
4.1 of [14]. Take g1, g2, g3 ∈ H.H satisfying (4.9)–(4.11). We set g0 = 1.

From Proposition 4.2 applied with q0 = p, {ξ1, . . . , ξ4} = {1, g1, g2, g3}, we get

|{g ∈ H.H : ‖g‖ < C`1 and Tr gig 6= ±2 (mod q1)}| > ec`1 . (5.1)

Here q1 | q, q1 = p
r1 < qCε and Cε log q < `1 ≤ n.

Since the map Mat2(q) → Z4
q : g 7→ (Tr gig)0≤i≤3 has multiplicity at most qCε, it

follows from (5.1) that for some i ∈ {0, 1, 2, 3} we have

|{Tr gig : g ∈ H.H, ‖g‖ < C`1 and πq1(gig) 6= ±1}| > (q−Cεec`1)1/4 > ec`1 . (5.2)

This yields elements (hα)1≤α≤β in H (4), β > ec`1 , satisfying

‖hα‖ < qCεC`1 < C2`1 , (5.3)
Trhα 6= Trhα′ for α 6= α′, (5.4)

Trhα 6= ±2 (mod q1) for each α. (5.5)

By (5.4), the conjugacy classes

Cα = {ghαg
−1 : g ∈ H } ⊂ H (6)

are disjoint. Hence we may specify some α such that

|Cα| <
1
β
|H (6)
| < e−c`1qCε|H | < e−

c
2 `1 |H |. (5.6)

Set h = hα . Considering the map g 7→ ghg−1, it follows from (5.6) that there is ḡ ∈ H
such that

|{g ∈ H : ghg−1
= ḡh(ḡ)−1

}| > e
c
2 `1 . (5.7)

Hence the set
S = {g ∈ H.H : gh = hg(mod q)} (5.8)
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satisfies
|S| > ec`1 , (5.9)

where
Trh 6= ±2 (mod q1). (5.10)

Diagonalize h, considering, if necessary, a quadratic extension K = Q[ζ ] with ζ a
quadratic unit. Denote by O the algebraic integers in K and, distinguishing the inert
and split case, let P be a prime ideal dividing (p). Replace Zq by the residue ring O/Pn.
A suitable base change brings h in diagonal form

h =

(
λ0 0
0 λ−1

0

)
,

where λ0 is a unit in O and λ0 ± 1 6∈ Pr1 by (5.10), and also

λ0 −
1
λ0
6∈ P2r1 . (5.11)

Since g ∈ S commutes with h (modPn), it follows from (5.11) that in this basis

g =

(
λ 0
0 λ−1

)
(modPn−2r1) (5.12)

with λ ∈ O. We may clearly assume that

g ≡ 1 (modP) for g ∈ S. (5.13)

Hence λ ≡ 1 (modP) in (5.12) and the map λ 7→ λ2
− 1/λ2 has bounded multiplicity.

Defining
T = {λ2

− 1/λ2 : g ∈ S} ⊂ O, (5.14)

it follows from the preceding that

|πPn−2r1 (T )| > |S|/|P|2r1 > q−Cε|S|
(5.9)
> e

c
2 `1 . (5.15)

Next, let ξ ∈ Mat2(O) and write

gξg−1
− g−1ξg = (Tr g)[g, ξ ] = (λ2

− 1/λ2)

(
0 ξ12
−ξ21 0

)
(modPn−2r1);

hence
gξg−1

− g−1ξg = (λ2
− 1/λ2)[ξ, h′] (modPn−2r1), (5.16)

where

h′ =
2h− (Trh)1
(λ0 − 1/λ0)

∈ Mat2(O).

This statement is independent of the choice of the basis.
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Take `1 = n. The conclusion is that we obtain an element h′ ∈ Mat2(Z), πp(h′) not
a multiple of the identity, and a subset A ⊂ Zq satisfying, by (5.15),

|A| > qc, (5.17)

and such that if ξ ∈ Mat2(Z) and x ∈ A, we have

x[ξ, h′] ∈ H(2)ξ −H
(2)
ξ

(
mod

q

q2
1

)
, (5.18)

where for s ≥ 1,
H(s)ξ = {gξg

−1 : g ∈ H (s)
}, (5.19)

and q1 < qCε.
Note also that in (5.18) we may replace h′ by any conjugate kh′k−1 with k ∈ H (s),

provided we replaceH(2)ξ byH(2+s)ξ .
In the preceding construction, we may replace q by q̄ = qδ , where δ � ε. Note

that, according to (3.4), H̄ = πq̄(H) is an approximate group in SL2(Zq̄) and, letting
x̄0 = πq̄(x0), we have, using (3.5),

πq̄ [ν](`)(x̄0.H̄ ) =
∑

πq̄ (g)∈x̄0H̄

ν(`)(g) ≥
∑

πq (g)∈x0H

ν(`)(g) = πq [ν](`)(x0H) > q−Cε.

(5.20)
We obtain an element h′ ∈ Mat2(Z) and a subset A ⊂ Zq̄ such that

πp(h
′) is not a multiple of the identity, (5.21)

|A| > (q̄)c, (5.22)

x[ξ, h′] ∈ H(2)ξ −H
(2)
ξ

(
mod

q̄

q1

)
for x ∈ A, ξ ∈ Mat2(Z) and q1 < qCε. (5.23)

Applying the initial construction in the proof of Proposition 2.2 to the set A, we clearly
obtain Q | q and a subset B ⊂ ZQ satisfying the conditions

Q > (q̄)c, (5.24)
|πq ′(B)| > (q ′)c for q ′ |Q. (5.25)

For x ∈ B and ξ ∈ Mat2(Z),

x
q̄

Q
[h′, ξ ] ∈ 2H(2)ξ − 2H(2)ξ (mod q̄). (5.26)

In order to apply the sum-product theorem in Zpm , we need to iterate (5.26), which we
rewrite as

q̄

Q
(x[h′, ξ ]+Qwx) ∈ 2H(2)ξ − 2H(2)ξ (5.27)

for some wx ∈ Mat2(Z) (depending on x and ξ ).
Denote by h1, h2, . . . the conjugates of h′ of the form kh′k−1 with k ∈ H.H .
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Rewriting (5.27) as

q̄

Q
(x1[h1, ξ ]+Qw1) ∈ 2H(2)ξ − 2H(2)ξ (5.28)

for x1 ∈ B, set
ξ1 = x1[h1, ξ ]+Qw1; (5.29)

then, by (5.28),
q̄

Q
ξ1 ∈ 2H(2)ξ − 2H(2)ξ . (5.30)

Applying (5.27) with h1 (resp. ξ ) replaced by h2 (resp. ξ1), it follows that

q̄

Q
(x2[h2, ξ1]+Qw2) ∈ 2H(2)ξ1

− 2H(2)ξ1
for x2 ∈ B;

hence, by (5.30), we have

q̄

Q
(x1x2[h2, [h1, ξ ]]+Qw) ∈ 2H(2)ξ1

− 2H(2)ξ1
(5.31)

for some w ∈ Mat2(Z).
Therefore, recalling (5.30), we obtain(

q̄

Q

)2

x1x2[h2, [h1, ξ ]] ∈ 8H(4)ξ − 8H(4)ξ

(
mod

(q̄)2

Q

)
(5.32)

for all x1, x2 ∈ B. The iteration of the process is clear.
Recalling (5.25), in order to be able to apply Proposition 2.1 to the set πQ(B) ⊂ ZQ,

we need to introduce r < C factors x1, . . . , xr .
Fix an exponent δ0 � ε and take q̄ ∼ qδ0/r in the preceding.
Iteration of (5.32) yields(

q̄

Q

)r
x1x2 . . . xr [hr , . . . , [h1, ξ ]] ∈ H′ξ

(
mod

(q̄)r

Qr−1

)
(5.33)

for x1, . . . , xr ∈ B, denoting byH′ξ a set of the formmH(n)ξ −mH
(n)
ξ for somem, n ∈ Z+

depending on r .
Apply Proposition 2.1. It follows that for all x ∈ Q′ZQ, whereQ′ |Q andQ′ < Q1/2,

we have (
q̄

Q

)r
x[hr , . . . , [h1, ξ ]] ∈ H′ξ

(
mod

(q̄)r

Qr−1

)
. (5.34)

Hence there are q1 | q and q2 | q1 such that

q1 < qδ0 and q1/q2 > qcδ0 , (5.35)

q2x[hr , . . . , [h1, ξ ]] ∈ H′ξ (mod q1) for all x ∈ Zq1/q2 . (5.36)
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It remains to specify the conjugates h1, . . . , hr of h′.
Fix ξ ∈ Mat2(Z) such that

πp(ξ) 6= 0 and πp(Tr ξ) = 0. (5.37)

Recalling Proposition 4.3, there are k1, k2 ∈ H.H such that

det(1, ξ, k1ξk
−1
1 , k2ξk

−1
2 ) 6= 0 (mod q0), where q0 | q, q0 < qCε. (5.38)

Setting k0 = 1, it follows from (5.38) that for some i ∈ {0, 1, 2}, we have

[h′, kiξk−1
i ] 6= 0 (mod q0) (5.39)

(recall that also q1 < qCε) and hence, defining

h1 = k
−1
i h′ki,

we also have
[h1, ξ ] 6= 0 (mod q0). (5.40)

Repeating the argument replacing ξ by [h1, ξ ] (divided by a divisor of q0), we obtain a
conjugate h2 of h′ satisfying

[h2, [h1, ξ ]] 6= 0 (mod q2
0 ). (5.41)

Hence, in (5.36), we may ensure that

[hr , [hr−1, . . . , [h1, ξ ]]] 6= 0 (mod qr0). (5.42)

Increasing in (5.36) q2 by a factor dividing qr0 (hence bounded by qCε), we obtain η ∈
Mat2(Z) satisfying

Tr η = 0, (5.43)
πp(η) 6= 0, (5.44)

q2xη ∈ H′ξ (mod q1) for all x ∈ Zq1/q2 . (5.45)

Finally, applying Proposition 4.3 to η once again, we obtain k1, k2 ∈ H.H such that

det(1, η, k1ηk
−1
1 , k2ηk

−1
2 ) 6= 0 (mod q0). (5.46)

In particular, if z ∈ Mat2(Z) and Tr z = 0, then for some x0, x1, x2 ∈ Zq ,

q0z = x0η + x1(k1ηk
−1
1 )+ x2(k2ηk

−1
2 ) (mod q). (5.47)

Since by (5.45) also

q2(x0η + x1(k1ηk
−1
1 )+ x2(k2ηk

−1
2 )) ∈ H′ξ (mod q1) (5.48)

we have completed the proof of the following lemma.

Lemma 5.1. Assume ε � δ0 < 1. Let ξ ∈ Mat2(Z) be such that πp(ξ) 6= 0 and
πp(Tr ξ) = 0. There are q1 | q and q2 | q1 such that

q1 < qδ0 and q1/q2 > qcδ0 , (5.49)
q2z ∈ H′ξ (mod q1) for all z ∈ Mat2(Z) with Tr z = 0. (5.50)
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6. Proof of the upper bound

Take
ε � δ0 � 1 (6.1)

(to be specified) and q0 | q, q0 ∼ q
δ0 . Define

H0 = {x ∈ H
(4) : x = 1 (mod q0)}. (6.2)

By (3.9), we have

ν(2`0)(H0) >
1

(q0)3
[ν(`0)(H)]2 > q−Cε−3δ0 > q−4δ0 . (6.3)

Hence, taking `0 ∼ δ0 log q sufficiently large, we obtain an element g0 ∈ H
(4) satisfying

g0 ≡ 1 (mod q0), g0 6= 1, (6.4)

‖g0‖ < C`0 < qC1δ0 . (6.5)

Hence, we may write
g0 = 1+ q̃ξ0, (6.6)

where

q̃ | q and qδ0 < q̃ < qCδ0 , (6.7)
πp(ξ0) 6= 0, (6.8)

Tr ξ0 = 0 (mod q̃). (6.9)

Now apply Lemma 5.1 with δ0 and taking ξ = ξ0. Clearly, if k ∈ H (s), by (6.6) we have

H (2s+4)
3 kg0k

−1
= 1+ q̃kξ0k

−1,

and also
g−1

0 = 1− q̃ξ0 (mod (q̃)2).

Hence we obtain

(kg0k
−1)(k−1g−1

0 k) = 1+ q̃(kξ0k
−1
− k−1ξ0k) (mod (q̃)2). (6.10)

Denote by H ′ a product set H (s) with s unspecified but suitably bounded.
Recalling (3.6), (3.7), we have

|H ′| < qCε|H | < qCε−γ |SL2(q)|. (6.11)

It follows from (6.10) that if z ∈ H(s)ξ0
−H(s)ξ0

, then

1+ q̃z ∈ H ′ (mod (q̃)2).
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Similarly, for z ∈ H′ξ0
, we have

1+ q̃z ∈ H ′ (mod (q̃)2). (6.12)

Let q1, q2 < qδ0 be as in Lemma 5.1. Thus q1/q2 > qcδ0 by (5.49). It follows from (5.50),
(6.12), and (6.7) that if z ∈ Mat2(Z) and Tr z = 0, then

1+ q̃q2z ∈ H
′ (mod q̃q1). (6.13)

It follows in particular from (6.13) that if pq ′ | q̃q1 and q̃q2 | q
′, then there is ξ ′ ∈

Mat2(Zq) such that

πp(ξ
′) 6= 0, (6.14)

πp(Tr ξ ′) = 0, (6.15)
1+ q ′ξ ′ ∈ H ′. (6.16)

Replacing q̃ (resp. ξ0) by q ′ (resp. ξ ′), it follows from the preceding that if z ∈ Mat2(Z)
and Tr z = 0, then

1+ q ′q2z ∈ H
′ (mod q ′q1). (6.17)

Hence, if q ′ | q̃(q1/p)
2 and q̃(q2)

2
| q ′, there is ξ ′ ∈ Mat2(Zq) satisfying (6.14)–(6.16).

Iteration shows that if q ′ | q̃(q1/p)
r and q̃(q2)

r
| q̃ (r bounded), the same conclusion

holds.
Since q2 < q1−c

1 , an appropriate choice of r < C implies that there is ξ ′ satisfying
(6.14)–(6.16) for all q ′ | q such that q̃(q1/p)

r
| q ′ and q ′ | q̃(q1/p)

r+1 and hence for all
q ′ | q such that q̃qr1 | q

′. Define

q3 = q̃q
r
1q2 < qCδ0 and q4 = q1/q2. (6.18)

Again by (6.13), we see that if q ′ | q/q4 and q3 | q
′ and z ∈ Mat2(Z), Tr z = 0, then

1+ q ′z ∈ H ′ (mod q ′q4). (6.19)

Next, we claim that if q ′ | q, q3 | q
′ and z ∈ Mat2(Z) satisfies

det(1+ q3z) = 1 (mod q ′) (6.20)

then
1+ q3z ∈ H

′ (mod q ′). (6.21)

Notice that (6.20) implies in particular that Tr z ≡ 0 (mod min(q ′/q3, q3)). Hence (6.19)
gives the claim for q ′ = q3q4.

Proceeding by induction, assume the claim holds for q ′ ≤ q/q4. Let z ∈ Mat2(Z)
satisfy

det(1+ q3z) = 1 (mod q ′q4). (6.22)

There is g ∈ H ′ such that
g = 1+ q3z (mod q ′),
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and hence
(1+ q3z)g

−1
= 1+ q ′w, (6.23)

where by (6.22) we have

det(1+ q ′w) ≡ 1 (mod q ′q4) and Trw = 0 (mod q4).

Again by (6.19)
1+ q ′w ∈ H ′ (mod q ′q4)

and hence
1+ q3z ∈ H

′ (mod q ′q4). (6.24)

This proves the claim.
It follows that

H ′ ⊃ {z ∈ SL2(q) : z = 1 (mod q3)}.

Recalling (6.11), (6.18) we have

qCε−γ |SL2(q)| >
1

(q3)3
|SL2(q)|

and
q3Cδ0+Cε > qγ , (6.25)

which is a contradiction for an appropriate choice of δ0.
We have therefore proven the following.

Proposition 6.1. Let 0 ⊂ SL2(Z) be a symmetric set, |0| = 2k, generating a free group
and consider the probability measure on SL2(Z)

ν =
1

2k

∑
g∈0

δg.

Fix a prime p 6= 2. For all γ > 0, there is C(γ ) such that if q ∈ Z+ is of the form q = pn

and ` > C(γ ) log q, then

‖πq [ν(`)]‖∞ < qγ |SL2(q)|
−1. (6.26)

It follows indeed that taking ` > C(γ ) log q, we may ensure that

‖πq [ν(`)]‖2 < qγ |SL2(q)|
−1/2. (6.27)

Otherwise Lemma 3.1 would clearly apply, taking µ = πq [ν(`
′)] for some `′ ∼ log q, and

produce an approximate group H ⊂ SL2(q) satisfying (3.4)–(3.6) with ε = ε(γ ) > 0
small enough. But we showed in Sections 4–6 that this leads to a contradiction.
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7. Multiplicity bound

Let p be a fixed odd prime. We have

|SL2(Z/pnZ)| = p3n−2(p − 1)(p + 1). (7.1)

For n ≥ r let πn,r denote the surjective homomorphism

πn,r : SL2(Z/pnZ)→ SL2(Z/prZ),

and let Gn,r denote the kernel of this homomorphism. The group Gn,r is a normal sub-
group of SL2(Z/pnZ) of order p3(n−r).

Lemma 7.1. Let p be an odd prime and let n ≥ 2. The dimension of a faithful irreducible
representation of SL2(Z/pnZ) is at least

1
2
pn−2(p − 1)(p + 1).

Proof. Let ρ be a faithful irreducible representation of SL2(Z/pnZ) and denote by χ the
corresponding character. Assume n = 2k (the proof is similar for n odd) and consider the
restriction ρGn,k .

A typical element in Gn,k has the form I + pk
(
a
c

b
−a

)
with a, b, c ∈ Z/pkZ, and we

have(
I + pk

(
a1 b1
c1 −a1

))(
I + pk

(
a2 b2
c2 −a2

))
= I + pk

(
a1 + a2 b1 + b2
c1 + c2 −a1 − a2

)
,

so Gn,k is a direct product of cyclic groups generated by

I + pk
(

1 0
0 −1

)
, I + pk

(
0 1
0 0

)
, I + pk

(
0 0
1 0

)
.

In particular, Gn,k is an abelian group. More generally, it is easy to see that for r ≥ n/2
the group Gn,r is abelian.

Now consider the decomposition of ρGn,k into irreducible representations θi of the
abelian group Gn,k . Since the representation ρ is faithful, there is at least one θ which
does not contain in its kernel Gn,n−1, the abelian normal subgroup of order p3. Since
Gn,k is normal, by Clifford’s theorem [10] we have

ρGn,k = 〈χGn,k , θ〉

t∑
i=1

θi, (7.2)

where θi are distinct conjugates of θ in SL2(Z/pnZ). Thus the dimension of ρ is bounded
from below by t , the size of the orbit of θ under conjugation by SL2(Z/pnZ).

Since Gn,k is an abelian group, Ĝn,k is isomorphic to Gn,k . Under this isomorphism
the character θ ∈ Ĝn,k which does not vanish on Gn,n−1 corresponds to an element g in
Gn,k \Gn,k+1, the set-theoretic difference of Gn,k and Gn,k+1, and the size t of the orbit
is equal to the size of the orbit of g under conjugation by SL2(Z/pnZ).
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Claim 7.1. Let g ∈ Gn,k \Gn,k+1. Then the centralizer of g in SL2(Z/pnZ) has size at
most 2p2n.

Now since t , the size of the orbit of g under conjugation, is equal to the size of the group
divided by the size of the centralizer, Claim 7.1 implies

t ≥
|SL2(Z/pnZ)|

2p2n =
1
2
pn−2(p − 1)(p + 1),

completing the proof of Lemma 7.1. ut

Proof of Claim 7.1. An element g in Gn,k \ Gn,k+1 has the form I + pk
(
a
c

b
−a

)
with

a, b, c in Z/pkZ and at least one of a, b, c not divisible by p. Our aim is to bound the
number of solutions to hg = gh where h =

(
α
γ
β
δ

)
is a matrix in SL2(Z/pnZ):(

α β

γ δ

)(
1+ pka pkb

pkc 1− pka

)
≡

(
1+ pka pkb

pkc 1− pka

)(
α β

γ δ

)
(modp2k).

This amounts to solving the following system of congruences for α, β, γ, δ:

αδ − βγ ≡ 1 (modp2k), (7.3)

βc ≡ γ b (modpk), (7.4)

b(α − δ) ≡ 2aβ (modpk), (7.5)

c(α − δ) ≡ 2γ a (modpk), (7.6)

γ b ≡ βc (modpk). (7.7)

If we replace (7.3) by
αδ − βγ ≡ 1 (modpk), (7.8)

then it is clear that any solution of (7.4)–(7.8) will determine a matrix in SL2(Z/pkZ),
any of whose inverse images under πn,k will be in the centralizer of g in SL2(Z/pnZ).
Consequently, the size of the centralizer of g is equal to the number of solutions to the
system (7.4)–(7.8), multiplied by the size of Gn,k , which is equal to p3k .

It remains to show that the system (7.4)–(7.8) has at most 2pk solutions. If b 6≡
0 (modp), then the system (7.4)–(7.8) is easily seen to reduce to the following quadratic
equation for β, δ:

bδ2
+ 2aβδ − β2c ≡ b (modpk), (7.9)

and with γ and α determined by

γ ≡ βc/b (modpk), α ≡ δ + 2aβ/b (modpk)

(with a similar set of equations in the case c 6≡ 0 (modp)).
If a 6≡ 0 (modp) then the system (7.4)–(7.8) is easily seen to reduce to the following

quadratic equation for α, δ:

−bcα2
+ 4(a2

+ bc)αδ − bcδ2
≡ 4a2 (modpk), (7.10)
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with β and γ determined by

β ≡
b(α − δ)

2a
(modpk), γ ≡

c(α − δ)

2a
(modpk).

Both equations (7.9) and (7.10) are of the form

Ax2
+ Bxy + Cy2

≡ D (modpk), (7.11)

with D 6≡ 0 (modp). Denoting the number of solutions of (7.11) by s(k) we clearly have
s(k) = pk−1s(1). Now since s(1) ≤ 2p (see, for example, [9]), the proof of Claim 7.1 is
complete. ut

8. Proof of Theorem 1.1

For a Cayley graph G(G, S) with S = {g1, g
−1
1 , . . . , gk, g

−1
k } the adjacency matrix can

be written as

A(G(G, S)) = 5R(g1)+5R(g
−1
1 )+ · · · +5R(gk)+5R(g

−1
k ), (8.1)

where5R is a regular representation of G given by the permutation action ofG on itself.
Every irreducible representation ρ ∈ Ĝ appears in 5R with the multiplicity equal to its
dimension:

5R = ρ0 ⊕
⊕
ρ∈Ĝ
ρ 6=ρ0

ρ ⊕ · · · ⊕ ρ︸ ︷︷ ︸
dρ

, (8.2)

where ρ0 denotes the trivial representation and dρ = dim(ρ) is the dimension of the
irreducible representation ρ.

Let N = |G|. The adjacency matrix A(G(G, S)) is a symmetric matrix having N real
eigenvalues which we can list in decreasing order:

2k = λ0 > λ1 ≥ · · · ≥ λN−1 ≥ −2k;

the eigenvalue 2k corresponds to the trivial representation in the decomposition (8.2). The
strict inequality

2k = λ0 > λ1

follows from connectivity of our graphs (since we have chosen p sufficiently large).
Denoting byW2m the number of closed walks from identity to itself of length 2m, the

trace formula takes the form
N−1∑
j=0

λ2m
j = NW2m. (8.3)

We now fix S = {g1, g
−1
1 , . . . , gk, g

−1
k } such that 〈S〉 is a free subgroup of SL2(Z),

and consider, for fixed p, the Cayley graphs G(n) = G(SL2(Z/pnZ), Sn), where Sn is the
projection of S modulo pn.
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Let N(n) = |SL2(Z/pnZ)| ∼ p3n. Let �(n) denote the nontrivial spectrum of the
adjacency matrixA(G(n)) of G(n) (that is, all the eigenvalues ofA(G(n)) except for±2k)
and let λ(n) be the eigenvalue of maximum modulus in �(n).

Nontrivial irreducible representations of SL2(Z/pnZ) can be split into faithful and
nonfaithful ones. Since the set {Gn,r} gives all normal subgroups of SL2(Z/pnZ), non-
faithful irreducible representations of SL2(Z/pnZ) arise as faithful irreducible represen-
tations of SL2(Z/prZ) for some r < n. Corresponding to this split we have the decom-
position

�(n) = �old(n) ∪�new(n), where �old(n) =
⋃
r<n

�new(r).

Thus the “old” eigenvalues of G(n), corresponding to nonfaithful irreducible represen-
tations of SL2(Z/pnZ), appear as “new” eigenvalues of G(r) for some r < n. Con-
sequently, to establish the desired expansion property it suffices to establish a uniform
bound on the “new” eigenvalues.

Proposition 6.1 implies that for

l > C(ε) log2k p
n

we have

W2l <
(2k)2lpnε

|SL2(Z/pnZ)|
. (8.4)

Now combining (8.4) with the bound on the dimension of nontrivial faithful irre-
ducible representations of SL2(Z/pnZ) given in Lemma 7.1 we obtain, using (8.3),

1
2
pn−2(p − 1)(p + 1)λnew(n)

2l < |SL2(Z/pnZ)|
(2k)2lpnε

|SL2(Z/pnZ)|
; (8.5)

consequently,
|λnew(n)| < (2k)1−(1−ε)/2C(ε) = β(S) < 2k,

completing the proof of Theorem 1.1. ut

9. Further comments

Our aim is to sketch an alternative approach to the results from Section 4, mainly in view
of an extension to the higher rank case (details will appear in [5]).

The main issue is the (handy) use in Section 4 of the expander property of πP [ν]
for P prime. The result is obtained in [3] and uses Helfgott’s work [14] on the “product
theorem” in SL2(P ), P prime. At present, those results are not available for SLd(P ),
d > 2. One may follow however a different route which makes use of the theory of
random matrix products over R (see [1] for instance). The considerations easily generalize
to higher ranks, provided we assume that 0 = supp ν, ν = (1/|0|)

∑
g∈0 δg as in §3,

generates a group 〈0〉 which is Zariski dense in SLd(R) (for d = 2, this is automatically
satisfied if 〈0〉 is nonelementary).
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Consider the following representation of SL2(R). Denote by V the subspace of
Mat2(R) consisting of the traceless matrices and let ρ : SL2(R)→ GL(V ) be defined by

ρ(g)ξ = gξg−1 for ξ ∈ V, g ∈ SL2(R). (9.1)

We follow the terminology from [1].
When restricted to 〈0〉, the representation ρ is strongly irreducible (no finite union of

hyperplanes of V is invariant under a finite index subgroup of 〈0〉). This follows indeed
from the strong irreducibility of ρ and the fact that the Zariski closure 〈0〉 equals SL2(R).

Next, using the simplicity of the Lyapunov exponents, clearly ρ[ν] is contractive (see
[1, Ch. III]).

At this point a set of results becomes available on the behavior of the random walk in
the projective space P(V ) (in what follows, our notations differ from [1]). First, there is
a unique ρ[ν]-invariant distribution η on P(V ), satisfying in particular

sup
‖y‖=1

∫ (
‖x‖

|〈x, y〉|

)α
dη(x̄) <∞ (9.2)

and hence

sup
ȳ∈P(V )

∫
δ(x̄, ȳ)−α dη(x̄) <∞ (9.3)

for some α > 0 (depending on ν). (See [1, Theorem 2.1, p. 155 and Proposition 4.1,
p. 161].) Here δ(x̄, ȳ) denotes the usual distance on P(V ).

Given β > 0, denote by L(β) the space of β-Hölder continuous functions on P(V )
with norm

‖f ‖β = sup
x̄∈P(V )

|f (x̄)| + sup
x̄,ȳ∈P(V )
x̄ 6=ȳ

|f (x̄)− f (ȳ)|

δ(x̄, ȳ)β
. (9.4)

According to [1, Theorem 2.5, p. 106], ρ[ν](n) converges exponentially fast to η, in
the following weak∗ sense: For 0 < α < α0 and f ∈ Lα , we have∥∥∥∥∑

g

f (ρ(g)x̄)ν(`)(g)−

∫
f (ȳ)η(dȳ)

∥∥∥∥
α

< Ce−c`‖f ‖α, (9.5)

where the constants c, C > 0 depend on α and ρ[ν] only.
Combining (9.2), (9.5) one easily deduces that

max
‖x‖=‖y‖=1

ν(`){g : 〈ρ(g)x, y〉 = 0} < Ce−c`. (9.6)

Hence
max

ξ,ξ ′∈V \{0}
ν(`){g : Tr ξ ′gξg−1

= 0} < Ce−c`. (9.7)

This result suffices for our needs. In particular, one may recover Corollary 4.3 and Propo-
sition 4.1 from (9.7).
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Birkhäuser (1994) Zbl 0826.22012 MR 1308046

[18] Lubotzky, A.: Cayley graphs: eigenvalues, expanders and random walks. In: Surveys in Com-
binatorics, P. Rowlinson (ed.), London Math. Soc. Lecture Note Ser. 218, Cambridge Univ.
Press, 155–189 (1995) Zbl 0835.05033 MR 1358635

[19] Lubotzky, A., Weiss, B.: Groups and expanders. In: Expanding Graphs (Princeton, NJ, 1992),
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 10, J. Friedman (ed.), Amer. Math. Soc.,
95–109 (1993) Zbl 0787.05049 MR 1235570

[20] Sarnak, P.: What is an expander? Notices Amer. Math. Soc. 51, 762–763 (2004)
Zbl pre02115090 MR 2072849

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0572.60001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0886674
http://www.ams.org/mathscinet-getitem?mr=2415383
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1135.22010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2358056
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.11057&format=complete
http://www.ams.org/mathscinet-getitem?mr=2225493
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre02121750&format=complete
http://www.ams.org/mathscinet-getitem?mr=2053599
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0395.10029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0522835
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0017.29705&format=complete
http://www.ams.org/mathscinet-getitem?mr=1503352
http://www.ams.org/mathscinet-getitem?mr=2212257
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1028.11031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900698
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.05072&format=complete
http://www.ams.org/mathscinet-getitem?mr=2104475
http://www.ams.org/mathscinet-getitem?mr=2415382
http://www.ams.org/mathscinet-getitem?mr=2247919
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0092.33503&format=complete
http://www.ams.org/mathscinet-getitem?mr=0109367
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0826.22012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1308046
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0835.05033&format=complete
http://www.ams.org/mathscinet-getitem?mr=1358635
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0787.05049&format=complete
http://www.ams.org/mathscinet-getitem?mr=1235570
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre02115090&format=complete
http://www.ams.org/mathscinet-getitem?mr=2072849


Expansion and random walks in SLd (Z/pnZ) 1011

[21] Sarnak, P., Xue, X.: Bounds for multiplicities of automorphic representations. Duke Math. J.
64, 207–227 (1991) Zbl 0741.22010 MR 1131400

[22] Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proc. Sympos.
Pure Math. 8, Amer. Math. Soc., 1–15 (1965) Zbl 0142.33903 MR 0182610

[23] Shalom, Y.: Expanding graphs and invariant means. Combinatorica 17, 555–575 (1997)
Zbl 0906.05027 MR 1645694

[24] Shalom, Y.: The algebraization of Kazhdan’s property (T). In: Int. Congress of Math. Vol. II,
Eur. Math. Soc., 1283–1310 (2006) Zbl 1109.22003 MR 2275645

[25] Tao, T.: Product sets estimates for non-commutative groups. Preprint (2005)
[26] Tao, T., Vu, V.: Additive Combinatorics. Cambridge Univ. Press (2006) Zbl 1127.11002

MR 2289012

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0741.22010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1131400
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0142.33903&format=complete
http://www.ams.org/mathscinet-getitem?mr=0182610
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0906.05027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1645694
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1109.22003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2275645
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1127.11002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2289012

	Introduction
	The sum-product theorem in Z_q, q=pn
	Measure convolution
	Random walks in SL_2(Z)
	Sets of commuting elements
	Proof of the upper bound
	Multiplicity bound
	Proof of Theorem 1.1
	Further comments

