

William B. Johnson · Gideon Schechtman

Multiplication operators on $L(L_p)$ and ℓ_p -strictly singular operators

Received July 30, 2007 and in revised form September 21, 2007

Abstract. A classification of weakly compact multiplication operators on $L(L_p)$, $1 , is given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the concept of <math>\ell_p$ -strictly singular operators, and we also investigate the structure of general ℓ_p -strictly singular operators on L_p . The main result is that if an operator T on L_p , $1 , is <math>\ell_p$ -strictly singular and $T_{|X}$ is an isomorphism for some subspace X of L_p , then X embeds into L_r for all r < 2, but X need not be isomorphic to a Hilbert space.

It is also shown that if *T* is convolution by a biased coin on L_p of the Cantor group, $1 \le p < 2$, and $T_{|X}$ is an isomorphism for some reflexive subspace *X* of L_p , then *X* is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.

Keywords. Elementary operators, multiplication operators, strictly singular operators, L_p spaces, biased coin

1. Introduction

Given (always bounded, linear) operators A, B on a Banach space X, define L_A , R_B on L(X) (the space of bounded linear operators on X) by $L_AT = AT$, $R_BT = TB$. Operators of the form L_AR_B on L(X) are called *multiplication operators*. The beginning point of this paper is a problem raised in 1992 by E. Saksman and H.-O. Tylli [ST1] (see also [ST2, Problem 2.8]):

Characterize the multiplication operators on $L(L_p)$, 1 , which are weakly compact.

Here L_p is $L_p(0, 1)$ or, equivalently, $L_p(\mu)$ for any purely non-atomic separable probability μ .

In Theorem 1 we answer the Saksman–Tylli question. The characterization is rather simple but gives rise to questions about operators on L_p , some of which were asked by Tylli. First we set some terminology. Given an operator $T : X \rightarrow Y$ and a Banach space Z, say that T is Z-strictly singular provided there is no subspace Z_0 of X which

G. Schechtman: Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel; e-mail: gideon@weizmann.ac.il

Mathematics Subject Classification (2000): 46B20, 46E30

W. B. Johnson: Department Mathematics, Texas A&M University, College Station, TX 77843, USA; e-mail: johnson@math.tamu.edu

is isomorphic to Z for which $T_{|Z_0}$ is an isomorphism. An operator $S : Z \to W$ factors through an operator $T : X \to Y$ provided there are operators $A : Z \to X$ and $B : Y \to W$ so that S = BTA. If S factors through the identity operator on X, we say that S factors through X.

If T is an operator on L_p , $1 , then T is <math>\ell_p$ -strictly singular (respectively, ℓ_2 strictly singular) if and only if I_{ℓ_p} (respectively, I_{ℓ_2}) does not factor through T. This is true because every subspace of L_p which is isomorphic to ℓ_p (respectively, ℓ_2) has a subspace which is still isomorphic to ℓ_p (respectively, ℓ_2) and is complemented in L_p . Actually, a stronger fact is true: if $\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p which is equivalent to the unit vector basis for either ℓ_p or ℓ_2 , then $\{x_n\}_{n=1}^{\infty}$ has a subsequence which spans a complemented subspace of L_p . For p > 2, an even stronger theorem was proved by Kadec–Pełczyński [KP]. When $1 and <math>\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p which is equivalent to the unit vector basis for ℓ_2 , one takes $\{y_n\}_{n=1}^{\infty}$ in $L_{p'}$ (where p' = p/(p-1) is the conjugate index to p) which are uniformly bounded and biorthogonal to $\{x_n\}_{n=1}^{\infty}$. By passing to a subsequence which is weakly convergent and subtracting the limit from each y_n , one may assume that $y_n \rightarrow 0$ weakly and hence, by the Kadec–Pełczyński dichotomy [KP], has a subsequence that is equivalent to the unit vector basis of ℓ_2 (since it is clearly impossible that $\{y_n\}_{n=1}^{\infty}$ has a subsequence equivalent to the unit vector basis of $\ell_{p'}$). This implies that the corresponding subsequence of $\{x_n\}_{n=1}^{\infty}$ spans a complemented subspace of L_p . (Pełczyński showed this argument, or something similar, to one of the authors many years ago, and a closely related result was proved in [PR].) Finally, when 1 and $\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p which is equivalent to the unit vector basis for ℓ_p , see the comments after the statement of Lemma 1.

Notice that the comments in the preceding paragraph imply that an operator on L_p , $1 , is <math>\ell_p$ -strictly singular (respectively, ℓ_2 -strictly singular) if and only if T^* is $\ell_{p'}$ -strictly singular (respectively, ℓ_2 -strictly singular). Better known is that an operator on L_p , $1 , is strictly singular if it is both <math>\ell_p$ -strictly singular and ℓ_2 -strictly singular (and hence T is strictly singular if and only if T^* is strictly singular). For p > 2 this is immediate from [KP], and Lutz Weis [We] proved the case p < 2.

Although Saksman and Tylli did not know a complete characterization of the weakly compact multiplication operators on $L(L_p)$, they realized that a classification must involve ℓ_p - and ℓ_2 -strictly singular operators on L_p . This led Tylli to ask us about possible classifications of the ℓ_p - and ℓ_2 -strictly singular operators on L_p . The ℓ_2 case is known. It is enough to consider the case 2 . If*T* $is an operator on <math>L_p$, 2 , and*T* $is <math>\ell_2$ -strictly singular, then it is an easy consequence of the Kadec–Pełczyński dichotomy that $I_{p,2}T$ is compact, where $I_{p,r}$ is the identity mapping from L_p into L_r . But then by [Jo], *T* factors through ℓ_p . Tylli then asked whether the following conjecture is true:

Tylli Conjecture. If *T* is an ℓ_p -strictly singular operator on L_p , 1 , then*T* $is in the closure (in the operator norm) of the operators on <math>L_p$ that factor through ℓ_2 . (It is clear that the closure is needed because not all compact operators on L_p , $p \neq 2$, factor through ℓ_2 .)

We then formulated a weaker conjecture:

Weak Tylli Conjecture. If *T* is an ℓ_p -strictly singular operator on L_p , $1 , and <math>J : L_p \to \ell_\infty$ is an isometric embedding, then *JT* is in the closure of the operators from L_p into ℓ_∞ that factor through ℓ_2 .

It is of course evident that an operator on L_p , $p \neq 2$, that satisfies the conclusion of the Weak Tylli Conjecture must be ℓ_p -strictly singular. There is a slight subtlety in these conjectures: while the Tylli Conjecture for p is equivalent to the Tylli Conjecture for p', it is not at all clear and is even false that the Weak Tylli Conjecture for p is equivalent to the Weak Tylli Conjecture for p'. In fact, we observe in Lemma 2 (it is simple) that for p > 2 the Weak Tylli Conjecture is true, while the example in Section 4 shows that the Tylli Conjecture is false for all $p \neq 2$ and the Weak Tylli Conjecture is false for p < 2.

There are however some interesting consequences of the Weak Tylli Conjecture that are true when p < 2. In Theorem 4 we prove that if T is an ℓ_p -strictly singular operator on L_p , $1 , then T is <math>\ell_r$ -strictly singular for all p < r < 2. In view of theorems of Aldous [Al] (see also [KM]) and Rosenthal [Ro3], this proves that if such a T is an isomorphism on a subspace Z of L_p , then Z embeds into L_r for all r < 2. The Weak Tylli Conjecture would imply that Z is isomorphic to ℓ_2 , but the example in Section 4 shows that this need not be true. When we discovered Theorem 4, we thought its proof bizarre and assumed that a more straightforward argument would yield a stronger theorem. The example suggests that in fact the proof may be "natural".

In Section 5 we discuss convolution by a biased coin on L_p of the Cantor group, $1 \le p < 2$. We prove that if $T_{|X}$ is an isomorphism for some reflexive subspace X of L_p , $1 \le p < 2$, then X is isomorphic to a Hilbert space. This answers an old question of H. P. Rosenthal [Ro4].

The standard Banach space theory terminology and background we use can be found in [LT].

2. Weakly compact multiplication operators on $L(L_p)$

We use freely the result [ST2, Proposition 2.5] that if A, B are in L(X) where X is a reflexive Banach space with the approximation property, then the multiplication operator $L_A R_B$ on L(X) is weakly compact if and only if for every T in L(X), the operator ATB is compact. For completeness, in Section 6 we give another proof of this under the weaker assumption that X is reflexive and has the compact approximation property. This theorem implies that for such an X, $L_A R_B$ is weakly compact on L(X) if and only if $L_{B^*} R_{A^*}$ is a weakly compact operator on $L(X^*)$. Consequently, to classify weakly compact multiplication operators on $L(L_p)$, 1 , it is enough to consider the case <math>p > 2. For $p \le r$ we denote the identity operator from ℓ_p into ℓ_r by $i_{p,r}$. It is immediate from [KP] that an operator T on L_p , $2 , is compact if and only if <math>i_{2,p}$ does not factor through T.

Theorem 1. Let $2 and let A, B be bounded linear operators on <math>L_p$. Then the multiplication operator $L_A R_B$ on $L(L_p)$ is weakly compact if and only if one of the following (mutually exclusive) conditions hold:

- (a) $i_{2,p}$ does not factor through A (i.e., A is compact).
- (b) i_{2,p} factors through A but i_{p,p} does not factor through A (i.e., A is ℓ_p-strictly singular) and i_{2,2} does not factor through B (i.e., B is ℓ₂-strictly singular).
- (c) $i_{p,p}$ factors through A but $i_{2,p}$ does not factor through B (i.e., B is compact).

Proof. The proof is a straightforward application of the Kadec-Pełczyński dichotomy principle [KP]: if $\{x_n\}_{n=1}^{\infty}$ is a semi-normalized (i.e., bounded and bounded away from zero) weakly null sequence in L_p , 2 , then there is a subsequence which isequivalent to either the unit vector basis of ℓ_p or of ℓ_2 and spans a complemented subspace of L_p . Notice that this immediately implies the "i.e.'s" in the statement of the theorem so that (a) and (c) imply that $L_A R_B$ is weakly compact. Now assume that (b) holds and let T be in $L(L_P)$. If ATB is not compact, then there is a normalized weakly null sequence $\{x_n\}_{n=1}^{\infty}$ in L_p so that $ATBx_n$ is bounded away from zero. By passing to a subsequence, we may assume that $\{x_n\}_{n=1}^{\infty}$ is equivalent to either the unit vector basis of ℓ_p or of ℓ_2 . If $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p , then since TBx_n is bounded away from zero, we can assume by passing to another subsequence that also TBx_n is equivalent to the unit vector basis of ℓ_p , and similarly for $ATBx_n$, which contradicts the assumption that A is ℓ_p -strictly singular. On the other hand, if $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_2 , then since B is ℓ_2 -strictly singular we can assume by passing to a subsequence that Bx_n is equivalent to the unit vector basis of ℓ_p and continue as in the previous case to get a contradiction.

Now suppose that (a), (b), and (c) are all false. If $i_{p,p}$ factors through A and $i_{2,p}$ factors through B then there is sequence $\{x_n\}_{n=1}^{\infty}$ equivalent to the unit vector basis of ℓ_2 or of ℓ_p so that Bx_n is equivalent to the unit vector basis of ℓ_2 or of ℓ_p (of course, only three of the four cases are possible) and Bx_n spans a complemented subspace of L_p . Moreover, there is a sequence $\{y_n\}_{n=1}^{\infty}$ in L_p so that both y_n and Ay_n are equivalent to the unit vector basis of ℓ_p . Since Bx_n spans a complemented subspace of L_p , the mapping $Bx_n \mapsto y_n$ extends to a bounded linear operator T on L_p and ATB is not compact. Finally, suppose that $i_{2,p}$ factors through A but $i_{p,p}$ does not factor through A and $i_{2,2}$ factors through B. Then there is a sequence $\{x_n\}_{n=1}^{\infty}$ so that x_n and Bx_n are both equivalent to the unit vector basis of ℓ_2 and Bx_n spans a complemented subspace of L_p . There is also a sequence $\{y_n\}_{n=1}^{\infty}$ equivalent to the unit vector basis of ℓ_2 so that Ay_n is equivalent to the unit vector basis of ℓ_2 or of ℓ_p . The mapping $Bx_n \mapsto y_n$ extends to a bounded linear operator T on L_p and ATB is not compact.

It is perhaps worthwhile to restate Theorem 1 in a way that the cases where $L_A R_B$ is weakly compact are not mutually exclusive.

Theorem 2. Let $2 and let A, B be bounded linear operators on <math>L_p$. Then the multiplication operator $L_A R_B$ on $L(L_p)$ is weakly compact if and only if one of the following conditions hold:

- (a) A is compact.
- (b) A is ℓ_p -strictly singular and B is ℓ_2 -strictly singular.
- (c) B is compact.

3. ℓ_p -strictly singular operators on L_p

We recall the well known

Lemma 1. Let W be a bounded convex symmetric subset of L_p , $1 \le p \ne 2 < \infty$. The following are equivalent:

- (1) No sequence in W equivalent to the unit vector basis for ℓ_p spans a complemented subspace of L_p .
- (2) For every C there exists n so that no length n sequence in W is C-equivalent to the unit vector basis of lⁿ_p.
- (3) For each $\varepsilon > 0$ there is M_{ε} so that $W \subset \varepsilon B_{L_p} + M_{\varepsilon} B_{L_{\infty}}$.
- (4) $|W|^p$ is uniformly integrable, i.e., $\lim_{t\downarrow 0} \sup_{x\in W} \sup_{\mu(E) < t} ||\mathbf{1}_E x||_p = 0.$

When p = 1, the assumptions that W is convex and symmetric are not needed, and the conditions in Lemma 1 are equivalent to the non-weak-compactness of the weak closure of W. This case is essentially proved in [KP] and proofs can also be found in books; see, e.g., [Wo, Theorem 3.C.12]. (Condition (3) does not appear in [Wo], but it is easy to check the equivalence of (3) and (4). Also, in the proof in [Wo, Theorem 3.C.12] that not (4) implies not (1), Wojtaszczyk only constructs a basic sequence in W that is equivalent to the unit vector basis for ℓ_1 ; however, it is clear that the constructed basic sequence spans a complemented subspace.)

For p > 2, Lemma 1 and stronger versions of condition (1) can be deduced from [KP]. For 1 , one needs to modify slightly the proof in [Wo] for the case <math>p = 1. The only essential modification comes in the proof that not (4) implies not (1), and this is where it is needed that W is convex and symmetric. Just as in [Wo], one shows that not (4) implies that there is a sequence $\{x_n\}_{n=1}^{\infty}$ in W and a sequence $\{E_n\}_{n=1}^{\infty}$ of disjoint measurable sets so that $\inf \|1_{E_n} x_n\|_p > 0$. By passing to a subsequence, we can assume that $\{x_n\}_{n=1}^{\infty}$ converges weakly to, say, x. Suppose first that x = 0. Then by passing to a further subsequence, we may assume that $\{x_n\}_{n=1}^{\infty}$ is a small perturbation of a block basis of the Haar basis for L_p and hence is an unconditionally basic sequence. Since L_p has type p, this implies that there is a constant C so that for all sequences $\{a_n\}_{n=1}^{\infty}$ of scalars, $\|\sum a_n x_n\|_p \leq C(\sum |a_n|^p)^{1/p}$. Let P be the norm one projection from L_p onto the closed linear span Y of the disjoint sequence $\{\mathbf{1}_{E_n} x_n\}_{n=1}^{\infty}$. Then Px_n is weakly null in a space isometric to ℓ_p , and $\|Px_n\|_p$ is bounded away from zero, so there is a subsequence $\{Px_{n(k)}\}_{k=1}^{\infty}$ which is equivalent to the unit vector basis for ℓ_p and whose closed span is the range of a projection Q from Y. The projection QP from L_p onto the the closed span of $\{Px_{n(k)}\}_{k=1}^{\infty}$ maps $x_{n(k)}$ to $Px_{n(k)}$, and because of the upper p estimate on $\{x_{n(k)}\}_{k=1}^{\infty}$, maps the closed span of $\{x_{n(k)}\}_{k=1}^{\infty}$ isomorphically onto the closed span of $\{Px_{n(k)}\}_{k=1}^{\infty}$. This implies that $\{x_{n(k)}\}_{k=1}^{\infty}$ is equivalent to the unit vector basis for ℓ_p and spans a complemented subspace. Suppose now that the weak limit x of $\{x_n\}_{n=1}^{\infty}$ is not zero. Choose a subsequence $\{x_{n(k)}\}_{k=1}^{\infty}$ so that $\inf \|1_{E_{n(2k+1)}}(x_{n(2k)} - x_{n(2k+1)})\|_{p} > 0$ and replace $\{x_n\}_{n=1}^{\infty}$ with $\{(x_{n(2k)} - x_{n(2k+1)})/2\}_{k=1}^{\infty}$ in the argument above.

Notice that the argument outlined above gives that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in L_p , $1 , which is equivalent to the unit vector basis of <math>\ell_p$, then there is a

subsequence $\{y_n\}_{n=1}^{\infty}$ whose closed linear span in L_p is complemented. This is how one proves that the identity on ℓ_p factors through any operator on L_p which is not ℓ_p -strictly singular.

The Weak Tylli Conjecture for p > 2 is an easy consequence of the following lemma.

Lemma 2. Let T be an operator from an \mathcal{L}_1 space V into L_p , $1 , so that <math>W := TB_V$ satisfies condition (1) in Lemma 1. Then for each $\varepsilon > 0$ there is an operator $S : V \to L_2$ so that $||T - I_{2,p}S|| < \varepsilon$.

Proof. Let $\varepsilon > 0$. By condition (3) in Lemma 1, for each norm one vector x in V there is a vector Ux in L_2 with $||Ux||_2 \leq ||Ux||_{\infty} \leq M_{\varepsilon}$ and $||Tx - Ux||_p \leq \varepsilon$. By the definition of \mathcal{L}_1 space, we can write V as a directed union $\bigcup_{\alpha} E_{\alpha}$ of finite-dimensional spaces that are uniformly isomorphic to $\ell_1^{n_{\alpha}}$, $n_{\alpha} = \dim E_{\alpha}$, and let $(x_i^{\alpha})_{i=1}^{n_{\alpha}}$ be norm one vectors in E_{α} which are, say, λ -equivalent to the unit vector basis for $\ell_1^{n_{\alpha}}$ with λ independent of α . Let U_{α} be the linear extension to E_{α} of the mapping $x_i^{\alpha} \mapsto Ux_i^{\alpha}$, considered as an operator into L_2 . Then $||T|_{E_{\alpha}} - I_{2,p}U_{\alpha}|| \leq \lambda\varepsilon$ and $||U_{\alpha}|| \leq \lambda M_{\varepsilon}$. A standard Lindenstrauss compactness argument produces an operator $S : V \to L_2$ so that $||S|| \leq \lambda M_{\varepsilon}$ and $||T - I_{2,p}S|| \leq \lambda\varepsilon$. Indeed, extend U_{α} to all of V by letting $U_{\alpha}x = 0$ if $x \notin E_{\alpha}$. The net T_{α} has a subnet S_{β} so that for each x in V, $S_{\beta}x$ converges weakly in L_2 ; call the limit Sx. It is easy to check that S has the properties claimed.

Theorem 3. Let T be an ℓ_p -strictly singular operator on L_p , $2 , and let J be an isometric embedding of <math>L_p$ into an injective Z. Then for each $\varepsilon > 0$ there is an operator $S : L_p \rightarrow Z$ so that S factors through ℓ_2 and $||JT - S|| < \varepsilon$.

Proof. Lemma 2 gives the conclusion when J is the adjoint of a quotient mapping from ℓ_1 or L_1 onto $L_{p'}$. The general case then follows from the injectivity of Z.

The next proposition, when souped up via "abstract nonsense" and known results, gives our main result about ℓ_p -strictly singular operators on L_p . Note that it shows that an ℓ_p strictly singular operator on L_p , 1 , cannot be the identity on the span of asequence of*r*-stable independent random variables for any <math>p < r < 2. We do not know another way of proving even this special case of our main result.

Proposition 1. Let T be an ℓ_p -strictly singular operator on L_p , $1 . If X is a subspace of <math>L_p$ and $T_{|X} = aI_X$ with $a \neq 0$, then X embeds into L_s for all s < 2.

Proof. By making a change of density, we can by [JJ] assume that T is also a bounded linear operator on L_2 , so assume, without loss of generality, that $||T||_p \vee ||T||_2 = 1$, so that, in particular, $a \leq 1$. Lemma 1 gives for each $\epsilon > 0$ a constant M_{ϵ} so that

$$TB_{L_p} \subset \epsilon B_{L_p} + M_{\epsilon} B_{L_2}. \tag{1}$$

Indeed, otherwise condition (1) in Lemma 1 gives a bounded sequence $\{x_n\}_{n=1}^{\infty}$ in L_p so that $\{Tx_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . By passing to a subsequence of differences of $\{x_n\}_{n=1}^{\infty}$, we can assume, without loss of generality, that $\{x_n\}_{n=1}^{\infty}$

is a small perturbation of a block basis of the Haar basis for L_p and hence is an unconditionally basic sequence. Since L_p has type p, the sequence $\{x_n\}_{n=1}^{\infty}$ has an upper p estimate, which means that there is a constant C so that for all sequences $\{a_n\}_{n=1}^{\infty}$ of scalars, $\|\sum a_n x_n\| \le C \|(\sum |a_n|^p)^{1/p}\|$. Since $\{Tx_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p , $\{x_n\}_{n=1}^{\infty}$ also has a lower p estimate and hence $\{x_n\}_{n=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . This contradicts the ℓ_p -strict singularity of T.

Iterating this we get, for every *n* and $0 < \epsilon < 1/2$,

$$a^n B_X \subset T^n B_{L_n} \subset \epsilon^n B_{L_n} + 2M_{\epsilon} B_{L_2}$$

or, setting A := 1/a,

$$B_X \subset A^n \epsilon^n B_{L_p} + 2A^n M_{\epsilon} B_{L_2}.$$

For f a unit vector in X write $f = f_n + g_n$ with $||f_n||_2 \le 2A^n M_{\epsilon}$ and $||g_n||_p \le (A\epsilon)^n$. Then $f_{n+1} - f_n = g_n - g_{n+1}$, and since evidently f_n can be chosen to be of the form $(f \lor -k_n) \land k_n$ (with appropriate interpretation when the set $[f_n = \pm k_n]$ has positive measure), the choice of f_n , g_n can be made so that

$$||f_{n+1} - f_n||_2 \le ||f_{n+1}||_2 \le 2M_{\epsilon}A^{n+1}, \quad ||g_n - g_{n+1}||_p \le ||g_n||_p \le (A\epsilon)^n.$$

(Alternatively, to avoid thinking, just take any $f = f_n + g_n$ so that $||f_n||_2 \le 2A^n M_{\epsilon}$ and $||g_n||_p \le (A\epsilon)^n$. Each left side of the two displayed inequalities is less than twice the corresponding right side as long as $A\epsilon \le 1$.)

For p < s < 2 write $1/s = \theta/2 + (1 - \theta)/p$. Then

$$\|f_{n+1} - f_n\|_s \le \|f_{n+1} - f_n\|_2^{\theta} \|g_n - g_{n+1}\|_p^{1-\theta} \le (2M_{\epsilon}A)^{\theta} (A\epsilon^{1-\theta})^n$$

which is summable if $\epsilon^{1-\theta} < 1/A$. But $||f - f_n||_p \to 0$ so $f = f_1 + \sum_{n=1}^{\infty} f_{n+1} - f_n$ in L_p and hence also in L_s if $\epsilon^{1-\theta} < 1/A$. So for some constant C_s we conclude for all $f \in X$ that $||f||_p \le ||f||_s \le C_s ||f||_p$.

We can now prove our main theorem. For background on ultrapowers of Banach spaces, see [DJT, Chapter 8].

Theorem 4. Let T be an ℓ_p -strictly singular operator on L_p , $1 . If X is a subspace of <math>L_p$ and $T_{|X}$ is an isomorphism, then X embeds into L_r for all r < 2.

Proof. In view of Rosenthal's theorem [Ro3], it is enough to prove that X has type s for all s < 2. By the Krivine–Maurey–Pisier theorem, [Kr] and [MP] (or, alternatively, Aldous' theorem, [Al] or [KM]), we only need to check that for p < s < 2, X does not contain almost isometric copies of ℓ_s^n for all n. (To apply the Krivine–Maurey–Pisier theorem we use that the second condition in Lemma 1, applied to the unit ball of X, implies that X has type s for some $p < s \le 2$.) So suppose that for some p < s < 2, X contains almost isometric copies of ℓ_s^n for all n. By applying Krivine's theorem [Kr] we get for each n a sequence $(f_i^n)_{i=1}^n$ of unit vectors in X which is $1 + \epsilon$ -equivalent to the unit vector basis for ℓ_s^n and, for some constant C (which we can take independently of n), the sequence $(CTf_i^n)_{i=1}^n$ is also $1 + \epsilon$ -equivalent to the unit vector basis for ℓ_s^n . By

replacing T by CT, we might as well assume that C = 1. Now consider an ultrapower $T_{\mathcal{U}}$, where \mathcal{U} is a free ultrafilter on the natural numbers. The domain and codomain of $T_{\mathcal{U}}$ is the (abstract) L_p space $(L_p)_U$, and T_U is defined by $T_U(f_1, f_2, ...) = (Tf_1, Tf_2, ...)$ for any (equivalence class of a) bounded sequence $(f_1, f_2, ...)$. It is evident that $T_{\mathcal{U}}$ is an isometry on the ultraproduct of span $(f_i^n)_{i=1}^n$, n = 1, 2, ..., and hence $T_{\mathcal{U}}$ is an isometry on a subspace of $(L_p)_{\mathcal{U}}$ which is isometric to ℓ_s . Since condition (2) in Lemma 1 is obviously preserved when taking an ultrapower of a set, we see that $T_{\mathcal{U}}$ is ℓ_p -strictly singular. Finally, by restricting $T_{\mathcal{U}}$ to a suitable subspace, we get an ℓ_p -strictly singular operator S on L_p and a subspace Y of L_p so that Y is isometric to ℓ_s and $S_{|Y}$ is an isometry. By restricting the domain of S, we can assume that Y has full support and the functions in Y generate the Borel sets. It then follows from the Plotkin–Rudin theorem [Pl], [Ru] (see [KK, Theorem 1]) that $S_{|Y}$ extends to an isometry W from L_p into L_p . Since any isometric copy of L_p in L_p is norm one complemented (see [La, §17]), there is a norm one operator $V: L_p \to L_p$ so that $VW = I_{L_p}$. Then $VS_{|Y|} = I_Y$ and VS is ℓ_p -strictly singular, which contradicts Proposition 1.

Remark 1. The ℓ_1 -strictly singular operators on L_1 also form an interesting class. They are the weakly compact operators on L_1 . In terms of factorization, they are just the closure in the operator norm of the integral operators on L_1 (see, e.g., the proof of Lemma 2).

4. The example

Rosenthal [Ro1] proved that if $\{x_n\}_{n=1}^{\infty}$ is a sequence of three-valued, symmetric, independent random variables, then for all $1 , the closed span in <math>L_p$ of $\{x_n\}_{n=1}^{\infty}$ is complemented by means of the orthogonal projection P, and $||P||_p$ depends only on p, not on the specific sequence $\{x_n\}_{n=1}^{\infty}$. Moreover, he showed that if p > 2, then for any sequence $\{x_n\}_{n=1}^{\infty}$ of symmetric, independent random variables in L_p , $\|\sum x_n\|_p$ is equivalent (with constant depending only on p) to $(\sum ||x_n||_p^p)^{1/p} \vee (\sum ||x_n||_2^p)^{1/2}$. Thus if $\{x_n\}_{n=1}^{\infty}$ is normalized in L_p , p > 2, and $w_n := ||x_n||_2$, then $||\sum a_n x_n||_p$ is equivalent to $||\{a_n\}_{n=1}^{\infty}||_{p,w} := (\sum |a_n|^p)^{1/p} \vee (\sum |a_n|^2 w_n^2)^{1/2}$. The completion of the finitely nonzero sequences of scalars under the norm $\|\cdot\|_{p,w}$ is called $X_{p,w}$. It follows that if $w = \{w_n\}_{n=1}^{\infty}$ is any sequence of numbers in [0, 1]. Then $X_{p,w}$ is isomorphic to a complemented subspace of L_p . Suppose now that $w = \{w_n\}_{n=1}^{\infty}$ and $v = \{v_n\}_{n=1}^{\infty}$ are two such sequences of weights and $v_n \ge w_n$. Then the diagonal operator D from $X_{p,w}$ to $X_{p,v}$ that sends the *n*th unit vector basis vector e_n to $(w_n/v_n)e_n$ is contractive, and it is more or less obvious that D is ℓ_p -strictly singular if $w_n/v_n \to 0$ as $n \to \infty$. Since $X_{p,w}$ and $X_{p,v}$ are isomorphic to complemented subspaces of L_p , the adjoint operator D^* is $\ell_{p'}$ -strictly singular and (identifying $X_{p,w}^*$ and $X_{p,v}^*$ with subspaces of $L_{p'}$) extends to an $\ell_{p'}$ -strictly singular operator on $L_{p'}$. Our goal in this section is to produce weights w and v so that D^* is an isomorphism on a subspace of $X_{n,v}^*$ which is not isomorphic to a Hilbert space.

For all 0 < r < 2 there is a positive constant c_r such that

$$|t|^r = c_r \int_0^\infty \frac{1 - \cos tx}{x^{r+1}} \, dx$$

for all $t \in \mathbb{R}$. It follows that for any closed interval $[a, b] \subset (0, \infty)$ and for all $\varepsilon > 0$ there are $0 < x_1 < \cdots < x_{n+1}$ such that $\max_{1 \le j \le n} \left| \frac{x_{j+1} - x_j}{x_j^{r+1}} \right| \le \varepsilon$ and

$$c_r \sum_{j=1}^{n} \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos t x_j) - |t|^r \bigg| < \varepsilon$$
⁽²⁾

for all *t* with $|t| \in [a, b]$.

Let 0 < q < r < 2 and define v_j and a_j , $j = 1, \ldots, n$, by

$$v_j^{2q/(2-q)} = c_r \frac{x_{j+1} - x_j}{x_j^{r+1}}, \qquad \frac{a_j}{v_j^{2/(2-q)}} = x_j.$$

Let Y_j , j = 1, ..., n, be independent, symmetric, three-valued random variables such that $|Y_j| = v_j^{-2/(2-q)} \mathbf{1}_{B_j}$ with $\operatorname{Prob}(B_j) = v_j^{2q/(2-q)}$, so that in particular $||Y_j||_q = 1$ and $v_j = ||Y_j||_q/||Y_j||_2$. Then the characteristic function of Y_j is

$$\varphi_{Y_j}(t) = 1 - v_j^{2q/(2-q)} + v_j^{2q/(2-q)} \cos(tv_j^{-2/(2-q)}) = 1 - v_j^{2q/(2-q)} (1 - \cos(tv_j^{-2/(2-q)}))$$

and

$$\varphi_{\sum a_j Y_j}(t) = \prod_{j=1}^n (1 - v_j^{2q/(2-q)} (1 - \cos(ta_j v_j^{-2/(2-q)})))$$
$$= \prod_{j=1}^n \left(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)) \right).$$
(3)

To evaluate this product we use the estimates on $\frac{x_{j+1}-x_j}{x_j^{r+1}}$ to deduce that, for each j

$$\begin{aligned} \left| \log \left(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)) \right) + c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)) \right| \\ & \leq C \varepsilon c_r^2 \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)) \end{aligned}$$

for some absolute $C < \infty$. Then, by (2),

$$\left| \sum_{j=1}^{n} \log \left(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)) \right) + c_r \sum_{j=1}^{n} \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j)) \right| \le C \varepsilon c_r (\varepsilon + b^r)$$

Using (2) again we get

$$\left|\sum_{j=1}^{n} \log \left(1 - c_r \frac{x_{j+1} - x_j}{x_j^{r+1}} (1 - \cos(tx_j))\right) + |t|^r\right| \le (C+1)\varepsilon(\varepsilon + b^r)$$

(assuming as we may that $b \ge 1$), and from (3) we get

$$\varphi_{\sum a_j Y_j}(t) = (1 + O(\varepsilon)) \exp(-|t|^r)$$

for all $|t| \in [a, b]$, where the function hiding under the *O* notation depends on *r* and *b* but on nothing else. It follows that, given any $\eta > 0$, one can find *a*, *b* and ε such that for the corresponding $\{a_j, Y_j\}$ there is a symmetric *r*-stable *Y* (with characteristic function $e^{-|t|^r}$) satisfying

$$\left\|Y-\sum_{j=1}^n a_j Y_j\right\|_q \leq \eta.$$

This follows from classical translation of various convergence notions; see e.g. [Ro2, p. 154].

Let now $0 < \delta < 1$. Put $w_j = \delta v_j$, j = 1, ..., n, and let Z_j , j = 1, ..., n, be independent, symmetric, three-valued random variables such that $|Z_j| = w_j^{-2/(2-q)} \mathbf{1}_{C_j}$ with $\operatorname{Prob}(C_j) = w_j^{2q/(2-q)}$, so that in particular $||Z_j||_q = 1$ and $w_j = ||Z_j||_q/||Z_j||_2$. In a similar manner to the argument above we see that

$$\begin{split} \varphi_{\sum \delta a_j Z_j}(t) &= \prod_{j=1}^n (1 - w_j^{2q/(2-q)} (1 - \cos(t \, \delta a_j \, w_j^{-2/(2-q)}))) \\ &= \prod_{j=1}^n (1 - \delta^{2q/(2-q)} v_j^{2q/(2-q)} (1 - \cos(t \, \delta^{-q/(2-q)} a_j v_j^{-2/(2-q)}))) \\ &= (1 + O(\varepsilon)) \exp(-\delta^{q(2-r)/(2-q)} |t|^r) \end{split}$$

for all $|t| \in [\delta^{q/(2-q)}a, \delta^{q/(2-q)}b]$, where the *O* now depends also on δ .

Assuming $\delta^{q(2-r)/(2-q)} > 1/2$ and for a choice of a, b and ε depending on δ, r, q and η we find that there is a symmetric *r*-stable random variable *Z* (with characteristic function $e^{-\delta^{q(2-r)/(2-q)}|t|^r}$) such that

$$\left\|Z-\sum_{j=1}^n \delta a_j Z_j\right\|_q \le \eta$$

Note that the ratio between the L_q norms of Y and Z is bounded away from zero and infinity by universal constants and each of these norms is also universally bounded away from zero. Consequently, if ε is small enough the ratio between the L_q norms of $\sum_{j=1}^{n} a_j Y_j$ and $\sum_{j=1}^{n} \delta a_j Z_j$ is bounded away from zero and infinity by universal constants.

Let now δ_i be any sequence decreasing to zero and r_i any sequence such that $q < r_i \uparrow 2$ and $\delta_i^{q(2-r_i)/(2-q)} > 1/2$. Then for any sequence $\varepsilon_i \downarrow 0$ we can find two sequences of symmetric, independent, three-valued random variables $\{Y_i\}$ and $\{W_i\}$, all normalized in L_q , with the following additional properties:

• Put $v_j = ||Y_j||_q / ||Y_j||_2$ and $w_j = ||Z_j||_q / ||Z_j||_2$. Then there are disjoint finite subsets of the integers σ_i , i = 1, 2, ..., such that $w_j = \delta_i v_j$ for $j \in \sigma_i$.

• There are independent random variables $\{\bar{Y}_i\}$ and $\{\bar{Z}_i\}$ with \bar{Y}_i and \bar{Z}_i r_i -stable with bounded, from zero and infinity, ratio of L_q norms and there are coefficients $\{a_j\}$ such that

$$\left\| \bar{Y}_i - \sum_{j \in \sigma_i} a_j Y_j \right\|_q < \varepsilon_i \quad \text{and} \quad \left\| \bar{Z}_i - \sum_{j \in \sigma_i} \delta_i a_j Z_j \right\|_q < \varepsilon_i.$$

From [Ro1] we know that the spans of $\{Y_j\}$ and $\{Z_j\}$ are complemented in L_q , 1 < q < 2, and the dual spaces are naturally isomorphic to $X_{p,\{v_j\}}$ and $X_{p,\{w_j\}}$ respectively; both the isomorphism constants and the complementation constants depend only on q. Here p = q/(q - 1) and

$$\|\{\alpha_j\}\|_{X_{p,\{u_j\}}} = \max\left\{\left(\sum |\alpha_j|^p\right)^{1/p}, \left(\sum u_j^2 \alpha_j^2\right)^{1/2}\right\}.$$

Under this duality the adjoint D^* to the operator D that sends Y_j to $\delta_i Z_j$ for $j \in \sigma_i$ is formally the same diagonal operator between $X_{p,\{w_i\}}$ and $X_{p,\{v_i\}}$. The relation $w_j = \delta_i v_j$ for $j \in \sigma_i$ easily implies that this is a bounded operator; $\delta_i \to 0$ implies that this operator is ℓ_q -strictly singular. If $\varepsilon_i \to 0$ fast enough, D^* preserves a copy of span $\{\bar{Y}_i\}$. Finally, if r_i tends to 2 not too fast this span is not isomorphic to a Hilbert space. Indeed, let $1 \leq s_j \uparrow 2$ be arbitrary and let $\{n_j\}_{j=1}^{\infty}$ be a sequence of positive integers with $n_j^{1/s_j-1/2} \geq j, j = 1, 2, \ldots$, say. For $1 \leq k \leq n_j$, put $r_{n_1+\dots+n_{j-1}+k} = s_j$. Then the span of $\{Y_i\}_{i=n_1+\dots+n_{j-1}+1}^{n_1+\dots+n_{j-1}+1}$ is isomorphic, with constant independent of j, to $\ell_{s_j}^{n_j}$ and this last space is of distance at least j from a Euclidean space.

It follows that if $J : L_q \to \ell_\infty$ is an isometric embedding, then JD^* cannot be arbitrarily approximated by an operator which factors through a Hilbert space, and hence the Weak Tylli Conjecture is false in the range 1 < q < 2.

5. Convolution by a biased coin

In this section we regard L_p as $L_p(\Delta)$, where $\Delta = \{-1, 1\}^{\mathbb{N}}$ is the Cantor group and the measure is the Haar measure μ on Δ ; i.e., $\mu = \prod_{n=1}^{\infty} \mu_n$, where $\mu_n(-1) = \mu_n(1) = 1/2$. For $0 < \varepsilon < 1$, let v_{ε} be the ε -biased coin tossing measure, i.e., $v_{\varepsilon} = \prod_{n=1}^{\infty} v_{\varepsilon,n}$, where $v_{\varepsilon,n}(1) = (1 + \varepsilon)/2$ and $v_{\varepsilon,n}(-1) = (1 - \varepsilon)/2$. Let T_{ε} be convolution by v_{ε} , so that for a μ -integrable function f on Δ , $(T_{\varepsilon}f)(x) = (f * v_{\varepsilon})(x) = \int_{\Delta} f(xy) dv_{\varepsilon}(y)$. The operator T_{ε} is a contraction on L_p for all $1 \le p \le \infty$. Let us recall how T_{ε} acts on the characters on Δ . For $t = \{t_n\}_{n=1}^{\infty} \in \Delta$, let $r_n(t) = t_n$. The characters on Δ are finite products of these *Rademacher functions* r_n (where the void product is the constant one function). For A a finite subset of \mathbb{N} , set $w_A = \prod_{n \in A} r_n$ and let W_n be the linear span of $\{w_A : |A| = n\}$. Then $T_{\varepsilon}w_A = \varepsilon^{|A|}w_A$.

We are interested in studying T_{ε} on L_p , $1 \le p < 2$. The background we mention below is all contained in Bonami's paper [Bo] (or see [Ro4]). On L_p , $1 , <math>T_{\varepsilon}$ is ℓ_p strictly singular; in fact, T_{ε} even maps L_p into L_r for some $r = r(p, \varepsilon) > p$. Indeed, by interpolation it is sufficient to check that T_{ε} maps L_s into L_2 for some $s = s(\varepsilon) < 2$. But there is a constant C_s which tends to 1 as $s \uparrow 2$ so that for all $f \in W_n$, $||f||_2 \le C_s^n ||f||_s$ and the orthogonal projection P_n onto (the closure of) W_n satisfies $||P_n||_p \leq C_s^n$. From this it is easy to check that if $\varepsilon C_s^2 < 1$, then T_{ε} maps L_s into L_2 . We remark in passing that Bonami [Bo] found for each p (including $p \geq 2$) and ε the largest value of $r = r(p, \varepsilon)$ such that T_{ε} maps L_p into L_r .

Thus Theorem 4 shows that if X is a subspace of L_p , $1 , and <math>T_{\varepsilon}$ (considered as an operator from L_p to L_p) is an isomorphism on X, then X embeds into L_s for all s < 2. Since, as we mentioned above, T_{ε} maps L_s into L_2 for some s < 2, it then follows from an argument in [Ro4] that X must be isomorphic to a Hilbert space. (Actually, as we show after the proof, Lemma 3 is that we can prove Theorem 5 without using Theorem 4.) Since [Ro4] is not generally available, we repeat Rosenthal's argument in Lemma 3 below.

Now T_{ε} is not ℓ_1 -strictly singular on L_1 . Nevertheless, we still find that if X is a reflexive subspace of L_1 , and T_{ε} (considered as an operator from L_1 to L_1) is an isomorphism on X, then X is isomorphic to a Hilbert space. Indeed, Rosenthal showed (see Lemma 3) that then there is another subspace X_0 of L_1 which is isomorphic to X so that X_0 is contained in L_p for some $1 , the <math>L_p$ and L_1 norms are equivalent on X_0 , and T_{ε} is an isomorphism on X_0 . This implies that as an operator on L_p , T_{ε} is an isomorphism on X_0 and hence X_0 is isomorphic to a Hilbert space. (To apply Lemma 3, use the fact [Ro3] that if X is a relexive subspace of L_1 , then X embeds into L_p for some 1 .)

We summarize this discussion in the first sentence of Theorem 5. The case p = 1 solves Problem B from Rosenthal's 1976 paper [Ro4].

Theorem 5. Let $1 \le p < 2$, let $0 < \varepsilon < 1$, and let T_{ε} be considered as an operator on L_p . If X is a reflexive subspace of L_p and the restriction of T_{ε} to X is an isomorphism, then X is isomorphic to a Hilbert space. Moreover, if p > 1, then X is complemented in L_p .

We now prove Rosenthal's lemma [Ro4, proof of Theorem 5] and defer the proof of the "moreover" statement in Theorem 5 until after the proof of the lemma.

Lemma 3. Suppose that T is an operator on L_p , $1 \le p < r < s < 2$, X is a subspace of L_p which is isomorphic to a subspace of L_s , and $T_{|X}$ is an isomorphism. Then there is another subspace X_0 of L_p which is isomorphic to X so that X_0 is contained in L_r , the L_r and L_p norms are equivalent on X_0 , and T is an isomorphism on X_0 .

Proof. We want to find a measurable set E so that

- (1) $X_0 := \{\mathbf{1}_E x : x \in X\}$ is isomorphic to X,
- (2) $X_0 \subset L_r$,
- (3) $T_{|X_0|}$ is an isomorphism.

(We did not say that $\|\cdot\|_p$ and $\|\cdot\|_r$ are equivalent on X_0 since that follows formally from the closed graph theorem. The isomorphism $X \to X_0$ guaranteed by (a) is of course the mapping $x \mapsto \mathbf{1}_E x$.)

Assume, without loss of generality, that ||T|| = 1. Take a > 0 so that $||Tx||_p \ge a ||x||_p$ for all x in X. Since ℓ_p does not embed into L_s we see from (4) in Lemma 1 that there is

 $\eta > 0$ so that if *E* has measure larger than $1 - \eta$, then $||\mathbf{1}_{\sim E}x||_p \le (a/2)||x||_p$ for all *x* in *X*. Obviously (1) and (3) are satisfied for any such *E*. It is proved in [Ro3] that there is a strictly positive *g* with $||g||_1 = 1$ so that x/g is in L_r for all *x* in *X*. Now simply choose $t < \infty$ so that E := [g < t] has measure at least $1 - \eta$; then *E* satisfies (1)–(3).

Next we remark how to avoid using Theorem 4 in proving Theorem 5. Suppose that T_{ε} is an isomorphism on a reflexive subspace X of L_p , $1 \le p < 2$. Let s be the supremum of those $r \le 2$ such that X is isomorphic to a subspace of L_r , so $1 < s \le 2$. It is sufficient to show that s = 2. But if s < 2, the interpolation formula implies that if r < s is sufficiently close to s, then T_{ε} maps L_r into L_t for some t > s and hence, by Lemma 3, X embeds into L_t .

Finally, we prove the "moreover" statement in Theorem 5. We now know that X is isomorphic to a Hilbert space. In the proof of Lemma 3, instead of using Rosenthal's result from [Ro3], use Grothendieck's theorem [DJT, Theorem 3.5], which implies that there is a strictly positive g with $||g||_1 = 1$ so that x/g is in L_2 for all x in X. Choosing E the same way as in the proof of Lemma 3 with $T := T_{\varepsilon}$, we see that (1)–(3) are true with r = 2. Now the L_2 and L_p norms are equivalent on both X_0 and on $T_{\varepsilon}X_0$. But it is clear that the only way that T_{ε} can be an isomorphism on a subspace X_0 of L_2 is for the orthogonal projection P_n onto the closed span of W_k , $0 \le k \le n$, to be an isomorphism on X_0 for some finite n. But then also in the L_p norm the restriction of P_n to X_0 is an isomorphism, because the L_p norm and the L_2 norm are equivalent on the span of W_k , $0 \le k \le n$, and P_n is bounded on L_p (since p > 1). It follows that the operator $S := P_n \circ \mathbf{1}_E$ on L_p maps X_0 isomorphically onto a complemented subspace of L_p , which implies that X_0 is also complemented in L_p .

Here is the problem that started us thinking about ℓ_p -strictly singular operators:

Problem 1. Let $1 and <math>0 < \varepsilon < 1$. On $L_p(\Delta)$, does T_{ε} satisfy the conclusion of the Tylli Conjecture?

After we submitted this paper, G. Pisier [Pi] answered Problem 1 in the affirmative.

Although the example in Section 4 shows that the Tylli Conjecture is false, something close to it may be true:

Problem 2. Let $1 . Is every <math>\ell_p$ -strictly singular operator on L_p in the closure of the operators on L_p that factor through L_r ?

6. Appendix

In this appendix we prove a theorem that is essentially due to Saksman and Tylli. The only novelty is that we assume the compact approximation property rather than the approximation property.

Theorem 6. Let X be a reflexive Banach space and let A, B be in L(X). Then

(a) If ATB is a compact operator on X for every T in L(X), then L_AR_B is a weakly compact operator on L(X).

(b) If X has the compact approximation property and $L_A R_B$ is a weakly compact operator on L(X), then AT B is a compact operator on X for every T in L(X).

Proof. To prove (a), recall [Kal] that for a reflexive space X, on bounded subsets of K(X) the weak topology is the same as the weak operator topology (the operator $T \mapsto f_T \in C((B_X, \text{weak}) \times (B_{X^*}, \text{weak}))$, where $f_T(x, x^*) := \langle x^*, Tx \rangle$, is an isometric isomorphism from K(X) into a space of continuous functions on a compact Hausdorff space). Now if (T_α) is a bounded net in L(X), then since X is reflexive there is a subnet (which we still denote by (T_α)) which converges in the weak operator topology to, say, $T \in L(X)$. Then $AT_\alpha B$ converges in the the weak operator topology to ATB. But since all these operators are in K(X), $AT_\alpha B$ converges weakly to ATB by Kalton's theorem. This shows that $L_A R_B$ is a weakly compact operator on L(X).

To prove (b), suppose that we have a $T \in L(X)$ with ATB not compact. Then there is a weakly null normalized sequence $\{x_n\}_{n=1}^{\infty}$ in X and $\delta > 0$ so that for all n, $||ATBx_n|| > \delta$. Since a reflexive space with the compact approximation property also has the compact metric approximation property [CJ], there are $C_n \in K(X)$ with $||C_n|| < 1 + 1/n$ and $C_n Bx_i = Bx_i$ for $i \le n$. Since the C_n are compact, for each n, $||C_n Bx_m|| \to 0$ as $m \to \infty$. Thus $A(TC_n)Bx_i = ATBx_i$ for $i \le n$ and $||A(TC_n)Bx_m|| \to 0$ as $m \to \infty$. This implies that no convex combination of $\{A(TC_n)B\}_{n=1}^{\infty}$ can converge in the norm of L(X) and hence $\{A(TC_n)B\}_{n=1}^{\infty}$ has no weakly convergent subsequence. This contradicts the weak compactness of $L_A R_B$ and completes the proof.

Acknowledgments. Research of W. B. Johnson was supported in part by NSF DMS-0503688 and U.S.-Israel Binational Science Foundation.

Research of G. Schechtman was supported in part by Israel Science Foundation and U.S.-Israel Binational Science Foundation; he was also a participant of NSF Workshop in Analysis and Probability, Texas A&M University.

References

- [Al] Aldous, D. J.: Subspaces of L^1 , via random measures. Trans. Amer. Math. Soc. 267, 445–463 (1981) Zbl 0474.46007 MR 0626483
- [B0] Bonami, A.: Étude des coefficients de Fourier des fonctions de $L^p(G)$. Ann. Inst. Fourier (Grenoble) **20**, no. 2, 335–402 (1970) Zbl 0195.42501 MR 0283496
- [CJ] Cho, C.-M., Johnson, W. B.: A characterization of subspaces X of l_p for which K(X) is an *M*-ideal in L(X). Proc. Amer. Math. Soc. **93**, 466–470 (1985) Zbl 0537.47010 MR 0774004
- [DJT] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge (1995) Zbl 0855.47016 MR 1342297
- [Jo] Johnson, W. B.: Operators into L_p which factor through ℓ_p . J. London Math. Soc. (2) 14, 333–339 (1976) Zbl 0413.47025 MR 0425667
- [JJ] Johnson, W. B., Jones, L.: Every L_p operator is an L_2 operator. Proc. Amer. Math. Soc. **72**, 309–312 (1978) Zbl 0391.46026 MR 0507330
- [KP] Kadec, M. I., Pełczyński, A.: Bases, lacunary sequences and complemented subspaces in the spaces L_p. Studia Math. 21, 161–176 (1961/1962) Zbl 0102.32202 MR 0152879

- [Kal] Kalton, N. J.: Spaces of compact operators. Math. Ann. 208, 267–278 (1974) Zbl 0266.47038 MR 0341154
- [KK] Koldobsky, A., König, H.: Aspects of the isometric theory of Banach spaces. In: Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 899–939 (2001) Zbl 1005.46005 MR 1863709
- [Kr] Krivine, J.-L.: Sous-espaces de dimension finie des espaces de Banach réticulés. Ann. of Math. (2) 104, 1–29 (1976) Zbl 0329.46008 MR 0407568
- [KM] Krivine, J.-L., Maurey, B.: Espaces de Banach stables. Israel J. Math. 39, 273–295 (1981) Zbl 0504.46013 MR 0636897
- [La] Lacey, H. E.: The Isometric Theory of Classical Banach Spaces. Grundlehren Math. Wiss. 208, Springer, New York (1974). Zbl 0285.46024 MR 0493279
- [LT] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I&II. Ergeb. Math. Grenzgeb. 92 & 97, Springer, Berlin (1977 & 1979) Zbl 0852.46015 MR 0500056 and MR 0540367
- [MP] Maurey, B., Pisier, G.: Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58, 45–90 (1976) Zbl 0344.47014 MR 0443015
- [PR] Pełczyński, A., Rosenthal, H. P.: Localization techniques in L^p spaces. Studia Math. 52, 263–289 (1974/75) Zbl 0297.46023 MR 0361729
- [Pi] Pisier, G.: Remarks on hypercontractive semigroups and operator ideals. arXiv:0708.3423
- [PI] Plotkin, A. I.: An algebra that is generated by translation operators, and L^p-norms. In: Functional Analysis, No. 6: Theory of Operators in Linear Spaces, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, 112–121 (1976) (in Russian)
- [Ro1] Rosenthal, H. P.: On the subspaces of L^p (p > 2) spanned by sequences of independent random variables. Israel J. Math. **8**, 273–303 (1970) Zbl 0213.19303 MR 0271721
- [Ro2] Rosenthal, H. P.: On the span in L^p of sequences of independent random variables, II. In: Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability (Berkeley, CA, 1970/1971), Vol. II: Probability Theory, Univ. California Press, Berkeley, CA, 149–167 (1972) Zbl 0255.60003 MR 0440354
- [Ro3] Rosenthal, H. P. On subspaces of L^p . Ann. of Math. (2) **97**, 344–373 (1973) Zbl 0253.46049 MR 0312222
- [Ro4] Rosenthal, H. P.: Convolution by a biased coin. The Altgeld Book (1975/76)
- [Ru] Rudin, W.: L^p-isometries and equimeasurability. Indiana Univ. Math. J. 25, 215–228 (1976) Zbl 0326.46011 MR 0410355
- [ST1] Saksman, E., Tylli, H.-O.: Weak compactness of multiplication operators on spaces of bounded linear operators. Math. Scand. 70, 91–111 (1992) Zbl 0760.47019 MR 1174205
- [ST2] Saksman, E., Tylli, H.-O.: Multiplications and elementary operators in the Banach space setting. In: Methods in Banach Space Theory (Caceres, 2004), J. F. M. Castillo and W. B. Johnson (eds.), London Math. Soc. Lecture Note Ser. 337, Cambridge Univ. Press, 253–292 (2006) Zbl 1133.47029 MR 2326390
- [We] Weis, L.: On perturbations of Fredholm operators in $L_p(\mu)$ -spaces. Proc. Amer. Math. Soc. **67**, 287–292 (1977) Zbl 0377.46016 MR 0467377
- [Wo] Wojtaszczyk, P.: Banach Spaces for Analysts. Cambridge Stud. Adv. Math. 25, Cambridge Univ. Press, Cambridge (1991) Zbl 0724.46012 MR 1144277