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Abstract. A classification of weakly compact multiplication operators on L(Lp), I < p < 00, is
given. This answers a question raised by Saksman and Tylli in 1992. The classification involves the
concept of £j-strictly singular operators, and we also investigate the structure of general £)-strictly
singular operators on L. The main result is that if an operator 7 on Lp, I < p < 2, is £p-strictly
singular and T|x is an isomorphism for some subspace X of Lj, then X embeds into L, for all
r < 2, but X need not be isomorphic to a Hilbert space.

Itis also shown that if T is convolution by a biased coin on L, of the Cantor group, 1 < p < 2,
and 7|y is an isomorphism for some reflexive subspace X of L, then X is isomorphic to a Hilbert
space. The case p = 1 answers a question asked by Rosenthal in 1976.

Keywords. Elementary operators, multiplication operators, strictly singular operators, L, spaces,
biased coin

1. Introduction

Given (always bounded, linear) operators A, B on a Banach space X, define L4, Rp
on L(X) (the space of bounded linear operators on X) by L4T = AT, RpT = TB.
Operators of the form L 4 Rp on L(X) are called multiplication operators. The beginning
point of this paper is a problem raised in 1992 by E. Saksman and H.-O. Tylli [ST1] (see
also [ST2, Problem 2.8]):

Characterize the multiplication operators on L(L,), 1 < p # 2 < oo, which are
weakly compact.

Here L is L, (0, 1) or, equivalently, L, () for any purely non-atomic separable prob-
ability u.

In Theorem 1| we answer the Saksman—Tylli question. The characterization is rather
simple but gives rise to questions about operators on L, some of which were asked by
Tylli. First we set some terminology. Given an operator 7 : X — Y and a Banach
space Z, say that T is Z-strictly singular provided there is no subspace Zy of X which
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is isomorphic to Z for which 7|z, is an isomorphism. An operator S : Z — W factors
through an operator T : X — Y provided there are operators A : Z — X and B :
Y — W sothat S = BT A. If S factors through the identity operator on X, we say that S
factors through X .

If T is an operatoron L, 1 < p < oo, then T is £,-strictly singular (respectively, £>-
strictly singular) if and only if 7, (respectively, /¢,) does not factor through 7'. This is true
because every subspace of L, which is isomorphic to £, (respectively, £2) has a subspace
which is still isomorphic to £, (respectively, £2) and is complemented in L. Actually, a
stronger fact is true: if {x,}7° | is a sequence in L, which is equivalent to the unit vector
basis for either £, or £, then {x,}>°, has a subsequence which spans a complemented
subspace of L. For p > 2, an even stronger theorem was proved by Kadec—Pefczyfiski
[KP]. When 1 < p < 2 and {x,l}zi | is a sequence in L, which is equivalent to the unit
vector basis for £, one takes {y,}°, in L, (where p’ = p/(p — 1) is the conjugate
index to p) which are uniformly bounded and biorthogonal to {x,}° ,. By passing to a
subsequence which is weakly convergent and subtracting the limit from each y,, one may
assume that y, — 0 weakly and hence, by the Kadec—Pelczyrski dichotomy [KP], has a
subsequence that is equivalent to the unit vector basis of ¢> (since it is clearly impossible
that {y,};2 | has a subsequence equivalent to the unit vector basis of £,). This implies
that the corresponding subsequence of {x,}7° , spans a complemented subspace of L.
(Petczyniski showed this argument, or something similar, to one of the authors many years
ago, and a closely related result was proved in [PR].) Finally, when 1 < p < 2 and
{xn},2 is a sequence in L, which is equivalent to the unit vector basis for £,, see the
comments after the statement of Lemmal[Tl

Notice that the comments in the preceding paragraph imply that an operator on L,
1 < p < 00, is £,-strictly singular (respectively, £>-strictly singular) if and only if T*
is £,-strictly singular (respectively, £;-strictly singular). Better known is that an operator
onL,, 1 < p < 00, is strictly singular if it is both £,-strictly singular and £;-strictly
singular (and hence T is strictly singular if and only if T* is strictly singular). For p > 2
this is immediate from [KP], and Lutz Weis [Wel] proved the case p < 2.

Although Saksman and Tylli did not know a complete characterization of the weakly
compact multiplication operators on L(L), they realized that a classification must in-
volve £,,- and £>-strictly singular operators on L. This led Tylli to ask us about possible
classifications of the £,,- and £;-strictly singular operators on L. The £; case is known. It
is enough to consider the case 2 < p < 00.If T is an operatoron L,,2 < p < oo, and T
is £»-strictly singular, then it is an easy consequence of the Kadec—Petczynski dichotomy
that I, »T is compact, where I, , is the identity mapping from L, into L,. But then by
[Jol, T factors through £,. Tylli then asked whether the following conjecture is true:

Tylli Conjecture. If T is an £,-strictly singular operator on L,, 1 < p < oo, then T is
in the closure (in the operator norm) of the operators on L, that factor through £;. (It is
clear that the closure is needed because not all compact operators on L, p # 2, factor
through ¢5.)

We then formulated a weaker conjecture:
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Weak Tylli Conjecture. If T is an £,-strictly singular operatoron L, 1 < p < oo, and
J : L, — £ is an isometric embedding, then JT is in the closure of the operators from
L, into £ that factor through £5.

It is of course evident that an operator on L, p # 2, that satisfies the conclusion of
the Weak Tylli Conjecture must be £,-strictly singular. There is a slight subtlety in these
conjectures: while the Tylli Conjecture for p is equivalent to the Tylli Conjecture for p’,
it is not at all clear and is even false that the Weak Tylli Conjecture for p is equivalent to
the Weak Tylli Conjecture for p’. In fact, we observe in Lemma [2| (it is simple) that for
p > 2 the Weak Tylli Conjecture is true, while the example in Section [4] shows that the
Tylli Conjecture is false for all p # 2 and the Weak Tylli Conjecture is false for p < 2.

There are however some interesting consequences of the Weak Tylli Conjecture that
are true when p < 2. In Theorem E] we prove that if T is an £,-strictly singular operator
onLy, 1 < p <2, thenT is ¢, -strictly singular for all p < r < 2. In view of theorems
of Aldous [Al] (see also [KM]) and Rosenthal [Ro3], this proves that if such a T is an
isomorphism on a subspace Z of L, then Z embeds into L, for all ¥ < 2. The Weak Tylli
Conjecture would imply that Z is isomorphic to £>, but the example in Section [4] shows
that this need not be true. When we discovered Theorem ] we thought its proof bizarre
and assumed that a more straightforward argument would yield a stronger theorem. The
example suggests that in fact the proof may be “natural”.

In Section E] we discuss convolution by a biased coin on L, of the Cantor group,
1 < p < 2. We prove that if 7]y is an isomorphism for some reflexive subspace X of
L,,1 < p < 2,then X is isomorphic to a Hilbert space. This answers an old question of
H. P. Rosenthal [Ro4].

The standard Banach space theory terminology and background we use can be found
in [LCT].

2. Weakly compact multiplication operators on L(L,)

We use freely the result [ST2, Proposition 2.5] that if A, B are in L(X) where X is a
reflexive Banach space with the approximation property, then the multiplication operator
LasRp on L(X) is weakly compact if and only if for every T in L(X), the operator
AT B is compact. For completeness, in Section [6] we give another proof of this under
the weaker assumption that X is reflexive and has the compact approximation property.
This theorem implies that for such an X, L4 Rp is weakly compact on L(X) if and only
if LpxRp+ is a weakly compact operator on L(X™*). Consequently, to classify weakly
compact multiplication operators on L(L,), 1 < p < oo, it is enough to consider the
case p > 2. For p < r we denote the identity operator from £, into £, by i, ,. It is
immediate from [KP] that an operator T on L, 2 < p < 00, is compact if and only if
i2,p does not factor through T'.

Theorem 1. Let 2 < p < oo and let A, B be bounded linear operators on L. Then
the multiplication operator Lo Rp on L(L)) is weakly compact if and only if one of the
following (mutually exclusive) conditions hold:
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(a) ia,p does not factor through A (i.e., A is compact).

(b) iz, p factors through A but iy, , does not factor through A (i.e., A is £,-strictly singu-
lar) and i2 3 does not factor through B (i.e., B is €2-strictly singular).

(c) ip,p factors through A but iz , does not factor through B (i.e., B is compact).

Proof. The proof is a straightforward application of the Kadec—Petczyniski dichotomy
principle [KP]: if {x,}7° , is a semi-normalized (i.e., bounded and bounded away from
zero) weakly null sequence in L,, 2 < p < oo, then there is a subsequence which is
equivalent to either the unit vector basis of £,, or of £, and spans a complemented subspace
of L. Notice that this immediately implies the “i.e.’s” in the statement of the theorem so
that (a) and (c) imply that L 4 Rp is weakly compact. Now assume that (b) holds and let
T bein L(Lp).If AT B is not compact, then there is a normalized weakly null sequence
{xn},2, in L), so that AT Bx, is bounded away from zero. By passing to a subsequence,
we may assume that {x, }7° | is equivalent to either the unit vector basis of £, or of £5.
If {x,},2, is equivalent to the unit vector basis of £, then since T Bx; is bounded away
from zero, we can assume by passing to another subsequence that also T Bx,, is equivalent
to the unit vector basis of £, and similarly for AT Bx,, which contradicts the assumption
that A is £,,-strictly singular. On the other hand, if {x,}2 | is equivalent to the unit vector
basis of ¢», then since B is ¢>-strictly singular we can assume by passing to a subsequence
that Bx, is equivalent to the unit vector basis of £, and continue as in the previous case
to get a contradiction.

Now suppose that (a), (b), and (c) are all false. If i, ,, factors through A and i> , factors
through B then there is sequence {x,,} " ; equivalent to the unit vector basis of £, or of £,
so that Bx,, is equivalent to the unit vector basis of £, or of £,, (of course, only three of the
four cases are possible) and Bx, spans a complemented subspace of L. Moreover, there
is a sequence {y,}7° | in L, so that both y, and Ay, are equivalent to the unit vector basis
of £,,. Since Bx, spans a complemented subspace of L, the mapping Bx, > y, extends
to a bounded linear operator T on L, and AT B is not compact. Finally, suppose that i ,
factors through A but i, , does not factor through A and i; > factors through B. Then
there is a sequence {x;, }zozl so that x, and Bx, are both equivalent to the unit vector basis
of £, and Bx, spans a complemented subspace of L. There is also a sequence {y,};2
equivalent to the unit vector basis of £; so that Ay, is equivalent to the unit vector basis
of £, or of £,. The mapping Bx, +—> y, extends to a bounded linear operator 7 on L,
and AT B is not compact. o

It is perhaps worthwhile to restate Theorem [I] in a way that the cases where L4 Rp is
weakly compact are not mutually exclusive.

Theorem 2. Let2 < p < oo and let A, B be bounded linear operators on L. Then
the multiplication operator LoRp on L(L)) is weakly compact if and only if one of the
following conditions hold:

(a) A is compact.
(b) A is £p-strictly singular and B is £-strictly singular.
(c) B is compact.
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3. {,-strictly singular operators on L,

‘We recall the well known

Lemma 1. Let W be a bounded convex symmetric subset of L, 1 < p # 2 < o0. The
following are equivalent:

(1) No sequence in W equivalent to the unit vector basis for £, spans a complemented
subspace of L.

(2) For every C there exists n so that no length n sequence in W is C-equivalent to the
unit vector basis of £},

(3) Foreach e > 0O there is M, so that W C eBr, + M:BL.

(4) |WI|P is uniformly integrable, i.e., lim; o SUpy ey SUp, (gy<; I1Ex|lp, = 0.

When p = 1, the assumptions that W is convex and symmetric are not needed, and the
conditions in Lemma [I] are equivalent to the non-weak-compactness of the weak closure
of W. This case is essentially proved in [KP] and proofs can also be found in books; see,
e.g., [Wo, Theorem 3.C.12]. (Condition (3) does not appear in [Wol], but it is easy to check
the equivalence of (3) and (4). Also, in the proof in [Wol Theorem 3.C.12] that not (4)
implies not (1), Wojtaszczyk only constructs a basic sequence in W that is equivalent to
the unit vector basis for £1; however, it is clear that the constructed basic sequence spans
a complemented subspace.)

For p > 2, Lemma [I] and stronger versions of condition (1) can be deduced from
[KP]. For 1 < p < 2, one needs to modify slightly the proof in [Wol for the case p = 1.
The only essential modification comes in the proof that not (4) implies not (1), and this
is where it is needed that W is convex and symmetric. Just as in [Wol, one shows that
not (4) implies that there is a sequence {x,}7° ; in W and a sequence {E,}7° | of disjoint
measurable sets so that inf || 1g,x,|l, > 0. By passing to a subsequence, we can assume
that {x,,}°° ; converges weakly to, say, x. Suppose first that x = 0. Then by passing to
a further subsequence, we may assume that {x,},2  is a small perturbation of a block
basis of the Haar basis for L, and hence is an unconditionally basic sequence. Since
L, has type p, this implies that there is a constant C so that for all sequences {a,},_
of scalars, || Y apxsll, < CQ_ la,|P)!/P. Let P be the norm one projection from L,
onto the closed linear span Y of the disjoint sequence {1g,x,},2 ;. Then Px, is weakly
null in a space isometric to £,, and || Px;,||, is bounded away from zero, so there is a
subsequence {Px, )}, Which is equivalent to the unit vector basis for £, and whose
closed span is the range of a projection Q from Y. The projection Q P from L, onto the
the closed span of {Pxn(k)},fi | Maps X, (k) 1o Pxp(k), and because of the upper p estimate
on {x, )}z ;» maps the closed span of {x,x)}7>; isomorphically onto the closed span of
{PXn) )z ;- This implies that {x, )}z, is equivalent to the unit vector basis for £, and
spans a complemented subspace. Suppose now that the weak limit x of {x,}7°  is not
zero. Choose a subsequence {xn(k)},fil so that inf || 1En(2k+1) (Xnk) — Xn2k+1)lp > O and
replace {x,,}0° | with {(x,2k) — Xn2k+1))/2};2, in the argument above.

Notice that the argument outlined above gives that if {x,}7° , is a sequence in L,
1 < p # 2 < 00, which is equivalent to the unit vector basis of £,, then there is a
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subsequence {y,}7° ; whose closed linear span in L, is complemented. This is how one

proves that the identity on £, factors through any operator on L, which is not £,-strictly
singular.
The Weak Tylli Conjecture for p > 2 is an easy consequence of the following lemma.

Lemma 2. Let T be an operator from an L space V into L,, 1 < p < 2, so that
W := T By satisfies condition (1) in Lemmal[l] Then for each ¢ > 0 there is an operator
§:V = Lysothat |[T — L ,S| < e.

Proof. Let ¢ > 0. By condition (3) in Lemmal(I] for each norm one vector x in V there
is a vector Ux in Ly with [[Ux|2 < |[Ux|lec < M, and ||Tx — Ux||, < €. By the
definition of £ space, we can write V as a directed union |, E of finite-dimensional
spaces that are uniformly isomorphic to ¢*, ny = dim Eg, and let (x¥)!*, be norm
one vectors in E, which are, say, A-equivalent to the unit vector basis for E']'“ with A
independent of a. Let U, be the linear extension to E, of the mapping x7 — Ux},
considered as an operator into L. Then ||Tjg, — 2, pUqyll < Ae and ||Uyll < AM,.
A standard Lindenstrauss compactness argument produces an operator S : V. — L3 so
that ||S|| < AM; and [T — I, S|| < Ae. Indeed, extend Uy, to all of V by letting Uyx = 0
if x ¢ E,. The net Ty, has a subnet Sg so that for each x in V, Sgx converges weakly

in Lj; call the limit Sx. It is easy to check that S has the properties claimed. O

Theorem 3. Let T be an £,-strictly singular operator on Ly, 2 < p < 0o, and let J
be an isometric embedding of L, into an injective Z. Then for each ¢ > 0 there is an
operator S : L, — Z so that § factors through £, and ||JT — S|| < e.

Proof. Lemma[2] gives the conclusion when J is the adjoint of a quotient mapping from
£y or Ly onto L. The general case then follows from the injectivity of Z. O

The next proposition, when souped up via “abstract nonsense” and known results, gives
our main result about £,-strictly singular operators on L. Note that it shows that an £,-
strictly singular operator on L,, 1 < p < 2, cannot be the identity on the span of a
sequence of r-stable independent random variables for any p < r < 2. We do not know
another way of proving even this special case of our main result.

Proposition 1. Let T be an £,-strictly singular operator on L,, 1 < p < 2. If X isa
subspace of L, and T\x = alx with a # 0, then X embeds into Ly for all s < 2.

Proof. By making a change of density, we can by [JJ]] assume that T is also a bounded
linear operator on L3, so assume, without loss of generality, that |T||, V [T ]2 = 1, so
that, in particular, ¢ < 1. Lemma[l]gives for each € > 0 a constant M, so that

TBLp CGBLP+M€BL2' (1)

Indeed, otherwise condition (1) in Lemma [I| gives a bounded sequence {x,}7° , in
L, so that {Tx,}7°  is equivalent to the unit vector basis of £,. By passing to a subse-

quence of differences of {x,,}flil, we can assume, without loss of generality, that {x, };’lozl
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is a small perturbation of a block basis of the Haar basis for L, and hence is an un-
conditionally basic sequence. Since L, has type p, the sequence {x,};° , has an upper
p estimate, which means that there is a constant C so that for all sequences {a,},> | of
scalars, || Y- anx, || < CIIO |aa|P)!/P||. Since {Tx, }2 is equivalent to the unit vector
basis of £, {x,}7, also has a lower p estimate and hence {x,}> , is equivalent to the
unit vector basis of £,,. This contradicts the £,-strict singularity of 7.

Iterating this we get, for everyn and 0 < € < 1/2,

a"Byx C TnBLp C enBLp +2M€BL2

or, setting A 1= 1/a,
Bx C AnenBLp + ZAHMGBLT

For f aunit vector in X write f = f,,+g, with || fu[l2 < 2A" M, and ||g. |, < (A€)™.
Then f,+1 — fn = g — &n+1, and since evidently f;, can be chosen to be of the form
(f vV —ky) A k, (with appropriate interpretation when the set [ f;, = =k, ] has positive
measure), the choice of f;, g, can be made so that

I fasr = fall2 < I fugrlla < 2M A" gy — guillp < llgallp < (A€)".

(Alternatively, to avoid thinking, just take any f = f, + g, so that || f,]» < 2A" M,
and ||g.|l, < (Ae)". Each left side of the two displayed inequalities is less than twice the
corresponding right side as long as Ae < 1.)

Forp <s <2writel/s =6/2+ (1 —60)/p. Then

| fat1 = fulls < N fus1 — fnllgllgn — gn+1||11;_0 < (2M6A)6(A61_9)”,

which is summable if €!=¢ < 1/A. But | f — full, = 050 f = fi + X o0 fat1 — f
in L, and hence also in Ly if e!=% < 1/A. So for some constant Cy we conclude for all
feXthat|fll, <1 flls < Csll fllp- o

We can now prove our main theorem. For background on ultrapowers of Banach spaces,
see [DJT] Chapter 8].

Theorem 4. Let T be an £,-strictly singular operator on L, 1 < p < 2. If X is a
subspace of L, and T\x is an isomorphism, then X embeds into L, for all v < 2.

Proof. In view of Rosenthal’s theorem [Ro3], it is enough to prove that X has type s
for all s < 2. By the Krivine—Maurey—Pisier theorem, [K1] and [MP] (or, alternatively,
Aldous’ theorem, [Al] or [KMI]), we only need to check that for p < s < 2, X does
not contain almost isometric copies of £ for all n. (To apply the Krivine-Maurey—Pisier
theorem we use that the second condition in Lemma [I] applied to the unit ball of X,
implies that X has type s for some p < s < 2.) So suppose that for some p < s < 2,
X contains almost isometric copies of £} for all n. By applying Krivine’s theorem [Kr]
we get for each n a sequence (f")!_, of unit vectors in X which is 1 + e-equivalent to
the unit vector basis for £; and, for some constant C (which we can take independently
of n), the sequence (CT f")!_, is also 1 + e-equivalent to the unit vector basis for £;. By
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replacing 7 by CT, we might as well assume that C = 1. Now consider an ultrapower
Ty4, where U is a free ultrafilter on the natural numbers. The domain and codomain of 734
is the (abstract) L, space (L), and Ty is defined by T4 (f1, f2,...) = (Tf1,Tf2,...)
for any (equivalence class of a) bounded sequence (f1, f2, ...). Itis evident that 77, is an
isometry on the ultraproduct of span (f;")7_;,n = 1,2, ..., and hence Ty is an isometry
on a subspace of (Lp)y; which is isometric to £;. Since condition (2) in Lemma || is
obviously preserved when taking an ultrapower of a set, we see that Ty, is £,-strictly
singular. Finally, by restricting 77, to a suitable subspace, we get an £,-strictly singular
operator S on L, and a subspace Y of L, so that Y is isometric to £; and S}y is an
isometry. By restricting the domain of S, we can assume that Y has full support and the
functions in Y generate the Borel sets. It then follows from the Plotkin—Rudin theorem
(PI], [Ru] (see [KK. Theorem 1]) that S|y extends to an isometry W from L, into L.
Since any isometric copy of L, in L, is norm one complemented (see [Lal §17]), there
is a norm one operator V : L, — L, sothat VW = Ip,. Then VS)y = Iy and VS is
£,-strictly singular, which contradicts Proposition E} O

Remark 1. The ¢;-strictly singular operators on L also form an interesting class. They
are the weakly compact operators on L. In terms of factorization, they are just the closure
in the operator norm of the integral operators on L (see, e.g., the proof of Lemma [2)).

4. The example

Rosenthal [Roll] proved that if {x,}°°, is a sequence of three-valued, symmetric, inde-
pendent random variables, then for all I < p < oo, the closed span in L, of {x,}>, is
complemented by means of the orthogonal projection P, and || P||, depends only on p,
not on the specific sequence {x,},° ;. Moreover, he showed that if p > 2, then for any
sequence {x,}°° ; of symmetric, independent random variables in L, || > x, |, is equiv-
alent (with constant depending only on p) to (}_ ||x,,||1[,’)1/1’ v (O ||xn||%)1/2. Thus if
{xn}52; is normalized in Ly, p > 2, and wy := [|x, |2, then || Y anxsllp is equivalent to
Han )32 lp.w == lan IMYYP v (3 |an|*w?) /2. The completion of the finitely nonzero
sequences of scalars under the norm || -|| . is called X, . It follows that if w = {w,};2
is any sequence of numbers in [0, 1]. Then X, ,, is isomorphic to a complemented sub-
space of L. Suppose now that w = {w,}7>, and v = {v,}7°, are two such sequences
of weights and v, > w,. Then the diagonal operator D from X, ,, to X, ,, that sends the
nth unit vector basis vector e, to (w,/vy,)e, is contractive, and it is more or less obvious
that D is £,-strictly singular if w, /v, — 0 asn — oo. Since X, , and X, ,, are isomor-
phic to complemented subspaces of L, the adjoint operator D* is £,/-strictly singular
and (identifying X}",w and X;’U with subspaces of L) extends to an £,,-strictly singular
operator on L. Our goal in this section is to produce weights w and v so that D* is an
isomorphism on a subspace of X7 ,, which is not isomorphic to a Hilbert space.
For all 0 < r < 2 there is a positive constant ¢, such that

, °°1—costxd
|t| = Cr 0 T X
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for all + € R. It follows that for any closed interval [a, b] C (0, co0) and for all ¢ > 0

[
there are 0 < x; < -+ < X,41 such that max;<;<, ‘ ’+,1+1 £ ‘ < egand
- = X
J

n
Xj41 — Xj
J+l J
oy (U —costx) —lt]"| <& )
=t %

for all ¢ with |z] € [a, b].
Let0 <g <r <2anddefinev; anda;, j =1,...,n,by

2q/Q2—q) _  Xj+l —Xj 4aj o
Yj T - N
J v

Let Y;, j = 1,..., n, be independent, symmetric, three-valued random variables such
that |Y;| = v]-iz/(ziq)lgi with Prob(B;) = qu/(zfq), so that in particular ||Y;|l, = 1 and
vj = ||¥jll¢/ 1Y} 2. Then the characteristic function of ¥; is
oy, (1) = 1— 211/(2 q)+v2q/(2 q) cos(tv —2/(2— q)) v}?q/@—q)(l cos(tv =2/(2— q)))
and

Oy ay, (1) = H(l v 7D (1 — cos(rajv; VP

= H( ,%(1 —cos(txj))). 3

]

/+1 Xj

To evaluate this product we use the estimates on to deduce that, for each j

J

log<1 — crw(l — cos(txj))) + cru(l — cos(tx;))
X X

r+1 r+l1
j j
1
< Csczu(l —cos(tx;i))
Xt /
j

for some absolute C < oo. Then, by (IZ[),

n
Xitl — Xj
(1—c, o= ](I—COS(IXj))>+cr %(1%05(:)@))‘

Y Jj=1 J

< Cec (e +b").
Using (2) again we get
Zlog( — crx]H—l(l - cos(txj))) + |t

J

<(C+De(e+b")
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(assuming as we may that b > 1), and from (3)) we get

¢ v, () = (14 O(e)) exp(—|t]")

for all |t| € [a, b], where the function hiding under the O notation depends on r and b
but on nothing else. It follows that, given any 1 > 0, one can find a, b and ¢ such that for
the corresponding {a;, Y;} there is a symmetric r-stable Y (with characteristic function

e~ ") satisfying
n
Y — ajY; H <n.
S,

This follows from classical translation of various convergence notions; see e.g. [Ro2|
p- 154].
Letnow 0 < § < 1. Putw; = év;, j =1,...,n,andlet Z;, j = 1,...,n, be

independent, symmetric, three-valued random variables such that |Z;| = wj_2/ (2_q)1cj

. 2qg/(2— . .
with Prob(C;) = wj‘f/( 9 5o that in particular || Z;ll, = 1 and w; = [|Zjll4/I1Z;ll2. In
a similar manner to the argument above we see that

n
2q/(2— —2/(2—
(ﬂz(sajzj (1) = 1_[(] _ qu/( q)(l _ cos(t8ajwj /( q))))
Jj=1

n
= 1_[(1 - 32q/(27q)vj2q/(2—q)(1 — cos(t5~1/ @ Dg vj—Z/(Z—q))))
j=1

= (1+ 0(e)) exp(—81E7"/ =D 1|7

for all |7| € [69/C~Dq, §9/2=Dp], where the O now depends also on §.

Assuming §42-n/C=q) - 1/2 and for a choice of a, b and ¢ depending on §, r, g
and n we find that there is a symmetric r-stable random variable Z (with characteristic
function e~ 1tI"y such that

n
Z — éSa'Z-H <n.
)

Note that the ratio between the L, norms of ¥ and Z is bounded away from zero and infin-
ity by universal constants and each of these norms is also universally bounded away from
zero. Consequently, if ¢ is small enough the ratio between the L, norms of }7_; a;¥;
and Z;'zl da; Z; is bounded away from zero and infinity by universal constants.

Let now §; be any sequence decreasing to zero and r; any sequence such that g <r; 12
and 874"/ (=4) - 1/2. Then for any sequence &; | 0 we can find two sequences of
symmetric, independent, three-valued random variables {Y;} and {W;}, all normalized
in Ly, with the following additional properties:

e Put v; = [|¥]ll4/1Y;ll2 and wj = | Zjll4/lZ;ll2. Then there are disjoint finite subsets
of the integers 0;, i = 1, 2, ..., such that w; = §;v; for j € o;.
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e There are independent random variables {)_’i} and {Z,-} with ¥; and Z; r;-stable with
bounded, from zero and infinity, ratio of L, norms and there are coefficients {a;} such

that
”Y,'-ZdejH <e¢g and HZ,'-Z(S,‘Q,’ZI'H < &;.
jeoi 1 jeai a

From [Roll] we know that the spans of {Y;} and {Z;} are complemented in L, 1 <
g < 2, and the dual spaces are naturally isomorphic to X, (,;} and X, (u;) respectively;
both the isomorphism constants and the complementation constants depend only on g.
Here p =¢/(q — 1) and

e, = max| (L legr”) " (L) ).

Under this duality the adjoint D* to the operator D that sends Y; to §; Z; for j € o; is
formally the same diagonal operator between X, (,,;} and X, (y;1. The relation w; = §;v;
for j € o; easily implies that this is a bounded operator; §; — 0 implies that this op-
erator is £ -strictly singular. If &; — 0 fast enough, D* preserves a copy of span{ Y;}.
Finally, if r; tends to 2 not too fast this span is not isomorphic to a Hilbert space. In-
deed, let 1 < s; 1 2 be arbitrary and let {n; }]?’i] be a sequence of positive integers with

Usi=1/2 _ . .
a2, say. For 1 < k < Nj, PUt Iy 4..pn;_+k = ;. Then the span

J
et .. . . . . j .
of {Y,~}:.in1 +~-’~1J/rn,-,1 41 1s isomorphic, with constant independent of j, to K?{’ and this last

space is of distance at least j from a Euclidean space.

It follows that if J : L; — £ is an isometric embedding, then J D* cannot be
arbitrarily approximated by an operator which factors through a Hilbert space, and hence
the Weak Tylli Conjecture is false in the range 1 < g < 2.

5. Convolution by a biased coin

In this section we regard L), as L,(A), where A = {1, 13N is the Cantor group and the
measure is the Haar measure (1 on Ajie., u = ]_[f,o=1 Un, where p, (—1) = u, (1) = 1/2.
For 0 < ¢ < 1, let v, be the e-biased coin tossing measure, i.e., vy = ]_[flozl Ve n, Where
Ven(l) = (1 4+¢€)/2 and ve ,(—1) = (1 — €)/2. Let T be convolution by v, so that for a
w-integrable function f on A, (T f)(x) = (f *ve)(x) = fA f(xy) dve(y). The operator
T, is a contraction on L, forall 1 < p < oo. Let us recall how T; acts on the characters
on A. Fort = {t,,};'li] € A, let r,(t) = t,. The characters on A are finite products of
these Rademacher functions r, (where the void product is the constant one function). For
A afinite subset of N, set wa =[] r, and let W,, be the linear span of {w,4 : |A| = n}.
Then Trw4 = el 4wy,

We are interested in studying 7 on L,, 1 < p < 2. The background we mention
below is all contained in Bonami’s paper [Bo] (or see [Ro4]).On L, 1 < p < 2, Ty is £-
strictly singular; in fact, 7, even maps L into L, for some r = r(p, &) > p. Indeed, by
interpolation it is sufficient to check that 7, maps L into L, for some s = s(¢) < 2. But
there is a constant Cy which tends to 1 as s 1 2 so that for all f € W, || fll2 < CI Il flls

neA
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and the orthogonal projection P, onto (the closure of) W, satisfies || P,||, < C;. From
this it is easy to check that if SCSZ < 1, then 7, maps L into L. We remark in passing that
Bonami [Bo] found for each p (including p > 2) and ¢ the largest value of r = r(p, ¢€)
such that 7, maps L, into L,.

Thus TheoremE]shows that if X is a subspace of L, 1 < p < 2, and T; (considered
as an operator from L, to L) is an isomorphism on X, then X embeds into Ly for all
s < 2. Since, as we mentioned above, Ty maps L into L, for some s < 2, it then follows
from an argument in [Ro4f] that X must be isomorphic to a Hilbert space. (Actually, as we
show after the proof, Lemma[3]is that we can prove Theorem 5| without using Theorem[4])
Since [Ro4] is not generally available, we repeat Rosenthal’s argument in Lemma([3|below.

Now T is not £1-strictly singular on L. Nevertheless, we still find that if X is a reflex-
ive subspace of L1, and T, (considered as an operator from L to L) is an isomorphism
on X, then X is isomorphic to a Hilbert space. Indeed, Rosenthal showed (see Lemma [3)
that then there is another subspace X of L1 which is isomorphic to X so that X is con-
tained in L, for some 1 < p < 2, the L, and L norms are equivalent on Xo, and T is
an isomorphism on X. This implies that as an operator on L, T; is an isomorphism on
Xo and hence Xy is isomorphic to a Hilbert space. (To apply Lemma|[3] use the fact [Ro3]]
that if X is a relexive subspace of L1, then X embeds into L, for some 1 < p < 2.)

We summarize this discussion in the first sentence of Theorem [5] The case p = 1
solves Problem B from Rosenthal’s 1976 paper [Ro4]].

Theorem 5. Let 1 < p < 2, let 0 < ¢ < 1, and let T, be considered as an operator
on L. If X is a reflexive subspace of L, and the restriction of T, to X is an isomorphism,
then X is isomorphic to a Hilbert space. Moreover, if p > 1, then X is complemented
in L,.

p

We now prove Rosenthal’s lemma [Ro4| proof of Theorem 5] and defer the proof of the
“moreover” statement in Theorem [5]until after the proof of the lemma.

Lemma 3. Suppose that T is an operatoron L,, 1 < p <r < s < 2, X is a subspace
of L, which is isomorphic to a subspace of L, and T\x is an isomorphism. Then there is
another subspace Xq of L, which is isomorphic to X so that X is contained in L,, the
L, and L, norms are equivalent on Xo, and T is an isomorphism on Xj.

Proof. We want to find a measurable set E so that

(1) Xop:={1gx : x € X} isisomorphic to X,
(2) XoC Ly,
(3) T\x, is an isomorphism.

(We did not say that || - || , and || - || - are equivalent on X since that follows formally from
the closed graph theorem. The isomorphism X — X guaranteed by (a) is of course the
mapping x — 1gx.)

Assume, without loss of generality, that ||T|| = 1. Takea > Osothat |[Tx||, > allx|,
for all x in X. Since £, does not embed into Ly we see from (4) in Lemmamthat there is
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n > 0 so that if £ has measure larger than 1 — n, then |[1<gx||, < (a/2)|x||, for all x
in X. Obviously (1) and (3) are satisfied for any such E. It is proved in [Ro3|| that there is
a strictly positive g with ||g||; = 1 so that x/g is in L, for all x in X. Now simply choose
t < oo sothat E := [g < t] has measure at least 1 — n; then E satisfies (1)-(3). O

Next we remark how to avoid using Theorem[4]in proving Theorem[5] Suppose that T; is
an isomorphism on a reflexive subspace X of L,, 1 < p < 2. Let s be the supremum of
those r < 2 such that X is isomorphic to a subspace of L, so 1 < s < 2. Itis sufficient to
show thats = 2. Butif s < 2, the interpolation formula implies that if » < s is sufficiently
close to s, then T, maps L, into L, for some ¢ > s and hence, by LemmaE], X embeds
into L;.

Finally, we prove the “moreover” statement in Theorem [5] We now know that X is
isomorphic to a Hilbert space. In the proof of Lemma3] instead of using Rosenthal’s result
from [Ro3]], use Grothendieck’s theorem [DJT, Theorem 3.5], which implies that there is
a strictly positive g with ||g||; = 1 sothat x/g isin L, for all x in X. Choosing E the same
way as in the proof of Lemma 3| with T := T, we see that (1)—(3) are true with r = 2.
Now the L; and L, norms are equivalent on both X¢ and on 7, X¢. But it is clear that the
only way that T, can be an isomorphism on a subspace X of L; is for the orthogonal
projection P, onto the closed span of Wi, 0 < k < n, to be an isomorphism on X for
some finite . But then also in the L, norm the restriction of P, to Xy is an isomorphism,
because the L, norm and the L, norm are equivalent on the span of Wy, 0 < k < n, and
Py is bounded on L, (since p > 1). It follows that the operator S := P, o 1g on L, maps
X/ isomorphically onto a complemented subspace of L, which implies that X is also
complemented in L.

Here is the problem that started us thinking about £,-strictly singular operators:

Problem 1. Letl < p <2and0 < & < 1.On L,(A), does T satisfy the conclusion of
the Tylli Conjecture?

After we submitted this paper, G. Pisier [Pi] answered Problem in the affirmative.
Although the example in Section[d]shows that the Tylli Conjecture is false, something
close to it may be true:

Problem 2. Let 1 < p < r < 2. Is every £,-strictly singular operator on L, in the
closure of the operators on L, that factor through L, ?

6. Appendix

In this appendix we prove a theorem that is essentially due to Saksman and Tylli. The
only novelty is that we assume the compact approximation property rather than the ap-
proximation property.

Theorem 6. Let X be a reflexive Banach space and let A, B be in L(X). Then

(a) If AT B is a compact operator on X for every T in L(X), then Lo Rp is a weakly
compact operator on L(X).
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(b) If X has the compact approximation property and L o Rp is a weakly compact opera-
tor on L(X), then AT B is a compact operator on X for every T in L(X).

Proof. To prove (a), recall [Kal|] that for a reflexive space X, on bounded subsets of K (X)
the weak topology is the same as the weak operator topology (the operator 7' — fr €
C((Bx, weak) x (Bxx, weak)), where fr(x,x™) := (x*, Tx), is an isometric isomor-
phism from K (X) into a space of continuous functions on a compact Hausdorff space).
Now if (Ty) is a bounded net in L (X), then since X is reflexive there is a subnet (which we
still denote by (7)) which converges in the weak operator topology to, say, T € L(X).
Then AT, B converges in the the weak operator topology to AT B. But since all these op-
erators are in K(X), ATy B converges weakly to AT B by Kalton’s theorem. This shows
that L 4 Rp is a weakly compact operator on L(X).

To prove (b), suppose that we have a T € L(X) with AT B not compact. Then there
is a weakly null normalized sequence {x, };’;1 in X and § > 0 so that for all n, | AT Bx, ||
> §. Since a reflexive space with the compact approximation property also has the com-
pact metric approximation property [CJ], there are C, € K(X) with [|C,|| < 1+ 1/n
and C, Bx; = Bux; fori < n. Since the C,, are compact, for each n, |C, Bx,,|| — 0 as
m — 00. Thus A(TC,)Bx; = AT Bx; fori < n and |A(TC,)Bxy| — 0asm — oo.
This implies that no convex combination of {A(7T'C,)B};° , can converge in the norm of
L(X) and hence {A(TC ,,)B},‘;o:1 has no weakly convergent subsequence. This contradicts
the weak compactness of L 4 Rp and completes the proof. O
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