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Abstract. Following Eden and Foias we obtain a matrix version of a generalised Sobolev inequal-
ity in one dimension. This allows us to improve on the known estimates of best constants in Lieb–
Thirring inequalities for the sum of the negative eigenvalues for multidimensional Schrödinger
operators.
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1. Introduction

Let H be a Schrödinger operator in L2(Rd),

H = −1− V. (1)

For a real-valued potential V we consider Lieb–Thirring inequalities for the negative
eigenvalues {λn} of the operator H ,∑

|λn|
γ
≤ Ld,γ

∫
Rd
V+(x)

d/2+γ dx, (2)

where V+ = (|V | + V )/2 is the positive part of V .
Eden and Foias have obtained in [3] a version of a one-dimensional generalised

Sobolev inequality which gives best known estimates for the constants in the inequal-
ity (2) for 1 ≤ γ < 3/2. The aim of this short article is to extend the method from [3] to a
class of matrix-valued potentials. By using ideas from [6] this automatically improves on
the known estimates of best constants in (2) for multidimensional Schrödinger operators.

Lieb–Thirring inequalities for matrix-valued potentials for the value γ = 3/2 were
obtained in [6] and also in [2]. Here we state a result corresponding to γ = 1.
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Theorem 1. Let V ≥ 0 be a HermitianM×M matrix-function defined on R and let {λn}
be all negative eigenvalues of the operator (1). Then

∑
|λn| ≤

2

3
√

3

∫
R

Tr[V (x)3/2] dx. (3)

Remark 1. The constant 2/3
√

3 should be compared with the Lieb–Thirring constant
found in [7] for a class of single eigenvalue potentials and with the constant obtained in
[5] which is twice as large as the semi-classical one,

4

3
√

3π
<

2

3
√

3
< 2×

2
3π
= 2×

1
2π

∫
R
(1− ξ2)+ dξ.

This is about 0.2450 . . . < 0.3849 . . . < 0.4244 . . . .

Remark 2. Note that the values of the best constants for the range 1/2 < γ < 3/2
remain unknown.

Let A(x) = (a1(x), . . . , ad(x)) be a magnetic vector potential with real-valued en-
tries ak ∈ L2

loc(R
d) and let

H(A) = (i∇ +A)2 − V,

where V ≥ 0 is a real-valued function.
Denote the ratio of 2/3

√
3 and the semi-classical constant by

R :=
2

3
√

3
×

(
2

3π

)−1

= 1.8138 . . . .

By using the Aizenman–Lieb argument [1], a “lifting” with respect to dimension [6],
[5], and Theorem 1 we obtain the following result:

Theorem 2. For any γ ≥ 1 and any dimension d ≥ 1, the negative eigenvalues of the
operator H(A) satisfy the inequalities∑

|λn|
γ
≤ Ld,γ

∫
Rd
V (x)d/2+γ dx,

where

Ld,γ ≤ R × L
cl
d,γ = R ×

1
(2π)d

∫
Rd
(1− |ξ |)γ+ dξ.

Remark 3. Theorem 2 allows us to improve on the estimates of best constants in Lieb–
Thirring inequalities for Schrödinger operators with complex-valued potentials recently
obtained in [4].
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2. One-dimensional generalised Sobolev inequality for matrices

Let {φn}Nn=0 be an orthonormal system of vector-functions in L2(R;CM), M ∈ N,

(φn, φm) = (φn, φm)L2(R,CM ) =
M∑
j=1

∫
R
φn(x, j) φm(x, j) dx = δnm,

where δnm is the Kronecker symbol. Let us introduce an M ×M matrix U with entries

uj,k(x, y) =

N∑
n=0

φn(x, j) φn(y, k).

Clearly
U(x, y)∗ = U(y, x). (4)

The fact that the functions φn are orthonormal can be written in a compact form∫
R
U(x, y)U(y, z) dy = U(x, z). (5)

The properties (4) and (5) prove that U(x, y) is the Schwartz kernel of an orthogonal
projection P in L2(R,CM) whose image is the subspace of vector-functions spanned by
{φn}

N
n=1.

Theorem 3. Assume that the vector-functions φn, n = 1, . . . , N, are in the Sobolev class
H 1(R;CM). Then ∫

R
Tr[U(x, x)3] dx ≤

N∑
n=1

M∑
j=1

∫
R
|φ′n(x, j)|

2 dx.

Proof. We have

d

dy
Tr[U(x, y)U(y, x)U(x, x)]

= Tr
[(

d

dy
U(x, y)

)
U(y, x)U(x, x)

]
+ Tr

[
U(x, y)

(
d

dy
U(y, x)

)
U(x, x)

]
. (6)

By integrating (6) and taking absolute values one obtains

1
2

Tr[U(x, z)U(z, x)U(x, x)] ≤
1
2

∫ z

−∞

∣∣∣∣Tr
[(

d

dy
U(x, y)

)
U(y, x)U(x, x)

]
+ Tr

[
U(x, y)

(
d

dy
U(y, x)

)
U(x, x)

]∣∣∣∣ dy
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and

1
2

Tr[U(x, z)U(z, x)U(x, x)] ≤
1
2

∫
∞

z

∣∣∣∣Tr
[(

d

dy
U(x, y)

)
U(y, x)U(x, x)

]
+ Tr

[
U(x, y)

(
d

dy
U(y, x)

)
U(x, x)

]∣∣∣∣ dy.
Taking absolute values and adding the two inequalities yields, for any z ∈ R,

|Tr[U(x, z)U(z, x)U(x, x)]| ≤
1
2

∫
R

∣∣∣∣Tr
[(

d

dy
U(x, y)

)
U(y, x)U(x, x)

]∣∣∣∣ dy
+

1
2

∫
R

∣∣∣∣Tr
[
U(x, y)

(
d

dy
U(y, x)

)
U(x, x)

]∣∣∣∣ dy. (7)

Note that we have reproved the inequality

|f (x)|2 ≤

∫
R
|f (y)f ′(y)| dy

for traces of matrices. By using properties of traces, the Cauchy–Schwarz inequality for
matrix-functions and also properties (4) and (5), we find that for all x ∈ R,

(∫
R

∣∣∣∣Tr
[(

d

dy
U(x, y)

)
U(y, x)U(x, x)

]∣∣∣∣ dy)2

≤

∫
R

Tr
[
d

dy
U(x, y)∗

d

dy
U(x, y)

]
dy

∫
R

Tr[U(x, y)∗U(x, x)2U(x, y)] dy

=

∫
R

Tr
[
d

dy
U(y, x)

d

dy
U(x, y)

]
dy

∫
R

Tr[U(x, x)2U(x, y)U(y, x)] dy

=

∫
R

Tr
[
d

dy
U(x, y)

d

dy
U(y, x)

]
dy Tr[U(x, x)3],

and similarly

(∫
R

∣∣∣∣Tr
[
U(x, y)

d

dy
U(y, x)U(x, x)

]∣∣∣∣ dy)2

≤

∫
R

Tr
[
d

dy
U(x, y)

d

dy
U(y, x)

]
dy Tr[U(x, x)3].

Thus, using this, and setting x = z in (7), we arrive at

|Tr[U(x, x)3]| ≤
∫

R
Tr
[
d

dy
U(x, y)

d

dy
U(y, x)

]
dy.
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Integrating with respect to x we finally obtain∫
R
|Tr[U(x, x)3]| dx ≤

N∑
n,k=1

M∑
i,j=1

∫
R

∫
R
φn(x, i) φ′n(y, j) φ

′

k(y, j) φk(x, i) dx dy

=

N∑
n=1

M∑
j=1

∫
R
|φ′n(x, j)|

2 dx,

which completes the proof.

3. Lieb–Thirring inequalities for Schrödinger operators with matrix-valued
potentials

Let us assume that V ∈ C∞0 (R;C
M×M), V ≥ 0, is an M ×M Hermitian matrix-valued

potential with entries {vij }Mi,j=1. Then the negative spectrum of the Schrödinger operator
H = −d2/dx2

− V in L2(R;CM) is finite. For general potentials the result is obtained
by an approximation argument.

Denote by {φn} the orthonormal system of eigenfunctions corresponding to the eigen-
values {λn}Nn=1,

−
d2

dx2φn − V φn = λnφn.

Clearly, ∑
n

λn =
∑
n,j

∫
R
|φ′n(x, j)|

2 dx − Tr
[∫

R
V (x)U(x, x) dx

]
and by Hölder’s inequality for traces,∫

R
Tr[V (x)U(x, x)] dx ≤

(∫
R

Tr[V (x)3/2] dx
)2/3(∫

R
Tr[U(x, x)3] dx

)1/3

,

so that using Theorem 3 we obtain∑
n

λn ≥ X −

(∫
R

Tr[V (x)3/2] dx
)2/3

X1/3

with X :=
∫
R Tr[U(x, x)3] dx. Minimising the right hand side with respect to X we

finally complete the proof of Theorem 1:∑
n

λn ≥ −
2

3
√

3

∫
R

Tr[V (x)3/2] dx.
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