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Abstract. We introduce a new cohomology for Lie algebroids, and prove that it provides a differ-
ential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.
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1. Introduction

The aim of this paper is to find the differential graded Lie algebra and its cohomology
theory controlling deformations of a large class of geometric structures, known as Lie
algebroids. This problem is particularly difficult since there is no “adjoint representation”
to which one can apply the standard theory.

We recall that a Lie algebroid over a manifold M is a vector bundle π : A → M

together with a Lie bracket [ , ] on the space of sections 0(A) and a bundle map ρ :
A→ TM , called the anchor, satisfying the Leibniz identity:

[α, fβ] = f [α, β]+ Lρα(f )β, f ∈ C∞(M), α, β ∈ 0(A).

The notion of Lie algebroid in this form goes back to Pradines (1967), but, in local
coordinates, it already appeared in E. Cartan’s work in 1904, and the analogous algebraic
notion was already studied by Rinehart in 1963.

Lie algebroids are to be thought of as infinite-dimensional Lie algebras of “geomet-
ric type”, or as generalized tangent bundles. Indeed, the simplest examples are (finite-
dimensional) Lie algebras and tangent bundles of manifolds, and there are many natural
geometric examples coming from foliations, Poisson manifolds, infinitesimal actions of
Lie algebras on manifolds, and other contexts. The present paper is thus part of a larger
programme, the goal of which is to give a unified approach to geometric structures con-
trolled by “Lie brackets”, and to make explicit the analogies and interplay between the
various fields such as Lie group theory, theory of foliations, Poisson geometry, etc.
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A well-known principle in mathematics, present already in the study of deformations
of complex structures (cf. [8] and the references therein) and in the work of Nijenhuis–
Richardson [17], and emphasized by P. Deligne, M. Kontsevich, and others, states that the
deformation theory of a specific (type of) structure is governed by a naturally associated
differential graded Lie algebra (dgla). Moreover, this dgla, or the graded Lie algebra given
by its cohomology, should act on invariants associated to the structure. In this paper, we
will exhibit for any Lie algebroid A the dgla governing its deformations, the cohomology
Lie algebra of which we call the deformation cohomology of A and denote by H ∗def(A).
We will relate this cohomology to known cohomologies of A, and in particular prove that
it acts on the “de Rham” cohomology ofA. We will prove that deformations of the bracket
of a given algebroid A give rise to cohomology classes inH 2

def(A), and we investigate the
relation of these classes to those constructed earlier for the deformation of foliations [10]
and of Poisson brackets. We will also prove that, quite surprisingly, the vanishing of such
cohomology classes does imply rigidity (Theorem 2).

In the extreme case where the Lie algebroid A is simply a finite-dimensional Lie
algebra, it is of course well-known that the deformations of the Lie bracket are controlled
by (the cohomology of) the Chevalley–Eilenberg complex for the adjoint representation
of A [17, 18]. Our theory contains this fact as a special case, and can be interpreted as a
way of defining the cohomology of a general Lie algebroid with coefficients in its adjoint
representation, in spite of the fact that the “adjoint representation” is not defined as a
representation in the usual sense [5].

Based on the analogy with the adjoint representation and the rigidity properties of
compact Lie groups, we state at the end of this paper a general “rigidity conjecture” for
algebroids of compact type which we expect to have applications to the linearization prob-
lem [23] and other rigidity problems. Moreover, we prove this conjecture in two special
cases, namely when the Lie algebroid is regular and when the Lie algebroid is defined
from an infinitesimal action of a Lie algebra on a manifold. The first case is closely re-
lated to Weinstein’s linearization theorem in the regular case [24]—note in particular that
his proof uses the same techniques, based on a Bochner-type averaging and the van Est
isomorphism for groupoids [3]. The second case is related to the linearization theorem
for Poisson manifolds [1]. We also give an idea of a proof in the general case, based on a
“lin”-version of the category of smooth manifolds, which we expect to be of independent
interest.

2. Multiderivations and the deformation complex

The deformation complex of a Lie algebroid A is defined as the complex (C∗def(A), δ) in
which the n-cochains D ∈ Cndef(A) are R-multilinear antisymmetric maps

D : 0(A)× · · · × 0(A)︸ ︷︷ ︸
n times

→ 0(A)
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which are multiderivations, and the coboundary is given by

δ(D)(α0, . . . , αn) =
∑
i

(−1)i[αi,D(α0, . . . , α̂i, . . . , αn)]

+

∑
i<j

(−1)i+jD([αi, αj ], α0, . . . , α̂i, . . . , α̂j , . . . , αn). (1)

We denote byH ∗def(A) the resulting cohomology. In this section we explain this definition
and we investigate the structure present on (C∗def(A), δ).

2.1. Multiderivations

Let E → M be a vector bundle, and denote by r its rank. Recall that a derivation on E
is any linear operator D : 0(E)→ 0(E) with the property that there exists a vector field
σD ∈ X (M), called the symbol of D, such that

D(f s) = fD(s)+ σD(f )s

for any section s ∈ 0(E) and function f ∈ C∞(M). We denote by Der(E) the space of
derivations on E.

Assume, for the moment, that the rank of E is r ≥ 2. A multiderivation of degree n is
a skew-symmetric multilinear map

D : 0(E)⊗ · · · ⊗ 0(E)︸ ︷︷ ︸
n+1 times

→ 0(E)

which is a derivation in each entry, i.e., there is a map

σD : 0(E)⊗ · · · ⊗ 0(E)︸ ︷︷ ︸
n times

→ X (M),

called the symbol of D, such that

D(s0, s1, . . . , f sn) = fD(s0, s1, . . . , sn)+ σD(s0, . . . , sn−1)(f )sn

for any function f ∈ C∞(M) and sections si ∈ 0(E). Notice that this identity determines
σD uniquely.

We will denote by Dern(E) the space of multiderivations of degree n, n ≥ 0. We have
Der0(E) = Der(E), and we set Der−1(E) = 0(E).

Lemma 1. For any multiderivationD ∈ Dern(E) of degree n ≥ 0, its symbol σD is anti-
symmetric and C∞(M)-linear. Moreover, Dern(E) is the space of sections of a vector
bundle DnE→ M which fits into a short exact sequence of vector bundles

0→
∧n+1

E∨ ⊗ E→ DnE→
∧n

E∨ ⊗ TM → 0,

where E∨ denotes the dual of E. In particular, Dern(E) = 0 for n ≥ rk(E)+ 1.
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Proof. The antisymmetry of σD follows from that of D. From this it also follows that

D(s0, s1, . . . , si−1, f si, si+1, . . . , sn)

= fD(s0, s1, . . . , sn)+ (−1)n−iσD(s0, . . . , ŝi, . . . , sn)(f )si .

Now compute D(f s0, gs1, . . . , sn) in two ways: first by taking f out followed by taking
out g, and then the other way around. We obtain

(σD(f s0, s2, . . . , sn)(g)− f σD(s0, s2, . . . , sn)(g))s1

+ (σD(gs1, s2, . . . , sn)(f )− gσD(s1, s2, . . . , sn)(f ))s0 = 0.

Since E was assumed to be of rank r ≥ 2, it follows that

σD(f s0, s2, . . . , sn)− f σD(s0, s2, . . . , sn) = 0,

i.e., σD is C∞(M)-linear.
Observe now that, if ∇ is a connection on E, then the operator

LD(s0, . . . , sn) = D(s0, . . . , sn)+ (−1)n
∑
i

(−1)i+1
∇σD(s0,...,ŝi ,...,sn)(si)

is antisymmetric and C∞(M)-multilinear. This shows that any connection ∇ on E deter-
mines an isomorphism of C∞(M)-modules

Dern(E) ∼= 0(
∧n+1

E∨ ⊗ E)⊕ 0(
∧n

E∨ ⊗ TM),

which sends D to (LD, σD). This proves the statement about the existence of a vector
bundle DnE, and it shows at the same time that the choice of a connection ∇ induces a
splitting of the short exact sequence above. ut

A similar definition when the rank of E is r = 1 would not imply the C∞(M)-linearity of
the symbols. To extend the definition of Dern(E) to this case, we must require C∞(M)-
linearity of its symbols.

2.2. Multiderivations and brackets

There is a close connection between the spaces Dern(E) and Lie algebroids. First of all,
the obvious bracket [·, ·] on Der(E) extends to Der∗(E) as follows:

Proposition 1. For D1 ∈ Derp(E) and D2 ∈ Derq(E) we define the Gerstenhaber
bracket

[D1,D2] = (−1)pqD1 ◦D2 −D2 ◦D1,

where

D2 ◦D1(s0, . . . , sp+q)

=

∑
τ

(−1)|τ |D2(D1(sτ(0), . . . , sτ(p)), sτ(p+1), . . . , sτ(p+q))) (2)

and the sum is over all (p+1, q)-shuffles. Then [D1,D2] ∈ Derp+q(E), and the resulting
bracket [·, ·] makes Der∗(E) into a graded Lie algebra.
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Proof. It is well-known that the bracket above provides a gla structure on the space of
skew-symmetric multilinear maps 0(E)⊗· · ·⊗0(E)→ 0(E) [18]. Therefore, it suffices
to show that the space of multiderivations is closed under this bracket, and this follows
by a careful (but straightforward) calculation. The final conclusion of the computation is
that [D1,D2] is a multiderivation with symbol

σ[D1,D2] = ((−1)pqσD1 ◦D2 − σD2 ◦D1)+ [σD1 , σD2 ],

where σD1 ◦ D2 is given by the same formula as (2) above (so σD1 ◦ D2 = 0 if p = 0),
while

[σD1 , σD2 ](s1, . . . , sp+q)

=

∑
τ

(−1)|τ |[σD1(sτ(1), . . . , sτ(p)), σD2(sτ(p+1), . . . , sτ(p+q))]

(sum over shuffles again). ut

The formulas in Proposition 1 are quite standard and go back to Gerstenhaber [7] (the
case of algebras) and Nijenhuis and Richardson [18, 19] (the case of Lie algebras). Note,
however, that we have chosen the signs differently, so as to match the classical formulas
for Lie derivatives and the de Rham differential.

The gla structure in Der∗(E) allows us to give the following folklore description of
Lie algebroids (going back at least to [7]):

Lemma 2. IfA is a vector bundle overM , then there exists a one-to-one correspondence
between Lie algebroid structures on A and elements m ∈ Der1(A) satisfying [m,m] = 0.

The more familiar form of the definition of a Lie algebroid is obtained by letting [α, β] =
m(α, β) (the Lie bracket) and ρ = σm : A→ TM (the anchor).

The vector bundle D0E itself is a Lie algebroid for any vector bundle E. The bracket
is the one mentioned above (given by the commutators of derivations), while the anchor
is just taking the symbol, ρ(D) = σD .

Let us recall [13] that a representation of a Lie algebroid A→ M is a vector bundle
E→ M together with a flat A-connection ∇ on E. This means that ∇ : 0(A)⊗0(E)→
0(E) is a bilinear map, written (α, s) 7→ ∇α(s), which satisfies the connection properties

∇f α(s) = f∇α(s), ∇α(f s) = f∇α(s)+ ρα(f )s,

as well as the flatness condition

∇[α,β] = [∇α,∇β ].

We observe the following well-known fact:

Lemma 3. Given a Lie algebroid A over M , there exists a one-to-one correspondence
between representations of A and vector bundles E overM together with a Lie algebroid
map ∇ : A→ D0E.
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The lemma suggests using the notation gl(E) for the Lie algebroid D0E. Of course, E is
a representation of gl(E), with the tautological action

∇D(s) = D(s)

for D ∈ D0(E) and s ∈ 0(E). We point out that the Lie algebroid gl(E) is always
integrable: one checks easily that the Lie groupoid GL(E) ⇒ M , for which the arrows
x

g
→ y are the linear isomorphisms g : Ex → Ey , has Lie algebroid precisely gl(E) (see

also [13]).

2.3. Cohomology

Recall that, given a representation E = (E,∇) of a Lie algebroid A, the de Rham coho-
mology of A with coefficients in E [13], denoted H ∗(A;E), is defined as the cohomol-
ogy of the complex (C∗(A;E), δA,E), where Cp(A;E) = 0(

∧p
A∨ ⊗ E) consists of

C∞(M)-multilinear antisymmetric maps

0(A)× · · · × 0(A)︸ ︷︷ ︸
p times

3 (α1, . . . , αp) 7→ ω(α1, . . . , αp) ∈ 0(E),

with the differential δA,E : Cp(A;E) → Cp+1(A;E) given by the usual Chevalley–
Eilenberg formula:

δA,E(ω)(α1, . . . , αp+1) =
∑
i<j

(−1)i+jω([αi, αj ], α1, . . . , α̂i, . . . , α̂j , . . . , αp+1)

+

p+1∑
i=1

(−1)i+1
∇αi (ω(α1, . . . , α̂i, . . . , αp+1)). (3)

When E is the trivial line bundle (with ∇α = Lρ(α), the Lie derivative along ρ(α)), we
omit E from the notation. In particular, the differential on C∗(A) will be denoted δA.

For instance, if A = TM is the tangent bundle of M , then C∗(A) = �∗(M) and the
formula for δA becomes the known Koszul formula for the de Rham differential. Also,
when A = g is a Lie algebra (and M consists of one point), one recovers the Chevalley–
Eilenberg complex computing Lie algebra cohomology with coefficients. In general, if E
is a representation of the Lie algebroid A, then 0(E) becomes a representation of the Lie
algebra 0(A), while the Lie algebroid complex

C∗(A;E) ⊂ C∗(0(A);0(E))

is the subcomplex of C∗(0(A);0(E)) consisting of the C∞(M)-multilinear cochains.

2.4. Deformation cohomology

It is well-known that deformations of a Lie algebra g are controlled by H ∗(g, g), the
cohomology of g with coefficients in the adjoint representation, and by the associated dif-
ferential graded Lie algebra (C∗(g; g), δ) [18, 19]. Here, the graded Lie algebra structure
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is the one of Proposition 1 applied to the case where M is a point and E = g, and the
differential is the Chevalley–Eilenberg differential, which can also be expressed in terms
of the Gerstenhaber bracket with the Lie bracket m ∈ C2(g, g) of g [18],

δ(c) = [m, c].

For the case of Lie algebroids, one faces the problem that, in general, Lie algebroids
do not have an adjoint representation in the classical sense mentioned above (see
also the discussion in [5]), and/or the C∞(M)-multilinear cochains of the complex
C∗(0(A);0(A)) do not form a subcomplex. However, there is a distinguished sub-
complex of C∗(0(A);0(A)) which consists of cocycles which are “not far from being
C∞(M)-multilinear”. More precisely, since the symbol of an element D ∈ Der∗(A) is
uniquely determined by D, the multiderivations form a subcomplex

Der∗−1(A) ⊂ C∗(0(A);0(A)).

This is precisely the complex that we have denoted C∗def(A) and called the deformation
complex of A at the beginning of this section. That this is indeed a subcomplex follows
from Proposition 1 and the fact that δ = [m,−]. It can also be shown directly that, for
any multiderivation D ∈ Dern(A), δ(D) is again a multiderivation with the symbol

σδ(D) = δ(σD)+ (−1)nρ ◦D, (4)

where, for σ ∈ 0(
∧n

A∨ ⊗ TM), δ(σ ) ∈ 0(
∧n+1

A∨ ⊗ TM) is given by

δ(σ )(α0, . . . , αn) =
∑
i

(−1)i[ρ(αi), σ (α0, . . . , α̂i, . . . , αn)]

+

∑
i<j

(−1)i+jσ([αi, αj ], α0, . . . , α̂i, . . . , α̂j , . . . , αn). (5)

We summarize the discussion up to this point in the following theorem.

Theorem 1. For any algebroid A, Cndef(A) = Dern−1(A) and δ(D) = [m,D]. In partic-
ular, (C∗+1

def (A), δ) is a differential graded Lie algebra (note the shift in degree), and the
shifted deformation cohomology H ∗+1

def (A) is a graded Lie algebra.

2.5. Alternative descriptions of the deformation complex

There are several different descriptions of the space Der∗(E) of multiderivations on a
vector bundle and of the deformation complex C∗def(A) of an algebroid. Here we give a
description in terms of derivations (which reveals a connection between our deformation
complex and recent unpublished work of D. Roytenberg), while in Subsection 4.9 we will
give a more geometric description in terms of linear multivector fields. As before, we
denote by E a vector bundle over M , and we will change the notation to A when dealing
with Lie algebroids.
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By formulas similar to the classical ones for Lie derivatives of forms along vector
fields, any derivation D : 0(E) → 0(E) induces an R-linear derivation of degree zero
on the algebraC∗(E) = 0(

∧
∗
E∨) of sections of the exterior bundle (viewed asC∞(M)-

valued, C∞(M)-multilinear maps on the powers of 0(E)), by

LD(c)(s1, . . . , sq) = LσD (c(s1, . . . , sq))−

q∑
i=1

c(s1, . . . , D(si), . . . , sq). (6)

More generally, any D ∈ Derp(E) induces a derivation of degree p on C∗(E): if c ∈
Cq(E), then LD(c) ∈ Cp+q(E) is given by

LD(c) = (−1)pqσD ◦ c − c ◦D,

where c ◦D is defined by the Gerstenhaber-type formula (2), and similarly,

σD ◦ c(s1, . . . , sp+q) =
∑
σ

(−1)|σ |LσD(sσ(q+1),...,sσ(p+q))(c(sσ(1), . . . , sσ(q))). (7)

Here LX denotes the Lie derivative along any vector field X, and the sum is over all
(q, p)-shuffles. Conversely, any R-linear derivation of degree p on C∗(E) arises in this
way, since it is uniquely determined by what it does on C∞(M) and 0(E∨). For later
reference we give the explicit formulas for LD applied to f ∈ C0(E) = C∞(M) and to
ξ ∈ C1(E) = 0(E∨), when D ∈ Derp−1(E):

LD(f )(s1, . . . , sp−1) = σD(s1, . . . , sp−1)(f ), (8)

LD(ξ)(s1, . . . , sp) =

p∑
i=1

(−1)p−iLσD(s1,...,ŝi ,...,sp)(ξ(si))− ξ(D(s1, . . . , sp)). (9)

The conclusion is that Der∗(E) is isomorphic to the algebra of derivations of C∗(E)
(as graded Lie algebras!). With this, Lemma 2 translates into the following well-known
observation [11].

Corollary 1. Given a vector bundle E, there is a one-to-one correspondence between
Lie algebroid structures on E and derivations δ of degree 1 on the algebra C∗(E) =
0(
∧
E∨), satisfying δ2

= 0.

Note that if E = A is a Lie algebroid, we obtain an action of C∗def(A) on C∗(A) (be
aware of the degree shift!), and the differential δA of C∗(A) coincides with Lm, where
m ∈ C2

def(A) is the Lie bracket of A. The discussion above and a careful computation
of the boundaries shows that, conversely, one recovers the differential graded Lie algebra
(C∗def(A), δ) as the algebra of derivations of the differential graded algebra (C∗(A), δA).
We will come back to this point in Subsection 4.8 below.
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3. Deformation cohomology and deformations

In this section we examine our deformation cohomology of Lie algebroids in low degrees.
In degree zero,

H 0
def(A) = Z(0(A)),

the center of the infinite-dimensional Lie algebra of sections of A. In degrees 1 and 2
we will show that the usual interpretations for Lie algebras extend to the context of Lie
algebroids. In particular, degree 2 cohomology classes will be seen to correspond to de-
formations, thus justifying the name “deformation cohomology”.

3.1. H 1
def and derivations

Recall that a derivation of a Lie algebroid A is a linear map D : 0(A)→ 0(A) which is
both a vector bundle derivation (see Subsection 2.1) and a derivation with respect to the
Lie bracket:

D([α, β]) = [D(α), β]+ [α,D(β)].

These derivations form a Lie algebra Der(A) under the commutator bracket. This Lie
algebra was studied in [15, 16]. The inner derivations, i.e. those of the form [α,−], form
an ideal in Der(A), and the quotient, denoted OutDer(A), is the Lie algebra of outer
derivations of A. It is immediate from the definitions that

H 1
def(A) = OutDer(A).

This space can also be interpreted as the Lie algebra of the (infinite-dimensional)
group of outer automorphisms of A. For later use, we make this statement more precise.
The passage from the infinitesimal side (derivations) to the global side (automorphisms)
is via flows of derivations (see the Appendix in [4]). Given D ∈ Der(E), the flow 8tD
of D is a 1-parameter group of bundle isomorphisms of E, covering the flow φtσD of the
symbol σD of D:

8tD(x) : Ex → EφtσD (x)
.

It is characterized uniquely by the property

d

dt

∣∣∣∣
t=0
(8tD)

∗β = D(β), ∀β ∈ 0(E). (10)

In this relation, (8tD)
∗(β)(x) = 8tD(β(φ

−t
σD
(x))). In general, 8tD(x) will be defined

whenever φtσD (x) is, and one has to deal with local bundle maps, defined only over some
open sets. Since this is standard, and not relevant for the present discussion, we will as-
sume that the vector fields σD are complete.

Lemma 4. Let A be a Lie algebroid. A derivationD ∈ Der(A) is a Lie algebroid deriva-
tion if and only if the maps 8tD are Lie algebroid automorphisms.
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The proof is standard. In the case of an inner derivation D = adα , one denotes 8tD by
8tα , and calls it the (infinitesimal) flow of α. These flows play an essential role in [4],
and they can be thought of as the inner automorphisms of A. Therefore, we can think of
the Lie algebra H 1

def(A) as the Lie algebra of the (infinite-dimensional) group of outer
automorphisms of A.

3.2. H 2
def and deformations

We now explain the relevance of the deformation complex to deformations of Lie alge-
broids.

Definition 1. Let A be a fixed vector bundle, and I ⊂ R an interval.

(i) A family of Lie algebroids over I is a collection (At )t∈I of Lie algebroids At =
(A, [·, ·]t , ρt ) varying smoothly with respect to t .

(ii) We say that two families (At )t∈I and (A′t )t∈I of Lie algebroids are equivalent if there
exists a family of Lie algebroid isomorphisms ht : At → A′t , depending smoothly
on t . Such a family h is called an equivalence.

(iii) A deformation of a Lie algebroid (A, [·, ·], ρ) is a family (At )t∈I of Lie algebroids
over an interval containing the origin with A0 = A.

(iv) Two deformations (At )t∈I and (A′t )t∈I of a Lie algebroid A are said to be equivalent
if there exists an equivalence ht : At → A′t with h0 = Id.

We will say that a family (or deformation) is trivial if it is equivalent to the constant
family (deformation). We have the following interpretation for the elements of the second
cohomology group H 2

def(A) in terms of deformations.

Proposition 2. Let At = (A, [·, ·]t , ρt ) be a deformation of the Lie algebroid A. Then

c0(α, β) =
d

dt
[α, β]t

∣∣∣∣
t=0

defines a cocycle c0 ∈ C
2
def(A). The corresponding cohomology class in H 2

def(A) only
depends on the equivalence class of the deformation.

Proof. Let us denote, as before, bymt ∈ Der1(A) the Lie bracket [·, ·]t . Since Der1(A) =

0(D1(A)), c0 is a multiderivation (its symbol is σ = d
dt
ρt |t=0). Taking derivatives at

t = 0 in the equation [mt , mt ] = 0 we obtain [c0, m] = 0, i.e., δ(c0) = 0 so that c0 is a
cocycle.

Assume now that A′t is another deformation, and denote the associated class by c′0.
Assume also that ht defines an equivalence between At and A′t . We use the same notation
ht for the map induced at the level of sections, and we consider the derivation D defined
by

D =
d

dt

∣∣∣∣
t=0
ht : 0(A)→ 0(A).
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Since ht is a Lie algebroid map we have

ht ([α, β]t ) = [ht (α), ht (β)]′t .

Taking derivatives of both sides and setting t = 0, we obtain

D([α, β])+ c0(α, β) = c
′

0(α, β)+ [D(α), β]+ [α,D(β)],

which means precisely that c0 − c
′

0 = δ(D). ut

Remark 1. Note that, when talking about deformations, one can also allow the vector
bundle A itself to vary smoothly with respect to t (in the sense that the At ’s together fit
into a smooth vector bundle overM×R). Indeed, to any such familyAt of algebroids, one
can associate (an equivalence class of) a family of algebroids with constant vector bundle
A = A0, by choosing vector bundle isomorphisms φt : At → A (which is possible
because the real line is contractible) and transporting the bracket of At to a bracket [·, ·]t
on A. Of course, different choices of φt produce equivalent deformations in the sense
above. In particular, the cohomology class of the deformation is defined unambiguously
for any deformation of A with possibly varying vector bundle.

If (At )t∈I is a trivial deformation of a Lie algebroid A then obviously we must have
[c0] = 0. The converse is not true, but our next result gives a partial converse.

Theorem 2. Let (At )t∈I = (A, [·, ·]t , ρt ) be a family of Lie algebroids. Then

ct (α, β) =
d

dt
[α, β]t

defines a cocycle ct ∈ C2
def(At ). If M is compact, then the following are equivalent:

(i) The family (At )t∈I is trivial.
(ii) The classes [ct ] ∈ H 2

def(At ) vanish smoothly with respect to t , i.e., ct = δ(Dt ) for a
smooth family Dt of 1-cochains.

Proof. The fact that, for each t , ct is a cocycle and its cohomology class depends only on
the equivalence class of (At )t∈I follows from Proposition 2, since we can view As as a
deformation of At .

Let (At )t∈I be a trivial family, so that there exist Lie algebroid isomorphisms ht :
At → A to a fixed Lie algebroid A. We define Dt : 0(At )→ 0(At ) by letting

ht (Dt (α)) =
d

dt
ht (α).

Differentiating both sides of

ht ([α, β]t ) = [ht (α), ht (β)],

we obtain

ht (Dt ([α, β]t )+ ct (α, β)) = [ht (Dt (α)), ht (β)]+ [ht (α), ht (Dt (β))]
= ht ([Dt (α), β]t + [α,Dt (β)]t ).
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This shows that

ct (α, β) = [Dt (α), β]t + [α,Dt (β)]t −Dt ([α, β]t ),

which means precisely that ct = δ(Dt ), so the classes [ct ] ∈ H 2
def(At ) vanish smoothly

with respect to t .
Conversely, suppose that (At )t∈I is a family of Lie algebroids such that ct = δ(Dt )

for a smooth family Dt of 1-cochains. Each Dt is a derivation, and since M is compact,
the flow 8sDt of Dt is defined for all s, for each fixed t . Denote by ht the flow at time t .
From the defining relation (10) for the flow of a derivation, we have

ht (Dt (α)) =
d

dt
ht (α).

We claim that
ht ([α, β]t ) = [ht (α), ht (β)]0. (11)

This shows that ht : At → A0 gives an equivalence to a constant family, so the family
(At )t∈I will be trivial.

To prove the claim, we just observe that (11) holds at t = 0, and that the derivative
of both sides of (11) are equal. In fact, as we saw above, the derivative is precisely the
condition ct = δ(Dt ). Therefore equality holds for all t . ut

4. Relations to known cohomologies and particular cases

In this section we look at some particular classes of algebroids, and we relate H ∗def(A) to
known cohomology theories. We begin by simply mentioning the following two extreme
cases.

4.1. Lie algebras

Since the Lie algebra case was partially used as inspiration for our constructions, it is clear
that the deformation complex C∗def(g) of a Lie algebra g is the usual Chevalley–Eilenberg
complex C∗(g, g) with coefficients in the adjoint representation, and one recovers the
classical relation between Lie algebra deformations, the graded Lie algebra C∗(g, g), and
the cohomology groups H ∗(g, g) [18, 19].

4.2. Tangent bundles

Let us now look at the case where A = TM is the tangent bundle of a manifold M . The
first remark is that closed cocycles correspond to vector-valued forms on M:

ZkC∗def(TM)
∼= 0(

∧k−1
T ∨M ⊗ TM),
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where T ∨M denotes the cotangent bundle. This follows from (4) which shows that
any cocycle D in the deformation complex is determined by its symbol σD by D =
(−1)kδ(σD). Actually, the same formula shows that the map which associates to D its
symbol, viewed as a map of degree −1 on C∗def(TM), defines a homotopy in the defor-
mation complex (up to a sign). Hence we recover the following result of [6]:

Corollary 2. Any closed multiderivation on TM is exact (i.e. H ∗def(TM) = 0).

A different (and more general) argument will be presented in Subsection 4.7 below.

4.3. Cotangent bundles

We now consider the graded Lie algebra of multiderivations on the cotangent bundle
T ∨M of a manifold M , and we relate it to the known graded Lie algebra of multivector
fields on TM , (X ∗(M), [·, ·]). Recall that X p(M) =

∧p
(TM), where the Lie algebra

degree of a p-vector field is p − 1, so that the graded antisymmetry reads

[X, Y ] = −(−1)(p−1)(q−1)[Y,X]

for X ∈ X p(M), Y ∈ X q(M). Recall also that [·, ·] is the Nijenhuis–Schouten bracket;
explicitly, for Xi, Yj ∈ X (M) and f ∈ C∞(M),

[X1 ∧ · · · ∧Xp, Y1 ∧ · · · ∧ Yq ]

=

∑
i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xp ∧ Y1 ∧ · · · ∧ Ŷj ∧ . . . ∧ Yq ,

[X1 ∧ · · · ∧Xp, f ] =
p∑
i=1

(−1)p−iLXi (f )X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xp.

To state the next proposition, we also need the following notation: for X ∈ X n(M),
we view X as an antisymmetric map depending on n 1-forms ω1, . . . , ωn. Fixing the first
n−1 of them defines a linear mapX(ω1, . . . , ωn−1,−) on T ∨M , hence a vector field. We
denote this vector field by X](ω1, . . . , ωn−1), so that X] becomes a linear antisymmetric
map

X] : T ∨M ⊗ · · · ⊗ T ∨M︸ ︷︷ ︸
n−1 times

→ TM.

Proposition 3. For any X ∈ X n(M), there exists a unique DX ∈ Dern−1(T ∨M) with
symbol X] and satisfying

DX(df1, . . . , dfn) = d(X(df1, . . . , dfn))

for all fi ∈ C∞(M). Explicitly, for all ωi ∈ �1(M), 1 ≤ i ≤ n,

DX(ω1, . . . , ωn) =

n∑
i=1

(−1)n−iLX](ω1,...,ω̂i ,...,ωn)
(ωi)− (n− 1)d(X(ω1, . . . , ωn)).
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Moreover, the map X (M) → Der(T ∨M), X 7→ DX, is a map of graded Lie alge-
bras which is injective in strictly positive degrees. (For n = 0, the convention is that
DX = d(X).)

Proof. The uniqueness part is clear. That the explicit formula for DX defines a multi-
derivation with the desired properties follows by direct computation. The injectivity is
immediate because the symbol of DX is X]. To prove that X 7→ DX is compatible with
the Lie bracket, we recall first that (X ∗(M),∧, [·, ·]) is a Gerstenhaber algebra, where
∧ is the exterior product. Apart from the fact that (X ∗(M), [·, ·]) is a graded Lie alge-
bra (with the Lie algebra degree of X ∈ X p(M) equal to p − 1), this also means that
(X ∗(M),∧) is a graded algebra (without degree shift!), while the two structures are re-
lated by the Leibniz rule:

[X, Y ∧ Z] = [X, Y ] ∧ Z + (−1)(p−1)qY ∧ [X,Z]

for all X ∈ X p(M), Y ∈ X q(M), Z ∈ X r(M). More formally, this equation means that
the map X 7→ [X,−] is a graded map from (X ∗(M), [·, ·]) into the graded Lie algebra
Der(X ∗(M),∧) of derivations on the graded algebra (X ∗(M),∧).

On the other hand, by 2.5 applied to T ∨M , we have an isomorphism D 7→ LD from
the graded Lie algebra Der(T ∨M) of multiderivations on the cotangent bundle into the
graded Lie algebra of derivations on (X ∗(M),∧). We claim that LDX = [X,−]. Since
this is an equality of derivations on (X ∗(M),∧), it suffices to show that LDX and [X,−]
are equal on functions and on vector fields. This follows again by direct computation,
using the formulas for the Nijenhuis–Schouten bracket given above, and the formulas
(8), (9) describing LD in low degrees for D = DX. ut

Note that the injectivity of the map X 7→ DX can also be seen as a special case of
Proposition 5.1 of [20].

4.4. Poisson manifolds I

Here we describe the relation of our deformation cohomology with Poisson cohomology.
Recall that a Poisson manifold is a pair (P, π) where π ∈ 0(

∧2
(T P )) is a bivector

with the property that the “Poisson bracket” {f, g} = π(df, dg) on C∞(P ) satisfies
the Jacobi identity, or equivalently, the Nijenhuis–Schouten bracket [π, π] vanishes. It is
well-known that a Poisson structure on P induces an algebroid structure on T ∨P with
anchor π] (defined by β(π](α)) = π(α, β) for all 1-forms α and β). The bracket is
usually introduced either by the explicit formula

[α, β] = Lπ](α)(β)− Lπ](β)(α)− d(π(α, β)),

or by saying that it is the unique Lie algebroid structure on T ∨P with anchor π] and the
property that [df, dg] = d{f, g}.

It is interesting to relate this to the previous proposition. Since [π, π] = 0, the in-
duced derivation Dπ ∈ Der1(T ∨P) satisfies the same formula, hence it defines an alge-
broid structure on T ∨P by Lemma 2. This coincides with the known algebroid structure,
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and the two ways of describing the structure correspond to the descriptions of Dπ in
Proposition 3.

Next, given the Poisson manifold P , the de Rham cohomology of the induced Lie
algebroid T ∨P (with coefficients in the trivial line bundle) is known as the Poisson co-
homology of P , denoted H ∗π (P ). The defining complex is the complex of multivector
fields

C∗π (P ) = 0(
∧
∗
T P ),

with boundary d(X) = [π,X], where [·, ·] is the Nijenhuis–Schouten bracket (see e.g.
[22] and the references therein). In particular, C∗π (P ) is a dgla.

Finally, if πt is a family of Poisson structures on P with π0 = π , then taking deriva-
tives with respect to t in [πt , πt ] = 0 at t = 0, we see that[

d

dt

∣∣∣∣
t=0
πt

]
∈ H 2

π (P ) (12)

is a well-defined cohomology class. This is known as the cohomology class associated to
the deformation πt . Using the last part of Proposition 3 and the remark above that Dπ is
the Lie bracket of T ∨P , we deduce:

Corollary 3. For any Poisson manifold (P, π), the map X 7→ DX is a dg Lie morphism
from the Poisson complex C∗π (P ) into the deformation complex C∗def(T

∨P), which is in-
jective in positive degrees. In particular, there is an induced map of graded Lie algebras

i : H ∗π (P )→ H ∗def(T
∨P).

Moreover, if {πt } is a deformation of π , then [·, ·]πt defines a deformation of the Lie
algebroid (T ∨P, [·, ·]π ), and the associated cohomology classes (i.e. (12), and the one of
Proposition 2, respectively) are related by the map i.

4.5. Foliations

We now look at the particular case of regular foliations on a manifold M , i.e. subbundles
F ⊂ TM (of vectors tangent to the leaves) which are involutive (i.e. [0(F), 0(F)] ⊂
0(F)). Regular foliations are the same thing as Lie algebroids with injective anchor map.
Similar to the adjoint representation of a Lie algebra, any foliation F has a canonical
representation on the normal bundle ν = TM/F , called the Bott representation, defined
by ∇X(Y ) = [X, Y ]. The resulting cohomology H ∗(F; ν) is known as the foliated (or
leafwise) cohomology with coefficients in the normal bundle, and was investigated by
Heitsch [10] in connection with deformations of foliations. Explicitly, given a family of
foliations Ft with F0 = F , Heitsch defines

c0(v) = π
⊥

0

(
d

dt

∣∣∣∣
t=0
πt (v)

)
(13)
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for all v ∈ 0(F), where πt : TM → Ft and π⊥t : TM → νt are the orthogonal
projections with respect to a Riemannian metric. Then c0 defines a cohomology class

[c0] ∈ H 1(F; ν),

independent of the metric, which we will call the Heitsch characteristic class of the de-
formation.

On the other hand, each such deformation defines a deformation of F viewed as an
algebroid, hence a class in H 2

def(F). We have:

Proposition 4. For any foliation F ,

H ∗def(F) ∼= H
∗−1(F; ν) .

Moreover, for a deformation Ft of F , the induced cohomology class in H 2
def(F) corre-

sponds to the Heitsch characteristic class of the deformation.

Note that, in degree zero,

l(M,F) := H 0(F; ν)

is well-known in foliation theory as the Lie algebra of transversely projectable vector
fields. It consists of the sections X of the normal bundle with the property that [X,0(F)]
⊂ 0(F). The previous proposition together with Theorem 1 implies that the Lie algebra
structure on l(M,F) is just the degree zero part of a graded Lie algebra structure on
H ∗(F; ν).

Proof of Proposition 4. The first part of the proposition will be immediate from Theo-
rem 3 below. Here we sketch a different argument, similar to the one in the case of tangent
bundles. Note first that equation (4) implies that if D ∈ Ckdef(F) is a cocycle, then D is
uniquely determined by its symbol σD ∈ Ck−1(F; TM). On the other hand, the sym-
bol of D projects to an element σD ∈ Ck−1(F; ν) which will be a cocycle. One then
checks directly that the induced cohomology class only depends on the cohomology class
of D, and this defines the desired isomorphism. (Alternatively, one can easily chase the
sequences appearing in the proof of Theorem 3.)

Let us now go to the second part. We are in the case described in Remark 1 where
the vector bundle is varying also, hence we first need to trivialize Ft as a family of vector
bundles, and then consider the induced brackets [·, ·]t on F . The trivialization we will
use is the one induced by the parallel transport (with respect to t) of the canonical partial
connection ∇d/dt = πt ◦ d

dt
on (Ft )t viewed as a bundle over M × R. Since the induced

trivialization Tt : F → Ft sends v into its parallel transport Tt (v) at time t , it is the
solution of the equation

πt

(
d

dt
Tt (v)

)
= 0, T0(v) = v.
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The deformation cocycle induced by the deformation is c = d
dt

∣∣
t=0[·, ·]t . From the first

part, we know that the cocycle σ ∈ C1(F; ν) corresponding to c is the symbol of c (i.e.
the anchor Tt of [·, ·]t ) projected down to ν:

σ(v) = π⊥0

(
d

dt

∣∣∣∣
t=0
Tt (v)

)
∈ 0(ν).

We claim that this coincides with c0 of (13) defining the Heitsch class. Since both c0(v)

and σ(v) are tangent to F , we only have to show that the orthogonal projection π⊥0 onto
F kills their difference. This follows immediately by taking derivatives in π⊥t (Tt (v) −
πt (v)) = 0 at t = 0. ut

4.6. Lie algebra actions on manifolds

Given an action of a Lie algebra g on a manifold M , i.e. a Lie algebra map ρM : g →
X (M), one has an induced Lie algebroid structure on g × M (the trivial vector bundle
over M with fiber g): the anchor is the map ρ defining the action, while the bracket is
determined by its values on constant sections (the bracket between the constant sections
v,w ∈ g ⊂ 0(g ×M) is the constant section [v,w]), and the Leibniz rule. The result-
ing algebroid is denoted by g n M and is called the action algebroid associated to the
infinitesimal action of g on M . Such algebroids (and the study of their deformations) are
important in the linearization problem of Poisson manifolds, although the case where g is
1-dimensional is already interesting (the action onM will be described by a vector fieldX
on M , and the integration of the associated action algebroid is nothing but the integration
of the vector field X).

Such an action algebroid A = g nM has two canonical representations. First of all,
there is a natural action on the trivial vector bundle over M with fiber g, gM = g ×M ,
given by the unique A-connection ∇ with the property that ∇v(w) = [v,w], the bracket
of g, for all v ∈ g (viewed as constant sections of A) and w ∈ g (viewed as constant
sections of the representation). Note that the de Rham cohomology of A with coefficients
in this representation is

H ∗(A; gM) = H
∗(g;0(gM)),

the cohomology of the Lie algebra g with coefficients in 0(gM) = C∞(M; g).
Next, there is a similar action of A on TM , where the connection is determined by

∇v(X) = [ρ(v),X] for v ∈ g. The resulting cohomology is isomorphic to the cohomol-
ogy of g with coefficients in X (M):

H ∗(A; TM) = H ∗(g;X (M)).

Proposition 5. For any action of a Lie algebra g on a manifold M , the deformation
cohomology of the associated action algebroid A = gnM fits into a long exact sequence

· · · → H n−1(A; TM)→ H n
def(A)→ H n(A; gM)

δ
→ H n(A; TM)→ · · · .
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Proof. We have a short exact sequence

0→ Cn−1(A; TM)→ Cndef(A)
π
→ Cn(A; gM)→ 0,

where π associates to D ∈ Cndef(A) the unique π(D) = c ∈ Cn(A; gM) such that
D(v1, . . . , vn) = c(v1, . . . , vn) on constant sections. ut

4.7. The regular case

We now relate the deformation cohomology of A to the de Rham cohomology of A with
coefficients, in the case where A is regular, i.e. when ρ has constant rank. In this case the
image of ρ defines a (regular) foliation F of M , and the isotropy bundle and the normal
bundle,

g(A) = Ker(ρ), ν = TM/F ,

are both representations of A: the first with ∇α(β) = [α, β], and the second with the Bott
connection ∇α(X) = [ρ(α),X]. With these notations, we will show:

Theorem 3. For any regular Lie algebroid A, there is an associated long exact sequence

· · · → H n(A; g(A))→ H n
def(A)→ H n−1(A; ν)

δ
→ H n+1(A; g(A))→ · · · ,

where, as above, g is the isotropy Lie algebra of A, and ν is the normal bundle of the
foliation induced by A.

Proof. To prove the theorem, we will introduce two auxiliary complexes C∗1 and C∗2
which fit into exact sequences of cochain complexes:

0→ C∗(A; g(A))
j
→ C∗def(A)

ρ
→ C∗1 → 0, (14)

0→ C∗1
i
→ C∗2

π
→ C∗(A; ν)→ 0 (15)

and such that C∗2 has zero cohomology. Then the long exact sequence associated to (15)
implies that H n(C∗1 )

∼= H n−1(A; ν), which when plugged into the long exact sequence
associated to (14) will prove our theorem.

First of all, Cn2 consists of the antisymmetric multilinear maps

D : 0(A)⊗ · · · ⊗ 0(A)︸ ︷︷ ︸
n times

→ 0(TM)

together with σD ∈ 0(
∧n−1

A∨ ⊗ TM) (the symbol of D), such that

D(v1, v2, . . . , f vn) = fD(v1, v2, . . . , vn)+ σD(v1, . . . , vn−1)(f )ρ(vn)

for all functions f and all sections vi (when ρ 6= 0 then, just as for multiderivations, σD
is uniquely determined by D). Note the similarity with C∗def(A), which we complete by
defining the differential δ on C∗2 by the same formula as in (1) and by equation (4). Next,
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C∗1 is defined as the subcomplex of C∗2 consisting of those D which are 0(F)-valued,
and the maps in the exact sequences above are the obvious ones. The exactness of the
sequences is evident, except maybe for the right hand side of (14) that we now explain. Let
D ∈ C∗1 . Due to the exactness of the sequence in Lemma 1, we find D′ ∈ Cndef(A) whose
symbol σD′ coincides with σD . Then D − ρ(D′) is multilinear, i.e. comes from a vector
bundle map

∧n
A→ F . Since ρ : A→ F is surjective, we find a map a :

∧n
A→ A

such that D − ρ(D′) = ρ(a), hence D = ρ(D′ + a).
To prove thatC∗2 is acyclic, we remark that any a ∈ 0(

∧n−1
A∨⊗TM) can be viewed

as an element in Cn−1
2 with zero symbol, and δ(a) ∈ Cn2 has as symbol σδ(a) = (−1)na.

Assume now that D ∈ Cn2 is a cocycle. Then D′ = D + (−1)n−1δ(σD) ∈ C
n
2 will have

σD′ = 0, by the previous formula applied to a = σD . Hence we can apply the same
formula to D′ to deduce D′ = 0, since δ(D′) = 0. In conclusion, D = (−1)nδ(σD), and
D is exact. ut

In the case of transitive Lie algebroids (i.e. with surjective anchor), we deduce

Corollary 4. For any transitive algebroid A,

H ∗def(A)
∼= H

∗(A; g(A)).

4.8. The action on de Rham cohomology

As we have already seen in Subsection 2.5, the deformation complex C∗def(A) acts on
the complex C∗(A) computing the de Rham cohomology of the Lie algebroid A. More
generally, it acts on all complexes C∗(A;E) with E a representation of A: one keeps
the same formulas as in 2.5, except that one replaces the Lie derivatives L· (of smooth
functions) in (7) by the covariant derivatives ∇ (of sections of E). Again, one obtains an
action of C∗def(A) on C∗(A;E). Passing to cohomology, we obtain:

Proposition 6. For any representation E of the Lie algebroid A, there is an induced
action

H
p+1
def (A)⊗H

q(A;E)→ Hp+q(A;E), (D, c) 7→ LD(c),

which makes H ∗(A;E) into a graded module over the graded Lie algebra H ∗def(A).

WhenD ∈ H 1
def(A), LD is given by the standard formula (6). There is another interesting

particular case of this action, which one obtains by looking at deformations of A. In
general, any deformation (At ) of A induces a “variation map” in cohomology

∂ : H ∗(A)→ H ∗+1(A)

as follows: given a cocycle c ∈ Ck(A), one deforms it to a family of cochains ct ∈
C∗(At ); one remarks that

d

dt

∣∣∣∣
t=0
δAt (ct ) ∈ C

k+1(A)
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is a cocycle (take the derivative at t = 0 of δ2
At
(ct ) = 0), and denote by ∂([c]) the

resulting cohomology class. It is not difficult to see that ∂ is nothing but the action Lc0 on
cohomology, where c0 ∈ H

2
def(A) is the cohomology class induced by the deformation

At of A (see Proposition 2). In particular, this shows that the description above for ∂ does
not depend on the choices one makes, and it only depends on the equivalence class of the
deformation.

4.9. Poisson manifolds II

There is yet another relation between Lie algebroids and Poisson manifolds: Lie alge-
broid structures on the vector bundle A are in one-to-one correspondence with Poisson
structures on its dual A∨ which are “linear on the fibers” [2]. The deformation complex
gives a conceptual interpretation (and a new proof) of this result, which, as we shall now
explain, implies that the deformation cohomology of A coincides with the “lin-Poisson
cohomology” of A∨.

To this end, we will look at vector bundles as being manifolds with a certain partial lin-
ear structure and use the ideas of Mackenzie on double structures [14, 15]. Accordingly,
vector bundles will be referred to as lin-manifolds, and the category of vector bundles
(with varying base!) will be called the lin-category. Hence a lin-manifold E has an un-
derlying manifold E0 over which it is a vector bundle. Many of the classical objects have
a corresponding lin-version. For instance, given a lin-manifold E, we can talk about lin-
vector bundles E over E: the addition will be a map E ×E E → E in the lin-category. In
Mackenzie’s terminology, E will be a double vector bundle: over E and over E0, which
are both vector bundles over M = E0. The space 0lin(E) is defined as the space of sec-
tions s : E → E which are morphisms in the lin-category (hence lie over a section
s0 : E0 → E0 of the vector bundle E0).

There are two important examples: the tangent bundle T E of a lin-manifold E is
naturally a lin-vector bundle over E with (T E)0 = T (E0), while the cotangent bundle
T ∨E is a lin-vector bundle overE with (T ∨E)0 = E∨ (where the projection T ∨E→ E∨

comes from the inclusion π∗E ⊂ T E, π : E→ M being the projection). Sections of T E
and T ∨E in the lin-category will define the space Xlin(E) of linear vector fields on E,
and �1

lin(E) of linear 1-forms on E (see also [15]). For instance, an element in Xlin(E)

consists of a vector field X on E and a vector field X0 on M such that X : E → T E is a
vector bundle map over X0 : M → TM . Of course, Xlin(E) ⊂ X (E), and, locally, (with
respect to local coordinates xi in M and a basis ei in E), the linear vector fields are the
vector fields on E ∑

ai
∂

∂xi
+

∑
bj
∂

∂ej

with the property that ai = ai(x) depends only on x ∈ M , and bj = bj (x, v) is linear in v.
In the same way we can talk about the space 0lin(E) of any lin-vector bundle E over E,
so that

Xlin(E) = 0lin(T E), �1
lin(E) = 0lin(T

∨E).



Deformations of Lie brackets 1057

Note also that �1
lin(E) ⊂ �1(E) consists of those 1-forms ω on E with the property

that ω(X) ∈ C∞lin(E) for all X ∈ Xlin(E). We define �klin(E) ⊂ �k(E) by the similar
property: when applied to linear vector fields, it must produce linear smooth functions.
And, dually, pairing multivector fields with wedge products of 1-forms, we define the
spaces X k

lin(E) of linear k-vector fields on E. In local coordinates, these are vector fields
which are sums of vectors of type

a(x)
∂

∂xi1
. . .

∂

∂xik
+

∑
b(x, v)

∂

∂xi1
. . .

∂

∂xik−1

∂

∂ej
, (16)

with b(x, v) linear in v. Note that these spaces are closed under the Nijenhuis–Schouten
bracket on multivector fields, denoted by [·, ·].

According to the general philosophy, a linear Poisson structure on a vector bundle
E over M is a Poisson structure whose Poisson tensor π is linear: π ∈ X 2

lin(E). Also,
the space of linear-multivector fields on E, Xlin(E), defines a subcomplex of the Poisson
complex of E, and we define the linear Poisson cohomology of E, denoted H ∗π,lin(E), as
the cohomology of the resulting complex.

Next, any X ∈ X (E∨) induces a multiderivation DX with

DX(s1, . . . , sk) = (ds1 ∧ · · · ∧ dsk)(X),

where, for s ∈ 0(E), one views s as a linear smooth function on E∨, and ds ∈ �1
lin(E

∨)

is its differential. The symbol σX of DX is determined by

dφ(σX(s1, . . . , sk−1)) = (ds1 ∧ · · · ∧ dsk−1 ∧ dφ)(X),

where, as before, for φ ∈ C∞(M), we denote by the same letter the function induced
on E∨ (constant on the fibers). From the local form (16) of linear multivector fields, we
see that these expressions determine X completely. After a careful computation (needed
to identify the brackets), one concludes that this construction defines an isomorphism of
graded Lie algebras (note also that, since the map X 7→ DX is local over M , one can
work in local coordinates)

Derk−1(E) ∼= X k
lin(E

∨).

(This is a generalization to multivector fields of Proposition 2.4 of [15]; see also [12].) In
particular, we deduce the following proposition, the first part of which is well-known (it
first appeared in [2, Theorem 2.1.4]):

Proposition 7. Given a vector bundle A over M , there is a one-to-one correspondence
between Lie algebroid structures on A and linear Poisson structures π on A∨. Moreover,
for any Lie algebroid A,

H ∗def(A)
∼= H

∗

π,lin(A
∨).
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4.10. Rigidity

Finally, we conjecture the following (cohomological) rigidity result similar to known
rigidity results for compact Lie groups. The analogue for groupoids of the compactness
property of groups is known as properness. For those aspects of Lie groupoids and proper-
ness which are relevant to our discussion, we refer to [3].

Conjecture 1. If A is a Lie algebroid which admits a proper integrating groupoid G
whose s-fibers are 2-simply connected, then H 2

def(A) = 0.

Such a result is relevant to the study of smooth deformations of Lie algebroids, and to
linearization problems.

Proposition 8. The conjecture is true for regular algebroids, and for action algebroids.

Proof. First notice that by Theorem 4 and Proposition 1 of [3], the de Rham cohomology
H ∗(A;E) vanishes in degrees 1 and 2, for any representation E. Now the regular case
follows by Theorem 3, and the action case by Proposition 5. ut

We believe that the previous conjecture can be proven by further working in the lin-
category (Subsection 4.9): one can talk about lin-algebroids (the LA-groupoids of Mac-
kenzie [14]), lin-groupoids (the VB groupoids of Mackenzie [14]), etc., so thatH ∗def(A) is
isomorphic to the “lin-algebroid cohomology” of the lin-algebroid T ∨A∨ (the algebroid
associated to the lin-Poisson manifold A∨), and then try to prove a lin-version of the van
Est-type results of [3] (for the lin-groupoid T ∨G over A∨).
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