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Abstract. We explore some aspects of the topology of the family of 13-dimensional Bazaikin
spaces. Using the computation of their homology rings, Pontryagin classes and linking forms, we
show that there is only one Bazaikin space that is homotopy equivalent to a homogeneous space,
i.e., the Berger space. Moreover, it is easily shown that there are only finitely many Bazaikin spaces
in each homeomorphism type and that there are only finitely many positively curved ones for a
given cohomology ring. In fact, supported by computational experiments, it is conjectured that all
positively curved Bazaikin spaces are homeomorphically, or at least diffeomorphically, distinct.
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Manifolds with positive sectional curvature have been of interest since the begin-
ning of global Riemannian geometry, as illustrated by the theorem of Bonnet–Myers, the
Berger–Klingenberg sphere theorem, and the Synge theorem. Surprisingly, for compact
simply connected manifolds, no obstructions are known to distinguish between mani-
folds (that admit a metric) with non-negative curvature and those of positive curvature.
On the other hand, among known examples, the class of non-negatively curved manifolds
is much larger. They include, among others, any homogeneous space and more generally
the so called biquotients, i.e. quotients of a compact Lie groupG by a subgroup ofG×G
acting on G from the left and right simultaneously. A biinvariant metric on G induces a
non-negatively curved metric on the quotient.

The difficulty of finding new examples of manifolds with positive curvature may be
illustrated by the fact that all known examples are constructed in this way, allowing more
generally left invariant metrics on G. But only very few manifolds of this type have posi-
tive curvature and, apart from the rank one symmetric spaces, examples exist only in low
dimensions. They include certain homogeneous spaces in dimensions 6, 7, 12, 13 and 24
due to Berger [Be], Wallach [Wa], and Aloff–Wallach [AW], and biquotients in dimen-
sions 6, 7 and 13 due to Eschenburg [E1], [E2] and Bazaikin [Ba].
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Aside from four isolated manifolds, this list divides into two infinite families. The first
in dimension 7 consists of the Eschenburg biquotients

Ek,l = diag(zk1 , zk2 , zk3)\SU(3)/diag(zl1 , zl2 , zl3)−1,

with
∑
ki =

∑
li , which include the infinite subfamily of homogeneous Aloff–Wallach

spaces W = SU(3)/diag(zl1 , zl2 , zl3),
∑
li = 0. The second one exists in dimension 13

and consists of the Bazaikin biquotients (as described in [EKS])

Bq = diag(zq0 , zq1 , zq2 , zq3 , zq4 , zq5)\SU(6)/Sp(3),

where q = (q0, . . . , q5) are odd integers with
∑
qi = 0. When the restrictions on q

that are necessary for this biquotient to be a manifold are satisfied, we call Bq a Bazaikin
space. If, in addition, the condition for a certain metric on Bq to have positive sectional
curvature holds, we call Bq a positively curved Bazaikin space; see Section 1.

Topological properties of the Eschenburg spaces E have been studied extensively.
A partial classification of their homeomorphism and diffeomorphism types has been
obtained in [KS] and [K1], [K2]. Using these, it was shown that occasionally posi-
tively curved homogeneous Aloff–Wallach spaces ([KS]), and more frequently positively
curved Eschenburg biquotients ([CEZ]), may be homeomorphic to each other, but not dif-
feomorphic. Furthermore, Eschenburg spaces are frequently homotopy equivalent and oc-
casionally homeomorphic and even diffeomorphic to homogeneous Aloff–Wallach spaces
without being Aloff–Wallach spaces by definition; cf. [CEZ]. See also [AMP1], [AMP2],
and [Sh].

In this paper we study topological properties of the Bazaikin spaces and we will see
that their behaviour is quite different from the Eschenburg spaces. A further difference
is that there is only one Bazaikin space which is homogeneous by definition, the Berger
space SU(5)/Sp(2)S1 (see [Be]), which corresponds to q = (−5, 1, 1, 1, 1, 1) (up to or-
der). On the other hand, there exists a large class of homogeneous spaces in dimension 13.
However, we will show:

Theorem A. A Bazaikin space Bq with q 6= (−5, 1, 1, 1, 1, 1) is not homeomorphic to a
homogeneous space. If, in addition, Bq is positively curved, then it is not even homotopy
equivalent to a homogeneous space.

We point out that there are positively curved Bazaikin spaces which have the same coho-
mology ring as certain homogeneous spaces (see Section 3), and there are Bazaikin spaces
which match all the homotopy invariants of the Berger space computed in Theorem B.

In contrast to Theorem A, there are positively curved Eschenburg spaces that are
homotopically equivalent but not homeomorphic to Aloff–Wallach spaces ([Sh]).

The proof involves, among other things, the computation of certain topological in-
variants. So far no classification of the Bazaikin spaces up to homeomorphism or diffeo-
morphism has been obtained. In fact, only the cohomology ring was known ([Ba]). The
property of the cohomology ring that can distinguish Bazaikin spaces from each other is
the order s of the finite torsion groups H 6(Bq ,Z) = H 8(Bq ,Z) = Zs . Further invariants
are given by the Pontryagin classes p1 ∈ H

4(Bq ,Z) = Z and p2 ∈ H
8(Bq ,Z) = Zs ,

and the linking form lk ∈ Zs .
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Theorem B. For a Bazaikin space Bq the order s is odd and

8s = |σ3|, lk = ±32σ−1
5 ∈ Zs,

p1 = −σ2 =
1
2‖q‖

2, 8p2 = 3p2
1 − σ4 ∈ Zs,

where σi = σi(q) stands for the elementary symmetric polynomial of degree i in q.

Recall that s and lk, as well as p1 mod 24, are homotopy invariants, while rational Pon-
tryagin classes are homeomorphism invariants. For a Bazaikin space, p1 is hence a home-
omorphism invariant while p2 is a diffeomorphism invariant.

Corollary C. The following finiteness results hold:
(a) There are only finitely many positively curved Bazaikin spaces for a given cohomol-

ogy ring.
(b) There are only finitely many Bazaikin spaces in each homeomorphism type.

Part (a) is also true for Eschenburg spaces ([CEZ]) and should be viewed in the context
of the Klingenberg–Sakai conjecture. It states that there are only finitely many positively
curved manifolds in a given homotopy type and raises the question whether this might be
true even for a given cohomology ring.

It is not difficult to find Bazaikin spaces that match all four invariants in Theorem B,
especially for small values of s. However, by means of a computer program, we observed
that:

All positively curved Bazaikin spaces with s ≤ 109,

altogether 2 130 601 485 manifolds, are homeomorphically distinct.

This strongly suggests that indeed all positively curved Bazaikin spaces are homeomor-
phically, or at least diffeomorphically, distinct.

In Section 1 we discuss some preliminaries, in Section 2 we compute the homotopy
invariants, while in Section 3 we compute the Pontryagin classes and present the proof of
Theorem A. We end the paper with some computer experiment results in Section 4.

1. Preliminaries

A biquotient can be defined in several ways. First, consider two subgroups of G defined
by monomorphisms f1 : H → G and f2 : K → G. The group H × K acts on G via
(h, k) · g = f1(h)gf2(k)

−1. If this action is free, the quotient H\G/K is called a biquo-
tient. In the literature one often finds the seemingly more general definition whereH ×K
is allowed to be replaced by a subgroup L of G × G. This can be reduced to the above
case by rewriting the biquotient as 4G\G × G/L. The action is free iff (h, k) = (e, e)
whenever h ∈ H and k ∈ K are conjugate to each other. This can clearly be further
reduced to the case where we assume that h and k lie in a maximal torus.

In the following we also allow the action ofH×K to have a finite ineffective kernel 0
(necessarily embedded diagonally in H ×K) and that (H ×K)/0 acts freely onG. This
again is not more general since it can be reduced to the above by replacing G with G/0.
But the advantage is that the topological computations become simpler whenG is simply
connected.
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Following [EKS], we define a Bazaikin space as

Bq = diag(zq0 , zq1 , zq2 , zq3 , zq4 , zq5)\SU(6)/Sp(3), (1.1)

where z ∈ S1
= {w ∈ C : |w| = 1} and q = (q0, . . . , q5) is an ordered set of integers

with
∑
qi = 0. We choose the embedding Sp(3) ⊂ SU(6) such that a maximal torus of

Sp(3) is given by diag(u, ū, v, v̄, w, w̄) ⊂ SU(6). This biquotient action of S1
×Sp(3) on

SU(6) has ineffective kernel 0 = Z2 = 〈(−1,− Id)〉 and one easily sees that the action
of (S1

×Sp(3))/0 is free if and only if

all qi’s are odd and gcd(qτ(1) + qτ(2), qτ(3) + qτ(4)) = 2, (1.2)

for all permutations τ ∈ S6. Notice that under a reordering of the integers qi , or replacing
q with −q, one obtains the same manifold.

The manifolds Bq can be written in an alternative way. Since the symmetric space
SU(6)/Sp(3) can be described as the set of special orthogonal quaternionic structures on
R12, one easily sees that the subgroup SU(5) ⊂ SU(6) acts transitively with isotropy
group Sp(2) (see e.g. [Ke]). Indeed, this follows from the usual normal form for such
structures since one can fix the first vector arbitrarily. If SU(5) is the subgroup that fixes
e0 = (1, 0, . . . , 0) ∈ C6, it follows that Bq becomes a quotient of SU(5) under the action
of S1

×Sp(2):

Bq = diag(zq1 , . . . , zq5)\SU(5)/diag(z−q0 , A)−1, (1.3)

where A ∈ Sp(2) ⊂ SU(4) ⊂ SU(5) with the embedding of Sp(2) and Sp(3) as de-
scribed above. In this language it is natural to describe the space by the five integers
q̄ = (q1, . . . , q5). Accordingly, we will refer to Bq in either way, namely, by q ∈ Z6 or
q̄ ∈ Z5, and no confusion will arise because of the different number of integers involved.
But it is important to observe that, for the q̄ ∈ Z5 notation, aside from ordering and sign,
replacing one of the integers by the negative of their sum also gives the same space. E.g.,
the Berger space can be written as (1, 1, 1, 1, 1) or as (−5, 1, 1, 1, 1).

This action again has an ineffective kernel Z2 = 〈(−1,− Id)〉. To make this second
description into a true biquotient, we use the diffeomorphism SU(5) ' U(5)/diag(w, Id)
to rewrite it as

Bq̄ = diag(zq1 , . . . , zq5)\U(5)/diag(w,A)−1,

with z,w ∈ S1 and A ∈ Sp(2).
In [Ba] one finds the somewhat different description

diag(zq
′

1 , . . . , zq
′

5)\U(5)/diag(1, wA)−1, (1.4)

and one sees, by writing both as quotients of SU(5), that they are related by

4q ′i = qi + q0, i = 1, . . . , 5. (1.5)

Notice that one needs qi ≡ ε mod 4 for all i = 1, . . . , 5, for a fixed ε = ±1, in order to
rewrite a Bazaikin space as defined in (1.3) into one as defined in (1.4). This turns out to
be a strong condition for the positively curved Bazaikin spaces (see Section 4).
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There are two natural fibrations associated to a Bazaikin space. First, Bq is, by defini-
tion, the base space of a principal circle bundle:

S1
→ SU(6)/Sp(3)→ Bq . (1.6)

But notice that the S1 action is only free modulo the ineffective Z2 kernel. Second, the
total space of this fibration has a further natural fibration

S5
→ SU(6)/Sp(3)→ S9. (1.7)

To see this fibration, we use the fact that SU(6)/Sp(3) = SU(5)/Sp(2). One then obtains
a fibration from the inclusions Sp(2) ⊂ SU(4) ⊂ SU(5) and the fact that SU(4)/Sp(2) =
SO(6)/SO(5) = S5 and SU(5)/SU(4) = S9.

In order to obtain metrics with positive curvature, the symmetric metric has to be
modified. Each Bazaikin space has six natural biquotient metrics associated to it. First,
one can rewrite a space as in (1.1) in six different ways as in (1.3) by choosing different
base points e0 along the coordinate axes. This corresponds to removing one of the six
integers in q. For a space as in (1.3) we have the natural left invariant metric on SU(5)
obtained from the biinvariant metric by scaling with factor< 1 in the direction of U(4) ⊂
SU(5) embedded in the last four coordinates. Since S1

×Sp(2) acts by isometries in this
modified metric, it induces a submersion metric on Bq .

In [Zi] it was shown (see [DE] for a published version) that a necessary and sufficient
condition for one of these metrics to have positive sectional curvature is that

there exists 0 ≤ i0 ≤ 5 such that qi + qj > 0 (or < 0) for all i0 6= i < j 6= i0. (1.8)

It is easy to check that at most one of these six metrics has positive curvature. In the
original paper [Ba], there are four conditions ensuring positive sectional curvature for a
metric as defined in (1.4). But notice that condition (c) in [Ba, p. 1069] implies the other
three and that in the translation (1.5) condition (c) corresponds to qi > 0 for i = 1, . . . , 5.
Bazaikin’s condition is again restrictive. In fact, around 7% of all examples satisfy both
of Bazaikin’s extra assumptions; see Section 4.

We point out that the change (1.1) in the description of the Bazaikin spaces turns out
to be more than cosmetic. It simplifies the expressions for the invariants and the proof of
our theorems significantly. Notice that for the symmetric polynomials one has σi(q) =
σi(q̄)− σ1(q̄)σi−1(q̄).

2. Homotopy invariants

In this section we discuss the topology of the Bazaikin spaces. We start with the coho-
mology ring. Although already computed in [Ba], we present a proof here since it is much
simpler and some of the information obtained will be used again in the computation of
the Pontryagin classes.



194 Luis A. Florit, Wolfgang Ziller

Proposition 2.1 ([Ba]). The Bazaikin space Bq is simply connected and the non-vanish-
ing cohomology groups are given by

H 0(Bq) = H 2(Bq) = H 4(Bq) = H 9(Bq) = H 11(Bq) = H 13(Bq) = Z,
H 6(Bq) = H 8(Bq) = Zs,

with 8s = |σ3(q)|. The ring structure is determined by the fact that if u ∈ H 2(Bq) is a
generator, then ui is a generator of H 2i(Bq) for i = 2, 3, 4.

Proof. As discussed in Section 1, let G = SU(6), H = S1 and K = Sp(3) with embed-
dings f1 : H → G given by f1(z) = diag(zq0 , . . . , zq5) ∈ SU(6) and f2 : K → G the
canonical embedding of Sp(3) ⊂ SU(6). Furthermore, assume that the biquotient action
of (H ×K)/0 on G is free, where 0 = Z2 = 〈(−1,− Id)〉.

For brevity, LM , in the following, will always denote the direct product L×M of the
connected Lie groups L and M . Furthermore, BL will denote the classifying space of L.
Choose a contractible space E on which GG acts freely. Hence HK and H or K also act
freely with quotient their respective classifying space.

The fibration in (1.6) induces the fibration

G/K → Bq → BH ′ , (2.2)

where H ′ = H/{±1} is the free action of S1 on G/K . On the other hand, the Serre spec-
tral sequence of the fibration (1.7) implies thatH ∗(G/K,Z) = H ∗(S5

× S9,Z). Hence in
the spectral sequence of the fibration (2.2) one has only two non-vanishing differentials:

d6 : E0,5
5 = Z→ E

6,0
5 = Z, d10 : E0,9

11 = Z→ E
10,0
11 = Zs .

The differential d6 is multiplication by some integer s and, together with Poincaré duality,
it follows that the cohomology ring of Bq is as claimed in the Theorem with H 6(Bq) =
H 8(Bq) = Zs . It remains to determine the integer s. For this purpose we use the naturality
of differentials in the following commutative diagram of fibrations:

G× E G/K-

? ?

G×HK E Bq-
π

?
(ϕH ,ϕK )

?
B1

BH × BK BH ′
-

Diagram 1

Here HK acts freely on G × E via a diagonal action consisting of the left and right
action onG and the free action on E. The projection onto the second factorG×HK E→
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BH × BK is the classifying map of this HK principal bundle and defines the left hand
side fibration. All horizontal maps are the natural projections.

We first claim that the differential d ′6 in the left hand side fibration determines d6.
To see this, observe that the projection G × E → G/K induces an isomorphism in
dimension 5. This follows by using the edge homomorphism in the spectral sequence
of G×E→G/K→BK since the differentials on E0,5

5 = Z vanish for dimension rea-
sons. Furthermore, since H → H ′ is given by z 7→ z2, the homomorphism H ∗(BH ′)→

H ∗(BH ) is, via transgression, multiplication by 2 in dimension 2 and hence by 2i in di-
mension 2i. This describes the induced map H ∗(BH ′)→ H ∗(BH × BK) and shows that
d ′6 determines d6.

To compute the differential d ′6, we use naturality with respect to another commutative
diagram of fibrations, modifying the method used in [E3] for Eschenburg spaces:

G× E G× E-

? ?

G×HK E B1G = G×GG E
-

ϕG

?
(ϕH ,ϕK )

?
B1

BH × BK BG × BG
-

B(f1,f2)

Diagram 2

The right hand side fibration comes from the GG principal bundle associated to the free
diagonal action of left and right multiplication on G and the free action on E. Notice that
G×GG E = E/G = BG.

Since all Lie groups involved have no torsion in their cohomology, all remaining com-
putations can be done with integer coefficients, and all cohomology groups are to be un-
derstood with Z coefficients. It is well known that H ∗(G) = H ∗(SU(6)) is the exterior
algebra 3(y2, . . . , y6) and H ∗(BG) the polynomial algebra P [ȳ2, . . . , ȳ6]. Here, yi has
degree 2i − 1 and its transgression ȳi has degree 2i. If TG is the maximal torus of G
with coordinates (t1, . . . , t6),

∑
ti = 0, we identify ti , by abuse of notation, with the

elements ti ∈ H 1(TG) and hence t̄i ∈ H 2(BTG). We then have H ∗(BTG) = P [t̄1, . . . , t̄6]
and H ∗(BG) = H ∗(BTG)

WG , where WG is the Weyl group of G. A basis of the alge-
bra of WG-invariant elements is given by the elementary symmetric polynomials σi(t̄) =
σi(t̄1, . . . , t̄6) and hence we can choose ȳi = σi(t̄).

Similarly, for TK we use the coordinates (s1, s2, s3) and hence H ∗(BK) =

H ∗(BTK )
WK = P [s̄1, s̄2, s̄3]WK = P [b1, b2, b3], with bi = σi(s̄

2
1 , s̄

2
2 , s̄

2
3). Finally,

H ∗(BH ) = P [ū], where u is the coordinate of the circle H .
Under the embeddings f1 : TH → TG with f1(u) = (q0u, . . . , q5u) we have f ∗1 (ti)

= qiu and hence B∗f1
(ȳi) = B∗f1

(σi(t̄)) = σi(q)ū
i . Furthermore, f2 : TK → TG is

given by f2(s1, s2, s3) = (s1,−s1, s2,−s2, s3,−s3) and clearly B∗f2
(ȳ2i+1) = 0 since

H 2i+1(BK) = 0.
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As was shown in [E3], the differentials in the spectral sequence for the fibration
B1G→ BGG are given by

d2i(yi) = ȳi ⊗ 1− 1⊗ ȳi,

where we identify yi ∈ H ∗(G) with elements in E0,∗
2 and H ∗(BG × BG) with elements

in E∗,02 . By naturality, the differentials in the spectral sequence for the left hand side
fibration in Diagram 2 are given by d ′2i(yi) = B∗f1

(ȳi) − B
∗

f2
(ȳi) and hence d ′6(y3) =

σ3(q)ū
3. We conclude that d ′6 : E0,5

5 = Z→ E
6,0
5 = Z is multiplication by σ3(q).

This proves our claim since, as we observed earlier, H ∗(BH ′) → H ∗(BH ) is multi-
plication by 8 in dimension 6. ut

In [CEZ] it was shown that for a given positively curved Eschenburg space, there are only
finitely many other positively curved Eschenburg spaces with the same cohomology ring.
As claimed in Corollary C, the analogous result for Bazaikin spaces is true as well:

Proof of Corollary C(a). The only variable cohomology group is H 6(Bq) = H 8(Bq) =
Zs . We reorder the integers and change the sign of q so that q0 ≤ q1 ≤ · · · ≤ q5 and
|q2| ≤ q3. The positive curvature condition is then equivalent to q1 + q2 > 0. We can
rewrite s as

8s = −σ3(q) = (q1 + q2)
2(q3 + q4 + q5)+ (q1 + q2)((q3 + q4 + q5)

2
+ q1q2)

+ (q3 + q4)(q4 + q5)(q3 + q5), (2.3)

which clearly implies the desired claim. ut

A more subtle homotopy invariant is given by the linking form which is defined as
follows. Let X be a simply connected manifold whose cohomology ring agrees with
the cohomology ring of a Bazaikin space for some integer s. Throughout this note, we
will call such a space a homological Bazaikin space. Consider the Bockstein homomor-
phism β : H 5(X,Zs) = Zs → H 6(X,Z) = Zs , associated to the short exact sequence
0→ Z ·s

→ Z→ Zs → 0. The long exact sequence

· · · → H 5(X,Z)→ H 5(X,Zs)
β
−→ H 6(X,Z)→ · · ·

implies that β is an isomorphism since H 5(X,Z) = 0. The linking form is then given by

L : H 6(X,Z)×H 8(X,Z)→ Zs, L(a, b) = (β−1(a) ∪ b)([X]),

for a given choice of orientation class [X]. L is clearly determined up to sign by lk :=
L(u3, u4) ∈ Zs , where u is a generator of H 2(X,Z). We now claim that

Theorem 2.4. The linking form of Bq is given by

lk = ±32σ−1
5 ∈ Zs,

with σ5 and s as in Theorem B.
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Proof. The number lk can be described in another fashion. Let X be a homological
Bazaikin space. Define an S1 principal bundle P over X by requiring that its Euler class
e(P ) is a generator of H 2(X) = Z. A change in sign for e(P ) corresponds to a change
of orientation of the circle bundle. Hence P is well defined up to orientation and is de-
termined by the homotopy type of X. From the Gysin sequence for S1

→ P → X and
Poincaré duality for P it follows thatH ∗(P,Z) = H ∗(S5

×S9,Z). We can now consider
the spectral sequence of the bundle

P → X→ BS1 ,

whose isomorphism type is a homotopy invariant ofX. As in the proof of Proposition 2.1,
it is determined by only two differentials which can be non-zero, namely,

d6 : E0,5
5 = Z→ E

6,0
5 = Z, d10 : E0,9

11 = Z→ E
10,0
11 = Zs .

Here d6 must be multiplication by s since H 6(X) = Zs , and d10 must be multiplication
by some v with gcd(s, v) = 1 since H 10(X) = 0. This homotopy invariant v is related
to the linking form. In [Si] one finds a discussion of the corresponding question for the
Eschenburg spaces whereH ∗(P,Z) = H ∗(S3

×S5,Z) and the non-zero differentials are
d3 and d5. It is shown there that lk = ±v−1. One easily sees that the same proof carries
over in our situation. It thus remains to compute the invariant v.

In the case of X = Bq the total space P of the circle bundle can be chosen to be P =
SU(6)/Sp(3). Indeed, by the long homotopy sequence of Sp(3)→ SU(6)→ P it follows
that π1(P ) = π2(P ) = 0 and henceH 2(P ) = 0. The Gysin sequence of the circle bundle
then implies that the Euler class is a generator of H 2(Bq). The fibration P → X→ BS1

now agrees with the one in (2.2). We can hence compute the differentials in the spectral
sequence of this fibration using again Diagrams 1 and 2. As in Proposition 2.1, one shows
that d10 is determined by d ′10 and that H 10(BH ′) → H 10(BH ) is multiplication by 32.
Furthermore, one has B∗f1

(ȳ5) = σ5(q)ū
5 and B∗f2

(ȳ5) = 0 and hence d ′10(y5) = σ5(q)ū
5.

As in Proposition 2.1, this proves our claim. ut

There is another homotopy invariant associated to a homological Bazaikin space. To de-
scribe it, consider, as in the proof of Theorem 2.4, the total space P of the circle bundle
with Euler class a generator in H 2(X). As explained there, P is simply connected with
H ∗(P,Z) = H ∗(S5

× S9,Z). Hence one can describe P as a CW-complex

P = S5
∪ e9
∪ · · · ,

with cells in dimension 5, 9, . . . . The attaching map ∂(e9) = S8
→ S5 is an element

α ∈ π8(S5) = Z24 (cf. [Ha, To]) and hence π8(P ) = Z28/〈α〉. Since π8(X) = π8(P ),
the group π8(X) must be a quotient of Z24 as well. Thus, homological Bazaikin spaces
naturally fall into eight different homotopy types.

For the Bazaikin spaces, we claim that they belong to the class where π8(X) = 0.
Indeed, the long homotopy sequence for Sp(3)→ SU(6)→ P :

· · · → π8(SU(6))→ π8(P )→ π7(Sp(3))→ π7(SU(6))→ · · · ,
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together with the fact that π7(SU(6)) = π7(Sp(3)) = Z and π8(SU(6)) = 0 ([Mi]),
implies that π8(P ) = 0 or Z and thus vanishes.

There is a second natural family of homological Bazaikin spaces. They depend on
integers a = (a1, . . . , a3) and b = (b1, . . . , b5), and are described as a quotient

Ma,b = S5
× S9/S1

a,b (2.5)

under the circle action

((z1, z2, z3), (w1, . . . , w5)) ∈ S5
× S9

→ ((eia1θz1, . . . , e
ia3θz3), (e

ib1θw1, . . . , e
ib5θw5)).

From the fibration S1
→ S5

×S9
→ Ma,b it follows that π8(Ma,b) = Z24. Summarizing,

we have

Proposition 2.6. The Bazaikin spaces belong to the homotopy type π8(X) = 0 and the
manifolds Ma,b to the homotopy type π8(X) = Z24.

In the case where a1 = a2 = a3 and b1 = · · · = b5 the manifold Ma,b is homogeneous
under the transitive action of SU(3)×SU(5) on S5

×S9 since it commutes with the circle
action.

Remark 2.7. By combining the long homotopy sequences of the above fibrations, one
easily shows that the homotopy groups πi = πi(Bq), i ≤ 13, are given by

πi = 0 for i = 1, 3, 4, 8, 10, 11,
π6 = π7 = π13 = Z2, π12 = Z360 and π2 = π5 = π9 = Z

(cf. [To]). In particular, one sees that the Bazaikin spaces cannot be distinguished from
each other by their low dimensional homotopy groups.

As we will see in the next section, there is another homotopy invariant given by
p1 mod 24 which divides the Bazaikin spaces into two different homotopy types.

3. Diffeomorphism invariants

The next natural set of invariants are the Pontryagin classes, which depend on the diffeo-
morphism type. We now show:

Theorem 3.1. The Pontryagin classes p1 and p2 of Bq are given by

p1 = −σ2 ∈ H
4(Bq) = Z, 8p2 = 3σ 2

2 − σ4 ∈ H
8(Bq) = Zs,

with σi and s as in Theorem B.
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Proof. To compute the Pontryagin classes, we modify [Si, Theorem 4.2] to the situation in
the proof of Proposition 2.1. As described there, we have a projection π : X = G×HK E
→ Bq and an HK principal bundle with classifying map (ϕH , ϕK) : X→ BH × BK . In
[Si] the following vector bundles were introduced: αH = (G/K)×H h where H acts on
G/K on the left and on h via the adjoint representation, and similarly αK = (H\G)×K k;
and αG = (H\G)×(G/K)×Gg whereG acts on (H\G)×(G/K) via g ·(Hg1, g2K) =

(Hg1g
−1, gg2K) and on g via the adjoint representation. The projection onto the first

factor shows that they are all vector bundles over Bq = H\G/K . Although the action of
HK on G is only almost free, one easily sees that the proof of [Si, Theorem 3.2] carries
over to show that the tangent bundle τ of Bq satisfies

τ ⊕ αH ⊕ αK = αG.

Since the action is only almost free, [Si, Theorem 4.2] cannot be applied directly, but
can be modified as follows. Define ᾱH = (G×K E)×H h withH acting onG on the left
and similarly ᾱK = (G×H E)×K k and ᾱG = [(G×H E)× (G×K E)]×G g as vector
bundles over X. Clearly π∗(ᾱH ) = αH and similarly for the others so that we obtain

π∗(τ )⊕ ᾱH ⊕ ᾱK = ᾱG.

We can now use the usual formula for the Pontryagin classes of a homogeneous vector
bundle αL = P ×L V associated to the L principal bundle P → P/L = B:

p(αL) = 1+ p1 + p2 + · · · = ϕ
∗

L(a), a =
∏
(1+ α2

i ),

where αi runs through the positive weights of the representation of L on V , and ϕL :
B → BL is the classifying map of the L principal bundle. Here we have identified αi ∈
H 1(TL) ∼= H

2(BTL) and hence a ∈ H ∗(BTL)
WL ∼= H ∗(BL).

The vector bundles ᾱH , ᾱK , ᾱG are associated to a principal bundle and the weights
are the roots of the corresponding Lie group. Thus p(ᾱH ) = 1, and we obtain

p(π∗(τ )) = ϕ∗G(a)ϕ
∗

K(b
−1), a =

∏
αi∈1

+

G

(1+ α2
i ), b =

∏
βi∈1

+

K

(1+ β2
i ).

The positive roots 1+G for G = SU(6) are ti − tj , 1 ≤ i < j ≤ 6, with
∑
ti = 0, and a

computation shows that

a = 1− 12y2 + 60y2
2 + 12y4 + · · · ,

where ȳi = σi(t̄1, . . . , t̄6) are the elementary symmetric polynomials in t̄i ∈ H 2(BTG).
Similarly, the positive roots for K = Sp(3) are si ± sj , 2si with 1 ≤ i < j ≤ 3 and hence

b = 1+ 8b1 + 22b2
1 + 14b2 + · · · and b−1

= 1− 8b1 + 42b2
1 − 14b2 + · · · ,

with bi ∈ H 2(BTK1
) defined as in the proof of Proposition 2.1.
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From the spectral sequence computation in Proposition 2.1 it follows that ϕ∗G(ȳi) =
B∗f1
(ȳi) = σi(q)ū

i . Furthermore, one shows that B∗f2
(ȳ2) = −b1 and B∗f2

(ȳ4) = b2 and
hence ϕ∗K(b1) = −σ2ū

2 and ϕ∗K(b2) = σ4ū
2. Altogether,

ϕ∗G(a)ϕ
∗

K(b
−1)= (1−12σ2ū

2
+12(5σ 2

2 +σ4)ū
4
+· · · )(1+8σ2ū

2
+14(3σ 2

2 −σ4)ū
4
+· · · )

= 1− 4σ2ū
2
+ 2(3σ 2

2 − σ4)ū
4
+ · · · ,

which computes the Pontryagin class for π∗(τ ). Since π∗(p(τ)) = p(π∗(τ )), the Pon-
tryagin classes for τ will now be determined by the homomorphisms π∗ : H i(B) →
H i(X), where i = 4, 8. Recall that in the proof of Proposition 2.1 we showed that
π∗ : H 2(BH ′)→ H 2(BH ) is multiplication by 2 in dimension 2. On the other hand, us-
ing Diagram 2 we showed that H 2(X) is generated by ȳ ∈ H 2(BH ), whereas Diagram 1
implies that H 2(Bq) = H 2(BH ′). Hence π∗ is multiplication by 4 in dimension 4, and
by 16 in dimension 8. Combining all of these proves our claim. ut

Notice that the first Pontryagin class, interpreted as an integer, has a well defined sign
since u2 is a uniquely defined generator in H 4(Bq) = Z. Since the rational Pontryagin
classes are not only diffeomorphism invariants, but also homeomorphism invariants, so
is the integer p1 = −σ2(q). Furthermore, a theorem of Hirzebruch ([Hi]) says that p1
mod 24 is a homotopy invariant. For this, we have the following.

Corollary 3.2. For any Bazaikin space Bq , the following holds:

(a) The first Pontryagin class satisfies p1 = 7 or 15 mod 24. Moreover, up to order and
sign, we have:
(a.1) p1 = 15 mod 24 if and only if q mod 3 = (1, 1, 1, 1, 1, 1) or (1, 1, 1, 0, 0, 0);
(a.2) p1 = 7 mod 24 if and only if q mod 3 = (1, 1, 1, 1,−1, 0);

(b) The order s of H 6(Bq) = Zs satisfies s = ±1 mod 6.

Proof. Since all qi’s are odd, by (1.2) we have q mod 4 = ±(1, 1, 1, 1, 1,−1). Then we
easily see that p1 = 7 mod 8 and that s is odd. Again by (1.2), the only possibilities for
q mod 3 are (1, 1, 1, 1, 1, 1), (1, 1, 1, 0, 0, 0) or (1, 1, 1, 1,−1, 0) up to ordering and sign
of q. In all cases we obtain s = ±1 mod 3. An easy computation verifies the remaining
claims. ut

Thus Bazaikin spaces naturally fall into two homotopy types. It is also known that
p2 + 2p2

1 is a homotopy invariant mod 5 ([Wu]). But this does not give any fur-
ther information. Indeed, using (1.2) we see that s mod 5 = 0 if and only if
q mod 5 = ±(ε, ε, ε, ε, ε, 0), for ε = 1, 2. This easily gives p1 mod 5 = p2 mod 5 = 0.

With the expression for the above topological invariants, we are in a position to give
the

Proof of Theorem A. Let M = G/H be a homogeneous space which we assume is
homotopy equivalent to Bq for some q. Since it is simply connected, it is well known
that there exists a semisimple subgroup of G which also acts transitively. We can hence
assume that G is semisimple. We can furthermore assume that G is simply connected by
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making the action on G/H ineffective if necessary. Since M is simply connected, this
implies thatH is connected. From the long homotopy sequence of the fibrations (1.6) and
(1.7), together with the fact that the rational homotopy groups of an odd n-dimensional
sphere are only non-zero in dimension n, it follows that πi(Bq)⊗ Q = 0 for i 6= 2, 5, 9
and that it is equal to Q for i = 2, 5, 9. Hence the same holds for G/H . Now recall that
for every compact Lie group L one has H ∗(L,Q) = H ∗(Sn1 × · · · × Snk ,Q) where L
has rank k and the integers ni are called the exponents of L. These exponents are well
known for each compact simple Lie group (cf. [KZ, Table 1.4] for a complete list). In
particular, they are all odd, 1 occurs with multiplicity r if and only if the center of L is r-
dimensional, and 3 occurs with multiplicitym if and only if L hasm simple factors. Thus,
from the long exact homotopy sequence for H → G→ M tensored with Q, and the fact
that G contains no S1 factors, it follows that H = H ′ · S1 with H ′ semisimple, and that
G and H ′ have the same number of simple factors. Furthermore, there must be an extra
S5 and S9 in the sphere decomposition ofG compared to the one for H ′. We can now use
[KZ, Lemma 1.4], which states that a homomorphism of Lie groups f : A→ B such that
f∗ : π∗(A)⊗Q→ π∗(B)⊗Q is onto must itself be onto as a Lie group homomorphism
as well. Hence, if G has at least three simple factors, G = G1 × G2 × G3 × · · · , and
the extra 5- and 9-spheres are contained in G1 ×G2, the projection of H onto G3 × · · ·

must be onto, which implies that G1 × G2 already acts transitively on G/H . Hence we
can assume that G and H ′ both have one or two simple factors.

We now look at the list of exponents for simple Lie groups, and use the usual abbrevi-
ations An = SU(n + 1), Cn = Sp(n), Dn = SO(2n). By abuse of notation Cn will also
stand for Bn = SO(2n + 1) since they have the same exponents. Due to the low dimen-
sional isomorphisms D3 = A3 and C1 = A1 = D1, we can assume that n ≥ 1 for Cn,
n ≥ 2 for An, and n ≥ 4 for Dn. Now observe that the only simple Lie groups which
contain a 5-sphere are An for some n ≥ 2, and the only ones which contain a 9-sphere are
An, n ≥ 4, or D5. One easily obtains the following list of pairs (G,H ′) which have all of
the above properties:

(I) (G,H ′) is one of (a) (A4, C2) or (b) (A5, C3);
(II) (G,H ′) = (G1G2, H1H2) is one of the following:

(a) (A3D5, C2C4), (b) (A2D5, C1C4), (c) (A3A4, C2A3), or (d) (A2A4, C1A3);

(III) (G,H ′) = (G1L,LH1), where (G1, H1) is one of the cases in (I).

Using the possible embeddings of classical Lie groups into each other, as well as the
low dimensional isomorphisms and the replacement of Cn by Bn discussed above, we see
that none of the simple factors of H ′ can be embedded diagonally in G1G2. Hence, in
case of (II) and (III), G/H ′ is automatically a product homogeneous space (G1/H1) ×

(G2/H2)with the order indicated in the list. Since we also have a circle insideH , we need
the further property that the normalizer ofH1 inG1 or the normalizer ofH2 inG2, or both,
are not finite. This excludes (Ib) and (IIa). Case (Ia) uniquely determines the Berger space
since SO(5) ⊂ SU(5) has a finite normalizer, and the normalizer of Sp(2) ⊂ SU(5) is
one-dimensional. This also excludes case (III), since one needs H1 ⊂ L ⊂ G1 in this
case, which is only possible when L contains a circle, contradicting our assumption that
G is semisimple.
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For the remaining three cases in (II), we are left with the following possibilities:

G/H = (SU(3)/SU(2)S1)× (SO(10)/SO(9)) = CP2
× S9, (IIb)

G/H = (SO(6)/SO(5))× (SU(5)/SU(4)S1) = S5
× CP4, (IIc)

G/H ′ = (SU(3)/SU(2))× (SU(5)/SU(4)) = S5
× S9, or (IId)

G/H = (SU(3)/SO(3))× (SU(5)/SU(4)S1) = (SU(3)/SO(3))× CP4. (IId′)

The two cases where the manifold contains a CP4 factor contradict the rational cohomol-
ogy ring structure of the Bazaikin space. In (IId) the circle in H can be embedded diago-
nally at slope (a, b) into the two-dimensional normalizer of H ′ in G and we can assume
that gcd(a, b) = 1. Case IIb can now be interpreted as the special subcase (a, b) = (1, 0).
Notice also that a = 0 again contradicts the rational cohomology ring of Bq and we can
hence assume a ≥ 1.

Altogether, we are left with the Berger space and the manifoldsG/H = S5
×S9/S1

a,b,
where the circle S1

a,b acts on S5
× S9 as a Hopf action on each sphere, but with relative

speed a on the first factor and b on the second factor. These are special cases of the
manifolds Ma,b discussed in Proposition 2.6 where we showed that the Bazaikin spaces
and the manifolds S5

× S9/S1
a,b belong to different homotopy types.

So far, we have shown that if a Bazaikin space has the homotopy type of a homoge-
neous space, the homogeneous space can only be the Berger space. We now need to show
that the only Bazaikin space with this property is the Berger space itself.

For a positively curved Bazaikin space, the equation (2.3) easily implies that among
the positively curved manifolds Bq the value s = 5 is only obtained for the Berger space
q̄ = (1, 1, 1, 1, 1). This proves the first part.

For a general Bazaikin space Bq , we use the homeomorphism invariant p1 =
1
2‖q‖

2.
For the Berger space we have p1 = 15, which means that if Bq is homeomorphic to it,
then maxi(|qi |) ≤ 5. One now easily sees that p1 = 15 and s = 5 is only possible when
q̄ = (1, 1, 1, 1, 1). This finishes the proof of the second assertion. ut

Remark. (a) The proof can easily be modified to show that a homogeneous space which
is a homological Bazaikin space, must be a Berger space or one of S5

× S9/S1
a,b. For

this one uses the fact that a homological Bazaikin space has the rational homotopy type
of S9

× CP2 (cf. [BK, Lemma 8.2]), and hence Sullivan’s rational homotopy theory (cf.
[GM]) shows that π∗(X) ⊗ Q is non-zero (and one-dimensional) only in dimensions
2, 5, 9.

(b) A similar argument gives a short proof that a homogeneous space which has the
rational cohomology of an Eschenburg space must be an Aloff–Wallach space or S3

×

S5/S1
a,b. The fourth homotopy group distinguishes the two classes (cf. [E1]). This was

used in [E1] to show that many positively curved Eschenburg spaces cannot be homotopy
equivalent to a homogeneous space. On the other hand, there are some that are homotopy
equivalent but not homeomorphic to Aloff–Wallach spaces; see [Sh].

(c) In [WZ] it was shown that the homogeneous spaces S5
× S9/S1

a,b satisfy s = a3.
For a Bazaikin space Bq with s a cube, there hence exist infinitely many homogeneous
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spaces with the same cohomology ring. It happens occasionally for a positively curved
Bazaikin space Bq that s is a cube. The one with this property and smallest s is given by
q̄ = (5, 5, 5, 13, 23), which has s = 173.

(d) We finally observe that a Bazaikin space may have the same homotopy invariants
(as above) as the Berger space, e.g. q̄ = (−89, 15, 21, 31, 111).

4. Some computer experiments

We wrote a C++ program in order to compute all positively curved Bazaikin spaces Bq
together with the invariants considered in this paper, and with order s = |H 6(Bq)| ≤
40 000 000. There are 472 959 576 manifolds in a +20GB file. Among them, we looked
for subsets of spaces matching different invariants:

(i) 3 210 637 pairs, 38 130 triplets, 645 quadruples, 12 5-tuples and one 6-tuple match
the homeomorphism invariants s and p1.

(ii) 3 065 pairs match the homotopy invariants s, lk and p1 mod 24. The first match-
ing pair (with smallest s) is q̄ = (−11, 13, 45, 67, 77) and (−43, 45, 49, 61, 79),
with s = 254.941, lk = 86 294 and p1 mod 24 = 7. No triplet matches the three
invariants.

(iii) 365 pairs match s, p1 and p2, but no triplets. The first matching pair is given by
(−13, 33, 41, 105, 137) and (−3, 5, 77, 83, 141), with s = 999 437, p1 = 62 271
and p2 = 949 280. It is interesting that all these pairs, but one, match the first
four symmetric functions σi(q), 1 ≤ i ≤ 4. The pair that does not match the first
four symmetric functions (in fact, none of them) is (−123, 149, 197, 201, 525) and
(−19, 21, 75, 437, 437) with s = 28 864 757, p1 = 646 383, p2 = 25 993 311.

(iv) No pair matches the homeomorphism invariants s, lk and p1. In the search for such
a pair, we went up to s ≤ 100 000 000: 2 130 601 485 positively curved Bazaikin
manifolds in a +100GB file. Still, no pair matches the homeomorphism invariants.

(v) In the case of arbitrary (not necessarily positively curved) Bazaikin manifolds, we
found several pairs that match s, lk, p1 and p2, especially for small values of s,
where lk and p2 have weak influence. There is even a quadruple matching all four in-
variants: (−53,−11, 25, 33, 77), (−53,−23, 25, 49, 69), (−53,−3, 5, 49, 73) and
(−53,−39, 41, 49, 61), with s = 1, lk = 0, p1 = 7.807 and p2 = 0.

(vi) About 7% of the examples satisfy the (only necessary) conditions given in [Ba] for
the Eschenburg metric on Bq to have positive curvature.

The source code of the programs can be found at http://w3.impa.br/∼luis/bazaikin/.
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