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Abstract. Let N be acompact Riemannian manifold. A quasi-harmonic sphere on N is a harmonic
map from (R™, e_|x|2/2(’"_2)ds§) to N (m > 3) with finite energy ([LnW]). Here a’sg is the
Euclidean metric in R™. Such maps arise from the blow-up analysis of the heat flow at a singular
point. In this paper, we prove some kinds of Liouville theorems for the quasi-harmonic spheres. It
is clear that the Liouville theorems imply the existence of the heat flow to the target N. We also
derive gradient estimates and Liouville theorems for positive quasi-harmonic functions.
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1. Introduction

Let (M, g) and (N, h) be two compact Riemannian manifolds with dimM = n. If a
smooth heat flow u(x,t) from M to N blows up at a finite time, we blow up u at a
singular point (xg, fp) by setting u, (x,t) = u(xg + rx, to + r2t) (t < 0). In [LnW], it is
proved that, if there is no harmonic S on the target N, there is a subsequence ry — 0
such that u,, — uq strongly in HIL .» Where 1 is a harmonic sphere or a quasi-harmonic
sphere, i.e. us : S¥ — N is harmonic, or us : R” x (—00,0) — N with uxo(x, 1) =
w(x/+/—1), where w : (R™, e_|x|2/2(m_2)ds§) — N is a harmonic map of finite energy
2<k<n-—1and3 <m < n). Here dsg is the Euclidean metric in R™. In other words,
w satisfies the equation

T(w) = 3x - Vw (1.1)

with the property that

/ IVw|2e F/4 dx < oo, (1.2)
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where Sl Bl
w' dw
(w) = Awk + F’kf(w)WW
is the tension field of w, and Ff are the Christoffel symbols of N in local coordinates.

In a recent paper [DZ], Ding—Zhao showed that equivariant quasi-harmonic spheres
are discontinuous at infinity. So the behavior of quasi-harmonic spheres is quite different
from that of harmonic spheres.

Furthermore, Lin—Wang [LnWI showed that, if there is no harmonic sphere and no
quasi-harmonic sphere on the target N, the heat flow is in fact smooth. Therefore, Liou-
ville theorems for harmonic spheres and quasi-harmonic spheres imply global existence
of heat flows. In this paper we study Liouville theorems for quasi-harmonic spheres.

Even if N = R, that is, w is a function, the equation seems to be new. In this
case the equation reduces to a linear equation in R™

A(w) = Jx - Vu. (1.3)

We can view w as a harmonic function on R" with metric ds? = e~ I¥?/2m=2) Yoy dx,%.
The metric is quite singular at infinity, and it is not complete. One may wonder whether
the quasi-harmonic functions still possess the basic properties of harmonic functions. In
this paper, we show that there is no nonconstant positive quasi-harmonic function on
R™ with polynomial growth, and consequently, there is no nonconstant bounded quasi-
harmonic function on R™. In general, we derive gradient estimates for positive quasi-
harmonic functions on R,

sup |Vlogw| < C(m)R,

Bg(0)
where C(m) depends only on m. We show that there is a positive constant Fj,
depending only on m such that any positive quasi-harmonic function on R” with
limg_s0o R~ supg, ) |V1ogw| < 1/F, is constant. In the proof, we use the gradient
estimate method developed in [L1] and [L2].

Using gradient estimates for quasi-harmonic spheres, we also show that, if the target
manifold is simply connected and complete with nonpositive sectional curvature, there is
no nonconstant quasi-harmonic sphere with bounded image.

We say B, (xp) is a regular ball in N if Cut(xp) N B,(xg) = ¥ and VKr < /2
where K > 0 is an upper bound of the sectional curvature of N on B, (xg). The heat
flow and harmonic maps into regular balls were studied by Baldes [B, Gulliver—Jost
[GJI, Hildebrandt [Hil], Hildebrandt—Kaul-Widman [HKW], Jost [J], Li [L] and Li—Wang
[LWI]. In this paper we show that there is no nonconstant quasi-harmonic sphere with
image in a regular ball, which can certainly be applied to the existence of heat flows and
harmonic maps into a regular ball.

2. Nonpositively curved targets

In this section, we show that, if the target manifold is simply connected and complete with
nonpositive sectional curvature, then any quasi-harmonic sphere with bounded image is a
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constant map. This can be seen as a generalization of the classical Liouville theorems for
harmonic functions on R™.

Theorem 2.1. Let N be a simply connected complete Riemannian manifold with non-
positively sectional curvature. Let u be a quasi-harmonic map from R™ to N, that is, u
satisfies the equation @ Assume that yy ¢ u(Br(0)). Let p(y) be the distance between
yand yg in N. Then, if b > 2sup{p(u(x)) | x € Bgr(0)}, we have

V) _ €

W 2.1
Baptt) B — p2(x)) ~ Rb @D
where C > 0 depends only on m and N.
Proof. Let
pl) = — VL) 2.2)
X)) = —FF//———F—"7"7=. .
(b? — p*(u(x)))?
Then
Vo) = —UVulC) 2V 0% Vu (x) 23
B2 = pr@())? (b= p2(u(x)))3’ '
and
A(IVul*(x)) 4V 2V |Vu[*(x)
A = +
P = B w2 T @ )
2007 Vul?(x) | 6]Vp?|Vul*(x)
+ . 2.4
(b2 — p2(ux))? (b — p*(u(x))* @
Note that (T.T)) and the Bochner formula (see [ELI) imply
AIVul? = 2|Vdu|® + |Vul> + Vu - (x - Vdu),
and therefore
AG) > 212Vdu)?(x) + |[Vul*(x) + Vu - (x - Vdu) 4V p*V|Vu|*(x)
X
- (b — p*(u(x)))? (b? — p*(u(x)))3
2 2 212 2
2Ap%|Vul“(x) 6|V~ || Vul~(x) 25)

(b? = p*(x)))? (b = p2(u(x))*
By (I.1) and the chain rule, we have

Ap* () = H(p*)(Vu, Vu) + 32 - Vp? (u(x)),

where H (p?) is the Hessian of p2. Since the sectional curvature Ky of N is nonpositive,
the Hessian comparison theorem implies

Ap* () = 2|Vul*(x) + 5x - Vp? (u(x)). (2.6)
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Substituting (2.6) into (2.3) yields

2\Vdu|*(x) + |[Vul?(x) 4V p2V|Vul?(x)

Ap(x) >

(b% — p2(u(x)))? (b2 — p*(u(x)))3
4| Vul|*(x) 61V 22| Vul*(x)
(b — p2(ux)))3 (b — p%(u(x)))*
Vu-(x-Vdu)  x-Vp2ux)|Vu|*(x)
(b* — p%(u(x)))? (b% — p2(u(x)))3
It follows from (2:3) that
Vo= X V(Vul?(x)) = 2x-Vp*Vul*(x)
X - = ’
b2 — p2(x)))? (b — p2(u(x)))?
and
Vp? Vo _Vp?-V(VuP () | 2IVeP|Vul*(x)
B2 —p2 (b2 —pr(x)? (b — pEu(x))*
So
2|Vdu|?(x) 2V p2V|Vu|?(x)
AP 2 a2 T T B = )’
4| Vul*(x) N 2V - Vp?
(b2 — P2 (x))? b2 — p2(u(x))
2|V 2| Vul*(x) |Vul?(x)

O — 2@t T B = a2

Holder’s inequality implies that

2|Vdul? 2V PIVul> | |Vdu||Vul |Vp?]
B2 = p2@))? (B = PP T (B2 = p2(u)))?

and
|V|Vu|2| < 2|Vdu||Vu]l.

Substituting the last two inequalities into (2.7) we have

AG() > 4|Vul* |Vu|?
T (02— pPux))? (b — p*(u(x)))?
. 2
2V - Vp 1x Vo

B2 p2(u(x)) ' 2
Let r(x) = |x|, and introduce

F(x) = (R* = r*(x))*¢ (x).

V.

Q2.7)

2.8)
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Since Fypr0) = 0, if Vu #£ 0, then F must achieve its maximum at some point x¢ in
Bg(0). Then by the maximum principle we have

VF(x0) =0 2.9
and
AF(xg) <0. (2.10)
By (2.9) and (2.10) we have, at x,
Vo 4rVr
7= 2 2.11)
and
A¢p  8rVr-Vo 4m 8r?
—_— = — <0. 2.12
¢’ (Rz_r2)¢ Rz_r2+(R2_r2)2 - ( )
It follows that

A 24r2 4m
7— (R2—r2)2 — R2—r2 SO (213)

By 2.8), @-11), (2.12) and (2.13), we have

8rVr - Vp? 2rx - Vr 24r2 4m
4* — p? 1 — — <0.
( p)¢+(R2—r2)(b2—p2)+< R2—r2) RE—22 R _p2°
Because
b 5 2rx - Vr 2r?
pu(x)) < > [Vp“| < b|Vu|, and Ry > 0,
we have 5
8rb|Vu| 24r 4m
302 — —~ — <0. 2.14
¢ (R2 _ rZ)(bZ _ ,02) (R2 _ r2)2 R2 — 2 — ( )
Multiplying through (2.14) by (R* — r2)?, we have
3b°F — 8RHF'Y? — (24 +4m)R*> < 0,
which yields
CR
sup F'72(x) < F'P(xp) < —,
Bry2(0) b
that is,
[Vu|(x) C
U T 2u(x)) ~ Rb
Bgp(0) b — p*(u(x)) — Rb

This proves the theorem. O

The gradient estimate (2.1)) clearly implies the following Liouville type theorem.

Theorem 2.2. Let N be a simply connected complete Riemannian manifold with nonpos-
itive sectional curvature. Let u be a quasi-harmonic map from R™ to N, that is, u satisfies
the equation (1.1)). If the image of u in N is a bounded set, then u is constant.
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3. Image in a regular ball

Let us first recall the definition of a generalized regular ball from [L] and [LW]. Let Ny
be a bounded open set of N. We say that Ny satisfies condition (C) if there is a positive
function f € C?(Np) satisfying

—V2f = fka(»)h = Co(No)h,

and
0 <m(No) < f(y) <ma(Ng) < 00,

for all y € Ny, where
k2(y) = sup{K(y, ) | K(y, ) is the sectional curvature of a two-plane = C T, N},

and Co(Ng) > 0. If Ny satisfies condition (C) and there exists a nonnegative convex
function f* on Ny such that Ng = (f*)~1([0, r)), we call Ny a generalized regular ball.
It is clear that a regular ball is a generalized regular ball (cf. [L] and [LWI]]).

Theorem 3.1. Suppose that Ny C N satisfies condition (C). If u(x) is a quasi-harmonic
map from R™ to Ny, that is, u satisfies the equation (1.1)), then
Cum
sup |Vu| < <221 3.1)
Bgr/2(0) R

where Cy, is a positive constant depending only on m, Co(Ny), m1(No) and ma(Ny).

Proof. Set
_Vu)?

F = —_—
)= 2o

A straightforward computation gives

_ V|Vu? 2V f|Vul?

VF 7 73 (3-2)

and
AF— A|JY2u|2 B 4Vf]VC3|Vu|2 B 2Af}l3Vu|2 N 6|ij|j4|w|2' 3.3)

Note that

Af@(x) = V2(f)(Vu, Vi) + 3x - V f (u(x)) (3.4)

and

AIVul?> = 2|Vdul> + |Vul? + Vu - (x - Vdu)

-2 Z (RN (du(e;), du(ej))du(e;), du(e;)), (3.5)

ij=1
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where e, ..., en is the standard basis of R™, and RY is the curvature operator of N.
Substituting (3.4), (3-3), and (3.2) into (3-3), using the assumption (C), one gets
2|Vdul® + |Vul>  2Co|Vul* 6|V f|*|Vul?
AF > I ulf;rl ul n O}3u| + I f]|c4| ul
Vu-(x-Vdu) x-Vf|Vul> 4VfV|Vul|?
T T T
_2/Vdul? + |Vul* | 2Co|Vul* | 2|V f2|Vul?
- f2 + f3 + f4
2VfV|Vu|> 2Vf-VF 1
- 3 - + —x-VF. (3.6)
f f 2
By Holder’s inequality, we have
2\Vdul> 2|V f1’|Vul®> _ 4|Vdu||Vu||Vf|
[ R
and
IV|Vul?| <2|Vdul |Vu|.
Substituting the last two inequalities into (3.6), we obtain
\%
f 3.7

AF >2Com | F> —2VF - -+ + (F + x - VF).

Let r(x) = |x|, and introduce

¥ (x) = (R* — r?(x))*F (x).

Since ¥ |ypr0) = 0, if Vu £ 0, then ¢ must achieve its maximum at some point Xy in

Br(0). Then by the maximum principle we have

Vi (xg) =0
and
AYr(xp) < 0.
By (3.8) and (3.9) we have, at xo,
VE_ 49
F  R2—2
and
AF  8Vr-VF 4m 8r?

T (R2_r2)F_R2_r2+(R2_r2)2—

<0.

(3.8)

(3.9)

(3.10)

@3.11)
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It follows that
AF 24r2 am__ 0
F (Rz_rz)z R2—r2 -

By (3.7), (3:10), (3.11) and (3:12), we have

’C F 8R pl2 (14 2rx - Vr 242 4m
m F — _ _
0t R2_ 2 R2 _ 2 (RZ—/722 R _j2-
Because

2rx - Vr

—R2 — 2 >0,
we have )

8R 1 24r dm
_ /2 _ _
2Com F 2 F 22 R <0.

Multiplying through (2.14) by (R? — r?)?, we have
2Com 1y — 8Ry'/? — (24 + 4m)R? < 0,

which yields
sup ¥'2(x) < ¥'2(x0) < CuiR,
Bpr2(0)
that is,
Vul(x) _ Cn

sup < —.
Brp© f@(x)) — R

This proves the theorem.

By the gradient estimate (3.1I)), we can show the following Liouville type theorem.

(3.12)

(3.13)

Theorem 3.2. Suppose that Ny C N satisfies condition (C). If u(x) is a quasi-harmonic
map from R™ to Ny, that is, u satisfies the equation (1.1) with image in Ny, then u is

constant.

4. Positive functions

In this section, we consider the positive quasi-harmonic functions on R™.

Theorem 4.1. Let u be a positive quasi-harmonic function on R™, that is, u > 0 satisfies

the equation (1.3). Then we have the gradient estimate

sup |Vlogu| < C(m)R,
Br(0)

where C(m) is a positive constant depending only on m. There is a positive constant

F,, > 0 such that, if in addition

1
lim R~! sup |Vlogu| < —,
R—o0 Bg(0) Fy

then u is a constant.
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Proof. Letw = u= P, where 0 < B < 1is to be defined later. Then

v v 1 Vo2 1
Vw:—ﬁu7ﬂ71Vu, ﬂ:ﬁﬂ, Aw:ﬂi| ol + —x-Vo.
w u B w 2
Let ¢ (x) = |Vw|?/w?. Then
V(|Vow|?) V|V
V¢()C): 61)2 _2 w3 5
A(|Vw|? Vo - V(|Vo|? Vol* Vol?*A
A(x) = (I 2wl)_4 w (3I wl)+6| czl —2| wl3 @
w w w w

Note that

B+1Vw-V(Vel?) 2,3 +1|Vol*

A(Vol?) = 2|Vdw|*+2 Vol + ) wixiok.

B @ B ki
Then
2|Vdw|? B+1 Vo - V(Vol|?) B+1\|Vol*
A = 2 —4 6—2——
¢ (x) PRI B w3 + B o
IVol> D i ©iXiwgi Vo> [B+1 Vo> 1
: -2 —x-V
+ w? + w? w3 B 1) +2x @
B 2|de|2Jr , 4 IVwI4+¢
T ot B) w*
i 0 X Wi Vo|*x - Vo 2(1 — Vo -V Vol*
+[Zk,lzz i | |3 }Jr( /3)[ ¢+2| 4|}
w w B w w
2|Vdwl|? Vol* 1 21— B) Vo -V
=2 2' 5! 4| PR i il 4 .1
W 0] 2 B w
By Cauchy’s inequality, we have
2 1 2
|Vdo|” > —(Aw)~,
m
therefore
Vdw*> 1 D? [Vol* 1 |x-Vo|? 1 |[Vol?
Vdol? LB+ 12 Volt 1 |x-VoP  p+1[Vel o
w? m B2 w* dm  w? mB 3

By Holder’s inequality, we get

Vdw|* _ (1 B+ 1)? _1>|Vw|4 +< 1 (/3+1>2>|x~w>|2

w? m B2 w? dm (2mp)? w?
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Substituting the last inequality into {@.I)), we obtain

2 (B+1)2 Vol* 1 2(1 = B) Vo - Vo
A >(=2—~2 —4 —x-V
¢(x)_<m e S Tty Ve T -
1 D2\ |x - Vol?
o L D7) x Vol 4.2)
4dm  (2mpB)? w?
We choose 0 < 8 < 1 such that
2 1)?
26+D7
m B2
Then from (#.2) we have
Ap(x) = [¢p(X)|” + Apx - Vo + BmT — Cnlx 7| (x)]. (4.3)
Using (@.1) and Hélder’s inequality, we can have another estimate for A¢ (x):
2|Vdwl|? 4\ |[Vol* Vo - V(Vo|?)
A¢(x)=—4+(2——) T —2 3 +¢
w B) w w
N 1 Vo + 2[ Vo - V¢ +2|Va)|4
Zx- z
2 B ® w*
1 2 Vw -V
2¢>+5x~V¢>+E—¢. (4.4)

Let F(x) = [R? — r?(x))?¢(x) = [R? — r?(x)]*|Vw|?/w?. Suppose that xq is the
maximal point on Bg(0). If Vw # 0 then xg € Bg(0). Thus at xg,

VF =0 (4.5)
and
AF <0. (4.6)
From (.5) and #.6),
E _ A4rvr
¢  R2—r2
A rvr -V dm r2
7¢ - (8R2 _rz)q; COR2_ 2 T (R28_ r2)2 =0.
Then

A 24r2 am_ 0
¢  (R2—r)? (R2—r}) ™~
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Using the same argument as in Section 3, by (4.3) and the above inequality, we have at xo,

r? 4r  |Vo| 5 24r2 4m
¢ — Am—R2 —2 By, 7 o w— Cyur-— R 27 R <0. 4.7

Multiplying through (4.7) by (R? — r%)2, we have
F(x0) — 4B, RF'/?(x0) = Dy (R® +1) <0,

which implies that

[Vu|
sup
Bgp(0) U

< EnR. 4.8)

This proves the first part of the theorem. Instead of using {@.3), we now use (@.4); by an
argument similar to the one used in obtaining (4.7), we can get

2r? 4r  |Vu]| 24r2 4m
1+ -2 < + :
R2 — 2 R2—_r2 y4 (RZ _ r2)2 (R2 _ r2)

Multiplying through the last inequality by R? — r2, we have

2, 2 24r?
R™+7r° < FyR sup |Viogu| + ——— +4m,
Bg(0) R=—r
thus,
2 r* — (R* — 24)r?
R* < FyR sup |Vlogu|+ ———————— +4m.

Br(0) R>—r?

It is clear that we may assume that at the maximum point xo of F, r2(xo) < R? — 24,
because of |D If limg_ oo R~ supg, ) |V1ogu| < 1/F;, letting R — oo, we get a
contradiction, which implies that |Vu| = 0. This proves the theorem. m]

Theorem 4.2. Let u be a positive quasi-harmonic function on R™, that is, u satisfies the
equation @) If supp, o) u(x) < CP(R), where P(t) is a polynomial of t, then u is a
constant.

Proof. Without loss of generality, we may assume that u(x) > § > 0. Otherwise, we
consider u + 8 instead of u. Let = u—#. Then

1 |[Vol* 1
'B%l ol + —x - Vo.
w

Vo = —,Bu_ﬁ_1Vu, Aw =

[\

Let f(R) = SUpg, () u(x). Then

inf > fB(R).
xeg;(o)w(x)_f (R)
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Let ¢ (x) = |Vow|?*/w®*. Then

V(|[Vol|?) IVo|*Vo
Ve (x) = o -4 P

2 ) 2
apiry = 20VeD) _ Vo V(b

[Vol* 4|Va)|2Aa)

+20 3

(,()5 (,L)6 w

Note that

+1Vo-V(Vo|? +1|Vo|*
p ( | )—Zﬂ | | +|Va)|2+Zwixka)k,-.

A(Vol?) =2|Vdw|>+2 .
@ B o [

Then

2 ) 2 4
Ap(x) = chiw' +<2ﬂ;rl —8)—Vw ng'%') (20 2—ﬂ+1>|vw62|

B
N [Vo|? N D ki PiXkOki |Va)|2 B+1|Vw|? N 1 Yo
wt w* d B 1) 2"
2|Vdw|? N 2(1 — 3/3) Vo - V(|Va)|2) v
w? B wd
n |:Zk,i Wi Xk Wki 2|Va)|2x . Va)i|

wt >

+ 50— =

B
_ 2|Vdw|? N 2(1 —38) Vo-V(Vo|?)
= a)4’ ﬂ & ws
4
(14 _ 8 B spa- g)) Vel
a)

BB
+¢+%x.v¢+2(1—3,3)(1—8)Va)-v¢

— . 4
2(1 —3B) [waws L lvel }

B w
6 8 262(1 —38)2 7 |Vol*
>|14—=+—-(1-38)1—¢)—
> [ 5 + ﬁ( B —¢) 5 } oF
2(1 —=38)(1 —¢) Vo -V 1
L= Ve-Ve Lo
B 2
2.2 Vo - V¢ 1
= Aps0’®’ + B + b+ 5x- V9,
where 0 < ¢ < 1 will be determined later and
262(1 —3p)2

6 8
Ape=14—— 4+ =1 —=3B)(1—¢) —
B, 5 ﬂ( Bl —¢) 5

= —%[(982 — 126 + 5)B% — (682 —de + 1) + &2,
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and

. 2(1 =38)(1 —¢)
IB,S ﬂ °
Since for all ¢ € R,
9¢2 — 126 +5> 0,

and
A = (6% — 4e + 1)> — 462 (9> — 12¢ + 5)
=82—-8:+1>0 ife<2—+2)/4,
we have
2
Age = —p[(%2 — 1264+ 5)B>— (6> —de + DB+ 21> 0
when
e <(2—+2)/4 (4.9)
and
662 —4e+1—+/8e2 -8+ 1 662 —4e+14++/8s2 -8+ 1
0 < e & + & &+ <p< e e+ 1+ & &+ . (4.10)
2(9¢2 — 126 + 5) 2(9¢2 — 126 + 5)
‘We conclude that
Vo -V 1
Ap = Ap, P (R + Bﬂ,sT"’ +p+oxVh. @.11)

Let F(x) = [R? — r2(0)*¢(x) = [R? — r2(x)]*|Vw|?/w®*. Suppose that F(x)
achieves its maximum at xg € Bg(0). If Vo # 0, then xo € Bg(0). Thus at xg, we
have

VF =0, (4.12)
AF <0. (4.13)
From @12) and @13)
Vo 4rvr A¢p  8rVr-Vo 4m 8r?

—, — <0.
¢ R2 — 2 ¢ (Rz_,2)¢ R2_r2+(R2_r2)2—

Then )
Ap o4 dAm
¢ (R2_r2)2 R2 — 2 —
By ({@.9) and @.10), we see that 8 can be sufficiently small for & small enough. So we can
choose B > 0 and & > O such that Bg . > 0. By the same argument as in Section 3, using
(@.T11)) and the above inequality, we have at x,

4R |Vl 24r2 4m

—-28 _ _ _
A/S,af (R)¢ Bﬁ,s R2 — 12 o2 w (RZ _ }’2)2 R2 — 2

<0. (4.14)
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Multiplying through (4.14) by (R — %)%, we have

Age [T (R)F(x0) — 4Bg c RSP F1/2(xg) — (24 + 4m)R* < 0.

Then
s ABpeRST 4 JI6B] R257 404+ 4m)R2Ap [ (R)
- (o) = 4.15)
245 f7#(R)
Note that
\Y \V4 v
Brp©® @ Br/2(0) u Brpp(0) U
By @T3) and @16,
Vul 1 2Bped 4 67F JABE 672 1+ Q4+ am)Ap. [P (R)
sup <.
Bgr/2(0) u IBR Aﬂ,gf_2ﬁ(R)
P ()
=G Tk

Here B and ¢ satisfy (#.9) and (.10), from which we know that 8 can be sufficiently
small for ¢ small enough. If there exists a constant Ny such that f(R) < RN, we can
choose 0 < B < 1/2Nj so that

|Vul R2ANo
= Cre R

sup
Brpp(0) U

Leting R — oo, we have |Vu| = 0. This proves the theorem. O
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