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Abstract. LetN be a compact Riemannian manifold. A quasi-harmonic sphere onN is a harmonic
map from (Rm, e−|x|2/2(m−2)ds2

0 ) to N (m ≥ 3) with finite energy ([LnW]). Here ds2
0 is the

Euclidean metric in Rm. Such maps arise from the blow-up analysis of the heat flow at a singular
point. In this paper, we prove some kinds of Liouville theorems for the quasi-harmonic spheres. It
is clear that the Liouville theorems imply the existence of the heat flow to the target N . We also
derive gradient estimates and Liouville theorems for positive quasi-harmonic functions.
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1. Introduction

Let (M, g) and (N, h) be two compact Riemannian manifolds with dimM = n. If a
smooth heat flow u(x, t) from M to N blows up at a finite time, we blow up u at a
singular point (x0, t0) by setting ur(x, t) = u(x0 + rx, t0 + r

2t) (t < 0). In [LnW], it is
proved that, if there is no harmonic S2 on the target N , there is a subsequence rk → 0
such that urk → u∞ strongly inH 1

loc, where u∞ is a harmonic sphere or a quasi-harmonic
sphere, i.e. u∞ : Sk → N is harmonic, or u∞ : Rm × (−∞, 0) → N with u∞(x, t) =
w(x/
√
−t), where w : (Rm, e−|x|2/2(m−2)ds2

0) → N is a harmonic map of finite energy
(2 ≤ k ≤ n− 1 and 3 ≤ m ≤ n). Here ds2

0 is the Euclidean metric in Rm. In other words,
w satisfies the equation

τ(w) = 1
2x · ∇w (1.1)

with the property that ∫
Rm
|∇w|2e−|x|

2/4 dx <∞, (1.2)
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where

τ k(w) = 1wk + 0kij (w)
∂wi

∂xl

∂wj

∂xl

is the tension field of w, and 0kij are the Christoffel symbols of N in local coordinates.
In a recent paper [DZ], Ding–Zhao showed that equivariant quasi-harmonic spheres

are discontinuous at infinity. So the behavior of quasi-harmonic spheres is quite different
from that of harmonic spheres.

Furthermore, Lin–Wang [LnW] showed that, if there is no harmonic sphere and no
quasi-harmonic sphere on the target N , the heat flow is in fact smooth. Therefore, Liou-
ville theorems for harmonic spheres and quasi-harmonic spheres imply global existence
of heat flows. In this paper we study Liouville theorems for quasi-harmonic spheres.

Even if N = R, that is, w is a function, the equation (1.1) seems to be new. In this
case the equation reduces to a linear equation in Rm

1(w) = 1
2x · ∇w. (1.3)

We can vieww as a harmonic function on Rm with metric ds2
= e−|x|

2/2(m−2)∑m
k=1 dx

2
k .

The metric is quite singular at infinity, and it is not complete. One may wonder whether
the quasi-harmonic functions still possess the basic properties of harmonic functions. In
this paper, we show that there is no nonconstant positive quasi-harmonic function on
Rm with polynomial growth, and consequently, there is no nonconstant bounded quasi-
harmonic function on Rm. In general, we derive gradient estimates for positive quasi-
harmonic functions on Rm,

sup
BR(0)
|∇ logw| ≤ C(m)R,

where C(m) depends only on m. We show that there is a positive constant Fm
depending only on m such that any positive quasi-harmonic function on Rm with
limR→∞ R

−1 supBR(0) |∇ logw| < 1/Fm is constant. In the proof, we use the gradient
estimate method developed in [L1] and [L2].

Using gradient estimates for quasi-harmonic spheres, we also show that, if the target
manifold is simply connected and complete with nonpositive sectional curvature, there is
no nonconstant quasi-harmonic sphere with bounded image.

We say Br(x0) is a regular ball in N if Cut(x0) ∩ Br(x0) = ∅ and
√
Kr < π/2

where K ≥ 0 is an upper bound of the sectional curvature of N on Br(x0). The heat
flow and harmonic maps into regular balls were studied by Baldes [B], Gulliver–Jost
[GJ], Hildebrandt [Hi], Hildebrandt–Kaul–Widman [HKW], Jost [J], Li [L] and Li–Wang
[LW]. In this paper we show that there is no nonconstant quasi-harmonic sphere with
image in a regular ball, which can certainly be applied to the existence of heat flows and
harmonic maps into a regular ball.

2. Nonpositively curved targets

In this section, we show that, if the target manifold is simply connected and complete with
nonpositive sectional curvature, then any quasi-harmonic sphere with bounded image is a
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constant map. This can be seen as a generalization of the classical Liouville theorems for
harmonic functions on Rm.

Theorem 2.1. Let N be a simply connected complete Riemannian manifold with non-
positively sectional curvature. Let u be a quasi-harmonic map from Rm to N , that is, u
satisfies the equation (1.1). Assume that y0 /∈ u(BR(0)). Let ρ(y) be the distance between
y and y0 in N . Then, if b > 2 sup{ρ(u(x)) | x ∈ BR(0)}, we have

sup
BR/2(0)

|∇u|(x)

b2 − ρ2(u(x))
≤
C

Rb
(2.1)

where C > 0 depends only on m and N .

Proof. Let

φ(x) =
|∇u|2(x)

(b2 − ρ2(u(x)))2
. (2.2)

Then

∇φ(x) =
∇(|∇u|2(x))

(b2 − ρ2(u(x)))2
+

2∇ρ2
|∇u|2(x)

(b2 − ρ2(u(x)))3
, (2.3)

and

1φ(x) =
1(|∇u|2(x))

(b2 − ρ2(u(x)))2
+

4∇ρ2
∇|∇u|2(x)

(b2 − ρ2(u(x)))3

+
21ρ2

|∇u|2(x)

(b2 − ρ2(u(x)))3
+

6|∇ρ2
|
2
|∇u|2(x)

(b2 − ρ2(u(x)))4
. (2.4)

Note that (1.1) and the Bochner formula (see [EL]) imply

1|∇u|2 ≥ 2|∇du|2 + |∇u|2 +∇u · (x · ∇du),

and therefore

1φ(x) ≥
2|2∇du|2(x)+ |∇u|2(x)+∇u · (x · ∇du)

(b2 − ρ2(u(x)))2
+

4∇ρ2
∇|∇u|2(x)

(b2 − ρ2(u(x)))3

+
21ρ2

|∇u|2(x)

(b2 − ρ2(u(x)))3
+

6|∇ρ2
|
2
|∇u|2(x)

(b2 − ρ2(u(x)))4
. (2.5)

By (1.1) and the chain rule, we have

1ρ2(u(x)) = H(ρ2)(∇u,∇u)+ 1
2x · ∇ρ

2(u(x)),

where H(ρ2) is the Hessian of ρ2. Since the sectional curvature KN of N is nonpositive,
the Hessian comparison theorem implies

1ρ2(u(x)) ≥ 2|∇u|2(x)+ 1
2x · ∇ρ

2(u(x)). (2.6)
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Substituting (2.6) into (2.5) yields

1φ(x) ≥
2|∇du|2(x)+ |∇u|2(x)
(b2 − ρ2(u(x)))2

+
4∇ρ2

∇|∇u|2(x)

(b2 − ρ2(u(x)))3

+
4|∇u|4(x)

(b2 − ρ2(u(x)))3
+

6|∇ρ2
|
2
|∇u|2(x)

(b2 − ρ2(u(x)))4

+
∇u · (x · ∇du)

(b2 − ρ2(u(x)))2
+
x · ∇ρ2(u(x))|∇u|2(x)

(b2 − ρ2(u(x)))3
.

It follows from (2.3) that

x · ∇φ =
x · ∇(|∇u|2(x))

(b2 − ρ2(u(x)))2
+

2x · ∇ρ2
|∇u|2(x)

(b2 − ρ2(u(x)))3
,

and
∇ρ2
· ∇φ

b2 − ρ2 =
∇ρ2
· ∇(|∇u|2(x))

(b2 − ρ2(u(x)))3
+

2|∇ρ2
|
2
|∇u|2(x)

(b2 − ρ2(u(x)))4
.

So

1φ(x) ≥
2|∇du|2(x)

(b2 − ρ2(u(x)))2
++

2∇ρ2
∇|∇u|2(x)

(b2 − ρ2(u(x)))3

+
4|∇u|4(x)

(b2 − ρ2(u(x)))3
+

2∇φ · ∇ρ2

b2 − ρ2(u(x))

+
2|∇ρ2

|
2
|∇u|2(x)

(b2 − ρ2(u(x)))4
+

|∇u|2(x)

(b2 − ρ2(u(x)))2
+

1
2
x · ∇φ. (2.7)

Hölder’s inequality implies that

2|∇du|2

(b2 − ρ2(u(x)))2
+

2|∇ρ2
|
2
|∇u|2

(b2 − ρ2(u(x)))4
≥ 4
|∇du| |∇u| |∇ρ2

|

(b2 − ρ2(u(x)))3

and
|∇|∇u|2| ≤ 2|∇du| |∇u|.

Substituting the last two inequalities into (2.7) we have

1φ(x) ≥
4|∇u|4

(b2 − ρ2(u(x)))3
+

|∇u|2

(b2 − ρ2(u(x)))2

+
2∇φ · ∇ρ2

b2 − ρ2(u(x))
+

1
2
x · ∇φ. (2.8)

Let r(x) = |x|, and introduce

F(x) = (R2
− r2(x))2φ(x).
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Since F |∂BR(0) = 0, if ∇u 6≡ 0, then F must achieve its maximum at some point x0 in
BR(0). Then by the maximum principle we have

∇F(x0) = 0 (2.9)

and

1F(x0) ≤ 0. (2.10)

By (2.9) and (2.10) we have, at x0,

∇φ

φ
=

4r∇r
R2 − r2 (2.11)

and

1φ

φ
−

8r∇r · ∇φ
(R2 − r2)φ

−
4m

R2 − r2 +
8r2

(R2 − r2)2
≤ 0. (2.12)

It follows that

1φ

φ
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0. (2.13)

By (2.8), (2.11), (2.12) and (2.13), we have

4(b2
− ρ2)φ +

8r∇r · ∇ρ2

(R2 − r2)(b2 − ρ2)
+

(
1+

2rx · ∇r
R2 − r2

)
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0.

Because

ρ(u(x)) <
b

2
, |∇ρ2

| ≤ b|∇u|, and
2rx · ∇r
R2 − r2 =

2r2

R2 − r2 > 0,

we have

3b2φ −
8rb|∇u|

(R2 − r2)(b2 − ρ2)
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0. (2.14)

Multiplying through (2.14) by (R2
− r2)2, we have

3b2F − 8RbF 1/2
− (24+ 4m)R2

≤ 0,

which yields

sup
BR/2(0)

F 1/2(x) ≤ F 1/2(x0) ≤
CR

b
,

that is,

sup
BR/2(0)

|∇u|(x)

b2 − ρ2(u(x))
≤
C

Rb
.

This proves the theorem. ut

The gradient estimate (2.1) clearly implies the following Liouville type theorem.

Theorem 2.2. LetN be a simply connected complete Riemannian manifold with nonpos-
itive sectional curvature. Let u be a quasi-harmonic map from Rm toN , that is, u satisfies
the equation (1.1). If the image of u in N is a bounded set, then u is constant.
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3. Image in a regular ball

Let us first recall the definition of a generalized regular ball from [L] and [LW]. Let N0
be a bounded open set of N . We say that N0 satisfies condition (C) if there is a positive
function f ∈ C2(N0) satisfying

−∇
2f − f k2(y)h ≥ C0(N0)h,

and
0 < m1(N0) ≤ f (y) ≤ m2(N0) <∞,

for all y ∈ N0, where

k2(y) = sup{K(y, π) | K(y, π) is the sectional curvature of a two-plane π ⊂ TyN},

and C0(N0) > 0. If N0 satisfies condition (C) and there exists a nonnegative convex
function f ∗ on N0 such that N0 = (f

∗)−1([0, r)), we call N0 a generalized regular ball.
It is clear that a regular ball is a generalized regular ball (cf. [L] and [LW]).

Theorem 3.1. Suppose that N0 ⊂ N satisfies condition (C). If u(x) is a quasi-harmonic
map from Rm to N0, that is, u satisfies the equation (1.1), then

sup
BR/2(0)

|∇u| ≤
Cmm1

R
, (3.1)

where Cm is a positive constant depending only on m, C0(N0), m1(N0) and m2(N0).

Proof. Set

F(x) =
|∇u(x)|2

f 2(u(x))
.

A straightforward computation gives

∇F =
∇|∇u|2

f 2 −
2∇f |∇u|2

f 3 (3.2)

and

1F =
1|∇u|2

f 2 −
4∇f∇|∇u|2

f 3 −
21f |∇u|2

f 3 +
6|∇f |2|∇u|2

f 4 . (3.3)

Note that

1f (u(x)) = ∇2(f )(∇u,∇u)+ 1
2x · ∇f (u(x)) (3.4)

and

1|∇u|2 = 2|∇du|2 + |∇u|2 +∇u · (x · ∇du)

− 2
m∑

i,j=1

〈RN (du(ei), du(ej ))du(ei), du(ej )〉, (3.5)
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where e1, . . . , em is the standard basis of Rm, and RN is the curvature operator of N .
Substituting (3.4), (3.5), and (3.2) into (3.3), using the assumption (C), one gets

1F ≥
2|∇du|2 + |∇u|2

f 2 +
2C0|∇u|

4

f 3 +
6|∇f |2|∇u|2

f 4

+
∇u · (x · ∇du)

f 2 −
x · ∇f |∇u|2

f 3 −
4∇f∇|∇u|2

f 3

=
2|∇du|2 + |∇u|2

f 2 +
2C0|∇u|

4

f 3 +
2|∇f |2|∇u|2

f 4

−
2∇f∇|∇u|2

f 3 −
2∇f · ∇F

f
+

1
2
x · ∇F. (3.6)

By Hölder’s inequality, we have

2|∇du|2

f 2 +
2|∇f |2|∇u|2

f 4 ≥
4|∇du| |∇u| |∇f |

f 3

and
|∇|∇u|2| ≤ 2|∇du| |∇u|.

Substituting the last two inequalities into (3.6), we obtain

1F ≥ 2C0m1F
2
− 2∇F ·

∇f

f
+ (F + 1

2x · ∇F). (3.7)

Let r(x) = |x|, and introduce

ψ(x) = (R2
− r2(x))2F(x).

Since ψ |∂BR(0) = 0, if ∇u 6≡ 0, then ψ must achieve its maximum at some point x0 in
BR(0). Then by the maximum principle we have

∇ψ(x0) = 0 (3.8)

and

1ψ(x0) ≤ 0. (3.9)

By (3.8) and (3.9) we have, at x0,

∇F

F
=

4r∇r
R2 − r2 (3.10)

and

1F

F
−

8r∇r · ∇F
(R2 − r2)F

−
4m

R2 − r2 +
8r2

(R2 − r2)2
≤ 0. (3.11)
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It follows that

1F

F
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0. (3.12)

By (3.7), (3.10), (3.11) and (3.12), we have

2C0m1F −
8R

R2 − r2F
1/2
+

(
1+

2rx · ∇r
R2 − r2

)
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0.

Because
2rx · ∇r
R2 − r2 > 0,

we have

2C0m1F −
8R

R2 − r2F
1/2
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0. (3.13)

Multiplying through (2.14) by (R2
− r2)2, we have

2C0m1ψ − 8Rψ1/2
− (24+ 4m)R2

≤ 0,

which yields
sup

BR/2(0)
ψ1/2(x) ≤ ψ1/2(x0) ≤ CmR,

that is,

sup
BR/2(0)

|∇u|(x)

f (u(x))
≤
Cm

R
.

This proves the theorem. ut

By the gradient estimate (3.1), we can show the following Liouville type theorem.

Theorem 3.2. Suppose that N0 ⊂ N satisfies condition (C). If u(x) is a quasi-harmonic
map from Rm to N0, that is, u satisfies the equation (1.1) with image in N0, then u is
constant.

4. Positive functions

In this section, we consider the positive quasi-harmonic functions on Rm.

Theorem 4.1. Let u be a positive quasi-harmonic function on Rm, that is, u > 0 satisfies
the equation (1.3). Then we have the gradient estimate

sup
BR(0)
|∇ log u| ≤ C(m)R,

where C(m) is a positive constant depending only on m. There is a positive constant
Fm > 0 such that, if in addition

lim
R→∞

R−1 sup
BR(0)
|∇ log u| <

1
Fm
,

then u is a constant.
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Proof. Let ω = u−β , where 0 < β < 1 is to be defined later. Then

∇ω = −βu−β−1
∇u,

|∇ω|

ω
= β
|∇u|

u
, 1ω =

β + 1
β

|∇ω|2

ω
+

1
2
x · ∇ω.

Let φ(x) = |∇ω|2/ω2. Then

∇φ(x) =
∇(|∇ω|2)

ω2 − 2
|∇ω|2∇ω

ω3 ,

1φ(x) =
1(|∇ω|2)

ω2 − 4
∇ω · ∇(|∇ω|2)

ω3 + 6
|∇ω|4

ω4 − 2
|∇ω|21ω

ω3 .

Note that

1(|∇ω|2) = 2|∇dω|2+2
β + 1
β

∇ω · ∇(|∇ω|2)

ω
−2

β + 1
β

|∇ω|4

ω2 +|∇ω|
2
+

∑
k,i

ωixkωki .

Then

1φ(x) =
2|∇dω|2

ω2 +

(
2
β + 1
β
− 4

)
∇ω · ∇(|∇ω|2)

ω3 +

(
6− 2

β + 1
β

)
|∇ω|4

ω4

+
|∇ω|2

ω2 +

∑
k,i ωixkωki

ω2 − 2
|∇ω|2

ω3

[
β + 1
β

|∇ω|2

ω
+

1
2
x · ∇ω

]
=

2|∇dω|2

ω4 +

(
2−

4
β

)
|∇ω|4

ω4 + φ

+

[∑
k,i ωixkωki

ω2 −
|∇ω|2x · ∇ω

ω3

]
+

2(1− β)
β

[
∇ω · ∇φ

ω
+ 2
|∇ω|4

ω4

]
=

2|∇dω|2

ω2 − 2
|∇ω|4

ω4 + φ +
1
2
x · ∇φ +

2(1− β)
β

∇ω · ∇φ

ω
. (4.1)

By Cauchy’s inequality, we have

|∇dω|2 ≥
1
m
(1ω)2,

therefore

|∇dω|2

ω2 ≥
1
m

(β + 1)2

β2
|∇ω|4

ω4 +
1

4m
|x · ∇ω|2

ω2 +
β + 1
mβ

|∇ω|2

ω3 x · ∇ω.

By Hölder’s inequality, we get

|∇dω|2

ω2 ≥

(
1
m

(β + 1)2

β2 − 1
)
|∇ω|4

ω4 +

(
1

4m
−
(β + 1)2

(2mβ)2

)
|x · ∇ω|2

ω2 .



216 Jiayu Li, Meng Wang

Substituting the last inequality into (4.1), we obtain

1φ(x) ≥

(
2
m

(β + 1)2

β2 − 4
)
|∇ω|4

ω4 + φ +
1
2
x · ∇φ +

2(1− β)
β

∇ω · ∇φ

ω

+ 2
(

1
4m
−
(β + 1)2

(2mβ)2

)
|x · ∇ω|2

ω2 . (4.2)

We choose 0 < β < 1 such that

2
m

(β + 1)2

β2 − 4 = 1.

Then from (4.2) we have

1φ(x) ≥ |φ(x)|2 + Amx · ∇φ + Bm
∇ω · ∇φ

ω
− Cm|x|

2
|φ(x)|. (4.3)

Using (4.1) and Hölder’s inequality, we can have another estimate for 1φ(x):

1φ(x) =
2|∇dω|2

ω4 +

(
2−

4
β

)
|∇ω|4

ω4 − 2
∇ω · ∇(|∇ω|2)

ω3 + φ

+
1
2
x · ∇φ +

2
β

[
∇ω · ∇φ

ω
+ 2
|∇ω|4

ω4

]
≥ φ +

1
2
x · ∇φ +

2
β

∇ω · ∇φ

ω
. (4.4)

Let F(x) = [R2
− r2(x)]2φ(x) = [R2

− r2(x)]2
|∇ω|2/ω2. Suppose that x0 is the

maximal point on BR(0). If ∇ω 6≡ 0 then x0 ∈ BR(0). Thus at x0,

∇F = 0 (4.5)

and

1F ≤ 0. (4.6)

From (4.5) and (4.6),

∇φ

φ
=

4r∇r
R2 − r2 ,

1φ

φ
−

8r∇r · ∇φ
(R2 − r2)φ

−
4m

R2 − r2 +
8r2

(R2 − r2)2
≤ 0.

Then
1φ

φ
−

24r2

(R2 − r2)2
−

4m
(R2 − r2)

≤ 0.
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Using the same argument as in Section 3, by (4.3) and the above inequality, we have at x0,

φ − Am
r2

R2 − r2 − Bm
4r

R2 − r2
|∇ω|

ω
ω − Cmr

2
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0. (4.7)

Multiplying through (4.7) by (R2
− r2)2, we have

F(x0)− 4BmRF 1/2(x0)−Dm(R
6
+ 1) ≤ 0,

which implies that

sup
BR/2(0)

|∇u|

u
≤ EmR. (4.8)

This proves the first part of the theorem. Instead of using (4.3), we now use (4.4); by an
argument similar to the one used in obtaining (4.7), we can get

1+
2r2

R2 − r2 − 2
4r

R2 − r2
|∇u|

u
≤

24r2

(R2 − r2)2
+

4m
(R2 − r2)

.

Multiplying through the last inequality by R2
− r2, we have

R2
+ r2
≤ FmR sup

BR(0)
|∇ log u| +

24r2

R2 − r2 + 4m,

thus,

R2
≤ FmR sup

BR(0)
|∇ log u| +

r4
− (R2

− 24)r2

R2 − r2 + 4m.

It is clear that we may assume that at the maximum point x0 of F , r2(x0) ≤ R
2
− 24,

because of (4.8). If limR→∞ R
−1 supBR(0) |∇ log u| < 1/Fm, letting R → ∞, we get a

contradiction, which implies that |∇u| ≡ 0. This proves the theorem. ut

Theorem 4.2. Let u be a positive quasi-harmonic function on Rm, that is, u satisfies the
equation (1.3). If supBR(0) u(x) ≤ CP(R), where P(t) is a polynomial of t , then u is a
constant.

Proof. Without loss of generality, we may assume that u(x) ≥ δ > 0. Otherwise, we
consider u+ δ instead of u. Let ω = u−β . Then

∇ω = −βu−β−1
∇u, 1ω =

β + 1
β

|∇ω|2

ω
+

1
2
x · ∇ω.

Let f (R) = supBR(0) u(x). Then

inf
x∈BR(0)

ω(x) ≥ f−β(R).
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Let φ(x) = |∇ω|2/ω4. Then

∇φ(x) =
∇(|∇ω|2)

ω4 − 4
|∇ω|2∇ω

ω5 ,

1φ(x) =
1(|∇ω|2)

ω4 − 8
∇ω · ∇(|∇ω|2)

ω5 + 20
|∇ω|4

ω6 − 4
|∇ω|21ω

ω5 .

Note that

1(|∇ω|2) = 2|∇dω|2+2
β + 1
β

∇ω · ∇(|∇ω|2)

ω
−2

β + 1
β

|∇ω|4

ω2 +|∇ω|
2
+

∑
k,i

ωixkωki .

Then

1φ(x) =
2|∇dω|2

ω4 +

(
2
β + 1
β
− 8

)
∇ω · ∇(|∇ω|2)

ω5 +

(
20− 2

β + 1
β

)
|∇ω|4

ω6

+
|∇ω|2

ω4 +

∑
k,i ωixkωki

ω4 − 4
|∇ω|2

ω5

[
β + 1
β

|∇ω|2

ω
+

1
2
x · ∇ω

]
=

2|∇dω|2

ω4 +
2(1− 3β)

β
ε
∇ω · ∇(|∇ω|2)

ω5 +

(
14−

6
β

)
|∇ω|4

ω6 + φ

+

[∑
k,i ωixkωki

ω4 − 2
|∇ω|2x · ∇ω

ω5

]
+

2(1− 3β)
β

(1− ε)
[
∇ω · ∇φ

ω
+ 4
|∇ω|4

ω6

]
=

2|∇dω|2

ω4 +
2(1− 3β)

β
ε
∇ω · ∇(|∇ω|2)

ω5

+

(
14−

6
β
+

8
β
(1− 3β)(1− ε)

)
|∇ω|4

ω6

+ φ +
1
2
x · ∇φ +

2(1− 3β)(1− ε)
β

∇ω · ∇φ

ω

≥

[
14−

6
β
+

8
β
(1− 3β)(1− ε)−

2ε2(1− 3β)2

β2

]
|∇ω|4

ω6

+
2(1− 3β)(1− ε)

β

∇ω · ∇φ

ω
+ φ +

1
2
x · ∇φ

= Aβ,εω
2φ2
+ Bβ,ε

∇ω · ∇φ

ω
+ φ +

1
2
x · ∇φ,

where 0 < ε < 1 will be determined later and

Aβ,ε = 14−
6
β
+

8
β
(1− 3β)(1− ε)−

2ε2(1− 3β)2

β2

= −
2
β2 [(9ε2

− 12ε + 5)β2
− (6ε2

− 4ε + 1)β + ε2],
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and
Bβ,ε =

2(1− 3β)(1− ε)
β

.

Since for all ε ∈ R,
9ε2
− 12ε + 5 > 0,

and

1 = (6ε2
− 4ε + 1)2 − 4ε2(9ε2

− 12ε + 5)

= 8ε2
− 8ε + 1 > 0 if ε < (2−

√
2)/4,

we have

Aβ,ε = −
2
β2 [(9ε2

− 12ε + 5)β2
− (6ε2

− 4ε + 1)β + ε2] > 0

when
ε < (2−

√
2)/4 (4.9)

and

0 <
6ε2
− 4ε + 1−

√
8ε2 − 8ε + 1

2(9ε2 − 12ε + 5)
< β <

6ε2
− 4ε + 1+

√
8ε2 − 8ε + 1

2(9ε2 − 12ε + 5)
. (4.10)

We conclude that

1φ ≥ Aβ,εf
−2β(R)φ2

+ Bβ,ε
∇ω · ∇φ

ω
+ φ +

1
2
x · ∇φ. (4.11)

Let F(x) = [R2
− r2(x)]2φ(x) = [R2

− r2(x)]2
|∇ω|2/ω4. Suppose that F(x)

achieves its maximum at x0 ∈ BR(0). If ∇ω 6≡ 0, then x0 ∈ BR(0). Thus at x0, we
have

∇F = 0, (4.12)
1F ≤ 0. (4.13)

From (4.12) and (4.13)

∇φ

φ
=

4r∇r
R2 − r2 ,

1φ

φ
−

8r∇r · ∇φ
(R2 − r2)φ

−
4m

R2 − r2 +
8r2

(R2 − r2)2
≤ 0.

Then
1φ

φ
−

24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0.

By (4.9) and (4.10), we see that β can be sufficiently small for ε small enough. So we can
choose β > 0 and ε > 0 such that Bβ,ε > 0. By the same argument as in Section 3, using
(4.11) and the above inequality, we have at x0,

Aβ,εf
−2β(R)φ − Bβ,ε

4R
R2 − r2

|∇ω|

ω2 ω −
24r2

(R2 − r2)2
−

4m
R2 − r2 ≤ 0. (4.14)
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Multiplying through (4.14) by (R2
− r2)2, we have

Aβ,εf
−2β(R)F (x0)− 4Bβ,εRδ−βF 1/2(x0)− (24+ 4m)R2

≤ 0.

Then

F 1/2(x0) ≤
4Bβ,εRδ−β +

√
16B2

β,εR
2δ−2β + 4(24+ 4m)R2Aβ,εf−2β(R)

2Aβ,εf−2β(R)
. (4.15)

Note that

sup
BR/2(0)

|∇ω|

ω2 = β sup
BR/2(0)

uβ
|∇u|

u
≥ βδβ sup

BR/2(0)

|∇u|

u
. (4.16)

By (4.15) and (4.16),

sup
BR/2(0)

|∇u|

u
≤

1
βR
·

2Bβ,εδ−2β
+ δ−β

√
4B2

β,εδ
−2β + (24+ 4m)Aβ,εf−2β(R)

Aβ,εf−2β(R)

= Cβ,ε
f 2β(R)

δ2βR
.

Here β and ε satisfy (4.9) and (4.10), from which we know that β can be sufficiently
small for ε small enough. If there exists a constant N0 such that f (R) ≤ RN0 , we can
choose 0 < β < 1/2N0 so that

sup
BR/2(0)

|∇u|

u
≤ Cβ,ε

R2βN0

δ2βR
.

Leting R→∞, we have |∇u| ≡ 0. This proves the theorem. ut

Acknowledgments. This work was essentially carried out when M. Wang visited the Abdus Salam
ICTP. She thanks the center for their hospitality. The authors thank the referee for his helpful com-
ments.

The research was partially supported by NSFC 10701064.

References

[B] Baldes, A.: Harmonic mappings with a partially free boundary. Manuscripta Math. 40,
255–275 (1982) Zbl 0504.58016 MR 0683042

[DZ] Ding, W., Zhao, Y.: Elliptic equations strongly degenerate at a point. Nonlinear Anal. 65,
1624–1632 (2006) Zbl pre05047625 MR 2248689

[EL] Eells, J., Lemaire, L.: Selected Topics in Harmonic Maps. CBMS Reg. Conf. Ser. Math.
50, Amer. Math. Soc. (1983) Zbl 0515.58011 MR 0703510

[GJ] Gulliver, R., Jost, J.: Harmonic maps which solve a free-boundary problem. J. Reine
Angew. Math. 38, 61–89 (1987) Zbl 0619.35117 MR 0918841

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0504.58016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0683042
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05047625&format=complete
http://www.ams.org/mathscinet-getitem?mr=2248689
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0515.58011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0703510
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0619.35117&format=complete
http://www.ams.org/mathscinet-getitem?mr=0918841


Liouville theorems 221

[Hi] Hildebrandt, S.: Harmonic mappings of Riemannian manifolds. In: Harmonic Maps and
Minimal Immersions (Montecatini, 1984), Lecture Notes in Math. 1161, Springer, Berlin,
1–117 (1985) Zbl 0581.58011 MR 0821968

[HKW] Hildebrandt, S., Kaul, H., Widman, K.-O.: An existence theorem for harmonic mappings
of Riemannian manifolds. Acta Math. 138, 1–16 (1977) Zbl 0356.53015 MR 0433502

[J] Jin, Z.: Liouville theorems for harmonic maps. Invent. Math. 108, 1–10 (1992)
Zbl 0768.53016 MR 1156381

[L] Li, J.: Heat flows and harmonic maps with a free boundary. Math. Z. 217, 487–495 (1994)
Zbl 0821.58012 MR 1306674

[L1] Li, J.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlin-
ear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100, 233–256 (1991)
Zbl 0746.58078 MR 1125225

[L2] Li, J.: Gradient estimate for the heat kernel of a complete Riemannian manifold and its
applications. J. Funct. Anal. 97, 293–310 (1991) Zbl 0724.58064 MR 1111183

[LW] Li, J., Wang, S.: The heat flows and harmonic maps from complete manifolds into regular
balls. Bull. Austral. Math. Soc. 58, 177–187 (1998) Zbl 0922.58016 MR 1642183

[LnW] Lin, F. H., Wang, C. Y.: Harmonic and quasi-harmonic spheres. Comm. Anal. Geom. 7,
397–429 (1999) Zbl 0934.58018 MR 1685578

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0581.58011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0821968
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0356.53015&format=complete
http://www.ams.org/mathscinet-getitem?mr=0433502
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0768.53016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1156381
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0821.58012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1306674
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0746.58078&format=complete
http://www.ams.org/mathscinet-getitem?mr=1125225
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0724.58064&format=complete
http://www.ams.org/mathscinet-getitem?mr=1111183
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0922.58016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1642183
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0934.58018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1685578

	Introduction
	Nonpositively curved targets
	Image in a regular ball
	Positive functions

