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Three-space problems for the approximation property
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Abstract. It is shown that there is a subspaceZq of `q for 1 < q < 2 which is isomorphic to `q and
such that `q/Zq does not have the approximation property (AP). On the other hand, for 2 < p <∞
there is a subspace Yp of `p such that Yp does not have AP but `p/Yp is isomorphic to `p . The
result is obtained by defining random “Enflo–Davie spaces” Yp which with full probability fail to
have AP for all 2 < p ≤ ∞ and have AP for all 1 ≤ p ≤ 2. For 1 < p ≤ 2, Yp is isomorphic to `p .
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In this paper we prove the result stated in the abstract. In particular, it solves the following
problem which has been around since the 1970’s:

(♣) Does there exist a reflexive Banach space X and a subspace Y ⊂ X such that both
X and Y have AP but X/Y does not have AP?

Let us recall that a Banach space X is said to have the approximation property (AP) if
for every compact set K in X and for every ε > 0, there is a finite rank operator T = TK
on X such that ‖T x − x‖ ≤ ε for every x ∈ K . When all these TK ’s are uniformly
bounded, we say that X has the bounded approximation property (BAP). If a Banach
space has a (Schauder) basis, then it has BAP.

In 1972 P. Enflo gave the first example of a Banach space without AP.
A thorough discussion of approximation properties can be found in [4].
The problem (♣) is a sort of a “three space problem”. These are problems of the

following type:
Let X, Y,Z be Banach spaces with Y ⊂ X and Z = X/Y , or putting it in a fancier

way, let 0 → Y → X → Z → 0 be a short exact sequence. Suppose that two of the
spaces X, Y,Z have a certain property P . Does this imply that the third one has P?

Thus for every property P we have three different three-space problems; let us call
them, respectively, the X, Y,Z-problems (e.g., if X, Y have P , we have the Z-problem,
etc.).
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In the context of AP these three problems are mutually inequivalent and none is trivial:

(i) By [2], every separable Banach space X contains a subspace Y such that both Y and
X/Y have BAP. Taking for X a separable Banach space without AP, we obtain a
counterexample to the X-problem.

(ii) It follows from our result that the Y -problem has a negative solution, i.e. there exist
X with AP and Y ⊂ X without AP so that X/Y has AP. We do not know whether
this follows from older results.

(iii) By [3], for every separable Banach spaceZ there is a Banach space Y with basis such
that Y ∗∗ has a basis and Y ∗∗/Y is isomorphic to Z. Taking for Z a separable space
without AP, we obtain a counterexample to the Z-problem. Let us observe that one
cannot dualize this example in order to obtain a negative solution to the Y -problem.

Evidently, in (iii)X = Y ∗∗ is inherently a nonreflexive space and this approach is unlikely
to provide a reflexive example. This makes the question (♣) quite natural.

To prove our main result (Theorem 2) we of course use the Enflo–Davie machinery
for constructing subspaces of `p, p > 2, without AP. The most important new tool is
Theorem 3, which is a delicate refinement of Kashin’s splitting theorem and quite likely
will have other applications.

1. Preliminaries

Some notation

For α = (α(j))nj=1 ∈ Rn and 1 ≤ s ≤ ∞ we define

|α|s =
(
n−1

n∑
j=1

|α(j)|s
)1/s

(|α|∞ = max |α(j)|)

and for α, β ∈ Rn we define

〈α, β〉 = n−1
n∑
j=1

α(j)β(j).

Let X denote the (real) vector space of all sequences a = (ak)
∞

k=0 with ak ∈ R3·2k and
ak = 0 for almost all k. For a, b ∈ X we define

〈a, b〉 =

∞∑
k=0

〈ak, bk〉.

The norms ‖ · ‖s,p on X are defined by

‖(ak)
∞

k=0‖s,p =
( ∞∑
k=0

|ak|
p
s

)1/p
.
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We shall identify R3·2k with the subspace {(0, . . . , u, 0, . . . ) : u ∈ R3·2k
} of X. Notice

that if u ∈ R3·2k , then ‖u‖s,p = |u|s for every s, p.
Let Xs,p be the completion of X in the norm ‖ · ‖s,p. It is obvious that Xp,p is iso-

metric to `p. By Pełczyński’s decomposition method (cf. [4, p. 54]), we know that X2,p
is isomorphic to `p for 1 < p <∞.

Let E ⊂ Rm and F ⊂ Rp with dimF ≤ dimE. Denote by O(F,E) the set of all
orthogonal (with respect to the above inner products in Rm,Rp, respectively) transforma-
tions from F to E and let νF,E denote the normalized invariant measure on O(F,E). We
also set O(n) = O(Rn,Rn) and νn = νRn,Rn .

Let E ⊂ Rm. Let SE = {x ∈ E : |x|2 = 1}, let σE denote the normalized surface
measure on SE , and set Sm = SRm and σm = σRm .

The normalized unit vectors emi ∈ Rm are defined by emi = m
1/2(δij )

m
j=1.

Throughout this paper C and c are fixed positive numbers.

Enflo’s construction (cf. [4, Ch. 2.d])

Let us briefly recall this classical construction, in the form due to Davie. The following
Theorem 1 is a “genericized” formulation.

Given a sequence {Tk}∞k=0 with Tk ∈ O(3 · 2k) for k = 0, 1, . . . , define

uki = T
∗

k (e
3·2k
i ) for i = 1, . . . , 2k,

vki = T
∗

k (e
3·2k
2k+i) for i = 1, . . . , 2k+1,

yki = v
k−1
i + uki and zki = v

k−1
i − uki for i = 1, . . . , 2k, k = 1, 2, . . . .

(1)

Let Y = span{yki ∈ X : k = 1, 2, . . . , i = 1, . . . , 2k} and let Yp = Yp({Tk}) be the
completion of Y in the norm ‖ · ‖p,p.

Theorem 1. There is a sequence {Tk}∞k=0 such that Yp = Yp({Tk}) does not have AP for
all 2 < p ≤ ∞. Moreover, this is a generic fact, i.e. denoting by ν the product measure
ν =

⊗
ν3·2k we have

ν({{Tk} : Yp({Tk}) fails to have AP for all 2 < p ≤ ∞}) = 1.

In this and in the next theorem we ignore the issues of measurability. What we really
mean is that the above set contains a set of full measure.

We shall not prove this theorem; we think it belongs to the folklore of Banach space
theory, although probably it has never been formulated this way. On demand, we are ready
to supply the details of its proof.
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Some estimates

Let us first recall two “volumetric” estimates (cf. [6, Ch. 6, (6.3)]). For 0 < r ≤ 1 define
Am(r) = {x ∈ Sm : |x|1 ≤ r}. We have

σm(Am(r)) ≤ (Cr)
m (2)

and
N(Am(r), δ) ≤ (3e/r)3rm/δ. (3)

Here for A ⊂ Rm, by N(A, δ) we denote the covering number by euclidean balls of
radius δ:

N(A, δ) = min
{
N : ∃x1, . . . , xN ∈ A such that A ⊂

N⋃
i=1

B(xi, δ)
}
.

Notice also that if B is an l-dimensional euclidean unit ball, then

N(B, δ) ≤ (3/δ)l (4)

(cf. [6, Lemma 4.16]).
We shall frequently use the rotational invariance of the measures σE and νF,E . Let us

here observe that for every measurable set A ⊂ SE and every x ∈ SF we have

σE(A) = νF,E({T ∈ O(F,E) : T x ∈ A}). (5)

2. The construction

We shall prove the following theorem.

Theorem 2.

ν({{Tk} : Yq({Tk}) is isomorphic to `q for all 1 < q ≤ 2}) = 1.

This, together with Theorem 1, yields all the results stated in the abstract:
With the notation of (1), let Z = span{zki ∈ X : k = 1, 2, . . . , i = 1, . . . , 2k} and let

Zp be the completion of Z in the norm ‖ · ‖p,p. Observe that the linear map R : Y → Z

defined byR(yki ) = (−1)k(zki ) is a ‖·‖p,p isometry for all p, thus Yp andZp are isometric.
In particular, Zp fails to have AP for 2 < p ≤ ∞ and is isomorphic to `p for 1 < p ≤ 2
(generically).

We have the natural identification (Xp,p/Yp)∗ = Y⊥p ⊂ Xq,q (1/p + 1/q = 1). We
see thatX = R ·u0

1⊕Y ⊕Z (orthogonal sum in the sense of 〈 , 〉). Therefore (Xp,p/Yp)∗

is isometric to R · u0
1 ⊕ Zq , hence isomorphic to Zq .

Therefore Xp,p/Yp is isomorphic to `p for 2 ≤ p < ∞ (generically). Since AP is
a self-dual property for reflexive spaces, we deduce that (generically) Xp,p/Yp fails to
have AP for 1 < p < 2 (and for p = 1 as well, but this requires a slightly more delicate
argument).
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Let E be a subspace of Rm. We define the norm | · |⊥E on E by

|x|⊥E = min{|x + y|1 : y ∈ E⊥}.

Set A⊥E(r) = {x ∈ SE : |x|⊥E ≤ r} (notice that A⊥Rm = Am(r)). It is important to realize
that the estimates (2) and (3) hold for A⊥E(r) as well:

Lemma 1. LetE ⊂ Rm with n = dimE ≥ m/3, and let 0 ≤ r < δ/2 ≤ 1 with δ ≤ 3rm.
Then

σE(A
⊥

E(r)) ≤ (Cr)
n (6)

and
N(A⊥E(r), δ) ≤ (3e/r)

3rm/δ. (7)

Proof. To prove (6), let D denote the unit ball of | · |⊥E , thus D = absconv{m1/2Pemi :
1 ≤ i ≤ m} where P : Rm→ E denotes the orthogonal projection. Therefore

D =
⋃

A⊂{1,...,m}, #A=n

absconv{m1/2Pemi : i ∈ A}.

By Hadamard’s inequality, if #A = n, then

vol(absconv{m1/2Pemi : i ∈ A}) ≤ volBn1 ≤ C
n volBn2

(Bnp denotes the unit ball of | · |p in Rn). Therefore

volD ≤ Cn
(
m

n

)
volBn2 ≤ C

n2m volBn2 ≤ (8C)
n volBn2 ,

i.e. the volume ratio of D is bounded by 8C. By (6.3) in [6], (6) holds.
The proof of (7) is a modification of a classical proof of (3) (cf. [7]): | · |⊥E is the

Minkowski functional of the set D = absconv{m1/2Pemi : 1 ≤ i ≤ m}. Thus if x ∈
A⊥E(r), then x = m1/2∑m

i=1 tiPe
m
i with

∑m
i=1 |ti | ≤ r .

Let π be a permutation of {1, . . . , m} such that |tπ(1)| ≥ |tπ(2)| ≥ · · · . For every
1 ≤ l ≤ m, we have

r ≥

m∑
i=1

|ti | ≥ l · |tπ(l)| ≥
l

√
m− l

(∑
i≥l

t2π(i)

)1/2
. (8)

Let b = m1/2∑
i≥l tπ(i)Pe

m
i = Py where y = m1/2∑

i≥l tπ(i)e
m
i . We have, by (8),

|b|2 ≤ |y|2 =
√
m
(∑
i≥l

t2π(i)

)1/2
≤
r

l
·

√
m(m− l) ≤

rm

l
.

For c ∈ E we shall write l(c) ≤ l if c is a linear combination of at most l of the points
Pemi , 1 ≤ i ≤ m. Let now l be such that rm/l ≤ δ/2.
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We see that every x ∈ A⊥E(r) can be written as x = b + c where |b|2 ≤ δ/2 and
l(c) ≤ l, |c|2 ≤ 1. Therefore we have

N(A⊥E(r), δ) ≤ N(Gl, δ/2) where Gl = {c ∈ Rm : l(c) ≤ l, |c|2 ≤ 1}.

It is clear thatGl can be covered by
(
m
l

)
sets, each isometric to the l-dimensional euclidean

unit ball. Therefore, by (4), we have

N

(
Gl,

δ

2

)
≤

(
m

l

)(
6
δ

)l
≤
ml

l!

(
6
δ

)l
≤

(
6em
lδ

)l
,

by Stirling’s formula. Substituting l = [2rm/δ]+ 1, we obtain (7), because 2rm/δ ≤ l ≤
3rm/δ. ut

The next theorem is a refinement of Kashin’s splitting theorem (cf. [6, Corollary 6.4]).
We think that it is of independent interest.

Theorem 3. Let E ⊂ Rm and F ⊂ Rp with dimE = dimF = n and suppose m ≤ 3n
and p ≤ 3n. Then there is Q ∈ O(F,E) such that

max{|x|⊥F , |Qx|
⊥

E} ≥ c|x|2 for all x ∈ F.

Moreover,

νF,E({Q : max{|x|⊥F , |Qx|
⊥

E} ≥ c|x|2 for all x ∈ F }) ≥ 1− 2−n. (9)

Remark 1. Although conceptually close to Kashin’s theorem, apparently this theorem
neither implies nor is implied by it.

Remark 2. We have of course

max{|x|⊥F , |Qx|
⊥

E} ≥ (3n)
−1/2
|x|2 for all x ∈ F ; (10)

the point is that the c in Theorem 3 does not depend on n.

Proof of Theorem 3. Let δ, r be positive numbers to be determined later. Let

B = {T ∈ O(F,E) : |T x|⊥E ≥ δ for every x ∈ A⊥F (r)}.

We see that if T ∈ B, then for every x ∈ SF we have

max{|x|⊥F , |T x|
⊥

E} ≥ min(δ, r).

Thus (9) holds with c = min(δ, r) provided we can show that νF,E(B) ≥ 1− 2−n.
Let N = N(A⊥F (r), δ) and let x1, . . . , xN ∈ SF be such that

A⊥F (r) ⊂

N⋃
i=1

B(xi, δ). (11)
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Let us observe that B ⊃ B ′ where

B ′ = {T ∈ O(F,E) : |T xi |⊥E ≥ 2δ for i = 1, . . . , N}.

Indeed, suppose that T ∈ B ′. If x ∈ B(xi, δ), then T x ∈ B(T xi, δ), i.e. T x = T xi + y
with |y|2 ≤ δ, hence

|T x|⊥E ≥ |T xi |
⊥

E − |y|
⊥

E ≥ 2δ − |y|2 ≥ δ.

Hence, by (11), |T x|⊥E ≥ δ for every x ∈ A⊥F (r), thus B ⊃ B ′.
By (5) and (6), we have, for every i,

νF,E({T ∈ O(F,E) : T xi ∈ A⊥E(2δ)}) = σE(A
⊥

E(2δ)) ≤ (2Cδ)
n.

Therefore νF,E(B ′) ≥ 1−N · (2Cδ)n, and thus, by (7),

νF,E(B
′) ≥ 1− (3e/r)3rm/δ · (2Cδ)n. (12)

Let now r = δ2 and let δ < 1 be such that

2Cδ · (3e/δ2)9δ ≤ 1/2. (13)

Since m ≤ 3n, by (12), νF,E(B ′) ≥ 1− 2−n, thus, a fortiori, νF,E(B) ≥ 1− 2−n. ut

It will now be convenient to rephrase Theorem 3 in a setting of orthogonal transfor-
mations. Let us first observe that in the situation of Theorem 3, Q determines F and E.
More precisely, Q must be a partial isometry of rank n from Rm to Rp, i.e. a map of the
form

Q =

n∑
i=1

vi ⊗ ui,

where {vi}ni=1 is an orthonormal system in Rm and {ui}ni=1 is an orthonormal system
in Rp. Then F = Q∗(Rp) and E = Q(Rm). We can therefore define

η(Q) = min
x∈SF

max{|x|⊥F , |Qx|
⊥

E},

with F and E as above.
Given an orthonormal system v = {vi}

n
i=1 in Rm, set F = span{v1, . . . , vn} and

define a map Q(·, v) : O(p)→ O(F,Rp) by

Q(T, v) =

n∑
i=1

vi ⊗ T
∗eni .

Lemma 2. Let m ≤ 3n and p ≤ 3n. Then for every orthonormal system v = {vi}
n
i=1

in Rm,
νp({T ∈ O(p) : η(Q(T , v)) ≥ c}) ≥ 1− 2−n. (14)



280 A. Szankowski

Proof. By the invariance properties of the measures νF,E , for every measurable set A ⊂
O(F,Rp) we have the following identities:

νp({T ∈ O(p) : Q(T, v) ∈ A}) = νF,Rp (A),

νF,Rp (A) =
∫
νF,E(A ∩ E) dE,

where we integrate over the invariant probability measure on the Grassmannian of all
n-dimensional subspaces of Rp.

Let A = {T ∈ O(p) : η(Q(T , v)) ≥ c}. By (9), νF,E(A ∩ E) ≥ 1 − 2−n for every
E ⊂ Rm with dimE = n, and hence (14) follows. ut

Given a sequence {Tk}∞k=0 with Tk ∈ O(3 · 2k) for k = 0, 1, . . . , let us define, with the
notation of (1):

Ek = span{uki : i = 1, . . . , 2k}, Fk = span{vki : i = 1, . . . , 2k},

Qk =

2k∑
i=1

vki ⊗ u
k+1
i .

Lemma 3. Let Bn = {{Tk} : η(Qn) ≥ c} for n = 1, 2, . . . . Then

ν(Bn) ≥ 1− 2−2n . (15)

Proof. Given (T1, . . . , Tn−1) ∈
∏n−1
k=1 O(3 · 2

k), let v = (T ∗n−1e
3·2n−1

i )3·2
n−1

i=2n−1+1. Observe
that Q(Tn, v) = Qn, and therefore by (14),

ν3·2n({Tn ∈ O(3 · 2n) : η(Qn) ≥ c}) ≥ 1− 2−2n .

Integrating over all (T1, . . . , Tn−1) ∈
∏n−1
k=1 O(3·2

k) gives (15), sinceBn does not depend
on Tn+1, Tn+2, . . . . ut

Let now An = {{Tk} : η(Qk) ≥ c for k = n, n+ 1, . . . } =
⋂
k≥n Bk . By (15),

ν(An) ≥ 1− 2 · 2−2n .

Lemma 4. For every {Tk} ∈ An, Yq({Tk}) is isomorphic to `q for all 1 < q ≤ 2.

This lemma clearly implies Theorem 2.

Proof. By (10), for every {Tk} ∈ An,

η(Qk) ≥ c
′
= min{c, (3 · 2n)−1/2

} for every k = 1, 2, . . . .

This means that for every v ∈ Fk , and all k = 1, 2, . . . ,

max{|v|F⊥k , |Qkv|
⊥

Ek+1
} ≥ c′|v|2. (16)
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Let

E = {(0, a1, a2, . . . ) : ak ∈ Ek, k = 1, 2, . . . } ⊂ X,
F = {(b0, b1, b2, . . . ) : bk ∈ Fk, k = 0, 1, 2, . . . } ⊂ X,

both equipped with the norm ‖ · ‖2,q . It is clear that Q defined by

Q(b0, b1, b2, . . . ) = (0,Q0b0,Q1b1, . . . )

is an isometry of F onto E and that their ‖ · ‖2,q -completions are isometric to the `q -sum
of `2k

2 , k = 0, 1, 2, . . . , hence isomorphic to `q . We just need to exhibit an isomorphism
S from Yq onto the ‖ · ‖2,q -completion of F .

Every x ∈ Y has a unique representation

x =

∞∑
k=0

(vk + uk+1)

where vk ∈ Fk , uk+1
∈ Ek+1 and evidently uk+1

= Qkv
k . Let

v =
∑

vk, u =
∑

uk+1.

Define T x ∈ F by T x = (v0, v1, v2, . . . ). It is clear that T is a surjective map from Y

onto F . We will show that

(∗) 2‖T x‖2,q ≥ ‖x‖q,q ,
(∗∗) (c′/4)‖T x‖2,q ≤ ‖x‖q,q ,

thus T can be extended to an isomorphism S of Yq onto the ‖ · ‖2,q -completion of F .
For (∗) we have x = u+ v, thus

‖x‖q,q ≤ ‖u‖q,q + ‖v‖q,q ≤ ‖u‖2,q + ‖v‖2,q = 2‖v‖2,q = 2‖T x‖2,q .

For (∗∗), x has a unique representation x =
∑
xk with xk ∈ R3·2k (to wit xk =

vk + uk for k ≥ 1, x0
= v0). We have, for k ≥ 1,

|xk|
q
q + |x

k+1
|
q
q = |v

k
+ uk|

q
q + |u

k+1
+ vk+1

|
q
q

≥
1
2
(|vk + uk|q + |u

k+1
+ vk+1

|q)
q

≥
1
2
(|vk + uk|1 + |u

k+1
+ vk+1

|1)
q
≥

1
2
(|vk|⊥Fk + |u

k+1
|
⊥

Ek+1
)q

=
1
2
(|vk|⊥Fk + |Qkv

k
|
⊥

Ek+1
)q ≥

(c′)q

2
|vk|

q

2 ,
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by (16). Summing over k we obtain

‖x‖
q
q,q =

∞∑
k=0

|xk|
q
q = |v

0
|
q
q +

1
2

( ∞∑
k=1

|xk|
q
q +

∞∑
k=1

|xk|
q
q

)
≥

1
3
|v0
|
q

2 +
1
2

∞∑
k=1

(|xk|
q
q + |x

k+1
|
q
q) ≥

1
3
|v0
|
q

2 +
(c′)q

4

∞∑
k=1

|vk|
q

2

≥
(c′)q

4

∞∑
k=0

|vk|
q

2 =
(c′)q

4
‖T x‖

q

2,q .

This proves Lemma 4 and Theorem 2. ut

A historical remark. The original argument that the “Enflo–Davie spaces” Yp fail to have
AP for 2 < p <∞ evidently breaks down for 1 ≤ p < 2 (otherwise it would imply that
Y2, which is a Hilbert space, does not have AP). However, it has not been clear whether
another approach would imply that Yp fails to have AP for 1 ≤ p < 2. Here we have
shown that this is not the case: at least “generically”, Yp does have AP for 1 ≤ p < 2.

Remark. We do not know whether the roles of p and q in the abstract of this paper can
be reversed. However, forX = `∞ an answer is known by the results of [1]: ifX is an L∞
space and if Y ⊂ X has BAP, then X/Y has BAP as well (cf. also [5]). “Interpolating”
between `∞ and `2, this suggests the following question:

Question. Let 2 < p < ∞, and let Y be a subspace of `p which has BAP. Does `p/Y
necessarily have BAP?
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