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Abstract. The existence of a strong spectral gap for quotients 0\G of noncompact connected
semisimple Lie groups is crucial in many applications. For congruence lattices there are uniform
and very good bounds for the spectral gap coming from the known bounds towards the Ramanujan–
Selberg conjectures. If G has no compact factors then for general lattices a spectral gap can still be
established, but there is no uniformity and no effective bounds are known. This note is concerned
with the spectral gap for an irreducible co-compact lattice 0 in G = PSL(2,R)d for d ≥ 2, which
is the simplest and most basic case where the congruence subgroup property is not known. The
method used here gives effective bounds for the spectral gap in this setting.
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Introduction

This note is concerned with the strong spectral gap property for an irreducible co-compact
lattice 0 in G = PSL(2,R)d , d ≥ 2. Before stating our main result we review in some
detail what is known about such spectral gaps more generally. Let G be a noncompact
connected semisimple Lie group with finite center and let 0 be a lattice in G. For π an
irreducible unitary representation ofG on a Hilbert space H , we let p(π) be the infimum
of all p such that there is a dense set of vectors v ∈ H with 〈π(g)v, v〉 in Lp(G). Thus
if π is finite-dimensional then p(π) = ∞, while π is tempered if and only if p(π) = 2.
In general p(π) can be computed from the Langlands parameters of π , and for many
purposes it is a suitable measure of the nontemperedness of π (if p(π) > 2). The regular
representation, f (x) 7→ f (xg), of G on L2(0\G) is unitary and if 0\G is compact it
decomposes into a discrete direct sum of irreducibles while if 0\G is noncompact the
decomposition also involves continuous integrals via Eisenstein series. In any case, let E
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denote the exceptional exponent set defined by

E(0\G) =


p(π) > 2, and π is an infinite-

p(π) : dimensional irreducible representation
of G occurring weakly in L2(0\G)

 . (0.1)

If E(0\G) is empty set p(0\G) = 2 and otherwise let

p(0\G) = supE(0\G). (0.2)

We say that 0\G has a strong spectral gap if p(0\G) < ∞. The existence of such a
gap is critical in many applications. In the case that 0 is a congruence group (this is the
automorphic case discussed below) the set E and the precise value of p are closely con-
nected to the generalized Ramanujan conjectures [8, 40]. In ergodic-theoretic applications
p(0\G) controls the precise mixing rate of the action of noncompact subgroups of G on
0\G [36, 19, 42]. In questions of local rigidity of related actions the spectral gap controls
the “small divisors” in the linearized cocycle equations [12] and it plays an important role
in the study of the cohomology of 0 [3, 4].

The congruence case is defined as follows. Let H be a semisimple linear algebraic
group defined over a number field F and let S∞ denote the set of archimedean places
of F . The group G equals

∏
ν∈S∞

H(Fν), where Fν is the completion of F at ν, and 0
is a congruence subgroup of H(F) embedded intoG diagonally. After [7] and [9], which
establish bounds towards Ramanujan conjectures in general, one knows that p(0\G) is
finite in these cases. In fact, the methods used there yield explicit, and in many cases quite
sharp, bounds for p(0\G) which depend only on H and not on 0. The latter is crucial
in many number-theoretic as well as group-theoretic applications [32, 40]. Arthur’s con-
jectures [1, 8] for the discrete spectrum for such spaces 0\G imply strong restrictions on
the nontempered π ’s that can occur. Specifically, they must correspond to local Arthur
parameters, which gives a “purity” property [3, Chapter 6] and which in turn restricts the
setE(0\G). In particular, the setE(0\G) should be finite, though the set of nontempered
π ’s occurring in L2(0\G) can certainly be infinite.

Two basic congruence examples are (i) G = SL(2,R) and 0 a congruence sub-
group of SL(2,Z), in which case Selberg’s eigenvalue conjecture [44] is equivalent to
E(0\G) = ∅, while it is known that E(0\G) is finite and is contained in (2, 64/25] [23];
(ii) G = SL(3,R) and 0 a congruence subgroup of SL(3,Z), in which case Langlands
conjectures for automorphic cuspidal representations on GLn [26] imply that E(0\G)
= {4}. The exceptional exponent comes from the unitary Eisenstein series for the maxi-
mal parabolic subgroup. From [23] it follows that E(0\G) ⊂ {4} ∪ (2, 28/9] but here E
is not known to be finite.

Returning to the general lattice 0, we may, without any serious loss of generality,
take G to be the direct product G1 × · · · × Gn of simple Lie groups with trivial center
and assume that 0 is irreducible. By the latter we mean that if G = G1 × · · · ×Gr ×Gc
with Gj noncompact for j = 1, . . . , r and Gc compact, then the projection of 0 onto the
compact factor is dense and if r > 1 so are the projections of 0 on eachGj , j = 1, . . . , r .
This implies that the only Gj -invariant vector in L2(0\G) is the constant function.
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If G has no compact factors then L2(0\G) has a strong spectral gap. To see this
consider separately the cases of r = 1 and r > 1. If r = 1 and the rank ofG is 1, then the
spectral gap follows directly from the discreteness of the spectrum of the Laplacian below
the (possible) continuous spectrum on 0\G/K where K is a maximal compact subgroup
of G (in the cases G = SO(n, 1) and SU(n, 1), p(0\G) can be arbitrarily large as 0
varies; this is shown for SO(2, 1) in [44] by starting with a 0 withH1(0) infinite, and can
be done in the same way for theseG’s). If the rank ofG is at least 2 thenG has property T
and p(0\G) is less than or equal to p(G), which is finite [11]. The optimal exponent
p(G) associated with such a G has been determined in many cases including classical
groups [18, 28] and some exceptional groups [30], while explicit and strong upper bounds
for p(G) are given for split exceptional groups in [29] and in complete generality in [39].
If r ≥ 2, we need to use more machinery to deduce the spectral gap. Firstly, by Margulis
[35, Chapter IX], 0 is arithmetic and hence is commensurable with a congruence lattice of
the type discussed in the previous paragraph, for which we have a strong spectral gap. This
coupled with the lemma of Furman–Shalom and Kleinbock–Margulis (see [25, p. 462])
allows one to pass from the congruence group to 0 and to conclude that p(0\G) < ∞.
Note that any π occurring in L2(0\G) is of the form π ∼= π1 ⊗ · · · ⊗ πr , with πj
an irreducible representation of Gj , and that p(π) = maxj p(πj ) (it is this maxp(πj )
that is the issue and which makes the problem difficult; if we used minp(πj ) we could
proceed as in the case r = 1). In applying the above lemma one loses all information
in terms of specifying p(0\G). While the analysis can be made effective in principle,
doing so would be unwieldy and the bound would anyway depend very poorly on 0. For
arithmetic applications the latter is a serious defect. We remark that in the case where G
has no compact factors we do not know if E(0\G) is necessarily finite.

When G has a compact factor the situation is apparently more difficult. In the first
place it is not known in general that 0\G has a strong spectral gap. The most problematic
case is the simplest one, that is,G = SL(2,R)× SU(2). The suggestion (2) in [15, p. 57]
is equivalent to the existence of a strong spectral gap for any irreducible 0 in such a G.
In [15] this spectral gap is proved for many 0’s, and this has been extended (using novel
methods from additive combinatorics) in [5] to include any 0 whose projection on SU(2)
consists of matrices with algebraic numbers as entries. However, in the case of G having
compact factors, the set E(0\G) can be far more complicated. Borrowing a technique
from [33] we show the following

Theorem 1. There is an irreducible 0 in G = SL(2,R) × SU(2) for which E(0\G) is
infinite. In fact, this is so for the generic 0.

Next, we turn to the simplest and most basic case for which an effective spectral gap
is not known, that is, 0 an irreducible co-compact lattice in G = PSL(2,R)d , d ≥ 2.
Such a 0 is arithmetic and from the classification of such groups [48] we know that 0 is
commensurable with the unit group in a suitable division algebra (see Section 1.2). Serre
conjectures that the congruence subgroup property holds for such groups, this being the
most elementary and fundamental case for which the congruence subgroup problem is
open (see [34, Chapter 7]). If true, this coupled with the Jacquet–Langlands correspon-
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dence [21] implies that E(0\G) is empty if the Ramanujan–Selberg conjecture [44] is
true, and that E(0\G) ⊆ (2, 18/7] by [24].

We can now formulate our main result. We will work in a slightly more general setting,
allowing 0 to act via a unitary representation. Let ρ : 0 → U(N) be an N -dimensional
unitary representation of 0. Let L2(0\G,ρ) denote the space of functions from G to CN
satisfying

f (γg) = ρ(γ )f (g),

∫
0\G

|f (g)|2 dg <∞.

The regular representation f (x) 7→ f (xg) of G on L2(0\G,ρ) decomposes discretely
as

L2(0\G,ρ) ∼=

∞⊕
k=0

πk(ρ), (0.3)

with πk(ρ) irreducible representations of G.

Theorem 2. Let 0 ⊆ PSL(2,R)d be an irreducible co-compact lattice, and ρ and πk(ρ)
be as above. Then for any α > 0, p(πk(ρ)) < 6 + α except for at most a finite number
of k’s. In particular,

E(0\G) ∩ [6+ α,∞)| <∞.

Remark 0.1. From the arithmeticity of 0 (n > 2), we know that it is commensurable
to a lattice 0A derived from a quaternion algebra. We can thus assume (replacing 0 by
0 ∩ 0A if necessary) that 0 ⊆ 0A is a finite index subgroup. Moreover, since we can
also replace the representation ρ by the induced representation Ind0A0 ρ, it is sufficient to
prove the theorem only in the case where 0 = 0A.

Remark 0.2. The theorem implies that p(0, ρ) < ∞ and much more. The proof yields
effective bounds (polynomial in dim ρ) both for the number of exceptions and for p(πk)
for these exceptions. For some applications the finite number of exceptions enter as sec-
ondary terms in rates of equidistribution and are harmless, so that the theorem is effec-
tively asserting that p(0, ρ) ≤ 6.

Remark 0.3. The proof of the theorem is based on the Selberg trace formula [13, 16] and
counting arguments involving relative quadratic extensions of L (the field of definition of
the corresponding quaternion algebra) as in [46]. One can probably combine the analysis
here with that in [41] (see also [20]) to show that for any fixed 0 as above and any
congruence subgroup 3 of 0 (i.e., the intersection of 0 with a congruence subgroup of
the unit group of the quaternion algebra) the exceptional πk’s for L2(3\G) with p(πk) >
6 + α are the finitely many πk’s that are there from 0 (i.e., no new exceptional π ’s
appear in passing from 0 to 3). We have not carried this out, but doing so would be
of interest since for most applications this uniform spectral gap is a good substitute for
the Ramanujan conjectures.
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We apply the theorem to the Selberg zeta function in this setting. For simplicity we
take d = 2 and 0 torsion free. Each 1 6= γ ∈ 0 is of the form (γ1, γ2) with γj ∈
PSL(2,R) and γj 6= 1. We call γ mixed if γ1 is hyperbolic and γ2 is elliptic. That is, γ1

is conjugate to
(
N(γ )1/2 0

0 N(γ )−1/2

)
with N(γ ) > 1 and γ2 is conjugate to

(
ε(γ ) 0

0 ε(γ )

)
with

|ε(γ )| = 1. For m ≥ 1, Selberg [43] defines a zeta function (see also [37])

Zm(s, 0) =
∏
{γ }∗0

∞∏
ν=0
|i|<m

(1− εiγN(γ )
−s−ν)−1 (0.4)

where the product is over all primitive conjugacy classes of mixed elements in 0. He
shows that Zm(s, 0) is entire (except when m = 1 where it has a simple pole at s = 1)
and satisfies a functional equation relating s and 1−s. Its zeros are either real in {−k}k>0∪

(−1, 1) or complex in 1/2 + iR. They correspond to the eigenvalues of the Casimir op-
erator acting on suitable functions on 0\G. As Selberg remarks, the form that these zeta
functions take is qualitatively similar to the Riemann zeta function. In fact, more so than
in the case of one upper half plane where the definition corresponding to (0.4) does not
have a −1 in the exponent (this feature is connected with the parity of d). If 0 is a con-
gruence group and the Ramanujan–Selberg conjecture is true then Zm(s, 0) satisfies the
“Riemann hypothesis”, that is, all its nontrivial zeros are on <(s) = 1/2.

As a corollary of Theorem 2 we get a zero free region that holds for all (but finitely
many) of these zeta functions.

Corollary 0.1. Given t0 > 5/6 there is an m0(0) such that Zm(s, 0) has no zeros in
<(s) > t0, for m ≥ m0(0).

We now outline the main ideas of the proof of Theorem 2 (for the case d = 2). As men-
tioned above, it is sufficient to give a proof for 0 a lattice derived from a quaternion
algebra, A, defined over a number field L and an arbitrary unitary representation ρ of 0.
What we will actually show is that if a representation π ∼= π1 ⊗ π2 occurs in the decom-
position of L2(0\G,ρ) with p(π) sufficiently large, then all the spectral parameters of π
are bounded.

We assume that π ∼= π1 ⊗ π2 occurs in the decomposition with, say, p(π1) > 6
and the other spectral parameter large and get a contradiction: From our assumption,
π1 ∼= πs1 is complementary with |s1 − 1/2| ∈ (1/3, 1/2), and the second factor is ei-
ther principal series π2 ∼= πs2 with s2 = 1/2 + ir2, r2 ∈ [T , 2T ], or discrete series
π2 ∼= Dm with weight m ∈ [T , 2T ] for some large T . Let g1, g2 ∈ C

∞(R) be smooth
even real-valued compactly supported functions whose Fourier transforms hj = ĝj are
positive on R ∪ iR. Further, assume that h2 vanishes at zero to a large order (for the
discrete series case, instead of h2 we will use ψ ∈ C∞(R) that is smooth, positive
and compactly supported away from zero). For T large and R = c log(T ) we have
h1(Rr1)h2(r2/T ) � T c|1/2−s1|/log(T ) (equivalently in the second case the same bound
holds for h1(Rr1)ψ(m/T )). From the positivity assumption, this lower bound also holds
when summing over all representations in the decomposition (in the second case we also
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sum over all weights m ∈ Z). For the full sum we can also give an upper bound of or-
der Oε(T 2

+ T c/2+ε−1). For c = 6 − 2ε and T sufficiently large the upper bound is
already smaller than the lower bound, excluding the existence of such a representation in
the decomposition.

Remark 0.4. When summing over all representations, the trivial representation r0 =
(i/2, i/2) also contributes. If h2 (equivalently ψ) did not vanish at zero then the trivial
representation would contribute ∼ T c/2, which is already larger than the lower bound
coming from the representation we wish to exclude. Hence, in order for this strategy to
have any chance of working we must make the function h2 vanish at zero (or respectively
take ψ supported away from zero).

To obtain the upper bound for the full sum we use the Selberg trace formula to trans-
form the spectral sum to a sum over the conjugacy classes (when summing over the
weights we also use Poisson summation). We then bound each summand by its absolute
value. (Even though the summands here are not positive, it turns out that the oscillations
are sufficiently slow so that we apparently do not lose too much.) After some standard
manipulation, using the fact that the test functions are compactly supported, estimating
the sum over the conjugacy classes amounts to two counting arguments. The first is an
estimate on the number of algebraic integers in L (viewed as a lattice in Rn) that lie inside
a long and narrow rectangular box whose sides are parallel to the coordinate axes. Using
a simple Dirichlet box principle argument we bound the number of such lattice points by
the volume of the box. The second problem is counting the number of conjugacy classes
in 0 with a given trace, which amounts to estimating the number of optimal embeddings
of certain orders into the quaternion algebra. This in turn is translated (via the work of
Eichler) to estimates of class numbers of quadratic extensions of the number field L,
which we obtain using Dirichlet’s class number formula.

1. Background and notation

In this section we go over some necessary background on lattices 0 in G = PSL(2,R)d ,
on the spectral decomposition of L2(0\G) and the Selberg trace formula.

1.1. Irreducible lattices

A discrete subgroup 0 ⊂ G = PSL(2,R)d is called a lattice if the quotient 0\G has
finite volume, and co-compact when 0\G is compact. We say that a lattice 0 ⊂ G is
irreducible if for every (noncentral) normal subgroup N ⊂ G the projection of 0 toG/N
is dense. An equivalent condition for irreducibility is that for any nontrivial 1 6= γ ∈ 0,
none of the projections γj ∈ Gj are trivial [46, Theorem 2]. Examples of irreducible
lattices can be constructed from norm one elements of orders in a quaternion algebra (see
below).

Recall that a nontrivial element g ∈ PSL(2,R) is called hyperbolic if |Tr(g)| > 2,
elliptic if |Tr(g)| < 2, and parabolic if |Tr(g)| = 2. For any nontrivial 1 6= γ ∈ 0,
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the projections to the different factors are either hyperbolic or elliptic. The irreducibility
implies that there are no trivial projections, and since we assume 0 is co-compact, there
are no parabolic projections. There are purely hyperbolic elements (where all projections
are hyperbolic) and mixed elements (where some projections are hyperbolic and other are
elliptic). There could also be a finite number of torsion points that are purely elliptic (see,
e.g., [13, 46]).

1.2. Lattices derived from quaternion algebras

Let L be a totally real number field and denote by ι1, . . . , ιn the different embeddings of
L into R. Let A be a quaternion algebra over L, ramified in all but d of the real places
(say ι1, . . . , ιd ). That is, A⊗ιj (L) R is isomorphic to Mat2(R) for j ≤ d , and to the stan-
dard Hamilton quaternions for j > d. LetR be a maximal order inside A, and denote by
R1 the group of (relative) norm one elements inside this order. Then ιj (R1) ⊂ SL(2,R)
for j ≤ d and ιj (R1) ⊆ SU(2) for j > d. The group 0(R) = {(ι1(α), . . . , ιd(α)) ∈
PSL(2,R)d : α ∈ R1

} is a lattice inside PSL(2,R)d and it is co-compact unless n = d
and A = Mat(2, L) (see [45, 46]). Margulis’s arithmeticity theorem [35, Chapter IX]
together with Weil’s classification of arithmetic lattices [48] implies that, up to commen-
surability, these are the only examples of irreducible co-compact lattices in PSL(2,R)d ,
d ≥ 2.

1.3. Spectral decomposition

Let 0 be an irreducible co-compact lattice in G and let ρ be a finite-dimensional uni-
tary representation of 0. The space L2(0\G,ρ) is the space of Lebesgue measurable
vector-valued functions on G such that f (γg) = ρ(γ )f (g) and

∫
0\G
|f (g)|2 dg < ∞.

The group G acts on L2(0\G,ρ) by right multiplication and we can decompose it into
irreducible representations

L2(0\G,ρ) ∼=
⊕

πk.

Any irreducible unitary representation πk is a product πk ∼= πk,1 ⊗ · · · ⊗ πk,d where
the πk,j ’s are irreducible unitary representations of PSL(2,R). We briefly recall the clas-
sification of these representations. Other than the trivial representation, the irreducible
representations of PSL(2,R) are either principal series πs , s ∈ 1/2 + iR, comple-
mentary series πs , s ∈ (0, 1), or discrete series Dm, m ∈ Z. The discrete and prin-
cipal series are both tempered, while the complementary series is nontempered with
p(πs) = max{1/s, 1/(1 − s)}. For a representation πk ∼= πk,1 ⊗ · · · ⊗ πk,d of G we
have p(πk) = maxj p(πk,j ).

1.4. The Selberg trace formula

The Selberg trace formula relates the spectral decomposition of L2(0\G,ρ), to the con-
jugacy classes in 0. We refer to [13, Sections 1–6], [16, Chapter 3] and [43] for the full
derivation of the trace formula in this setting.



290 Dubi Kelmer, Peter Sarnak

Fix a weightm ∈ Zd . For simplicity, we assume thatmj = 0 for j ≤ d0 and |mj | ≥ 2
for j > d0. Denote by L2(0\G,ρ,m) the subspace of L2(0\G,ρ) such that π ∼= π1 ⊗

· · · ⊗ πd occurs in the decomposition if and only if πj is principal or complementary
series for j ≤ d0 and πj ∼= Dmj for j > d0. Consider the decomposition

L2(0\G,ρ,m) ∼=

∞⊕
k=0

πk

into irreducible representations. For any j ≤ d0 let sk,j = 1/2 + irk,j be such that
πk,j = πsk,j . For any j ≤ d0 let gj ∈ C∞(R) be a smooth even real-valued compactly
supported function, and let hj = ĝj be its Fourier transform. Recall that for any γ ∈ 0 its

projections to the different factors are either hyperbolic, γj ∼
(
N(γj )

1/2 0
0 N(γj )

−1/2

)
with

N(γj ) = e
lj > 1, or elliptic γj ∼

(
ε(γj ) 0

0 ε(γj )

)
with ε(γj ) = eiθj ∈ S1. Define

h̃j (γj ) =
g(lj )

sinh(lj/2)

when γj is hyperbolic, and

h̃j (γj ) =
1

sin θj

∫
∞

−∞

cosh[(π − 2θj )r]
cosh(πr)

h(r) dr

when γj is elliptic. The Selberg trace formula, applied to the product h(r)=
∏
j≤d0

hj (rj ),
then takes the form∑

k

h(rk) =
vol(0\G)χρ(1)

(4π)d
∏
j≤d0

(∫
R
hj (rj )rj tanh(πrj ) drj

) ∏
j>d0

(2|mj | − 1)

+

∑
{γ }

vol(0γ \Gγ )χρ(γ )
∏
j≤d0

h̃j (γj )
∏
j>d0

e±2i|mj |θj

1− e±2iθj
,

where the sum on the right hand side is over all 0-conjugacy classes {γ } ∈ 0] that are
elliptic for j > d0, where Gγ denotes the centralizer of γ in G and 0γ = Gγ ∩ 0,
χρ(γ ) = Tr(ρ(γ )) is the character of the representation, and the ± signs are determined
by the signs of the mj ’s.

2. Proof of Theorem 1

In this section we give the proof of Theorem 1. We consider SU(2)×SU(2) as a deforma-
tion space for lattices 0 inG = SL(2,R)×SU(2). We construct a dense set of irreducible
lattices inside this deformation space, each with E(0\G) infinite, and then use these to
show that the same is true generically.
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2.1. Deformation space

Let 0 be an irreducible lattice in G = SL(2,R) × SU(2). The projection P1 of 0 onto
the first factor has image 3, which is a lattice in SL(2,R). To construct lattices 0 in G
with |E(0\G)| = ∞, we assume that P1 : 0 → 3 is an isomorphism. In this way we
can identify

0 = {(γ, ρ(γ )) : γ ∈ 3},

where ρ = P1 ◦ P
−1
2 : 3 ↪→ SU(2). For 3 we take the congruence subgroup 0(2)

of SL(2,R), which is a free group on two generators A =
(

1 2
0 1
)
, B =

(
1 0
2 1

)
. Our de-

formation space of such lattices can then be described as SU(2) × SU(2) where for any
u = (u1, u2) ∈ SU(2)× SU(2) we define ρu by ρu(A) = u1, ρu(B) = u2 extended to a
homomorphism of 3 into SU(2) and let 0u = (3, ρu). One can further identify such lat-
tices inG which are conjugate inG, but for our analysis there is no need to do so. For any
n ≥ 3 we choose u1, u2 so that un1 = u

n
2 = 1 and satisfy no further relations (that is, the

corresponding image ρu(3) is isomorphic to the free product (Z/nZ)∗ (Z/nZ)). Varying
over all such ρu and all n > 3 yields a dense subset in our deformation space. Note that
for any such choice of u the image ρu(3) is dense in SU(2), that is, 0u = (3, ρu) is
irreducible. We will now show that for such a lattice we have |E(0u\G)| = ∞.

Theorem 3. For any homomorphism ρu : 3 → SU(2) as above the corresponding
lattice 0u = (3, ρu) satisfies |E(0u\G)| = ∞.

2.2. Spectral theory for infinite volume quotients of H

For the proof of Theorem 3 we will make a reduction to the spectral theory of L2(L\H)
with H the upper half plane and L = ker ρu acting by fractional linear transformations.
Before proceeding with the proof we review some facts on the spectral theory of these
infinite volume hyperbolic surfaces that we will need (we refer to [47] for details). Let
L be a torsion free discrete subgroup of SL(2,R). Then L\H is a complete hyperbolic
surface and the Laplacian on smooth functions of compact support on L\H has a unique
self-adjoint extension denoted by4. Let λ0(L\H) denote the bottom of the spectrum of4
so that the spectrum is contained in [λ0,∞). Closely related to λ0(L\H) is the exponent
of convergence δ(L) ∈ [0, 1] (see [47, p. 333] for definition). When L is nonelementary
and contains a parabolic element this exponent satisfies δ(L) > 1/2 [2, Theorem 7],
in which case the Elstrodt–Patterson theorem [47, Theorem 2.17] says that λ0(L\H) =
δ(L)(1− δ(L)), and in particular λ0(L\H) < 1/4.

We shall be interested in the case where L is a normal subgroup of 3 and 3/L is
not amenable. In this case Brooks [6] shows that λ0(L\H) > 0. Summarizing the above
remarks we have

Proposition 2.1. Let L be such that 3/L is not amenable and δ(L) > 1/2. Then 0 <
λ0(L\H) < 1/4 and λ0 is an accumulation point of distinct points of the spectrum of 4
on L2(L\H).
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Proof. From the above remarks it is clear that 0 < λ0(L\H) < 1/4. We will show that
there is no eigenfunction in L2(L\H) with eigenvalue λ0, implying that λ0 cannot be
an isolated point in the spectrum. We recall that if an eigenfunction φ ∈ L2(L\H) with
eigenvalue λ0 exists then it is unique up to a nonzero scalar multiple [47, Corollary 2.9].
On the other hand, as L is normal in 3, for any γ ∈ 3 the function φ(γ z) ∈ L2(L\H) is
also a λ0-eigenfunction. Consequently, we must have φ(z) = φ(γ z) for all γ ∈ 3, and
since 3/L is infinite, φ cannot be in L2(L\H). ut

Remark 2.1. The situation here is very different from the case of geometrically finite
quotients where Lax and Phillips [27] showed that the point spectrum is finite. Indeed, we
recall that a finitely generated normal subgroup of a free group is always of finite index
[22]. Hence, the assumption that L is a normal subgroup with infinite index in 3 implies
that L must be infinitely generated and in particular not geometrically finite.

2.3. Construction of nontempered points

Fix n > 3 and a homomorphism ρ : 3 → SU(2) with ρ(3) ∼= (Z/nZ) ∗ (Z/nZ) such
that ρ(A)n = ρ(B)n = 1. The kernel L = ker(ρ) is normal in 3 and 3/L ∼= (Z/nZ) ∗
(Z/nZ) is infinite (and not amenable). Also An ∈ L is parabolic so δ(L) > 1/2 and
hence 0 < λ0(L\H) < 1/4 is an accumulation point of distinct points in the spectrum.

Now, for l ≥ 0 let σl = syml denote the l + 1-dimensional irreducible representation
of SU(2). According to Weyl, L2(SU(2)) decomposes under the regular representation as

L2(SU(2)) =
∞⊕
l=0

(dim σl)Wl,

where Wl
∼= σl . Correspondingly, the regular representation of G on L2(0\G) decom-

poses into the representations L2(3\SL(2,R), σl ◦ ρ) each occurring with multiplicity
l + 1. Here

L2(3\SL(2,R), σl ◦ ρ)

= {F : SL(2,R)→ Cl+1 : F(γg) = σl(ρ(γ ))F (g), γ ∈ 3}, (2.1)

with the right action of SL(2,R) (we may normalize so that σl acts unitarily on Cl+1 with
respect to the standard inner product). Since we are only interested in representations π
of SL(2,R) appearing in (2.1) which are nontempered, we may restrict to π ’s which are
spherical.

Denote by L2(3\H, σl ◦ ρ) the space of square integrable vector-valued functions
on the upper half plane H, satisfying F(γ z) = σl(ρ(γ ))F (z), where γ acts on z ∈ H
by fractional linear transformations. This space is naturally identified with the space of
spherical vectors in L2(3\SL(2,R), σl ◦ ρ). Let F1,l, F2,l, . . . in L2(3\H, σl ◦ ρ) be
an orthonormal basis of eigenvectors of 4 with eigenvalues λj,l = 1/4 + t2j,l giving
the discrete spectrum and E(z, 1/2 + it), t ∈ R, spanning the (tempered) continuous
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spectrum. Note that if 4Fj,l + λj,lFj,l = 0 with λj,l = sj,l(1 − sj,l) < 1/4 then there is
a nontempered representation π appearing in L2(0\G) with p(π) = 1/(1− sj,l). Hence
showing that |E(0\G)| = ∞ is equivalent to showing that there are infinitely many
distinct eigenvalues λj,l below 1/4. The following proposition then concludes the proof
of Theorem 3.

Proposition 2.2. With the above notations, there are infinitely many eigenvalues
λ0(L\H) < λj,l < 1/4 accumulating at λ0(L\H).

Proof. Let k(z,w) be a point pair invariant on H as in [44] (i.e., for any g ∈ SL(2,R),
k(gz, gw) = k(z,w)). We assume that for z fixed, k(z,w) is a continuous compactly
supported function in w. We have the spectral expansion for the kernel Kσl (z, w) (see
[17, Chapter 8, equation 4.1]) given by

Kσl (z, w) =
∑
γ∈3

k(γ z,w)σl ◦ ρ(γ )

=

∞∑
j=1

h(tj,l)Fj,l(z)F
t
j,l(w)

+

∫
R
h(t)E(z, 1/2+ it)Et (w, 1/2+ it) dt, (2.2)

where h(s) =
∫
H k(i, z)y

s dx dy

y2 is the Selberg transform of k. Note that for any fixed z,w
both sides are (l + 1)× (l + 1) matrices. Taking traces of these matrices gives

∑
γ∈3

k(γ z,w)χl(ρ(γ )) =

∞∑
j=1

h(tj,l)〈Fj,l(z), Fj,l(w)〉

+

∫
R
h(t)〈E(z, 1/2+ it), E(w, 1/2+ it)〉 dt, (2.3)

where χl is the character of σl on SU(2) and we denote by 〈 , 〉 the standard inner product
on Cl+1.

Let ψ(z) be a continuous function of compact support in H and integrate (2.3) against
ψ(z)ψ(w) to get

1
l + 1

∑
γ∈3

∫
H

∫
H
ψ(z)ψ(w)k(γ z,w) dv(z) dv(w) χl(ρn(γ )) =

∫
C

h(t) dµl(t) (2.4)

where µl is the positive measure on C = [0,∞) ∪ [0, i/2] given by

1
l + 1

∞∑
j=1

〈∫
H
ψ(z)Fj,l(z) dv(z),

∫
H
ψ(z)Fj,l(w) dv(w)

〉
δtj,l

+
1

l + 1

〈∫
H
ψ(z)E(z, 1/2+ it) dv(z),

∫
H
ψ(w)E(w, 1/2+ it) dv(w)

〉
dt. (2.5)
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Note that for fixed k the sum over3 on the left hand side of (2.4) is finite. Also as l→∞,
1
l+1χl(u) tends to 1 if u = 1, and to 0 if u 6= 1. Hence, taking the limit l → ∞ in (2.4)
(for k and ψ fixed) we get

µl(h)→
∑
γ∈L

∫
H

∫
H
ψ(z)ψ(w)k(γ z,w) dv(z) dv(w). (2.6)

If the function ψ(z) is supported in a small ball B in H that is contained in one funda-
mental domain F for L\H then we can think of ψ also as an element of L2(L\H). For
such ψ we get

µl(h)→

∫
F

∫
F
ψ(z)ψ(w)KL(z, w) dv(z) dv(w), (2.7)

where
KL(z, w) =

∑
γ∈L

k(γ z,w). (2.8)

The function KL(z, w) is L × L-invariant and gives a kernel for a bounded self-adjoint
operator on L2(L\H). The family of such operators (when taking different point pair
invariants k) is a commutative algebra that also commutes with 4. Consequently, this
whole algebra can be simultaneously diagonalized together with 4. For any fixed ψ ∈
L2(L\H) there is a corresponding positive spectral measure νψ on the spectrum of 4.
That is, using the parameter t =

√
λ− 1/4 we have the spectral decomposition

〈KLψ,ψ〉 =

∫
C

h(t) dνψ (t). (2.9)

Consequently, from (2.7) and (2.9) we see that for every function h which is the Selberg
transform of k continuous of compact support (in particular, for any even function h with
Fourier transform smooth of compact support), as l→∞,

µl(h)→ νψ (h). (2.10)

Now, since the spectrum of4 on L2(L\H) has λ0 as an accumulation point it follows
that given ε > 0 we can find a closed nonempty subinterval I of (λ0, λ0 + ε) such that
the spectral projector PI onto I is nonzero. Let f be a nonzero element in the image
of PI . One can choose a small ball B in H which is injective in L\H and such that f
restricted to B is a nonzero L2 function. Take ψ to be supported in B, continuous and
such that its integral over B against f is not zero. Then the inner product of f and ψ
as members in L2(L\H) is not zero so that the support of νψ meets I nontrivially. Let
J ⊂ (λ0, λ0 + ε) be an interval strictly containing I and let h be an even function with
Fourier transform compactly supported that is negative outside J and satisfies νψ (h) > 0.
Then from (2.10) (with this ψ and h) we deduce that for sufficiently large l the support
of µl in (2.5) meets J nontrivially. Consequently, for all sufficiently large l there is an
eigenvalue λj,l ∈ (λ0, λ0 + ε). Repeating this procedure (making ε smaller) will produce
infinitely many eigenvalues accumulating at λ0.
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To conclude the proof we give a construction for an even function h with Fourier
transform smooth and compactly supported that is negative outside J and νψ (h) > 0.
Fix a smooth compactly supported function g with Fourier transform ĝ even and positive
on C and set M >

∫
C
ĝ(t) dνψ (t)/

∫
I
ĝ(t) dνψ (t) (this is finite since the support of νψ

meets I ). Now let F(t) =
∑
n≤N an cos(nt) be a trigonometric polynomial satisfying

F(t) > M for t2 + 1/4 ∈ I and −1 < F(t) < 0 for t2 + 1/4 in the complement
of J . (The existence of such a trigonometric polynomial is guaranteed by the Weierstrass
approximation theorem for polynomials, if we recall that the Chebyshev polynomials
satisfy Tn(cos(t)) = cos(nt).) Now the function h(t) = ĝ(t)F (t) has Fourier transform
smooth of compact support and satisfies h(t) < 0 on the complement of J (as it has the
same sign as F ) and νψ (h) > 0 (by the choice of M). ut

We now complete the proof of Theorem 1, showing that for generic u the exceptional
exponent set E(0u\G) is infinite. As we noted and is easily shown, the set of u’s that
we consider in Theorem 3 is dense in SU(2) × SU(2). Let uj , j = 1, 2, . . . , be an
enumeration of a dense set of such u’s. Now for each l, the spectrum in [0, 1/4] of 4
on L2(3\H, σl ◦ ρ) is continuous in u. Hence it follows from Theorem 3 that for each
j = 1, 2, . . . there is εj such that for u in a small neighborhood B(uj , εj ) of uj the lattice
0u = (3, ρu) satisfies |E(0u\G)| > j . Now let

B =

∞⋂
J=1

∞⋃
j=J

B(uj , εj ).

Then B is of the second category in SU(2) × SU(2), and for any u ∈ B, E(0u\G) is
infinite. We have thus shown that a generic lattice in the sense of Baire has infinitely
many exceptional exponents. Note that for the generic u ∈ SU(2) × SU(2), u1 and u2
generate a free group in SU(2). Hence the limit measure in (2.10) (as l → ∞) for such
a lattice is supported on R (i.e., it has no exceptional spectrum). That is, the generic
lattice has infinitely many exceptional exponents, but in terms of density almost all the
representations are tempered.

3. Proof of Theorem 2

We now give the proof of Theorem 2. In order to simplify notations we will write down
the full details only for the case d = 2. The modifications required to handle d > 2 are
straightforward and are accounted for in Section 3.3.

3.1. Reduction to an asymptotic argument

Fix a co-compact irreducible lattice, 0 ⊂ PSL(2,R)2, derived from a quaternion algebra
and let ρ be a unitary representation of 0. It is well known that there are only finitely
many representations occurring in L2(0\G,ρ) with all spectral parameters bounded. We
can thus reduce Theorem 2 to the following asymptotic argument.
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Theorem 4. Assume that π ∼= π1 ⊗ π2 occurs in L2(0\G,ρ) and that π1 ∼= πs1 is
complementary series and π2 is either principal πs2 with s2 = 1/2 + ir2, r2 ∈ [T , 2T ],
or discrete Dm with |m| ∈ [T , 2T ]. Then for any c > 0 (as T →∞),

T c|1/2−s1| �ε dim(ρ)
(

T 2

log(T )
+ T c/2−1+ε

)
.

We now show that this asymptotic argument implies Theorem 2.

Proof of Theorem 2. Fix α, ε > 0 and let M = M(α, ε) = (6 + α)/(α − ε(4 + α)).
Then by Theorem 4 with c = 6 − 2ε, there is a constant C = C(ε, 0) such that if
π = π1 ⊗ π2 occurs in the decomposition with π1 complementary with p(π1) ≥ 6 + α
(i.e., |1/2− s1| ≥ (4+α)/(2(6+α))) then π2 is either complementary, or principal with
parameter r2 ≤ (C dim ρ)M , or discrete with parameter |m| ≤ (C dim ρ)M . Theorem 2
now follows as there are at most O((dim ρ)2M) such representations. ut

3.2. Reduction to a counting argument

We now use the Selberg trace formula to reduce Theorem 4 to a counting argument.

Proposition 3.1. Assume that π ∼= π1 ⊗ π2 occurs in L2(0\G,ρ) and satisfies the hy-
pothesis of Theorem 4. Then for any c > 0, as T →∞,

T c|1/2−s1| �ε dim(ρ)
(

T 2

log(T )
+ T

∑
|t1|≤T c/2

|t2|=2+O(T −2+ε)

F0(t)√
(t21 − 4)(t22 − 4)

+
1
T

∑
|t1|≤T c/2

|t2|≤2

F0(t)√
(t21 − 4)(t22 − 4)

)
,

where the summation is over elements t = (t1, t2) ∈ Tr(0), and

F0(t) =
∑
{γ }

Tr(γ )=t

vol(0γ \Gγ )

is counting the number of conjugacy classes in 0 with a given trace.

We will give the proof separately for the two cases when π2 is principal or discrete series.

Proof for principal series. Let π ∼= π1 ⊗ π2 occur in L2(0\G,ρ) with π1 ∼= πs1 com-
plementary series and π2 ∼= πs2 principal with parameter r2 ∈ [T , 2T ]. Consider the
function

hR,T (r1, r2) = h1(Rr1)h2(r2/T ),

where h1, h2 are even positive functions with Fourier transforms g1, g2 smooth and sup-
ported on [−1, 1]. We also assume that h2 vanishes at zero to a large order > 2/ε. We
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note that this vanishing assumption is crucial for the proof (see Remark 0.4). Note that for
s1 = 1/2+ir1 ∈ (0, 1/2) and r2 ∈ [T , 2T ] we can bound hR,T (r)� exp(R|1/2−s1|)/R.
Since the function is positive, this is also a lower bound for the sum over the full spectrum,

exp(R|1/2− s1|)
R

�

∑
k

hR,T (rk).

We now use the trace formula (with weight (0, 0)) to transform the sum over the eigen-
values to a sum over conjugacy classes. The geometric side of the trace formula is given
by

vol(0\G)χρ(1)
16π2

∫∫
R2
hR,T (r1, r2)r1 tanh(πr1)r2 tanh(πr2) dr1 dr2

+
T

R

∑
{γ }∈e-h

vol(0γ \Gγ )
χρ(γ )g2(T lγ2)

sinh(lγ2/2) sin θγ1

∫
∞

−∞

cosh((π − 2θγ1)r/R)

cosh(πr/R)
h1(r) dr

+
T

R

∑
{γ }∈h-e

vol(0γ \Gγ )
χρ(γ )g1(lγ1/R)

sinh(lγ1/2) sin θγ2

∫
∞

−∞

cosh[(π − 2θγ2)T r]
cosh(πT r)

h2(r) dr

+
T

R

∑
{γ }∈h-h

vol(0γ \Gγ )
χρ(γ )g1(lγ1/R)

sinh(lγ2/2)
g2(T lγ1)

sinh(lγ2/2)

where we divided the conjugacy classes into the different types: trivial conjugacy class,
elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic. (There could also be
elliptic-elliptic elements that we ignore as their total contribution to the sum is bounded by
O(1).) We will now give separate bounds for each term where we replace each summand
by its absolute value and bound the character of the representation |χρ(γ )| ≤ χρ(1) =
dim(ρ) by the dimension.

Trivial conjugacy class. By making a change of variables r1 7→ r1/R and r2 7→ T r2
and bounding |tanh(t)| ≤ 1, the contribution of the trivial conjugacy class is bounded by
O(χρ(1)T 2/R2).

Elliptic-hyperbolic. For the elliptic-hyperbolic conjugacy classes, note that g2 is sup-
ported on [−1, 1], hence the only conjugacy classes contributing to this sum are the ones
with lγ2 ≤ 1/T . But there are only finitely many conjugacy classes with γ1 elliptic and
lγ2 ≤ 1/T , hence the contribution of these conjugacy classes is bounded by O(T ). (In
fact, for T sufficiently large there are no conjugacy classes satisfying this condition so
that it is bounded by O(1).)

Hyperbolic-hyperbolic. The only contribution of hyperbolic-hyperbolic elements comes
from elements with lγ1 ≤ R and lγ2 ≤ 1/T . It is convenient to rewrite this in terms of
the traces of the conjugacy classes. For each conjugacy class, {γ }, its trace t = (t1, t2) =
(Tr(γ1),Tr(γ2)) is given by tj = e

lγj /2 + e
−lγj /2. Consequently, the only contribution

comes from conjugacy classes such that |t1| ∼ elγ1/2 ≤ eR/2 and 2 < |t2| ≤ 2+1/T 2. We
can also write sinh(lγj /2) =

√
t2j − 4, so the contribution of the hyperbolic-hyperbolic
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conjugacy classes is bounded by

(h.h.)� dim(ρ)
T

R

∑
|t1|≤eR/2

2<|t2|<2+1/T 2

F0(t)√
(t21 − 4)(t22 − 4)

.

Hyperbolic-elliptic. As above, since g1 is supported on [−1, 1] the only contribution here
is from conjugacy classes satisfying lγ1 ≤ R. For these we estimate the contribution of
the integral ∫

∞

−∞

cosh[(π − 2θ)T r]
cosh(πT r)

h2(r) dr.

First, for θ = θγ2 < T −1+ε we just bound this integral by O(1). Next, for θ > T −1+ε

we separate this integral into two parts: the first when r is small, where we just bound
|cosh[(π − 2θ)T r]/cosh(πT r)| ≤ 1 to get∣∣∣∣∫

|r|≤T −ε/2

cosh[(π − 2θ)T r]
cosh(πT r)

h2(r) dr

∣∣∣∣ ≤ ∫
|r|≤T −ε/2

h2(r) dr.

Since we assume h2 vanishes at zero to order > 2/ε we get h2(r) � r2/ε near zero,
hence, the contribution of this part is bounded by O(T −2). Now for the next part we can
use the exponential decay of cosh[(π − 2θ)T r]/cosh(πT r) to get∫

|r|>T −ε/2

cosh[(π − 2θ)T r]
cosh(πT r)

h2(r) dr � e−T
ε/2
,

so that for large T the whole integral is bounded by O(1/T 2).
Thus, for |θγ2 | < T −1+ε and lγ1 ≤ R (equivalently 2 − 1/T 2−ε

≤ |t2| ≤ 2 and
|t1| ≤ e

R/2) we get a contribution of

T

R

cγ |χρ(γ )|

sinh(lγ1/2) sin θγ2

=
T

R

cγ |χρ(γ )|√
(t21 − 4)|t22 − 4|

,

and for |θγ1 | > T −1+ε and lγ2 ≤ R (equivalently 2− 1/T 2−ε
≥ |t2| ≤ 2 and |t1| ≤ eR/2)

we get a contribution of

1
RT

cγ |χρ(γ )|

sinh(lγ1/2) sin θγ2

=
1
RT

cγ |χρ(γ )|√
(t21 − 4)|t22 − 4|

.

We can thus bound the contribution of the hyperbolic-elliptic elements by

(h-e) � dim(ρ)
T

R

∑
|t1|≤eR/2

2−1/T 2−ε<|t2|<2

F0(t)√
(t21 − 4)(t22 − 4)

.

+ dim(ρ)
1
RT

∑
|t1|≤eR/2

|t2|≤2

F0(t)√
(t21 − 4)(t22 − 4)

.

Putting all these bounds together and taking R = c log(T ) concludes the proof. ut
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Proof for discrete series. Let π ∼= π1 ⊗ π2 occur in L2(0\G,ρ) with π1 ∼= πs comple-
mentary series with s = 1/2 + ir ∈ (0, 1/2) and π2 ∼= Dm discrete series with weight
m ∈ [T , 2T ] (the case of −m ∈ [T , 2T ] is analogous). Let h be an even positive function
satisfying h(0) = 1 with Fourier transform g smooth and supported on [−1, 1]. Similar
to the previous case, we can bound h(Rr) � eR(1/2−s)/R, and from positivity this is
also a lower bound for the sum over all representations πk ∼= πsk,m ⊗ Dm occurring in
L2(0\G,ρ, (0, m)),

exp(R|1/2− s|)
R

�

∑
k

h(Rrk,m),

where as usual sk,m = 1/2 + rk,m. Now use the trace formula with weight (0, m) to
transform this sum to a sum over conjugacy classes∑

k

h(Rrk,m) =
c1χρ(1)(2|m| − 1)

16R2π2

∫
R
h(r)r tanh(πRr) dr

+
1
R

∑
{γ }∈h-e

cγχρ(γ )
g1(lγ1/R)

sinh(lγ2/2)
iei(2|m|−1)θ2

2 sin(θ2)
.

In order to evaluate this sum we first add the contribution of all other weights in a
window around T (thus only making it bigger). Let ψ be a positive smooth function
supported on [1/2, 5/2] with ψ(1) = 1, and consider the sum∑

m

ψ

(
m

T

)∑
k

h(Rrk,m).

From the positivity of ψ this sum is still bounded from below by exp(R|1/2− s|)/R. On
the other hand, if we replace the inner sum with the right hand side of the trace formula
we get

∑
m

ψ

(
m

T

)∑
k

h(Rrk,m)

=
c1χρ(1)
16R2π2

∫
R
h(r)r tanh(πRr) dr

∑
m

(2|m| − 1)ψ
(
m

T

)
+

1
R

∑
{γ }∈h-e

cγχρ(γ )
g1(lγ1/R)

sinh(lγ2/2) sin(θ2)

∑
m

ψ

(
m

T

)
ei(2m−1)θ2 .

The first term is bounded by O(χρ(1)T 2/R2) (recall we are only considering T/2 ≤
m ≤ 5T/2). We can bound the second term by

χρ(1)
R

∑
{γ }∈h-e
lγ1≤R

∣∣∣∣ cγ

sinh(lγ2/2) sin(θ2)

∣∣∣∣∣∣∣∣∑
m

ψ

(
m

T

)
e2imθ2

∣∣∣∣.
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Now use Poisson summation to get∣∣∣∣∑
m

ψ

(
m

T

)
e2imθ

∣∣∣∣ = ∣∣∣T ∑
m

ψ̂(T (θ + 2m))
∣∣∣,

where ψ̂ is the Fourier transform of ψ . From the fast decay of ψ̂ we can deduce that the
main contribution is given by T ψ̂(T θ), which is bounded by Oε(T −1) for θ ≥ T −1+ε

and by O(T ) for θ ≤ T −1+ε .
Thus, exactly as in the previous case we get

exp(R|1/2− s|)
R

�ε dim(ρ)
(
T 2

R2 +
T

R

∑
|t1|≤eR/2

2−1/T 2−ε<|t2|<2

F0(t)√
(t21 − 4)(t22 − 4)

+
1
RT

∑
|t1|≤eR/2

|t2|≤2

F0(t)√
(t21 − 4)(t22 − 4)

)
,

and setting R = c log(T ) concludes the proof. ut

Theorem 4 is now reduced to the following two counting arguments:

Proposition 3.2 (First counting argument). There is a constant C (depending only on 0)
such that for any (x1, x2) ∈ R2,

]{t ∈ Tr(0) : |t1 − x1| ≤ T1, |t2 − x2| ≤ T2} ≤ 1+ CT1T2.

Proposition 3.3 (Second counting argument).

F0(t)√
|(t21 − 4)(t22 − 4)|

�ε |(t
2
1 − 4)(t22 − 4)|ε .

Proof of Theorem 4. We give the proof of Theorem 4 from the two counting arguments.
Assume that π ∼= π1 ⊗ π2 occurs in L2(0\G,ρ) and satisfies the hypothesis of Theo-
rem 4. For fixed c > 0 and any ε > 0 let ε1, ε2 be such that ε = ε1 + cε2. Then by
Proposition 3.1 we have

T c|1/2−s1| �ε dim(ρ)
(

T 2

log(T )
+ T

∑
|t1|≤T c/2

|t2|=2+O(T −2+ε1 )

F0(t)√
|(t21 − 4)(t22 − 4)|

+
1
T

∑
|t1|≤T c/2

|t2|≤2

F0(t)√
|(t21 − 4)(t22 − 4)|

)
.
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The second counting argument (Proposition 3.3) together with |(t21 − 4)(t22 − 4)| � T c

(which holds for all pairs (t1, t2) appearing in the sum) gives

T c|1/2−s1| �ε dim(ρ)(T 2/log(T )
+ T 1+cε2]{t ∈ Tr(0) : |t1| ≤ T c/2, |t2| = 2+O(T −2+ε1)}

+ T −1+cε2]{t ∈ Tr(0) : |t1| ≤ T c/2, |t2| ≤ 2}).

Now by the first counting argument (Proposition 3.3) we get

T c|1/2−s1| �ε dim(ρ)(T 2/log(T )+ T c/2−1+ε),

concluding the proof. ut

3.3. Modifications for d > 2

Let 0 ⊂ PSL(2,R)d be a lattice (derived from a quaternion algebra) and ρ a unitary
representation. Assume that π ∼= π1 ⊗ · · · ⊗ πd occurs in L2(0\G,ρ) with π1 ∼= πs1
complementary series and let J1, J2, J3 ⊂ {2, . . . , n} with J1 the set of indices for which
πj is either complementary series or principal series with rj < 1, J2 the set of indices for
which πj is principal series with rj > 1, and J3 the set of indices for which πj ∼= Dmj .
For j ∈ J2 ∪ J3 let Tj ≥ 1 be such that rj ∈ [Tj , 2Tj ] for j ∈ J2 and |mj | ∈ [Tj , 2Tj ]
for j ∈ J3, and let T =

∏
j∈J2∪J3

Tj . With these notations the statement of Theorem 4
remains the same, that is, for any c > 0,

T c|1/2−s1| �ε dim(ρ)(T 2/log(T )+ T c/2−1+ε). (3.1)

Theorem 2 now follows from (3.1) just as in the case of d = 2. In order to prove the
asymptotic estimate (3.1) in this setting, we apply the trace formula (and Poisson sum-
mation in the mj variables) to the test function

h(r;m) = h1(c log(T )r1)
∏
j∈J1

h1(rj )
∏
j∈J2

h2

(
rj

Tj

) ∏
j∈J3

ψ

(
mj

Tj

)
,

where h1, h2 andψ are as in the proof of Proposition 3.1. The result then follows from the
same estimates as in the proof of Proposition 3.1 (and some elementary combinatorics)
together with the natural generalization of the two counting arguments above (the proofs
of the counting arguments given below are for any d ≥ 2).

4. Counting solutions

In the following section we give proofs for the two counting arguments. Let A be a
quaternion algebra unramified in d real places, let R be a maximal order in A and let
0 ⊂ PSL(2,R)d be the corresponding lattice.
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4.1. First counting argument

The proof of the first counting argument is a direct result of the following estimate on the
number of lattice points coming from a number field lying inside a rectangular box. Let
L/Q be a totally real number field of degree n and ι1, . . . , ιn the different embeddings of
L to R. We then think of OL as a lattice in Rn via the map OL 3 t 7→ (ι1(t), . . . , ιn(t))

∈ Rn. We show that the number of such lattice points in any box parallel to the axes is
bounded by the volume of the box.

Remark 4.1. Note that if the volume of the box is large with comparison to the area of its
boundary, then this result would follow from the fact that the volume of the fundamental
domain of this lattice is given by the square root of the discriminant and is hence greater
than 1. However, we are interested in particular in the case where the box is narrow in one
direction and long in the other so that this type of argument will not work. Fortunately,
there is a simple argument that works uniformly for all such boxes.

Lemma 4.1. For any box B ⊂ Rn parallel to the axes the number of lattice points in this
box satisfies |B ∩OL| ≤ 1+ vol(B).

Proof. The only thing we will use is that for any 0 6= t ∈ OL we have NL/Q(t) ∈ Z \ {0},
and hence NL/Q(t) > 1. Let T1, . . . , Tn > 0 and Ex ∈ Rn be such that

B = {t ∈ Rn : |tj − xj | ≤ Tj }.

Now, decompose the segment [x1 − T1, x1 + T1] into short segments of length
1/(cT2 · · · Tn) with c > 2n−1. Then there are fewer than 2cT1 · · · Tn+1 segments (one of
them might be shorter). Now, if there were more than 2cT1 · · · Tn+1 elements in B∩OL,
then there must be at least two elements t 6= t ′ such that ι1(t), ι1(t ′) lie in the same
segment. Consequently, |ι1(t − t ′)| < 1/(cT2 · · · Tn), and on the other hand for j 6= 1,
|ιj (t − t

′)| ≤ 2Tj . We thus get |NL/Q(t − t ′)| ≤ 2n−1/c < 1, a contradiction. We have
thus shown that |B ∩OL| < 2cT1 · · · Tn + 1 for any c > 2n−1, implying that indeed

|B ∩OL| ≤ 2nT1 · · · Tn + 1 = vol(B)+ 1. ut

Proof of Proposition 3.2. Let 0 ⊂ PSL(2,R)d be a lattice derived from a quaternion
algebra over a totally real number field L. Denote by ι1, . . . ιn the different embeddings
of L into R. Let (t1, . . . , td) = Tr(γ ) ∈ Tr(0). Then there is α ∈ R1 such that γj = ιj (α)
for 1 ≤ j ≤ d . Let t = TrA(α) ∈ OL. Then tj = ιj (t) for j ≤ d and for j > d we have
ιj (R1) ⊆ SO(2) so |ιj (t)| ≤ 2. Consequently, we can bound

]{(t1, . . . , td) ∈ Tr(0) : ∀j ≤ d, |tj − xj | ≤ Tj }

by the number of elements in

{t ∈ OL : ∀j ≤ d, |tj − xj | ≤ Tj and ∀j > d, |tj | ≤ 2},

which is bounded by 1+ 22n−dT1 · · · Td . ut
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4.2. Arithmetic formula

Before we proceed with the proof of the second counting argument, we give a formula
for the counting function F0(t) in terms of certain arithmetic invariants (see Appendix A
for the related background from algebraic number theory).

Let α ∈ R1 not in the center, and set TrA(α) = a ∈ OL and D = a2
− 4. The

centralizer Aα = {β ∈ A : βα = αβ} = L(α) is a quadratic field extension isomorphic
to L(
√
D) (via the map α 7→ (a +

√
D)/2). Let g = gα ⊂ L be the set

g = {u ∈ L : ∃x ∈ L, x + uα ∈ R}.

Lemma 4.2. The set g is a fractional ideal containing OL (i.e., g−1 is an integral ideal).
The ideal d = dα = g2

αD ⊂ OL is also an integral ideal.

Proof. The first assertion is obvious. For the second part we show that any u ∈ g satisfies
u2D ∈ OL. Indeed, for any u ∈ g there is β = x + uα ∈ R. Since we know that
NA(β) = x2

+ u2
+ xua ∈ OL and TrA(β) = 2x + ua ∈ OL, we can deduce that

u2D = (2x + ua)2 − 4(x2
+ xua + u2) = TrA(β)2 − 4NA(β) ∈ OL. ut

For D, d as above let K = L(
√
D) and denote by OK the integers of K . Define the ring

OD,d =
{
t + u
√
D

2
∈ OK : d | (u2D)

}
.

This is an order inside OK [13, Proposition 5.5] and its relative discriminant over L is
precisely the ideal d (see Lemma A.4).

Proposition 4.3. Let α ∈ R1, let D = TrA(α)2 − 4 and d = dα ⊂ OL as above. Under
the map α 7→ (1+

√
D)/2, the order Rα = Aα ∩R is mapped onto OD,d .

Proof. Denote by Oα the image of Aα ∩R under this map, so

Oα =
{
t + u
√
D

2
∈ L(
√
D) :

t + u(2α − a)
2

∈ R
}
.

The condition (t+u(2α−a))/2 ∈ R implies that t = TrA((t+u(2α−a))/2) ∈ OL and
u ∈ g. Note that for any u ∈ L we have the equivalence d | (u2D) ⇔ g2D | (u2)(D) ⇔

g2
| (u)2 ⇔ u ∈ g. Hence Oα ⊂ OD,d .
For the other direction, let (t + u

√
D)/2 ∈ OD,d . In particular, u ∈ g and hence

there is β = x + uα ∈ R. Let t̃ = TrA(β) ∈ OL. Then β = (t̃ − ua)/2 + uα and
hence 4NA(β) = t̃2 − u2D ∈ 4OL. But from the definition of OD,d we also know
t2 − u2D ∈ 4OL, hence t2 − t̃2 ∈ 4OL and t ≡ t̃ (mod 2OL). Now (t + u(2α− a))/2−
(t̃ + u(2α − a))/2 = (t − t̃ )/2 ∈ OL ⊂ R, and hence (t + u(2α − a))/2 ∈ R and
(t + u

√
D)/2 ∈ Oα . ut
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Proposition 4.4. With the above notation assume that ιj (D) ∈ R is positive for j =
1, . . . , m0 and negative for j = m0 + 1, . . . , n for some 1 ≤ m0 ≤ m. Then O1

D,d is a
free group of rank m0.

Proof. See [13, proof of Theorem 5.7]. ut

Definition 4.5. Let ε1, . . . , εm0 be generators for O1
D,d . For each j = 1, . . . , m0 choose

one place of L(
√
D) above ιj (which we also denote by ιj ). Define the regulator

Reg(O1
D,d) as the absolute value of the determinant of the m0 × m0 matrix given by

ai,j = log |ιi(εj )|.

Proposition 4.6. Let α ∈ R1 and defineD = TrA(α)2− 4 and d = g2
αD as above. Then

vol(0γ \Gγ ) = Reg(O1
D,d) where γ = ι(α).

Proof. See [13, Proposition 6.1]. ut

Proposition 4.7. For 0 as above and t ∈ OL,

F0(t) =
∑
d|(D)

Reg(O1
D,d)l(OD,d).

where the sum is over all ideals d such that (D)/d is a square of an integral ideal, and
l(OD,d) is the number of conjugacy classes of centralizers corresponding to OD,d .

Proof. Recall that
F0(t) =

∑
{γ }∈0]

Tr(γ )=t

vol(0γ \Gγ ).

We can assume that tj = ιj (t) for some t ∈ OL and think of F0 as a function on OL.
Replace the sum over conjugacy classes {γ } ∈ 0] by a sum over conjugacy classes {α} ∈
(R1)]. Next for γ = ι(α), by Proposition 4.6, we have vol(0γ \Gγ ) = Reg(O1

D,d) where
D = t2−4 and d | (D) is the ideal corresponding to α as in Proposition 4.3. Consequently,
we can write

F0(t) =
∑
d|(D)

Reg(O1
D,d)]{{α} : TrA(α) = t, dα = d}

where the sum is over all integral ideals d | (D) such that (D)/d is a square of an integral
ideal. Now consider the map sending each conjugacy class {α} to the conjugacy class of
its centralizer {R1

α}. Note that two different elements of 0 with the same trace do not
commute [13, Lemma 7.4], hence this map is a bijection of the set

{{α} : TrA(α) = t, dα = d},

and the set of conjugacy classes of centralizers corresponding toOD,d . Consequently, we
have ]{{α} : TrA(α) = t, dα = d} = l(OD,d). ut
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4.3. Second counting argument

Fix α ∈ R1 (not in the center), let K = L(α) be the corresponding quadratic extension
and letO = R∩K . Then by Proposition 4.3 we haveO ∼= OD,d whereD = TrA(α)2−4
and d = dα as in Lemma 4.2. Note that if α′ ∈ R1 is conjugate (in R1) to α, then
D′ = D and d ′ = d , so the corresponding rings are also the same. Recall that l(OD,d)
is the number of R1-conjugacy classes of centralizers that correspond to OD,d . In the
notation of Eichler (see [14, 46]) this is the number of R1-conjugacy classes of optimal
embeddings ofO into the maximal orderR. We now wish to give an upper bound for this
number, or rather for the product l(OD,d)Reg(O1

D,d).
Let C(O) denote the class group (or the Picard group) of O and denote by ]C(O) =

h(O) the class number. Let H denote the group of two-sided ideals of R and H ′ denote
the subgroup of all ideals generated byO-ideals. Then [H : H ′] =

∏
P |d
(
1−

(O
P
))

where(O
P
)

stands for Artin’s symbol and d denotes the discriminant of A over L [46, equation
47]. In particular, [H : H ′] is bounded by a constant c(d) depending only on d.

Proposition 4.8.

l(O) ≤ C1
h(O)

[O∗ : O1O∗L]
,

where C1 = c(d)[R∗ : R1O∗L] is a constant depending only on the quaternion algebra.

Proof. Let κ be the number of pairs (M, a) ∈ H/H ′×C(O) such that the ideal Ma = Rµ
is principal. We then have [46, equation 45]1

l(O) =
[R∗ : R1O∗L]
2[O∗ : O1O∗L]

κ.

Now use the bound κ ≤ [H : H ′]h(O) ≤ c(d)h(O) to conclude the proof. ut

Proposition 4.9.

l(OD,d)Reg(O1
D,d) ≤ C2

√
NL/Q(d)Ress=1 ζK(s)

where ζK(s) is the Dedekind zeta function corresponding to K and C2 is a constant
depending only on the quaternion algebra.

Proof. Denote by Reg(O∗D,d) and Reg(O∗L) the regulators of O∗D,d and O∗L respec-
tively. Combining the bound on l(OD,d) (Proposition 4.8) and the relation Reg(O∗D,d) =
Reg(O1

D,d)Reg(O∗L)/[O
∗

D,d : O1
D,dO

∗

L] (Proposition A.5) we get

l(OD,d)Reg(O1
D,d) ≤ C1

h(OD,d)Reg(O∗D,d)
Reg(O∗L)

with C1 the constant in Proposition 4.8.

1 In [46] this is stated for K/L an imaginary extension, but the same proof holds here without
changes.
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Let DK/L ⊆ OL denote the relative discriminant of K/L, let f = {x ∈ OK : xOK ⊆
OD,d} denote the conductor of OD,d and let f0 = f ∩ OL. We can bound (see Corol-
lary A.8)

h(OD,d)Reg(O∗D,d) ≤ 2n+1NL/Q(f0)h(OK)Reg(O∗K).

Now use the class number formula (see, e.g., [38, Corollary 5.11])

h(OK)Reg(O∗K) =
2
√
DK

2n+mπn−m
Ress=1 ζK(s)

to get

l(OD,d)Reg(O1
D,d) ≤

C1

Reg(O∗L)
NL/Q(f0)

√
DK Ress=1 ζK(s).

Finally, replace DK = NL/Q(DK/L)/D2
L (Proposition A.1) and DK/Lf 2

0 = d (Proposi-
tion A.2) to conclude that

l(OD,d)Reg(O1
D,d) ≤

C1

Reg(O∗L)DL

√
NL/Q(d)Ress=1 ζK(s). ut

Proof of Proposition 3.3. By Propositions 4.7 and 4.9 we get

F0(t) =
∑
d|(D)

Reg(O1
D,d)l(OD,d)�

∑
d|(D)

√
NL/Q(d)Ress=1 ζK(s)

with D = t2 − 4 and K = L(
√
D). For any d | (D) we can bound NL/Q(d) ≤ NL/Q(D)

so

F0(t)�

√
NL/Q(D)Ress=1 ζK(s)]{a ⊂ OK : a2

| (D)}.

The number of ideal divisors of (D) is bounded by O(NL/Q(D)ε) and for the residue of
the zeta function we have [31, Theorem 1]

Ress=1 ζK(s) ≤ (log(DK))2n+1.

Since DK ≤ NL/Q(D)�
∏
j |(t

2
j − 4)|, indeed

F0(t)�ε NL/Q(D)
1/2+ε

�

∏
j

|(t2j − 4)|1/2+ε . ut
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5. Application for Selberg’s zeta function

We conclude with the proof of Corollary 0.1 from Theorem 2 giving a zero free region
for the Selberg zeta functions Zm(s, 0). For 0 ⊂ PSL(2,R)2 irreducible without torsion
and any m ≥ 1 the corresponding zeta function is given by

Zm(s, 0) =
∏
{γ }∗0

∞∏
ν=0
|i|<m

(1− εiγN(γ )
−s−ν)−1 (5.1)

where the product is over all primitive conjugacy classes in 0 that are hyperbolic in the
first coordinate and elliptic in the second. Using the trace formula with weight (0, m)
(as in Section 1.4) one shows that Zm(s, 0) is entire (except when m = 1 where it has
a simple pole at s = 1) and satisfies a functional equation relating s and 1 − s. Also
Zm(s, 0) has trivial zeros at the negative integers and spectral zeros at the points sk such
that πsk ⊗ Dm appears in the decomposition of L2(0\G). Now Theorem 2 implies that
for any t0 > 5/6 there are only finitely many πk = πsk ⊗ Dm in the decomposition of
L2(0\G) with 1/2 < sk,1 < t0. In particular, for sufficiently large m0 the half plane
<(s) > t0 is a zero free region for all the Zm(s, 0)’s with m > m0.

Appendix A. Algebraic background

In this appendix we provide some background and collect a number of results from alge-
braic number theory that we have used. The main reference for this section is [38].

A.1. Discriminants

Let K/L be an extension of number fields and let OK and OL denote the corresponding
rings of integers. For any basis {xj } of K/L the discriminant of the basis is defined as
the determinant of the matrix TrK/L(xixj ). An order O ⊆ OK is a subring that has rank
[K : Q] as a Z-module. For any order O ⊆ OK , the relative discriminant d = d(O/OL)
is the ideal in OL generated by the discriminants of all bases for K/L that lie in O.
When O = OK is the full ring of integers we denote by d(OK/OL) = DK/L the relative
discriminant of K/L. The relative discriminant of K/Q (respectively L/Q) is a principal
ideal in Z, the generator of this ideal denoted byDK (respectivelyDL) is the discriminant
of the field. We then have the following relation:

Proposition A.1.
DK = D

[K:L]
L NL/Q(DK/L).

Proof. [38, Corollary 2.10]. ut
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Assume now that K/L is a quadratic extension. Let O ⊆ OK be an order. The conductor
of O is defined by

f = f(O) = {x ∈ OK : xOK ⊂ O}.

This is an ideal in OK that measures how far the order O is from the full ring of integers.
Denote by f0 = f ∩OL the ideal in OL lying under it. We then have the following:

Proposition A.2. Let d = d(O/OL) and DK/L = d(OK/OL) denote the relative dis-
criminants of O and OK over OL respectively. Then d = f2

0DK/L.

This result is well known, but since we could not find a good reference we include a short
proof. We first need a few preparations. Fix D ∈ OL such that K = L(

√
D) and define

g = g(O,D) =
{
u ∈ L : ∃t ∈ OL,

t + u
√
D

2
∈ O

}
.

Then g is a fractional ideal containing OL, and g2D is an integral ideal. (Note that the
ideal g depends on the choice of D but the product g2D does not.)

Lemma A.3. We have O = {(t + u
√
D)/2 ∈ OK : u ∈ g}.

Proof. The inclusion O ⊆ {(t + u
√
D)/2 ∈ OK : u ∈ g} is obvious. To show the other

direction assume that β1 = (t1 + u
√
D)/2 ∈ OK with u ∈ g. Then there is t2 ∈ OL such

that β2 = (t2 + u
√
D)/2. For both j = 1, 2 we have NK/L(βj ) = (t2j − u

2D)/4 ∈ OL.
In particular, NK/L(β1) − NK/L(β2) = (t

2
1 − t

2
2 )/4 ∈ OL so t1 ≡ t2 (mod 2OL). Now

since β1 − β2 = (t1 − t2)/2 ∈ OL ⊆ O and β2 ∈ O we have β1 ∈ O as well. ut

Lemma A.4. The relative discriminant d = d(O) of O over L satisfies d = g2D.

Proof. By definition, the relative discriminant of O over L is the ideal generated by all
elements of the form (t1u2− t2u1)

2D/4 with xj = (tj +uj
√
D)/2 ∈ O such that (x1, x2)

is a basis for K/L. Now notice that

g =

{
t1u2 − t2u1

2
: xj =

tj + uj
√
D

2
∈ O

}
.

To see this, note that if x1, x2 ∈ O then x1x2 ∈ O, implying that (t1u2 − t2u1)/2 ∈ g.
For the other direction, for any u ∈ g take x1 = (t + u

√
D)/2 ∈ O and x2 = 1 =

(2 + 0
√
D)/2. Consequently, the discriminant is the ideal generated by {x2D : x ∈ g},

which is precisely g2D. ut

Proof of Proposition A.2. Fix D ∈ OL such that K = L(
√
D). Let g1 = g(OK ,D) and

g2 = g(O,D). Then by Lemma A.4 we haveDK/L = Dg2
1 and d = Dg2

2. It thus remains
to show that f0 = g−1

1 g2. Now, by definition f0 = {x ∈ OL : ∀β ∈ OK , xβ ∈ O}, and by
Lemma A.3 this is the same as {x ∈ OL : ∀u ∈ g1, xu ∈ g2} = g−1

1 g2. ut
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A.2. Regulators

Let K be number field with r1 real places and r2 (conjugate pairs of) complex places.
For any place ν of K define the corresponding norm by ‖x‖ν = |ν(x)| when ν is real
and ‖x‖ν = |ν(x)|2 when ν is complex. Let OK denote the ring of integers in K . By the
Dirichlet unit theorem the group of units O∗K is a free group of rank r = r1 + r2 − 1. The
regulator Reg(O∗K) of this group is the absolute value of the determinant of the matrix
(ai,j ) = (log ‖εi‖νj ) where νj goes over r out of the r + 1 places and ε1, . . . , εr are
generators for the group of units (this is independent of the choice of generators or places).
There is a geometric interpretation of the regulator. Consider the logarithmic map from
O∗K to Rd+1 sending

ε 7→ (log(‖ε‖ν1), . . . , log(‖ε‖νr+1)).

Then the image of OK is a lattice of rank r inside Rr+1 with co-volume given by
√
r + 1 Reg(O∗K). If U ⊂ O∗K is a subgroup of finite index, then it is also of the same

rank and we can define the regulator of U in the same way (by taking ε1, . . . , εr to be
generators for U ). We then have the relation Reg(U) = [O∗K : U ] Reg(O∗K) (one can see
this by comparing the co-volumes of the corresponding lattices).

Let K/L be a quadratic extension of a totally real number field L. Let O be an order
in the ring OK . Then O∗ is a subgroup of O∗K of finite index. Denote by O1

= {x ∈ O :
NK/L(x) = 1} the group of (relative) norm one elements in O∗. Let [L : Q] = n and let
1 ≤ m ≤ n be such that K has 2m real places and n − m pairs of complex places. Then
O1
K is a free group of rankm. Let ε1, . . . , εm be generators forO1 and consider them×m

matrix given by log(νi(εj )) where νi goes over the real places of K , where from every
pair lying above the same place of L we take only one place. The regulator Reg(O1) is
defined as the absolute value of the determinant of this matrix.

Note that O1O∗L is a subgroup of O∗ of finite index. We have the following relation:

Proposition A.5.

Reg(O∗) =
Reg(O1O∗L)
[O∗ : O1O∗L]

=
Reg(O1)Reg(O∗L)

[O∗ : O1O∗L]
.

Proof. See [10, proof of Theorem 1]. ut

A.3. Class numbers

For a number fieldK the class group, C(OK), is the quotient of the group of all fractional
ideals of OK by the subgroup of principal ideals. This is a finite group and its order
h(OK) is the class number ofK . The class number formula relates the class number with
other algebraic invariants of the number field.

Proposition A.6.

h(OK) =
w
√
DK

2r1+r2π r2 Reg(OK)
Ress=1 ζK(s),
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where w is the number of roots of unity contained in K , DK is the absolute discrimi-
nant, ζK(s) is the Dedekind zeta function, r1, r2 are the numbers of real and complex
embeddings of K , and Reg(O∗K) is the regulator of OK .

Proof. See, e.g., [38, Corollary 5.11]. ut

For an order O ⊆ OK , the fractional ideals do not necessarily form a group (since not all
ideals are invertible). However, one can consider the group of all invertible ideals in O.
The Picard group of O is then the quotient of the group of all invertible fractional ideals
of O by the subgroup of principal ideals. This group is also finite and its order h(O) is
called the class number of O.

The class numbers h(O) and h(OK) are related by the following formula [38, Theo-
rem 12.12]:

h(O) = h(OK)
[(OK/fOK)∗ : (O/fO)∗]

[O∗K : O∗]
, (A.1)

where f ⊂ OK is the conductor of O. If we consider the product of the class number and
the regulator we get

Proposition A.7.

h(O)Reg(O∗) = [(OK/fOK)∗ : (O/fO)∗]h(OK)Reg(O∗K).

Proof. Use the above formula together with Reg(O∗)= [O∗K : O∗] Reg(O∗K). ut

In the previous setup with K/L a quadratic extension and f0 = f ∩ OL, this leads to the
following bound:

Corollary A.8.

h(O)Reg(O∗) ≤ 2n+1NL/Q(f0)h(OK)Reg(O∗K).

Proof. We need to give a bound for [(OK/fOK)∗ : (O/fO)∗]. Consider the norm map
NK/L : (O/fO)∗ → (OL/f0)

∗. Its image contains all the squares in (OL/f0)
∗, which

is a subgroup of index bounded by 2n+1. We thus get ](O/fO)∗ ≥ 2−n−1](OL/f0)
∗.

Consequently,

[(OK/fOK)∗ : (O/fO)∗] ≤ 2n+1 |(OK/fOK)∗|
|(OL/fOL)∗|

= 2n+1 NK/Q(f)

NL/Q(f0)
.

Write NK/Q(f) = NL/Q(NK/L(f)) and note that f2
0 ⊂ NK/L(f) ⊂ f0 to get

[(OK/fOK)∗ : (O/fO)∗] ≤ 2n+1NL/Q(f0). ut
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