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Abstract. Let π : Z→ X be a Galois covering of smooth projective curves with Galois group the
Weyl group of a simple and simply connected Lie group G. For any dominant weight λ consider
the curve Y = Z/Stab(λ). The Kanev correspondence defines an abelian subvariety Pλ of the
Jacobian of Y . We compute the type of the polarization of the restriction of the canonical principal
polarization of Jac(Y ) to Pλ in some cases. In particular, in the case of the group E8 we obtain
families of Prym–Tyurin varieties. The main idea is the use of an abelianization map of the Donagi–
Prym variety to the moduli stack of principal G-bundles on the curve X.
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1. Introduction

1.1. Verlinde spaces

Let X be a smooth complex projective curve of genus g and let G be a simple, sim-
ply connected complex Lie group. We denote by MX(G) the moduli stack of principal
G-bundles and by L the ample generator of its Picard group. The celebrated Verlinde
formula ([Fa1], [So1], [So2]) gives the dimension Ng,l(G) of the space of global sections
H 0(MX(G),L⊗l) for any level l. The Verlinde numbers at level l = 1 for the groups of
type ADE are given in the following table.

G SL(m) Spin(2m) E6 E7 E8

Ng,1(G) mg 4g 3g 2g 1

The number mg for SL(m) coincides with the number of level-m theta functions on
the Jacobian of X (see [BNR]). For the even Spin group the Verlinde number equals the
number of theta characteristics of X (see [O]). The striking simplicity of the Verlinde
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numbers for E6, E7 and E8 was the main motivation for us to try to relate these Verlinde
spaces to spaces of theta functions on polarized abelian varieties (the Prym varieties) and
compute the induced polarizations—see Main Theorem and Remark 8.4.

1.2. Abelianization of principal G-bundles

The abelianization program of principal G-bundles, or more precisely G-Higgs bundles,
takes its origin in Hitchin’s papers [Hi1] and [Hi2]. For the case G = SL(m) it is shown
in [BNR] that for a sufficiently ramified spectral cover ψ : Y → X the direct image map

Prym(Y/X)→MX(SL(m))

induces by pull-back an isomorphism between the SL(m)-Verlinde space at level 1 and
the space of abelian theta functionsH 0(Prym(Y/X), LY ). For general structure groupsG
the abelianization theory has been worked out by Faltings [Fa2], Donagi [Don1], [Don2]
and Donagi–Gaitsgory [DG].

1.3. Correspondences on spectral and cameral covers

For general structure groupsG Prym varieties can be constructed via correspondences on
covers of the curve X:

In [K1] Kanev constructs from the data of a rational map f : C → g = Lie(G) and
an irreducible representation ρλ : G → GL(V ) a spectral cover ψ : Y → P1 equipped
with a correspondence. He shows that if G is of type ADE, the weight λ minuscule and
f sufficiently general, then the Prym variety Pλ ⊂ Jac(Y ) associated with Kanev’s cor-
respondence is a Prym–Tyurin variety (i.e. the polarization on Pλ induced from the prin-
cipal polarization of Jac(Y ) is a multiple of a principal polarization). Note that Kanev’s
construction is carried out in the case X = P1.

A different but related construction of Prym varieties is given by Donagi in [Don1],
[Don2]. Let T ⊂ G be a maximal torus, W the Weyl group of G and Sω = Hom(T ,C∗)
the weight lattice. For any cameral cover, i.e. a Galois cover π : Z → X with Galois
groupW , satisfying some conditions on the ramification, Donagi introduces the Prym va-
riety Prym(π,Sω) := HomW (Sω, Jac(Z)) parametrizingW -equivariant homomorphisms
from Sω to Jac(Z).

In this paper we generalize Kanev’s construction to an arbitrary base curveX. Given a
Galois cover π : Z→ X and a dominant weight λ ∈ Sω we consider the cover of curves
ψ : Y → X with Y = Z/Stab(λ). Kanev’s construction generalizes (see Section 3) to
give a correspondence Kλ on the curve Y defining an abelian subvariety Pλ ⊂ Jac(Y ),
which is isogenous to the Donagi–Prym variety Prym(π,Sω) (Proposition 6.13).

1.4. The polarization on the Prym variety Pλ

Let LY denote a line bundle defining the canonical principal polarization on the Jacobian
Jac(Y ). The aim of this paper is to compute the induced polarization LY |Pλ under certain
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assumptions. In fact, if qλ denotes the exponent of the correspondence Kλ and dλ the
Dynkin index of λ, our main result is the following theorem (we prove a slightly more
precise version, see Theorem 8.1) . We use the notation of [Bo] for the weights.

Main Theorem. Suppose that the W -Galois cover π : Z → X is étale. Then in the
cases given in the table below the induced polarization LY |Pλ is divisible by qλ, i.e.
LY |Pλ = M

⊗qλ and the polarization M on Pλ is of type K(M) = (Z/mZ)2g:

Weyl group of type weight λ qλ = dλ K(M)

An, n > 1 $i , (i, n+ 1) = 1
(n−1
i−1

)
(Z/(n+ 1)Z)2g

Dn, n odd $n−1,$n 2n−3 (Z/4Z)2g

E6 $1,$6 6 (Z/3Z)2g

E7 $7 12 (Z/2Z)2g

E8 $8 60 0

Using the table in Section 1.1 we observe that in all the cases of the Main Theorem
we have an equality of dimensions

dimH 0(Pλ,M) = Ng,1(G).

Moreover, there exists a morphism γ : Pλ → MX(G) (see Remark 8.3) constructed
via the abelianization map 1θ (see below) and which induces by pull-back a linear map
between spaces of global sections having the same dimension

γ ∗ : H 0(MX(G),L)→ H 0(Pλ,M).

We discuss in Remark 8.4 the natural question whether γ ∗ is an isomorphism.
It is well known that the Weyl group of type Ek is closely related to the del Pezzo

surface of degree 9 − k for 5 ≤ k ≤ 8. In fact, a slightly modified lattice of the weight
lattice is isomorphic to the Picard lattice of the corresponding del Pezzo surface (see [K1,
Section 8.7]). Moreover, for 4 ≤ k ≤ 7 the Kanev correspondence is given essentially by
the incidence correspondence of lines of the corresponding del Pezzo surface. For k = 8
there are multiplicities due to the fact that the weight $8 is only quasi-minuscule (see
[K1]). Notice that in these cases the polarizationM on Pλ is of type (Z/dZ)2g where d is
the degree of the corresponding del Pezzo surface.

In particular, in the case ofW = W(E8) we obtain a family of Prym–Tyurin varieties,
i.e. the pairs (Pλ,M) are principally polarized abelian varieties. It is easy to see that any
curve X of genus g ≥ 4 admits an étale Galois covering with Galois group W(E8) and
we get a family of Prym–Tyurin varieties of dimension 8(g− 1) of exponent 60. We plan
to study this family in a subsequent paper.

Probably there is an analogous result in the case where the Galois covering π :
Z → X admits simple ramification. Certainly the paper [DG] will be essential for this.
We plan to come back to this subsequently.

Note that our results are disjoint from the results in [K1]. First of all, Kanev consid-
ers only Galois coverings over P1 which are necessarily ramified. Moreover, his corre-
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spondence satisfies a quadratic equation and he uses his criterion [K2] to show that the
associated abelian subvarieties are principally polarized. In our case the relevant corre-
spondence satisfies a cubic equation (see Theorem 3.9) and a quadratic equation only on
the Prym variety Prym(Y/X) of the covering ψ : Y → X. However, the abelian variety
Prym(Y/X) is not principally polarized and thus we cannot apply Kanev’s criterion [K2]
in order to compute the polarization of Pλ.

Instead we proceed as follows: We work out a general result on restrictions of po-
larizations to abelian subvarieties (Proposition 2.10) roughly saying that, if the restricted
polarization equals the q-fold of a polarization, where q is the exponent of the abelian
subvariety, then its type can be computed.

The main idea of the proof is then to use an abelianization map

1θ : Prym(π,Sω)n→MX(G)

(see Section 7). Here Prym(π,Sω)n denotes a certain connected component of the Do-
nagi–Prym variety Prym(π, Sω). The fact that the restricted polarization is the qλ-fold of
a polarization is a consequence of the existence of a commutative diagram

Prym(π, Sω)n

1θ

��

ẽvλ // Tα(Pλ)

ψ∗

��
MX(G)

ρ̃λ // MX(SL(m))

(here ẽvλ denotes evaluation at λ, the map ρ̃λ is induced by the representation with
dominant weight λ, and Tα is a certain translation on Jac(Y )) together with a theorem
of Laszlo–Sorger ([LS], [So2]) saying that the pull-back of the determinant bundle on
MX(SL(m)) by ρ̃λ is the dλ-fold of the ample generator of Pic(MX(G)), and the as-
sumption qλ = dλ. Note that in all the cases of the Main Theorem Prym(π, Sω)n and Pλ
are isomorphic.

The contents of the paper are as follows: In Section 2 we prove the result just men-
tioned concerning restriction of a polarization to an abelian subvariety. In Section 3 we
prove that the Schur and the Kanev correspondences belong to the same abelian subvari-
ety. This was shown in [LRo] for the special caseX = P1 and for a left action of the group.
In Section 4 we compute the invariants of our main examples mentioned above. In Sec-
tion 5 we introduce the Donagi–Prym variety and derive the properties we need. Section 6
contains some results on Mumford groups. In Section 7 we introduce the abelianization
map and prove the commutativity of the above diagram. Section 8 contains the proof of
our main theorem.

Finally, a word on the group actions: The group W acts on the curve Z as well as on
the weight lattice Sω and these actions have to be consistently either both left actions or
both right actions. Since traditionally principal bundles are defined via right actions, we
are forced to use right actions in both cases.
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2. Restriction of polarizations to abelian subvarieties

Let S be an abelian variety with polarization L and associated isogeny ϕL : S → Ŝ.
Define as usual K(L) = kerϕL. We consider an endomorphism u ∈ End(S) with the
following properties:

• u is symmetric with respect to the Rosati involution, i.e.,

ϕLu = ûϕL, (1)

where û ∈ End(Ŝ) is the dual endomorphism.
• There exists a positive integer q such that

u2
= qu. (2)

We introduce the abelian subvarieties of S

A = im u ⊂ ker(q − u) and P = im(q − u) ⊂ ker u (3)

and we wish to study the induced polarizations LA = L|A on A and LP = L|P on P ,
i.e. determine the subgroups K(LP ) and K(LA).

We use the following notation:

ιA : A ↪→ S, ιP : P ↪→ S, πA : S → S/A, πP : S → S/P,

where the ι’s are inclusions and π ’s are projections.

Remark 2.1. (i) For any abelian subvariety A of S there is an endomorphism u satis-
fying (1) and (2). In fact, we can take the composition

u = ιA ψLA ι̂A ϕL ∈ End(S)

(see [BL, Lemma 5.3.1]). Here ψLA = q ϕ
−1
L : Â→ A is an isogeny.

(ii) Let ψ : Y → X be a degree d cover of smooth projective curves. If we identify
the Jacobians Jac(X) and Jac(Y ) with their duals via the canonical polarizations,
then the dual ψ̂∗ of the map ψ∗ : Jac(X) → Jac(Y ) coincides with the norm map
Nm : Jac(Y )→ Jac(X). Moreover, the endomorphism

t = ψ∗ Nm ∈ End(Jac(Y ))

satisfies (1) and (2) with q = d . The abelian subvariety P = im(d − t) defined in
(3) coincides with the usual Prym variety (not necessarily principally polarized) of
the morphism ψ , which we denote by Prym(Y/X), i.e.,

P = Prym(Y/X) = (ker Nm)0.

The endomorphism t is induced by the trace correspondence T on Y (see Section 3).
We denote the kernel of ψ∗ : Jac(X)→ Jac(Y ) by K . We also have the equality

imψ∗ = Jac(X)/K = im t.

Since the norm map Nm is the dual of ψ we easily see that the group of connected
components of the fibre Nm−1(0) is isomorphic to K .
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(iii) With u also u′ = q − u satisfies (1) and (2). Replacing u by u′ interchanges the
abelian subvarieties A and P . Hence for the following lemmas it suffices to prove
one of the two statements concerning A and P , and we will do so without further
mention.

Recall that the addition map µ of S satisfies µ = ιA + ιP and the following sequence
is exact:

0→ A ∩ P → A× P
µ
−→ S → 0. (4)

For any abelian variety B and any positive integer n let Bn denote the subgroup of n-
torsion points of B. We denote by |M| the cardinality of a set M . With this notation we
have the following lemmas.

Lemma 2.2. The finite subgroup A ∩ P is contained in Aq and Pq .

Proof. Let x ∈ A ∩ P . Then u(x) = qx, since x ∈ A, and u(x) = 0, since x ∈ P . This
implies the assertion. ut

Lemma 2.3. |K(LA)| · |K(LP )| = |A ∩ P |2 · |K(L)|.

Proof. According to [BL, Corollary 5.3.6] the polarization µ∗(L) splits, i.e. ϕµ∗(L) =
ϕLA × ϕLP , which gives

|K(µ∗L)| = |K(LA)| · |K(LP )|.

On the other hand, (4) implies deg(µ) = |A ∩ P | and thus

|K(µ∗L)| = |kerµϕLµ̂| = deg(µ)2 · |kerϕL| = |A ∩ P |2 · |K(L)|.

Combining both equations gives the assertion. ut

Lemma 2.4. We have the following equalities of abelian subvarieties of Ŝ:

ϕL(P ) = Ŝ/A ⊂ Ŝ and ϕL(A) = Ŝ/P ⊂ Ŝ.

Proof. The endomorphism u factorizes as iA v with v : S → A. Taking the dual gives the
factorization

û : Ŝ
ι̂A
−→ Â

v̂
−→ Ŝ,

from which we deduce that ker ι̂A = Ŝ/A ⊂ ker û. On the other hand, we have P ⊂
ker u and so (1) implies ϕL(P ) ⊂ ker û. This gives the first equality, since both abelian
subvarieties are the connected component of the origin of ker û, as they are of the same
dimension. ut

We will give two descriptions of the subgroups K(LP ) (= ker(ϕLP : P
ιP
−→ S

ϕL
−→ Ŝ

ι̂P
−→ P̂ )) and K(LA). We observe that ker ι̂P = Ŝ/P and, according to Lemma 2.4,
Ŝ/P = ϕL(A). Hence we obtain

K(LP ) =
⋃

x∈K(L)

(A+ x) ∩ P,
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where A+ x denotes the image of A under translation by x. Similarly we have

K(LA) =
⋃

x∈K(L)

(P + x) ∩ A.

In particular, A∩P ⊂ K(LP ) and A∩P ⊂ K(LA). For the second description consider
the isogenies

α = πA ιP : P
ιP
−→ S

πA
−→ S/A with kerα = A ∩ P

and
β = πP ιA : A

ιA
−→ S

πP
−→ S/P with kerβ = A ∩ P.

Moreover, define the isogenies

ϕP : P → Ŝ/A and ϕA : A→ Ŝ/P

by the factorizations ϕL|P : P
ϕP
−→ Ŝ/A ↪→ Ŝ and ϕL|A : A

ϕA
−→ Ŝ/P ↪→ Ŝ of Lemma

2.4. With this notation we have

Lemma 2.5. The following sequences are exact:

0→ A ∩ P ↪→ K(LP )
α
−→ ker ϕ̂P → 0 with K(L) ∩ P ∼= ker ϕ̂P ⊂ S/A, (5)

0→ A ∩ P ↪→ K(LA)
β
−→ ker ϕ̂A→ 0 with K(L) ∩ A ∼= ker ϕ̂A ⊂ S/P. (6)

Proof. The dual isogeny of α factorizes as

α̂ : Ŝ/A
π̂A
−→ Ŝ

ι̂P
−→ P̂ .

By the previous lemma ϕL(P ) = Ŝ/A, which implies that

ϕLP = ι̂P ϕL ιP = α̂ ϕL ιP .

Hence ϕLP factorizes as ϕLP : P
ϕP
−→ Ŝ/A

α̂
−→ P̂ . Taking the dual and using ϕ̂LP = ϕLP

we obtain the factorization

ϕLP : P
α
−→ S/A

ϕ̂P
−→ P̂ ,

which gives the exact sequence (5). The assertion on the kernel follows from ker(ϕ̂P ) ∼=
ker(ϕP ) = K(L) ∩ P . ut

In particular, we obtain

|K(LP )| = |A ∩ P | · |K(L) ∩ P | and |K(LA)| = |A ∩ P | · |K(L) ∩ A|.

Inserting this into Lemma 2.3 yields

Corollary 2.6. |K(L) ∩ A| · |K(L) ∩ P | = |K(L)|.
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Consider the finite groups

GP = ker u/P and GA = ker(q − u)/A.

They are the groups of connected components of ker u and ker(q − u) respectively.

Lemma 2.7. There are canonical exact sequences

0→ A ∩ P → Aq → GP → 0 and 0→ A ∩ P → Pq → GA→ 0.

Proof. Since P ⊂ ker u the endomorphism u descends to an isogeny ū : S/P → A

with ker ū = GP . Moreover, we know that u|A = q, which implies that the composite
isogeny A

πP ιA
−−→ S/P

ū
−→ A equals q. Taking kernels leads to the first exact sequence of

the lemma. ut

We denote by
uq : Sq → Aq and (q − u)q : Sq → Pq

the restrictions of u and q − u to the q-torsion points Sq . Note that uq and (q − u)q are
nilpotent: u2

q = (q − u)
2
q = 0. Note moreover that GP ⊂ (S/P )q and GA ⊂ (S/A)q .

Lemma 2.8. We have the following equalities of finite groups:

im uq = A ∩ P, coker uq = GP , im(q − u)q = A ∩ P, coker(q − u)q = GA.

Proof. First we claim that im uq ⊂ A ∩ P . For the proof let a ∈ im uq . Write a = u(s)
with s ∈ Sq . Then qs = 0 and therefore a = (u− q)(s) ∈ P .

In order to show equality of these subgroups of Aq we compute their indices. Accord-
ing to Lemma 2.7 the index of A ∩ P in Aq is |GP |. The index of im uq in Aq equals

|Aq |

|im uq |
=
|Aq |

|Sq |
· |ker uq | =

|ker uq |
|Pq |

.

Moreover, sinceGP ⊂ (S/P )q the exact sequence 0→ P → ker u→ GP → 0 remains
exact after taking q-torsion points. This implies the first equality. The second equality is
obvious. ut

Consider again the isogenies ϕ̂P : S/A→ P̂ and ϕ̂A : S/P → Â.

Lemma 2.9. We have the following equalities of subgroups of S/A and S/P respec-
tively:

ker ϕ̂P = πA(K(L)) and ker ϕ̂A = πP (K(L)).

Proof. The inclusion πA(K(L)) ⊂ ker ϕ̂P follows from the commutative diagram

S
ϕL //

πA

��

Ŝ

îP
��

S/A
ϕ̂P //

P̂
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So it will be enough to show that these two groups have the same order. We have, us-
ing (5),

|ker ϕ̂P | = |K(L) ∩ P | and |πA(K(L))| =
|K(L)|

|K(L) ∩ A|
.

Equality follows from Corollary 2.6. ut

The following proposition will be applied in the proof of the main theorem (Section 8).

Proposition 2.10. (a) If LA = Mq for a polarization M on A, we have the following
equality of subgroups of A:

K(M) = u(K(L)),

(b) If LP = Nq for a polarization N on P , we have the following equality of subgroups
of P :

K(N) = (q − u)(K(L)).

Note that LA = Mq for a polarization M on A if and only if the polarization LA is
divisible by q, meaning that Aq ⊂ K(LA). In this case K(M) = K(LA)/Aq .

Proof. We take the quotient by A ∩ P of the inclusion Aq ⊂ K(LA). Since by Lemma
2.7,Aq/A∩P ∼= GP , and by Lemma 2.5,K(LA)/A∩P ∼= ker ϕ̂A, this gives an inclusion

GP ⊂ ker ϕ̂A.

Recall that GP = ker u/P and by Lemma 2.9, ker ϕ̂A = πP (K(L)). Therefore

K(M) = K(LA)/Aq = ker ϕ̂A/GP = ((K(L)+ P)/P )/(ker u/P )
= (K(L)+ P)/ker u = u(K(L)). ut

3. The Schur and Kanev correspondences

3.1. Representations of the Weyl group W

Let W be a Weyl group and let Ŵ denote the set of its irreducible characters. It is known
(see e.g. [Sp, Corollary 1.15]) that all irreducible representations ofW are defined over Q.
Therefore any irreducible representation ofW is also absolutely irreducible. Givenω ∈ Ŵ
we choose an irreducible Z[W ]-module Sω such that

Vω := Sω ⊗Z Q

is the irreducible representation ofW corresponding to ω. As outlined in the introduction,
we consider every representation ofW as a right representation. In particular, Sω is a right
Z[W ]-module with action (λ, g) 7→ λg for λ ∈ Sω and g ∈ W .

Fix a weight λ of the lattice Sω, which is by definition (see [K1, p. 158]) a vector

λ ∈ Vω such that λg − λ ∈ Sω ∀g ∈ W.
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Let π : Z → X denote a Galois covering of smooth projective curves with Galois
group W . We consider the action of W on Z as a right action (z, g) 7→ zg for z ∈ Z and
g ∈ W . Let H := Stab(λ) ⊂ W denote the stabilizer subgroup of the weight λ ∈ Vω.
Then π factorizes as

Z

π

��

ϕ

$$IIIIII

Y

ψzzuuuuuu

X

where Y denotes the quotient Z/H . Schur’s orthogonality relations induce a correspon-
dence on Z which we denote by Sλ. On the other hand, Kanev [K1] defined in the case
X = P1 a correspondence on the curve Y , which we denote by Kλ. It is the aim of this
section to generalize Kanev’s construction to an arbitrary base curve X and to work out
the relation between the two correspondences Sλ and Kλ.

3.2. Schur correspondence

Since Vω is an absolutely irreducibleW -representation, there is a unique negative definite
W -invariant symmetric form ( , ) on Vω such that

(1) (λ, µ) ∈ Z for all µ ∈ Sω,
(2) any W -invariant form on Vω satisfying (1) is an integer multiple of ( , ).

The Schur correspondence associated to the pair (Sω, λ) is by definition the rational cor-
respondence on Z over X defined by

Sλ =
∑
g∈W

(λg, λ)0g.

Here 0g ∈ Z × Z denotes the graph of the automorphism g of Z. Note that (λg, λ) need
not be an integer. Considered as a map of Z into the group DivQ(Z) of rational divisors
on Z, Sλ is given by

Sλ(z) =
∑
g∈W

(λg, λ)zg.

The correspondence Sλ descends to a correspondence Sλ on Y in the usual way,

Sλ = (ϕ × ϕ)∗Sλ ⊂ Y × Y.

In order to express this correspondence as a map Y → DivQ(Y ), define d = [W : H ] and
let {g1 = 1, g2, . . . , gd} denote a set of representatives for the right cosets ofH inW , i.e.
W =

⋃d
i=1Hgi .

Proposition 3.1. For any y = ϕ(z) ∈ Y we have

Sλ(y) = |H |
2

d∑
i=1

(λgi, λ)ϕ(z
g−1
i ).
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Note that the left-hand side of this equality depends neither on the choice of the point z
in the fibre over y nor on the set of representatives {gi}.

Proof. Since H is the stabilizer of λ, by definition of Sλ we have

Sλ(y) =

d∑
i=1

∑
h∈H

(λhgi, λ)
∑
h′∈H

ϕ(zh
′hgi ) = |H |

d∑
i=1

∑
k∈H

(λgi, λ)ϕ(z
kgi )

= |H |
∑
g∈W

(λg, λ)ϕ(zg).

Now, if {gi} is a set of representatives for the right cosets of H , then {g−1
i } is a set of

representatives for the left cosets of H . Hence for any pair (k, i) ∈ H × {1, . . . , d} there
is a unique pair (h, j) ∈ H × {1, . . . , d} such that kgi = g−1

j h. Moreover, if kgi runs

exactly once throughW , so do the elements g−1
j h. This implies, since ( , ) isW -invariant

and since H stabilizes λ,

Sλ(y) = |H |

d∑
i=1

∑
h∈H

(λgi, λ)ϕ(z
g−1
i h) = |H |

d∑
i=1

∑
h∈H

(λgi, λ)ϕ(z
g−1
i ).

This implies the assertion. ut

3.3. Kanev correspondence

In order to define the Kanev correspondence on Y , let U ⊂ X denote the complement of
the branch locus of π and fix a point ξ0 ∈ U . Since H is the stabilizer of λ, the group W
acts on the set {λ = λg1, λg2, . . . , λgd}.

The groupW also acts on the fibre ψ−1(ξ0). Note thatW does not act on the curve Y ,
since the subgroup H is not necessarily a normal subgroup ofW . However we can define
the action ofW on the set ψ−1(ξ0) via the monodromy at the point ξ0 as follows: consider
the fundamental group π1(U, ξ0) and let UZ = π−1(U) ⊂ Z and UY = ψ−1(U) ⊂ Y .
Choose a point z ∈ Z such that π(z) = ξ0. Then π1(UZ, z) is a normal subgroup of
π1(U, ξ0) and we have the exact sequence

0→ π1(UZ, z)→ π1(U, ξ0)→ W → 0.

The monodromy of the cover ψ : UY → U at the point ξ0 gives a homomorphism

ρ : π1(U, ξ0)→ Aut(ψ−1(ξ0)).

Its kernel equals
⋂
y π1(UY , y) where y varies over the set ψ−1(ξ0). We note that

π1(UZ, z) ⊂ π1(UY , y) for any y ∈ ψ−1(ξ0), hence π1(UZ, z) ⊂ ker ρ. Therefore the
monodromy map ρ factorizes through W ,

ρ : π1(U, ξ0)→ W → Aut(ψ−1(ξ0)).
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Notice that according to our definitions the monodromy action of π1(U, ξ0) on the fibre
ψ−1(ξ0) is a right action.

Choosing an element in the fibre ψ−1(ξ0) induces a bijection

{λg1, . . . , λgd}
∼
→ ψ−1(ξ0),

which is W -equivariant according to the definitions. In the following we identify the
above sets, i.e. we label the elements of ψ−1(ξ0) by λ = λg1, . . . , λgd .

For every point ξ ∈ U choose a path γξ in U connecting ξ and ξ0. The path defines a
bijection

µ : ψ−1(ξ)→ ψ−1(ξ0) = {λ = λg1, . . . , λgd}

in the following way: For any y ∈ ψ−1(ξ) denote by γ̃y the lift of γξ starting at y. If
λgj ∈ ψ

−1(ξ0) denotes the end point of γ̃y , set µ(y) = λgj . Define

KU,λ := {(x, y) ∈ ψ−1(U)×ψ−1(U) : ψ(x) = ψ(y), (µ(x), µ(y))− (λ, λ)− 1 > 0},

and let Kλ denote the closure of KU,λ in Y × Y .

Lemma 3.2. The divisor Kλ is an integral symmetric effective correspondence on the
curve Y , canonically associated to the triple (π, Sω, λ).

Proof. For the first assertion it suffices to show that (λg, λ)− (λ, λ)−1 is a non-negative
integer for all g ∈ W\H , since ( , ) is aW -invariant scalar product. But (λg, λ)−(λ, λ)−1
is an integer, since λ is a weight. Hence it suffices to show that (λg, λ) > (λ, λ) for every
g ∈ W \H . For this note that

(λ, λ)− (λg, λ) =
1
2

[(λg, λg)− 2(λg, λ)+ (λ, λ)] =
1
2
(λg − λ, λg − λ),

which implies the assertion, since ( , ) is negative definite and H = Stab(λ) ⊂ W .
For the last assertion we have to show that KU,λ does not depend on the choice of ξ0

and of the path γξ connecting ξ and ξ0. This is a consequence of the W -invariance of the
form ( , ) and the above mentioned fact that the monodromy map ρ factorizes through the
group W . ut

We callKλ the Kanev correspondence associated to the weight λ, since it was introduced
by Kanev in [K1]. Considered as a map Y → Div(Y ), it is given by

Kλ(y) =

d∑
j=1

[(λgj , µ(y))− (λ, λ)− 1]µ−1(λgj )+ y. (7)

Note that y is added, since y appears in the sum with coefficient −1, because (λgi, µ(y))
= (λ, λ) if µ(y) = λgi . We need the following description of Kλ(y). According to our
construction, for any y ∈ ψ−1(U), there is a unique integer iy , 1 ≤ iy ≤ d , such that
µ(y) = λgiy .
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Proposition 3.3. If y ∈ ψ−1(U) with µ(y) = λgiy , then

Kλ(y) =

d∑
j=2

[(λgj , λ)− (λ, λ)− 1]µ−1(λgjgiy ).

Proof. By (7) and using the W -invariance of ( , ), we have

Kλ(y) =
∑

λgj 6=µ(y)

[(λgj , µ(y))− (λ, λ)− 1]µ−1(λgj )

=

∑
λgj 6=µ(y)

[(λgjg−1
iy
, µ(y)g−1

iy
)− (λ, λ)− 1]µ−1(λgj )

=

∑
λgj 6=λgiy

[(λgjg−1
iy
, λ)− (λ, λ)− 1]µ−1(λgj )

=

d∑
j=2

[(λgj , λ)− (λ, λ)− 1]µ−1(λgjgiy ). ut

3.4. Relations between Kλ and Sλ

We want to work out how the Kanev correspondence Kλ is related to the Schur cor-
respondence Sλ on the curve Y . For this we need a special choice of representatives
g1 = 1, . . . , gd of the right cosets of the subgroup H of W . We choose them so that
{g−1

1 , . . . , g−1
d } is also a set of representatives of the right cosets of H inW . That there is

always such a set, is a consequence of the marriage theorem of combinatorics (see [Ha,
Theorem 5.1.7]).

Proposition 3.4. Let y ∈ ψ−1(U) with µ(y) = λgiy . Then

Sλ(y) = |H |
2

d∑
j=1

(λgj , λ)µ
−1(λgjgiy ).

Proof. According to Proposition 3.1, Sλ(y) = |H |2
∑d
j=1(λgj , λ)ϕ(z

g−1
j ), where z is a

point in the fiber ϕ−1(y) ⊂ Z.
Suppose first that µ(y) = λ, i.e. iy = 1. As W acts by right multiplication on

{λg1, . . . , λgd}, we have µ(ϕ(z))g = µ(ϕ(zg)), and hence

ϕ(z
g−1
j ) = µ−1(µ(ϕ(z))g−1

j ) = µ−1(λg−1
j )

for all j . Therefore, by the W -invariance of ( , ),

Sλ(y) = |H |
2

d∑
j=1

(λgj , λ)µ
−1(λg−1

j ) = |H |2
d∑
j=1

(λ, λg−1
j )µ−1(λg−1

j )

= |H |2
d∑
j=1

(λgj , λ)µ
−1(λgj ),
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where for the last equality we have used the fact that together with {g1, . . . , gd} also
{g−1

1 , . . . , g−1
d } is a set of representatives of the right cosets of H .

Finally, if µ(y) 6= λ, we have µ(y)g−1
iy
= λ. Hence we can apply the above equality

to the bijection µ̃ = g−1
iy
· µ : ψ−1(ψ(y))→ {λg1, . . . , λgd}, which gives

Sλ(y) = |H |
2

d∑
j=1

(λgj , λ)µ̃
−1(λgj ) = |H |

2
d∑
j=1

(λgj , λ)µ
−1(λgjgiy ). ut

With the above notation and identifications we can state the main result of this section.

Theorem 3.5. The Kanev and Schur correspondencesKλ and Sλ on the curve Y = Z/H
associated to λ are related as follows:

Sλ = |H |
2(Kλ −1+ ((λ, λ)+ 1)T ),

where 1 denotes the diagonal in Y × Y and T = ψ∗ψ∗ is the trace correspondence of
the morphism ψ .

Proof. It suffices to show that [Sλ + |H |2(1 − Kλ)](y) = [(λ, λ) + 1]|H |2T (y) for all
y ∈ ψ−1(U). But applying Propositions 3.3 and 3.4 we have

[Sλ + |H |2(1−Kλ)](y) = |H |2
[ d∑
j=1

(λgj , λ)µ
−1(λgjgiy )+ y

−

d∑
j=2

[(λgj , λ)− (λ, λ)− 1]µ−1(λgjgiy )
]

= |H |2((λ, λ)+ 1)
d∑
j=1

µ−1(λgjgiy ).

But right multiplication with giy permutes only the elements λg1, . . . , λgd , which implies
that

∑d
j=1 µ

−1(λgjgiy ) = ψ
−1ψ(y) = T (y). This completes the proof. ut

Corollary 3.6. degKλ = 1− d((λ, λ)+ 1).

Proof. Note first that deg Sλ =
∑
g∈W (λg, λ) = (

∑
g∈W λg, λ) = 0, since

∑
g∈W λg is

W -invariant and thus equal to 0 in V . This implies deg Sλ = 0, and hence Theorem 3.5
gives the assertion, since deg1 = 1 and deg T = d. ut

Corollary 3.7. We have the relations

(1) T Sλ = SλT = 0,
(2) KλT = T Kλ = degKλ · T .
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Proof. To obtain (1) we consider T = π∗π∗, the trace correspondence of π , and note that
for all z ∈ Z,

T Sλ(z) =
∑
g∈W

(λg, λ)T (zg) =
∑
g∈W

(λg, λ) · T (z) = deg Sλ · T (z) = 0

and similarly SλT = 0. Now T = (1/|H |)ϕ∗T implies the assertion.
To obtain (2), using 1T = T , T

2
= dT and Theorem 3.5 we compute

KλT =
1
|H |2

SλT +1T − ((λ, λ)+ 1)T
2
= T − d((λ, λ)+ 1)T = degKλ · T ,

where the last equality follows from Corollary 3.6. Similarly Theorem 3.5 gives KλT =

T Kλ. ut

For the next theorem we need a lemma.

Lemma 3.8. S2
λ = e · Sλ, with e = |H | · |W | · (λ, λ)/dimVω ∈ Q.

Proof. Schur’s orthogonality relations imply that pλ = (1/e) · Sλ is an idempotent of the
rational group ring Q[W ] or equivalently that S2

λ = e · Sλ with e = |W | · (λ, λ)/dimVω
(see [LR, Proposition 2.3]). Note that e < 0, since ( , ) is negative definite.

According to [Fu, Proposition 16.1.2(a)], (ϕ×ϕ)∗Sλ ·(ϕ×ϕ)∗Sλ = (ϕ×ϕ)∗(Sλ ·Sλ),
which implies

S
2
λ = (ϕ × ϕ)∗(S

2
λ) = (ϕ × ϕ)∗(e · Sλ) = (ϕ × ϕ)∗(e1) · (ϕ × ϕ)∗(Sλ) = |H |eSλ. ut

Theorem 3.9. The Kanev correspondence Kλ satisfies the cubic equation

(Kλ −1)(Kλ + (qλ − 1)1)(Kλ − degKλ1) = 0

with qλ = −d · (λ, λ)/dimVω ∈ N.

Proof. Theorem 3.5 and Lemma 3.8 give

|H |4(Kλ −1+ aT )
2
= e|H |2(Kλ −1+ aT )

with a = (λ, λ) + 1. Applying Corollary 3.7 and T
2
= dT as well as 1T = T shows

that there is a rational number c such that

(Kλ −1)
2
−

e

|H |2
(Kλ −1)+ cT = 0.

Multiplying this equation by Kλ − degKλ1 and using Corollary 3.7 again, we get

(Kλ −1)

(
Kλ −1−

e

|H |2
1

)
(Kλ − degKλ1) = 0.

This completes the proof of the theorem. ut
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3.5. The Prym variety Pλ

We consider the rational correspondence sλ = (1/|H |2)Sλ. Then sλ satisfies the relation
s2
λ = −qλsλ and by Theorem 3.5 we have

sλ = Kλ −1+ ((λ, λ)+ 1)T . (8)

Hence we see that sλ is an integral correspondence if and only if (λ, λ) is an integer. This
happens e.g. for E8, but not for E6 or E7—see the tables in Section 4.

The correspondence sλ induces a rational endomorphism also denoted by sλ ∈

EndQ(Jac(Y )). We introduce the following abelian subvariety of Jac(Y ), which we will
also call the Prym variety:

Pλ := im(msλ) ⊂ Jac(Y ),

wherem is some integer such thatmsλ ∈ End(Jac(Y )). It is clear that Pλ does not depend
on the integer m.

Since Kλ − 1 is a correspondence on Y it induces an endomorphism vλ ∈

End(Jac(Y )). We denote by
S = Prym(Y/X)

the Prym variety of the covering ψ : Y → X (see Remark 2.1(ii)). Since by Corollary 3.7
vλt = tvλ, we see that vλ(S) ⊂ S. Hence vλ restricts to a symmetric endomorphism

uλ ∈ End(S) with u2
λ = qλuλ.

Proposition 3.10. We have an equality of abelian subvarieties of S,

Pλ = im uλ ⊂ S.

Proof. By (8) the endomorphisms sλ and uλ coincide on S up to a non-zero integer mul-
tiple. Moreover, the restriction of sλ to the subvariety ψ∗Jac(X) is zero because sλt = 0
(Corollary 3.7). The equality now follows since Jac(Y ) and Jac(X)×S are isogenous. ut

Remark 3.11. Note that the abelian subvariety Pλ ⊂ S only depends on λ ∈ Vω and not
on the lattice Sω ⊂ Vω. Moreover, we recall from [Me, Proposition 4.3(1)] that Pλ and
Pλ′ are isogenous for any λ, λ′ ∈ Vω.

Remark 3.12. If ψ : Y → X is étale, then the Kanev correspondence Kλ is fixed-point-
free. On the other hand, we notice that the induced endomorphism vλ does not satisfy a
quadratic equation—only its restriction uλ to S, hence we are not in a situation where
Kanev’s criterion ([K2] or [BL, Theorem 12.9.1]) applies.

4. Examples

As our main examples let us work out the invariants of the last section in the case of a
Weyl group W of ADE-type. Let π : Z → X be a Galois covering of smooth projective
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curves with Galois group W . As weights λ we choose the minuscule weights $i (in the
notation of [Bo]) except in the case of type E8, where we consider the quasi-minuscule
weight λ = $8. As above, let Vλ denote the corresponding absolutely irreducible Q-
representation, H the stabilizer subgroup of λ in W , and Y = Z/H . If ( , ) denotes the
uniquely determined W -invariant negative definite symmetric form on Vλ as defined in
Section 3.2, the following tables give the values for the numbers (λ, λ), d = deg(Y/X),
dimVλ, qλ and the degree of the Kanev correspondence Kλ. For the definition of the
Dynkin index dλ see [LS] and also Proposition 7.4. The case of a Weyl group of type E
is closely related to a del Pezzo surface (see [K1]). The last line of the first table gives the
degree of the corresponding surface.

Weyl group of type E4 = A4 E5 = D5 E6 E7 E8

weight λ $2 $4,$5 $1,$6 $7 $8

(λ, λ) −
6
5 −

5
4 −

4
3 −

3
2 −2

d = deg(Y/X) 10 16 27 56 240

dimVλ 10 16 27 56 248

qλ = dλ 3 4 6 12 60

degKλ 3 5 10 29 241

del Pezzo of degree 5 4 3 2 1

Weyl group of type An Dn

weight λ $i , 1 ≤ i ≤ n $n−1,$n

(λ, λ) −
i(n+1−i)
n+1 −

n
4

d = deg(Y/X)
(n+1
i

)
2n−1

dimVλ
(n+1
i

)
2n−1

qλ = dλ
(n−1
i−1

)
2n−3

degKλ
(n−1
i−1

)
n−

(n+1
i

)
+ 1 2n−3(n− 4)+ 1

Proof. The symmetric form ( , ) is given by the negative of the Cartan matrix. This gives
the value of (λ, λ) using the explicit form of λ as outlined in [Bo]. The length of the
orbit of λ under the action of W gives the degree of Y/X. The dimension of Vλ follows
from the fact that λ is a minuscule weight, respectively quasi-minuscule weight in the
case of E8. The values of qλ and degKλ are computed by Theorem 3.9 and Corollary
3.6. For the degree of the del Pezzo surface see [K1]. For the Dynkin indices see [LS,
Proposition 2.6]. ut

Remark 4.1. We note that in the examples of the tables qλ = dλ. This equality of the two
integers is a coincidence, as e.g. for (G2,$1): dλ = 2, qλ = 6, or for (F4,$4): dλ = 6,
qλ = 12 (see [LS, Proposition 2.6] and [K1, p. 176]).
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5. The Donagi–Prym variety

5.1. Definitions and properties

Following [Don1] we introduce the compact commutative algebraic group

Prym(π,Sω) := HomW (Sω,Pic(Z)),

which we call the Donagi–Prym variety associated to the pair (π,Sω), where π : Z→ X

is a Galois covering with group W and Sω is a right Z[W ]-module. The elements of
Prym(π,Sω) are W -equivariant homomorphisms φ : Sω → Pic(Z); for an alternative
description see Lemma 6.1. Its connected component Prym(π,Sω)0 containing 0 is an
abelian variety. For any element λ ∈ Sω we consider the corresponding evaluation map

evλ : Prym(π, Sω)→ Pic(Z), φ 7→ φ(λ).

Proposition 5.1. We have HomW (Sω,Pic(Z)) = HomW (Sω, Jac(Z)). In particular, all
connected components of the image evλ(Prym(π,Sω)) are contained in Jac(Z).

Proof. Consider a homomorphism φ ∈ HomW (Sω,Pic(Z)). The composite map deg ◦ φ
is a W -invariant homomorphism from Sω to Z. Since the dual lattice HomZ(Sω,Z) is an
irreducible W -module, we conclude that deg ◦ φ = 0. ut

We define
0λ = Sω/(λ · Z[W ]).

This is a finite abelian group since Vω = Sω ⊗Z Q is an irreducible W -module.

Proposition 5.2. ker evλ = HomW (0λ, Jac(Z)).

Proof. Let U denote the image of the natural map Z[W ]
a
→ U

i
→ Sω defined by a(g) =

λg for g ∈ W . Then we have the exact sequence of right Z[W ]-modules

0→ U
i
−→ Sω → 0λ→ 0.

Now we apply the left-exact contravariant functor HomW (·, Jac(Z)) to obtain the exact
sequence

0→ HomW (0λ, Jac(Z))→ HomW (Sω, Jac(Z))
ǐ
−→ HomW (U, Jac(Z)).

We then apply the same functor to the surjective Z[W ]-morphism a : Z[W ]→ U and we
obtain an injective morphism

ǎ : HomW (U, Jac(Z))→ HomW (Z[W ], Jac(Z)) = Jac(Z).

Note that ǎ ◦ ǐ = evλ, and ker evλ = ker ǐ because ǎ is injective. ut
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5.2. The image of the evaluation map evλ

It is clear that evλ(Prym(π, Sω)) ⊂ JacH (Z), where H = Stab(λ) and JacH (Z) denotes
the subvariety of Jac(Z) parametrizing H -invariant line bundles over Z. We recall the
exact sequence of abelian groups ([Dol, Proposition 2.2])

0→ H ∗→ Pic(H ;Z)
ι
−→ PicH (Z)→ H 2(H,C∗)→ 0,

where Pic(H ;Z) denotes the group of H -linearized line bundles over Z (see [Dol, Sec-
tion 1]) and H ∗ = Hom(H,C∗) denotes the group of characters of H . The map ι is the
map which forgets the H -linearization.

Proposition 5.3. We have the exact sequence

0→ H ∗→ Jac(H ;Z)
ι
−→ JacH (Z)→ H 2(H,C∗)→ 0. (9)

Proof. We denote by d the degree of the cover ψ : Y → X. Consider the following
diagram, in which the first line is obtained as the kernel of the degree morphism:

0

��

0

��

0

��
0 // Jac(Y )/H ∗

��

// JacH (Z)

��

c // H 2(H,C∗)
∼=��

0 // Pic(Y )/H ∗

deg
��

// PicH (Z)
deg

��

c // H 2(H,C∗)
0

��

// 0

0 // Z

��

·d // Z

��

// Z/dZ
∼=��

// 0

0 // Z/dZ
∼= // Z/dZ] // 0

The snake lemma now implies that the natural homomorphism c : JacH (Z)→H 2(H,C∗)
is surjective. ut

In Section 6.5 we will show that for any λ ∈ Sω the evaluation map evλ lifts to Jac(H ;Z).
Finally, we also recall the exact sequence

0→ Jac(Y )→ Jac(H ;Z)→
⊕

x∈Br(ϕ)

Z/exZ→ 0, (10)

where x varies over the branch divisor Br(ϕ) of the Galois covering ϕ : Z → Y = Z/H

and ex denotes the ramification index of x.

5.3. The group 0λ

We now compute the finite group 0λ in some special cases, which will be worked out in
detail in Section 8. Given a simple Lie algebra g we take for Sω the weight lattice of g and
denote by 3R ⊂ Sω the root lattice. We use the notation of [Bo]. In particular, αi denote
the simple roots and $i denote the fundamental weights of g.
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Lemma 5.4. In the following cases the group 0λ is trivial:

(1) W = W(E8), λ = $8.
(2) W = W(E7), λ = $7.
(3) W = W(E6), λ = $1 or λ = $6.
(4) W = W(Dn) with n odd, λ = $n−1 or λ = $n.
(5) W = W(An), λ = $i with i coprime to n+ 1.

Proof. In each case we have to show that λ · Z[W ] = Sω. Let α ∈ 3R be a root and let
sα be its associated reflection. We have

sα($) = $ − ($ |α)α ∀$ ∈ Sω.

Note that for Lie algebras of type ADE all roots α have the same length (α|α) = 2. Here
(·|·) denotes the Cartan–Killing form on 3R .

(1) Clearly the elements $8 and sα8($8) are in the lattice λ · Z[W ]. Moreover,
sα8($8) = $8 − α8, hence α8 ∈ λ · Z[W ]. The Weyl group W acts transitively on
the roots, which implies that 3R ⊂ λ · Z[W ]. For g of type E8, we have 3R = Sω and
we are done.

(2) As before$7, sα7($7) ∈ λ ·Z[W ], hence α7 ∈ λ ·Z[W ]. SinceW acts transitively
on the roots, we have 3R ⊂ λ · Z[W ]. Here $7 ∈ λ · Z[W ], but $7 /∈ 3R . Since
[Sω : 3R] = 2, this implies the assertion.

(3) The computations are similar to the previous case and use (α1|$1) = (α6|$6) = 1
and [Sω : 3R] = 3.

(4) SinceW acts transitively on the roots, we see as before that3R ⊂ λ ·Z[W ]. Since
n is odd, we find that Sω/3R ∼= Z/4Z is generated by the class of $n or $n−1.

(5) As before,3R ⊂ λ ·Z[W ]. The class of the fundamental weight$i in the quotient
Sω/3R ∼= Z/(n+1)Z equals the class of i ∈ Z/(n+1)Z. The assertion then follows. ut

6. Mumford groups

6.1. Twisted Mumford groups

Let T be a torus and suppose we are given a left action σ : W → Aut(T ) of the group
W on T . For any g ∈ W we also denote the automorphism of T by g. This left action
σ induces a right action of W on the group of characters Hom(T ,C∗). We suppose that
the representation ofW on Hom(T ,C∗)⊗Z Q is irreducible, hence Hom(T ,C∗) is of the
form Sω for some ω ∈ Ŵ . Conversely, given a lattice Sω there always exists a torus T
with a left W -action such that Sω = Hom(T ,C∗) as W -modules. We recall that W acts
from the right on the curve Z.

Let ET be a principal T -bundle over Z. The group W then acts from the left on the
set of principal T -bundles in two different ways: g ∈ W sends ET to

(1) g∗ET , the pull-back of ET under the automorphism g of Z;
(2) ET ×Tg T , the T -bundle obtained from ET by extension of structure group from T

to T , where t ∈ T acts on T by left multiplication with g(t) ∈ T .
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Note that both actions commute. In this paper we will denote the combined leftW -action
on the set of principal T -bundles by

g.ET = g
∗ET ×

T
g T for g ∈ W.

Since the action of W on Z is a right action, we have (g1g2)
∗ET = g∗1g

∗

2ET . This
implies that (g, ET ) 7→ g.ET is a left action.

We say that a T -bundle ET is W -invariant if ET ' g.ET for all g ∈ W . Here ' de-
notes a T -equivariant isomorphism. Let T denote the sheaf of abelian groups onZ defined
by T (U) = Mor(U, T ) for any open subset U ⊂ Z. The cohomology group H 1(Z, T )

parametrizes the isomorphism classes of T -bundles over Z. We denote by H 1(Z, T )W

the W -invariant subset, where W acts both on the curve Z and on the torus T .

Lemma 6.1. There are canonical bijections

H 1(Z, T )W = {W -invariant T -bundles ET on Z} = Prym(π, Sω).

Proof. The first equality follows from the definition ofH 1(Z, T )W . For the second equal-
ity note that the map

8 : {T -bundles ET on Z} → Hom(Sω,Pic(Z)),

8(ET ) = (φ : Sω → Pic(Z), φ(λ) = ET ×Tλ C∗),

is bijective. Its inverse maps φ ∈ Hom(Sω,Pic(Z)) to ET = L1 ⊕ · · · ⊕ Ln, where
Li = φ(λi), λ1, . . . , λn being a Z-basis of Sω. One can easily show that the inverse map
does not depend on the choice of the Z-basis.

We have to show that φ = 8(ET ) is W -equivariant if and only if ET ' g.ET for all
g ∈ W . As W acts from the right on Sω and Z, the map φ is W -equivariant if and only if

φ(λg) = (g−1)∗φ(λ) (11)

for all λ ∈ Sω and g ∈ W . But

φ(λg) = ET ×
T
λg C∗ = (ET ×Tg T )×

T
λ C∗

and
(g−1)∗φ(λ) = (g−1)∗(ET ×

T
λ C∗).

Hence (11) is valid for all λ ∈ Sω if and only if (g−1)∗ET ' ET ×
T
g T , which is the case

if and only if ET ' g∗ET ×Tg T = g.ET . ut

Definition 6.2. Given aW -invariant T -bundle ET over Z we define the σ -twisted Mum-
ford group of ET by

Gσ (ET ) := {(γ, g) | g ∈ W, γ : ET → g.ET },

where γ is a T -equivariant isomorphism. The composition law in Gσ (ET ) is given by

(γ, g).(µ, g′) = ((g.µ) ◦ γ, gg′),

where g.µ : g.ET → g.(g′.ET ) = (gg′).ET denotes the isomorphism obtained by
applying g. to µ.
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Since the automorphism group AutT (ET ) equals T , we see that the group Gσ (ET ) fits
into the exact sequence

1→ T → Gσ (ET )→ W → 1, (12)

where the second map forgets the isomorphism γ . We note that the induced action by
conjugation of W on the normal subgroup T coincides with σ . To simplify notation we
denote the σ -twisted Mumford group Gσ (ET ) by N .

Proposition 6.3. Let ET be a W -invariant T -bundle over Z with projection p : ET →
Z. Then the natural T -action on ET extends canonically to an N -action on the variety
ET preserving the fibres of π ◦p : ET → X, i.e. there exists a morphism over X defining
a group action

µ : ET ×N → ET ,

which extends right multiplication of T on ET .

Proof. Given n = (γ, g) ∈ N we first define νn := βg ◦ γ, where βg is the pull-back
of g : Z → Z via the projection map p : ET ×Tg T → Z. This is summarized by the
diagram

ET

γ

��

νn

''NNNNNNNNNNNN

g∗(ET ×
T
g T )

βg //

��

ET ×
T
g T

p

��
Z

g // Z

In order to define the morphism µ, it suffices to define for any n = (γ, g) ∈ N the right
multiplication with n on ET ,

µn : ET → ET satisfying µnn′ = µn′ ◦ µn ∀n, n
′
∈ N. (13)

The set of morphisms {µn}n∈N is related to the set of “twisted” morphisms {νn}n∈N by
composition

µn : ET
νn
−→ ET ×

T
g T

αg
−→ ET with αg[(e, t)] = eg−1(t).

Here (e, t) denotes the class of (e, t) ∈ ET × T in the quotient ET ×Tg T := ET × T/T .
Note that we use the equality etn = eng−1(t) for e ∈ ET , n = (γ, g) ∈ N and t ∈ T .

It is now straightforward to check that the set {µn}n∈N satisfies (13). ut

6.2. The relative case

In order to construct the abelianization map (see Section 7.3) we need to define the twisted
Mumford group for families of W -invariant T -bundles.
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Let S be a scheme and let ET be a family of T -bundles over Z parametrized by S,
i.e. a T -bundle over the product Z × S. Let πS : Z × S → S denote projection onto the
second factor. We say that ET isW -invariant if for any g ∈ W and any closed point s ∈ S
there exists an isomorphism

ET |Z×{s} ' g.ET |Z×{s}. (14)

The following lemma is the analogue of the see-saw theorem for T -bundles (see [Mu]).

Lemma 6.4. Let AT be a family of T -bundles over Z parametrized by S. Suppose that
for any closed point s ∈ S the T -bundle AT |Z×{s} is trivial. Then there exists a T -bundle
M over S such that AT ' π∗SM .

Applying this lemma to (14) we see that for any g ∈ W there exists a T -bundleMg over S
such that

ET ' g.ET ⊗ π∗SMg.

Moreover, the map W → H 1(S, T ), g 7→ Mg , is easily seen to be a group homomor-
phism.

We now define the σ -twisted Mumford group of the family ET by

Gσ (ET ) := {(γ, g) | g ∈ W, γ : ET → g.ET ⊗ π∗SMg},

where γ is a T -equivariant isomorphism over Z × S. We easily see that the relative
Mumford group fits into the exact sequence

1→ Mor(S, T )→ Gσ (ET )→ W → 1.

If S is complete and connected, then Mor(S, T ) = T and for any closed point s ∈ S the
restriction map

ress : Gσ (ET )
∼
−→ Gσ (ET ), (γ, g) 7→ (ress(γ ), g), (15)

is an isomorphism. Here ET := ET |Z×{s}.

6.3. Non-twisted Mumford groups

Let G be an affine algebraic group.

Definition 6.5. Given a principalG-bundleEG overZ we define the (non-twisted) Mum-
ford group of EG by

G1(EG) := {(γ, g) | g ∈ W, γ : EG→ g∗EG},

where γ is a G-equivariant isomorphism. The composition law in G1(EG) is given by

(γ, g).(µ, g′) = (g∗(µ) ◦ γ, gg′).
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As before, the group G1(EG) fits into the exact sequence

1→ Aut(EG)→ G1(EG)→ W → 1. (16)

The induced action by conjugation of W on Aut(EG) is trivial.

Proposition 6.6. Let ET be a W -invariant T -bundle over Z and set N = Gσ (ET ). Let
EN := ET ×T N be the principal N -bundle obtained by extending the structure group
from T to N . Then the exact sequence (16) for EN ,

1→ Aut(EN )→ G1(EN )→ W → 1,

splits canonically.

Proof. By Proposition 6.3 the variety ET admits a canonical N -action. Given e ∈ ET
and n = (γ, g) ∈ N we denote their product by en. We consider the morphism

8n : ET ×T N → ET ×
T N, 8n[(e, f )] = (en, n−1f ),

with e ∈ ET and f ∈ N . Then one easily checks that8n is well-defined and that it makes
the following diagram commute:

ET ×
T N

8n //

p

��

ET ×
T N

p

��
Z

g // Z

Hence 8n is a lift of the automorphism g to the principal N -bundle ET ×T N and we
may view 8n as an element of G1(EN ). Moreover, 8nn′ = 8n′ ◦8n and 8t = id for all
n, n′ ∈ N and all t ∈ T . Hence the morphism 8n only depends on g ∈ W . This gives the
canonical splitting. ut

6.4. Mumford groups and descent

We recall the relation between the non-twisted Mumford group G1(EG) and descent.

Definition 6.7. Let EG be a G-bundle over Z. A W -linearization of the G-bundle EG is
a splitting of the exact sequence (16),

G1(EG)
x
−→W.

Descent theory gives in the usual way (see [Gr2])

Proposition 6.8. Let EG be a W -linearized G-bundle over Z. There exists a G-bundle
FG over X such that EG ' π∗FG if and only if for any ramification point z ∈ Z of the
covering π : Z → X the stabilizer subgroup Wz ⊂ W of z acts trivially on the fibre
(EG)z.

Corollary 6.9. If the covering π : Z → X is étale, then given EG over Z there is a
bijection between the set of W -linearizations on EG and the set of G-bundles FG over X
such that EG ' π∗FG.
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Remark 6.10. We can rephrase Proposition 6.6 by saying that the N -bundle EN :=
ET×

TN admits a canonicalW -linearization. The conditions for descent ofEN toX given
in Proposition 6.8 then translate into certain conditions on the W -invariant T -bundle ET
(for the case of cameral coverings, see [DG]).

6.5. The evaluation map evλ lifts

Proposition 6.11. For any λ ∈ Sω the evaluation map evλ lifts to Jac(H ;Z), i.e. there is
a commutative diagram

Jac(H ;Z)

ι

��
Prym(π, Sω)

ẽvλ
77ppppppppppp evλ // JacH (Z)

Proof. We have to show that the line bundle L = evλ(ET ) = ET ×
T
λ C∗ admits a

canonicalH -linearization. We denote by λ = λ1, . . . , λd ∈ Sω theW -orbit of the element
λ ∈ Sω, with d = [W : H ], and by Li := ET ×

T
λi

C∗ ∈ Jac(Z) the line bundle
obtained through λi for i = 1, . . . , d . As before we set N = Gσ (ET ) and we consider
V = IndNT (Cλ), the induced representation of N from the representation T → GL(Cλ)
given by λ ∈ Hom(T ,C∗). The restricted representation decomposes as a T -module ([Se,
Proposition 15])

ResT (V ) =
[ d⊕
i=1

Cλi
]⊕|H |

,

which implies that the vector bundle EN ×N V decomposes as [
⊕d

i=1 Li]
⊕|H |. More-

over, by Proposition 6.6,EN admits a canonicalW -linearization, hence the decomposable
bundle EN ×N V also does. Since the subgroup H ⊂ W preserves the direct summand
L = L1, we are done. ut

In Section 7.3 we will need the next lemma. First we introduce some notation. Given
λ ∈ Sω we denote by λ = λ1, . . . , λd ∈ Sω theW -orbit of λ and by Li := ET ×Tλi C∗ the
associated line bundles for i = 1, . . . , d . We recall (see (10)) that if π : Z → X is étale,
then Jac(Y ) = Jac(H ;Z), and we denote by M ∈ Jac(Y ) the line bundle defined by the
relation

ϕ∗M = L1 = evλ(ET ).

Lemma 6.12. The direct sum
⊕d

i=1 Li admits a canonical W -linearization, and if π :
Z→ X is étale, then the W -linearized vector bundle

⊕d
i=1 Li equals π∗(ψ∗M).

Proof. We have already seen in the proof of Proposition 6.11 that
⊕d

i=1 Li admits a
canonical W -linearization. If π : Z → X is étale, then there exists a vector bundle A
over X such that π∗A =

⊕d
i=1 Li as W -linearized vector bundles. By adjunction for the

morphism ψ : Y → X we have Hom(A,ψ∗M) = Hom(ψ∗A,M), and since π is étale,

Hom(ψ∗A,M) = Hom(π∗A, ϕ∗M)H = Hom
( d⊕
i=1

Li, L1

)H
,
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where the exponent H denotes H -equivariant homomorphisms. The last space contains
the projection onto the first factor, which is H -equivariant. This gives a non-zero homo-
morphism α : A→ ψ∗M .

Similarly one can show using the isomorphism Hom(ψ∗M,OX) = ψ∗(M
−1) that

Hom(ψ∗M,A) = Hom(
⊕d

i=1 L
−1
i , L−1

1 )H . As before, projection onto the second factor
gives a non-zero homomorphism β : ψ∗M → A and one easily checks that α ◦ β =
idψ∗M . Hence α is an isomorphism and we are done. ut

6.6. Relation between the Prym variety Pλ and the Donagi–Prym Prym(π,Sω)

By Proposition 6.11 there exists a morphism ẽvλ : Prym(π,Sω) → Jac(H ;Z), and
because of the exact sequence (10) the connected component Prym(π,Sω)0 containing 0
is mapped by ẽvλ into Jac(Y ).

Proposition 6.13. We have an equality of abelian subvarieties of Jac(Y ),

ẽvλ(Prym(π, Sω)0) = Pλ ⊂ Jac(Y ).

Proof. We consider the natural map of Z-algebras

φ :
⊕
ω∈Ŵ

End(Sω)→ Z[W ].

Note that φ⊗Z Q is an isomorphism of Q-algebras
⊕

ω∈Ŵ End(Vω) ∼= Q[W ]. Taking the
tensor product over Z[W ] with the Z[W ]-module Jac(Z) induces an isogeny decomposi-
tion of Jac(Z) (see also [Don1, formula (5.3)])

φ :
⊕
ω∈Ŵ

Sω ⊗Z Prym(π,Sω)→ Jac(Z)⊗Z[W ] Z[W ] = Jac(Z).

Moreover, the restriction of φ to λ ·Z⊗Z Prym(π,Sω) is the evaluation map evλ (Section
5.1). With the notation of Lemma 3.8, multiplication with the idempotent pλ = (1/e)Sλ ∈
Q[W ] corresponds under φ⊗ZQ to the projection onto the Q-vector space λ ·Q⊗QV ∗ω ⊂⊕

ω∈Ŵ End(Vω) (see e.g. [Me, Section 4.4]). The proposition now follows immediately
from the definition of the Prym variety Pλ. ut

7. The abelianization map: the étale case

7.1. Grothendieck’s spectral sequence

We recall some facts relating to Grothendieck’s spectral sequence [Gr1]. Let W be any
finite group (not necessarily a Weyl group), let Z be a curve with a right W -action with
quotient π : Z→ X, and let A be an abelian algebraic group, which is also aW -module.
Let A denote the W -sheaf of abelian groups defined by A(U) = Mor(U,A) for an open
subset U ⊂ Z. Consider the following two left-exact functors:
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0Z : {W -sheaves over Z} → {W -modules},
0Z(A) = 0(Z,A) = global sections of A,

0W : {W -modules} → {abelian groups},
0W (M) = MW

= W -invariant elements of M.

Consider the composite functor 0WZ = 0
W
◦0Z . Its n-th derived functor, which we denote

by H n(Z;W ; ·), is computed by Grothendieck’s spectral sequences

E
p,q

2 = Hp(W,H q(Z,A)) ⇒ Ep+q = Hp+q(Z;W ;A),

′E
p,q

2 = Hp(X,RqπW∗ (A)) ⇒ Ep+q = Hp+q(Z;W ;A),

and the associated exact sequence of low degree terms of the first spectral sequence is

0→ E
1,0
2 → E1

→ E
0,1
2

c
−→ E

2,0
2 → E2. (17)

In case W acts on a torus A = T with Sω = Hom(T ,C∗) this exact sequence be-
comes, by Lemma 6.1,

0→ H 1(W, T )→ H 1(Z;W ; T )→ Prym(π,Sω)
c
−→ H 2(W, T )→ H 2(Z;W ; T ).

(18)
One can work out the following description of the homomorphism c. Here we omit

the details.

Proposition 7.1. For any T -bundle ET ∈ Prym(π, Sω) the cohomology class c(ET ) ∈
H 2(W, T ) equals the extension class (12) of the twisted Mumford group Gσ (ET ).

Lemma 7.2. If the covering π : Z→ X is étale, then H 2(Z;W ; T ) = 0.

Proof. We use the second spectral sequence ′Ep,q2 . First we observe that the sheaves
R1πW∗ (T ) and R2πW∗ (T ) are supported on the ramification divisor of π : Z → X by
[Gr1, Théorème 5.3.1]. Hence ′E1,1

2 =
′E

0,2
2 = 0.

Next we claim that π∗(πW∗ (T )) = T . Let V ⊂ Z be a sufficiently small open
subset such that g(V ) ∩ V = ∅ for any g ∈ W and g 6= e (here we use the ana-
lytic topology on Z). Then the open subset π−1(π(V )) decomposes as a disjoint union∐
g∈W g(V ). Now the elements of π∗(πW∗ (T ))(V ) correspond to W -equivariant mor-

phisms MorW (π−1(π(V )), T ). The restriction to V gives a canonical bijection

MorW
(∐
g∈W

g(V ), T
)
= Mor(V , T ) = T (V ),

which proves the claim.
Finally, we observe that T ∼= (C∗)n and since H 2(Z,C∗) = 0 (this easily fol-

lows from the exponential exact sequence 0 → Z → OZ → O∗Z → 0), we see
that H 2(Z, T ) = 0. We now conclude that ′E2,0

2 = H 2(X, πW∗ (T )) = 0, since
H 2(X, πW∗ (T )) identifies with the W -invariant subspace of H 2(Z, T ). ut
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For any λ ∈ Sω = Hom(T ,C∗) let H = Stab(λ) ⊂ W and let βλ be the composite map

βλ : H 2(W, T )
resH
−→ H 2(H, T )

λ
−→ H 2(H,C∗).

If the covering π : Z→ X is not necessarily étale, we can say the following on the image
of c. The next proposition will not be used as we will concentrate on the étale case.

Proposition 7.3. We have a commutative diagram

Prym(π,Sω)
c //

evλ
��

H 2(W, T )

βλ

��
JacH (Z)

c′ // H 2(H,C∗)

and βλ ◦ c = 0 for any λ ∈ Sω.

Proof. In order to prove that the diagram commutes it is sufficient to combine the three
exact sequences (17) obtained in the three cases (W, T ), (H, T ) and (H,C∗); here the
first factor denotes the finite group and the second the abelian algebraic groupA on which
the finite group acts. We leave the details to the reader. The claim βλ ◦ c = c

′
◦ evλ = 0

is an immediate consequence of Proposition 6.11 and (9). ut

7.2. Moduli stack of G-bundles

Let G be a simple and simply connected algebraic group and let T ⊂ G be a maximal
torus, N(T ) the normalizer of the torus, and W = N(T )/T the Weyl group of G. Let
Sω := Hom(T ,C∗) be the weight lattice of G.

We denote by MX(G) the moduli stack parametrizing the principal G-bundles over
the curve X. We recall some results from [LS] and [So2] on line bundles over MX(G).
Let λ ∈ Sω be a dominant weight and ρλ : G → SL(Vλ) the associated irreducible
representation. Then ρλ induces a morphism of stacks

ρ̃λ : MX(G)→MX(SL(m)), EG 7→ EG ×
G Vλ.

Here m = dimVλ. We denote by Dλ = ρ̃∗λD the pull-back of the determinant line bundle
D over MX(SL(m)). The next proposition is proved in [LS] and [So2].

Proposition 7.4. For any simple and simply connected algebraic group G we have:

(1) There exists an ample line bundle L over MX(G) such that Pic(MX(G)) ∼= Z · L.
(2) For any dominant weight λ ∈ Sω, the integer dλ defined by the relation

Dλ = L⊗dλ

equals the Dynkin index of the representation ρλ of G.
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7.3. The abelianization map 1θ

From now on we assume that the Galois covering π : Z → X is étale with Galois group
equal to the Weyl groupW = N(T )/T . We denote by n ∈ H 2(W, T ) the extension class
of N(T ). Note that by Lemma 7.2 and (18) the homomorphism

c : Prym(π,Sω)→ H 2(W, T )

is surjective. We denote by Prym(π, Sω)n a connected component of the fibre of c over n.
Note that all connected components are isomorphic to each other.

As in Section 6.2, we consider a universal family ET of T -bundles over Z ×
Prym(π,Sω)n (note that ET is W -invariant) and we choose an isomorphism

θ : Gσ (ET )
∼
−→ N(T )

inducing the identity on the subgroups T of Gσ (ET ) and N(T ) and on the quotient W .
The existence of θ follows from (15) and the fact that Prym(π,Sω)n lies in the fibre of c
over n, the extension class of N(T ).

Proposition 7.5. Given an isomorphism θ there exists a morphism

1θ : Prym(π,Sω)n→MX(G)

such that for any ET ∈ Prym(π,Sω)n the G-bundle 1θ (ET ) satisfies

π∗1θ (ET ) = ET ×
T G.

The map 1θ is called the abelianization map.

Proof. The existence of the morphism 1θ will follow from the existence of a family
of N(T )-bundles over X parametrized by Prym(π, Sω)n, or equivalently from the ex-
istence of a family of N(T )-bundles over Z with a W -linearization parametrized by
Prym(π,Sω)n. But this follows from the relative version of Proposition 6.6, which says
that the N(T )-bundle ET ×Tθ N(T ) admits a canonical W -linearization; here we use the
isomorphism θ . ut

Remark 7.6. (i) Note that 1θ factorizes through MX(N(T )).
(ii) A priori 1θ depends on the choice of θ . Two different choices of θ differ by an

element in Aut0(N(T )), the group of automorphisms of N(T ) inducing the identity
on T and W . Note that T ⊂ Aut0(N(T )) and Aut0(N(T ))/T = H 1(W, T ). The
cohomology groups H 1(W, T ) and H 2(W, T ) have been computed in [Ma].

7.4. Direct images of line bundles

Consider a dominant weight λ ∈ Sω and let Vλ denote the associated irreducible repre-
sentation of G. We consider the weight space decomposition

Vλ =
⊕

µ∈2(λ)

V
µ
λ ,
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where V µλ denotes the weight space of Vλ associated to the weight µ ∈ Sω. The Weyl
groupW acts on the set2(λ) of all weights µ such that V µλ 6= {0} and decomposes it into
k orbit spaces

2(λ) = 21 ∪ · · · ∪2k.

For each j = 1, . . . , k we choose a weight λj ∈ 2j , i.e. 2j = λj .W . We introduce for
each j the subgroup Hj = Stab(λj ) ⊂ W and the quotient ψj : Z/Hj = Yj → X. Let

nj = dimV
λj
λ . Note that nj = dimV

µ
λ for any µ ∈ 2j , and λ1 = λ and n1 = 1.

Since π is étale, we have Jac(Hj ;Z) = Jac(Yj ) and by Proposition 6.11 there exist
morphisms

ẽvλj : Prym(π,Sω)→ Jac(Yj ).
For convenience of notation we introduce the product and the map

Jac(Y•) := Jac(Y1)× · · · × Jac(Yk), ẽv• := (ẽvλ1 , . . . , ẽvλk ),

and the direct image morphism

ψ• : Jac(Y•)→MX(GL(m)), (M1, . . . ,Mk) 7→

k⊕
j=1

[ψj∗(Mj )]⊕nj .

Proposition 7.7. Asume π is étale. Then we have a commutative diagram

Prym(π, Sω)n
ẽv• //

1θ

��

Jac(Y•)

ψ•

��
MX(G)

ρ̃λ // MX(GL(m))

Proof. LetET ∈ Prym(π,Sω)n. The rank-m vector bundle ρ̃λ [1θ (ET )] pulls back under
π to the decomposable W -linearized vector bundle over Z,

ET ×
T Vλ =

⊕
µ∈2(λ)

ET ×
T V

µ
λ =

k⊕
j=1

[⊕
µ∈2j

ET ×
T
µ C

]⊕nj
.

Clearly the W -linearization preserves the direct summands
⊕

µ∈2j
ET ×

T
µ C for j =

1, . . . , k and by Lemma 6.12 we have the equality⊕
µ∈2j

ET ×
T
µ C = π∗(ψj∗(Mj ))

as W -linearized vector bundles. Here Mj = ẽvj (ET ). This proves the claim. ut

Remark 7.8. Note that the composite map ψ• ◦ ẽv• = ρ̃λ ◦ 1θ takes values in
MX(SL(m)).

8. Proof of the main theorem

For the convenience of the reader we recall the set-up of our main result. LetG be a simple
and simply connected algebraic group and T ⊂ G a maximal torus. Let W := N(T )/T
denote the Weyl group of G and Sω := Hom(T ,C∗) the weight lattice. Let π : Z → X
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be an étale Galois covering of smooth projective curves with Galois group W . For a
dominant weight λ ∈ Sω we consider the Prym variety (see Section 3.5) Pλ ⊂ Jac(Y )
with Y = Z/H and H = Stab(λ). Let Kλ denote the Kanev correspondence on the
curve Y . Let LY be a line bundle over Jac(Y ) representing the principal polarization.
Note that LY is uniquely defined up to translation. Then we can prove our main result.

Theorem 8.1. Assume that:

• the W -covering π : Z→ X is étale,
• qλ = dλ,
• the group 0λ = Sω/λ · Z[W ] is trivial,
• the weight λ is minuscule or quasi-minuscule,
• the homomorphism ψ∗ : Jac(X)→ Jac(Y ) is injective.

Then

(1) there exists a line bundle M over Pλ such that LY |Pλ = M⊗qλ ,
(2) the type of the polarization M over Pλ equals

K(M) = (Z/mZ)2g with m =
deg(Y/X)

gcd(deg(Kλ)− 1, deg(Y/X))
,

and g denotes the genus of X.

Proof. (1) If π is étale, Proposition 6.11 gives a morphism

ẽvλ : Prym(π,Sω)→ Jac(H ;Z) = Jac(Y ).

Moreover, by Proposition 6.13 we have ẽvλ(Prym(π,Sω)0) = Pλ. Since we have assumed
that 0λ is trivial, the evaluation map evλ is injective by Proposition 5.2. Hence the map
ẽvλ is also injective and induces isomorphisms by restriction

ẽvλ : Prym(π,Sω)0
∼
−→ Pλ ⊂ Jac(Y ), ẽvλ : Prym(π, Sω)n

∼
−→ Tα(Pλ) ⊂ Jac(Y ),

where Tα(Pλ) denotes the translate by an element α ∈ Jac(Y ) of the Prym variety Pλ. In
order to show (1) it suffices to show that LY |Tα(Pλ) is divisible by qλ.

We first consider the case of λ minuscule, i.e. k = 1 in the notation of Section 7.4. In
that case the commutative diagram of Proposition 7.7 simplifies to

Prym(π, Sω)n
ẽvλ //

1θ

��

Tα(Pλ)

ψ∗

��
MX(G)

ρ̃λ // MX(SL(m))

In the notation of Section 7.2 we know that ρ̃∗λD = L⊗dλ . Hence the line bundle

ẽv∗λ((ψ∗)
∗D) = 1∗θ (ρ̃

∗
λD) = (1

∗
θL)
⊗dλ
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is divisible by dλ = qλ. Since the first horizontal map ẽvλ is an isomorphism, we deduce
that (ψ∗)∗D = LY |Tα(Pλ) is also divisible by qλ.

In case λ is quasi-minuscule, we have k = 2 and λ2 = 0. Hence H2 = Stab(0) = W
and ψ2 = id : Y2 = X → X. Moreover, ẽv0 : Prym(π, Sω)n → Jac(X) is the constant
zero map and the commutative diagram of Proposition 7.7 simplifies to

Prym(π, Sω)n
ẽvλ //

1θ

��

Tα(Pλ)

ψ•

��
MX(G)

ρ̃λ // MX(SL(m))

with ψ•(M) = ψ1∗(M) ⊕ O⊕n2
X for M ∈ Jac(Y ). We then conclude as in the case of a

minuscule weight.
(2) Let S denote the usual Prym variety Prym(Y/X). Then we recall from Section 3.5

that Pλ = im(uλ) ⊂ S and that the endomorphism uλ ∈ End(S) satisfies the relation
u2
λ = qλuλ. Hence we can apply Proposition 2.10(a), which says that the type of the

polarization K(M) is given by

K(M) = uλ(K(LY |S)),

where LY |S denotes the restriction of the line bundle LY to S. Since ψ∗ : Jac(X) →
Jac(Y ) is injective, we have (see Remark 2.1(ii)) the equalities S = Prym(Y/X) =
im(d − t) and ψ∗Jac(X) = im t , where t ∈ End(Jac(Y )) denotes the endomorphism
associated to the trace correspondence of ψ : Y → X. By [BL, Corollary 12.1.4] or
Lemma 2.5 we obtain

K(LY |S) = K(LY |Jac(X)) = Jac(X) ∩ S.

Moreover, K(LY |Jac(X)) = ψ∗ [Jac(X)d ] ∼= (Z/dZ)2g , with d = deg(Y/X). We
deduce from Corollary 3.7(2) that uλt = (deg(Kλ) − 1)t , and since K(LY |S) ⊂
im t = ψ∗Jac(X) we conclude that uλ(K(LY |S)) equals the image of multiplication
by deg(Kλ)− 1 in the group (Z/dZ)2g . This proves (2). ut

We deduce from Lemma 5.4 and from the two tables of Section 4 the following list of
examples satisfying the five conditions of Theorem 8.1. This shows the main theorem
stated in the introduction.

Corollary 8.2. The typeK(M) = (Z/mZ)2g of the induced polarization LY |Pλ = M
⊗qλ

on the Prym variety Pλ is given by the table below.

Weyl group of type weight qλ = dλ m

An, n > 1 $i , (i, n+ 1) = 1
(n−1
i−1

)
n+ 1

Dn, n odd $n−1,$n 2n−3 4

E6 $1,$6 6 3

E7 $7 12 2

E8 $8 60 1
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Proof. We only have to check that ψ∗ : Jac(X)→ Jac(Y ) is injective in the cases men-
tioned in the table. This follows from the formula kerψ∗ = ker(W ∗ → H ∗), where W ∗

andH ∗ denote the groups of characters ofW andH , and from a straightforward case-by-
case study. ut

Remark 8.3. Under the assumption of the Main Theorem, we can identify Prym(π,Sω)n
and Pλ by composing the isomorphism ẽvλ : Prym(π,Sω)n

∼
−→ Tα(Pλ) and the transla-

tion T−α : Tα(Pλ)
∼
−→ Pλ. Via this identification, the abelianization map 1θ defined in

Proposition 7.5 gives a morphism

γ : Pλ→MX(G).

Moreover, by the proof of Theorem 8.1(1), the line bundle γ ∗L is algebraically equivalent
to M . Therefore choosing a suitable translate LY representing the principal polarization
on Jac(Y ), we can assume that M = γ ∗L, i.e., LY |Pλ = (γ ∗L)⊗qλ .

Remark 8.4. As mentioned in the introduction, it is natural to ask whether the linear map

γ ∗ : H 0(MX(G),L)→ H 0(Pλ,M)

is an isomorphism.
In the caseG = SL(m) we can answer this question affirmatively. Both vector spaces

carry a natural linear action of the Heisenberg group, a central extension of the group
of m-torsion points Jac(X)m, and are irreducible representations of this group. Therefore
it suffices to show that γ ∗ is non-zero, which is achieved by computing the pull-back
γ ∗(2N ) of the generalized theta divisor 2N ⊂MX(SL(m)) with N ∈ Picg−1(X) (see
[BNR]). Moreover, the theta divisor on Jac(Y ) induces by pull-back to Pλ × Jac(X) an
isomorphism

H 0(Pλ,M)
∼
−→ H 0(Jac(X),mLX)∗,

where LX represents the principal polarization on Jac(X) (see e.g. [BL, Section 12.1]).
In the remaining cases we do not know the answer, mainly because we are lacking

a description of special divisors in H 0(MX(G),L). Especially intriguing is the case
G = E8, where both spaces are one-dimensional (see also [So2]). A description of
H 0(MX(G),L) in terms of theta functions on Jac(X) as for G = SL(m) seems to be
unavailable, since there are residual components to Pλ and Jac(X) in the isogeny decom-
position of Jac(Y ) (see [Don1, formula (6.6)]).

Acknowledgments. We would like to thank Laurent Manivel for a helpful discussion.
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