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Abstract. Every compact smooth manifoldM is diffeomorphic to a nonsingular real algebraic set,
called an algebraic model of M . We study modulo 2 homology classes represented by algebraic
subsets of X, as X runs through the class of all algebraic models of M . Our main result concerns
the case where M is a spin manifold.
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1. Introduction

Let X be a compact nonsingular real algebraic set (in Rn for some n). A cohomology
class in H k(X,Z/2) is said to be algebraic if the homology class Poincaré dual to it
can be represented by an algebraic subset of X. The set H k

alg(X,Z/2) of all algebraic
cohomology classes in H k(X,Z/2) is a subgroup, while the direct sum H ∗alg(X,Z/2) of
the H k

alg(X,Z/2), for k ≥ 0, forms a subring of the cohomology ring H ∗(X,Z/2). Early
papers dealing with algebraic cohomology (or homology) classes provided examples of
X with H ∗alg(X,Z/2) 6= H ∗(X,Z/2) (cf. [1, 5, 6, 14, 19, 20]). The reader can find a
survey of properties and applications of H ∗alg(−,Z/2) in [11].

Every compact smooth (of class C∞) manifold M is diffeomorphic to a nonsingular
real algebraic set, called an algebraic model ofM (cf. [23]; see also [7, Theorem 14.1.10]
and, for a weaker but influential result, [18]). The following question is a challenging
problem: How does the ring H ∗alg(X,Z/2) vary as X runs through the class of algebraic
models ofM? This paper provides partial answers. Due to technical difficulties it is easier
to describe how the groupH k

alg(X,Z/2) varies for a fixed k. Results of this type are in [8]
for k = 1, in [10] for k = 2, and in [16] for k ≥ 3. If k ≥ 2 and especially if k ≥ 3 they
are far from complete.

We say that a subring A of H ∗(M,Z/2) is algebraically realizable if there ex-
ist an algebraic model X of M and a smooth diffeomorphism ϕ : X → M with
ϕ∗(A) ⊆ H ∗alg(X,Z/2). The original goal of several researchers was to show that the
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whole ring H ∗(M,Z/2) is algebraically realizable, that is, M has an algebraic model X
withH ∗alg(X,Z/2) = H

∗(X,Z/2) (such a conjecture, motivated by far-reaching potential
applications, was explicitly stated in [1]). However, since the publication of [3] it has been
known that for some manifolds M this is impossible. An important algebraically realiz-
able subring of H ∗(M,Z/2) is identified in [4, Theorem 4, Remark 8]. It is the subring
A(M) generated by the Stiefel–Whitney classes of all real vector bundles on M together
with the cohomology classes Poincaré dual to the homology classes represented by all
smooth submanifolds of M . A conjecture proposed in [3], and still open at the present
time, suggests that every algebraically realizable subring of H ∗(M,Z/2) is contained
in A(M).

For us, certain subrings of A(M) will play a crucial role. We say that a subring A of
H ∗(M,Z/2) is admissible if it is generated by the Stiefel–Whitney classes of some real
vector bundles on M and the cohomology classes Poincaré dual to the homology classes
represented by some smooth submanifolds of M . Thus A(M) is the largest admissible
subring of H ∗(M,Z/2). However, in general, not every subring of A(M) is admissible.
Given any subringA ofH ∗(M,Z/2), we setAk = A∩H k(M,Z/2). As usual, we denote
by wi(M) the ith Stiefel–Whitney class of M . Recall that M is called a spin manifold if
w1(M) = 0 and w2(M) = 0.

Theorem 1.1. Let M be a compact connected spin manifold. Assume that dimM ≥ 7
and the group Hi(M,Z) has no 2-torsion for i = 1, 2. Then for any admissible subring
A of H ∗(M,Z/2), there exist an algebraic model X of M and a smooth diffeomorphism
ϕ : X→ M satisfying

ϕ∗(A) ⊆ H ∗alg(X,Z/2) and ϕ∗(Ak) = H k
alg(X,Z/2) for k = 0, 1, 2, 3.

As we mentioned above, some results of this type have already been known. More pre-
cisely, for M and A as in Theorem 1.1, given k = 1 or k = 2, one can find an algebraic
model Xk and a smooth diffeomorphism φk : Xk → M with φ∗k (A

k) = H k
alg(Xk,Z/2)

(cf. [8, 10]; see also [16] for k = 3, but with different, somewhat artificial, assumptions).
Thus the main contribution of Theorem 1.1 is the existence, under natural assumptions,
of X and φ satisfying φ∗(Ak) = H k

alg(X,Z/2) simultaneously for k = 1, 2, 3 (k = 0 be-
ing trivial). Our more general result, Theorem 2.4 in Section 2, concerns arbitrary k, but
requires rather technical conditions on M and A. In view of Lemma 2.5, these technical
conditions disappear for k ≤ 3, and thus we get Theorem 1.1. It seems, however, that a
completely new idea is needed in order to obtain interesting results for k > 3.

Theorem 1.1 is particularly nice in dimension 7, 8 or 9.

Corollary 1.2. Let M be a compact connected spin manifold of dimension m, where
m = 7, 8, or 9. Assume that the group Hi(M,Z) has no 2-torsion for i = 1, . . . , m − 5.
Then for any subring A of H ∗(M,Z/2), there exist an algebraic model X of M and a
smooth diffeomorphism ϕ : X→ M satisfying

ϕ∗(A) ⊆ H ∗alg(X,Z/2) and ϕ∗(Ak) = H k
alg(X,Z/2) for k = 0, 1, 2, 3.
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It suffices to prove that under the assumptions of Corollary 1.2, every subring of
H ∗(M,Z/2) is admissible. The latter fact easily follows from known results (see the
next section). One can also drop the assumption about the dimension of M in Corollary
1.2, provided that the topology of M is not too complicated (cf. Example 2.6).

For manifolds which are not necessarily spin, we have the following result.

Theorem 1.3. Let M be a compact connected smooth manifold. Assume that dimM =

m ≥ 5 and the group Hm−2(M,Z) has no 2-torsion. Then for any admissible subring A
of H ∗(M,Z/2), the following conditions are equivalent:

(a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : X → M

satisfying

ϕ∗(A) ⊆ H ∗alg(X,Z/2) and ϕ∗(Ak) = H k
alg(X,Z/2) for k = 0, 1, 2.

(b) wi(M) is in Ai for i = 1, 2.

If dimM = 5, then every homology class in Hd(M,Z/2), d ≥ 0, can be represented by
a smooth submanifold [22, Théorème II.26], and hence every subring of H ∗(M,Z/2) is
admissible.

In order to compare the assumptions in Theorems 1.1 and 1.3, let us note that for
any orientable compact smooth manifold M of dimension m, the groups H1(M,Z) and
Hm−2(M,Z) have isomorphic torsion subgroups. Indeed, this follows from the Poincaré
duality and the universal coefficient theorem for cohomology.

Theorems 1.1, 1.3 and Corollary 1.2 are proved in Section 2.

2. Proofs and further results

We will need some constructions from real algebraic geometry. Throughout this paper the
term real algebraic variety designates a locally ringed space isomorphic to an algebraic
subset of Rn, for some n, endowed with the Zariski topology and the sheaf of R-valued
regular functions. Morphisms between real algebraic varieties will be called regular maps.
Background material on real algebraic varieties and regular maps can be found in [7].
Every real algebraic variety carries also the Euclidean topology, which is determined by
the usual metric topology on R. Unless explicitly stated otherwise, all topological notions
relating to real algebraic varieties will refer to the Euclidean topology.

The Grassmannian Gn,r of r-dimensional vector subspaces of Rn is endowed with a
canonical structure sheaf which makes it into a real algebraic variety in the sense of this
paper [7, Theorem 3.4.4] (an affine real algebraic variety according to the terminology
used in [7]). Moreover, Gn,r is nonsingular and

H ∗alg(Gn,r ,Z/2) = H ∗(Gn,r ,Z/2)

(cf. [7, Propositions 3.4.3 and 11.3.3]). The universal vector bundle γn,r on Gn,r is al-
gebraic. If ξ is an algebraic vector bundle of rank r on a real algebraic variety X and if
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n is a sufficiently large integer, then there is a regular map f : X → Gn,r with f ∗γn,r
algebraically isomorphic to ξ (cf. [7, Theorem 12.1.7]). Here referring to algebraic vec-
tor bundles we follow [7], while in [4, 5, 6, 8, 9, 10] such bundles are called strongly
algebraic.

Given a compact nonsingular real algebraic varietyX, we define Algk(X) to be the set
of all elements u of H k(X,Z/2) for which there exist a compact nonsingular irreducible
real algebraic variety T (depending on u), two points t0 and t1 in T and a cohomology
class z in H k

alg(X × T ,Z/2) such that

u = i∗t1(z)− i
∗
t0
(z),

where for any t in T , we let it : X→ X× T denote the map it (x) = (x, t) for all x in X.
An equivalent description of Algk(X), which immediately implies that Algk(X) is a sub-
group of H k

alg(X,Z/2), is given in [15, 16]. The groups H k
alg(−,Z/2) and Algk(−) have

the expected functorial properties. If f : X→ Y is a regular map between compact non-
singular real algebraic varieties, then the induced homomorphism f ∗ : H ∗(Y,Z/2) →
H ∗(X,Z/2) satisfies

f ∗(H k
alg(Y,Z/2)) ⊆ H

k
alg(X,Z/2) and f ∗(Algk(Y )) ⊆ Algk(X)

(cf. [12, Section 5] or [6] for the former inclusion and [16] for the latter).
The following fact will be very useful.

Theorem 2.1 (cf. [15, Theorem 2.1]). Let X be a compact nonsingular real algebraic
variety. Then 〈u∪ v, [X]〉 = 0 for all u in Algk(X) and v inH `

alg(X,Z/2), where k+ ` =
dimX.

As usual ∪ and 〈 , 〉 denote the cup product and scalar (Kronecker) product, while [X]
stands for the fundamental class of X in Hd(X,Z/2), d = dimX.

We will also need some properties of Algk(−) for very specific real algebraic varieties.
Let Bn be a nonsingular irreducible real algebraic variety with precisely two connected
components Bn0 and Bn1 , each diffeomorphic to the unit n-sphere, n ≥ 1. For example,
one can take

Bn = {(x0, . . . , xn) ∈ Rn+1
| x4

0 − 4x2
0 + 1+ x2

1 + · · · + x
2
n = 0}.

Let Bn(d) = Bn × · · · ×Bn and Bn0 (d) = B
n
0 × · · · ×B

n
0 be the d-fold products, and let

δ : Bn0 (d) ↪→ Bn(d) be the inclusion map. Then according to [16, Example 4.5],

H q(Bn0 (d),Z/2) = δ
∗(H q(Bn(d),Z/2)) = δ∗(Algq(Bn(d))) (2.2)

for all q ≥ 0.
We now recall an important result from differential topology. All manifolds that ap-

pear here are without boundary.
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Theorem 2.3 ([13, (17.3)]). Let P be a smooth manifold. Two smooth maps f : M → P

and g : N → P , where M and N are compact smooth manifolds of dimension m,
represent the same bordism class in the unoriented bordism group N∗(P ) if and only if
for every nonnegative integer q and every cohomology class v in H q(P,Z/2), one has

〈wi1(M) ∪ · · · ∪ wir (M) ∪ f
∗(v), [M]〉 = 〈wi1(N) ∪ · · · ∪ wir (N) ∪ g

∗(v), [N ]〉

for all nonnegative integers i1, . . . , ir with i1 + · · · + ir = m− q.

Let M be a compact smooth manifold. For any positive integer k, we define Gk(M) to be
the subgroup of H k(M,Z/2) consisting of the cohomology classes u satisfying

〈wi1(M) ∪ · · · ∪ wir (M) ∪ u, [M]〉 = 0

for all nonnegative integers i1, . . . , ir with i1 + · · · + ir = m− k.
A cohomology class v in H k(M,Z/2), k ≥ 1, is said to be spherical provided v =

f ∗(c), where f : M → Sk is a continuous (or equivalently smooth) map from M into
the unit k-sphere Sk and c is the unique generator of the group H k(Sk,Z/2) ∼= Z/2.
It is well known that v is spherical if and only if the homology class Poincaré dual to
v can be represented by a smooth submanifold of M with trivial normal vector bundle
(cf. [22, Théorème II.2]). Denote by Sk(M) the set of all spherical cohomology classes
in H k(M,Z/2). It readily follows from the characterization of spherical cohomology
classes recalled above that Sk(M) is a subgroup of H k(M,Z/2) if 2k ≥ dimM + 1.

For any smooth submanifold N of M of codimension k, we denote by [N ]M the co-
homology class in H k(M,Z/2) Poincaré dual to the homology class represented by N .
As usual, if ξ is a real vector bundle on M , then w(ξ) and wk(ξ) will stand for, respec-
tively, its total and kth Stiefel–Whitney class. The total Stiefel–Whitney class of M will
be denoted by w(M).

Given a collection F of real vector bundles on M and a collection G of smooth sub-
manifolds of M , we denote by A(F ,G) the subring of H ∗(M,Z/2) generated by wk(ξ)
and [N ]M for all ξ in F , k ≥ 0, and N in G. Since H ∗(M,Z/2) is a finite set, we may
assume without loss of generality that the collections F and G are finite. By definition,
any admissible subring of H ∗(M,Z/2) is of the form A(F ,G).

Theorem 2.4. LetM be a compact connected smooth manifold of dimensionm. LetF be
a collection of real vector bundles onM and let G be a collection of smooth submanifolds
of M . Assume that there is an integer k0 ≥ 2 such that 2k0 + 1 ≤ m and codimM N ≥

k0 for all N in G. Then for the subring A = A(F ,G) of H ∗(M,Z/2), the following
conditions are equivalent:

(a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : X → M

satisfying
ϕ∗(A) ⊆ H ∗alg(X,Z/2)

and

ϕ∗(Ak) = H k
alg(X,Z/2) for all k with k ≤ k0 and Gm−k(M) ⊆ Sm−k(M).

(b) w(M) is in A.
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Proof. If Y is a compact nonsingular real algebraic variety, then w(Y ) is in H ∗alg(Y,Z/2)
(cf. [6, 11, 12]), and hence (a) implies (b).

Assume that (b) holds. Let F = {ξ1, . . . , ξa} and G = {N1, . . . , Nb}. For the use in a
latter part of the proof, we modify each submanifold Nj , without affecting the cohomol-
ogy class [Nj ]M , so as to obtain a new Nj connected and nonorientable. This is possible
since M is connected and codimM Nj ≥ 2. Indeed, the last inequality implies that if U
is an open subset of M diffeomorphic to Rm, then there is a smooth connected nonori-
entable submanifold Pj of M contained in U and with dimPj = dimNj . Joining Pj and
the connected components of Nj with tubes, we get the required modification of Nj .

By transversality, the submanifolds N1, . . . , Nb can be chosen in general position.
Hence in view of [4, Theorem 4, Remark 8], we may assume that M is a nonsingular
real algebraic variety, N1, . . . , Nb are nonsingular Zariski closed subvarieties of M , and
every topological real vector bundle on M is isomorphic to an algebraic vector bundle.
In particular, we may assume that ξ1, . . . , ξa are algebraic vector bundles. Setting ri =
rank ξi and choosing a sufficiently large integer n, we can find a regular map fi : M →
Gn,ri such that ξi is isomorphic to f ∗i γn,ri , and hence w(ξi) = f ∗i (w(γn,ri )). Therefore

A is generated by f ∗i (wk(γn,ri )) and [Nj ]M , 1 ≤ i ≤ a, 1 ≤ j ≤ b, k ≥ 0. (1)

Setting
G = Gn,r1 × · · · ×Gn,ra and f = (f1, . . . , fa) : M → G,

and making use of Künneth’s theorem, we obtain

f ∗(H ∗(G,Z/2)) ⊆ A. (2)

Let k1, . . . , ks be all the integers such that k0 ≥ k1 > · · · > ks ≥ 1 and Gm−k`(M) ⊆
Sm−k`(M) for ` = 1, . . . , s. Clearly,

0` := {v ∈ Hm−k`(M,Z/2) | 〈u ∪ v, [M]〉 = 0 for all u ∈ Ak`} (3)

is a subgroup of Gm−k`(M). Choose an integer d with dimZ/2 0` ≤ d for ` = 1, . . . , s.
Let

Bm−k`(d) = Bm−k` × · · · × Bm−k` and B
m−k`
0 = B

m−k`
0 × · · · × B

m−k`
0

be as in (2.2) (with n = m − k`). Since every cohomology class in 0` is spherical, there
exists a smooth map g` = (g`1, . . . , g`d) : M → Bm−k`(d) satisfying

g`(M) ⊆ B
m−k`
0 (d) and 0` = g

∗

` (H
m−k`(Bm−k`(d),Z/2)). (4)

Set

B = Bm−k1(d)× · · · × Bm−ks (d), B0 = B
m−k1
0 (d)× · · · × B

m−ks
0 (d),

g = (g1, . . . , gs) : M → B.
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Making use of Künneth’s theorem and the inequalities 2(m− k`) ≥ 2(m− k0) ≥ m+ 1
for ` = 1, . . . , s, we get

H q(B,Z/2) = 0 for 0 < q ≤ m, q 6∈ {m− k1, . . . , m− ks}. (5)

Künneth’s theorem also implies

0` = g
∗(Hm−k`(B,Z/2)) for 1 ≤ ` ≤ s. (6)

Assertion 1. The restriction g|N : N → B, whereN := N1∪· · ·∪Nb, is null homotopic.

Clearly, it suffices to prove that for each pair of integers (`, e) with 1 ≤ ` ≤ s and
1 ≤ e ≤ d , the map h`e|N : N → B

m−k`
0 is null homotopic, where h`e : M → Bm−k` is

defined by h`e(x) = g`e(x) for all x in M . Recall that Bm−k`0 is diffeomorphic to Sm−k` .
Let σ be a generator ofHm−k`(B

m−k`
0 ,Z) ∼= Z. Since dimNj ≤ m−k` for j = 1, . . . , b,

it follows from Hopf’s classification theorem that h`e|N is null homotopic if and only
if (h`e|N)∗(σ ) = 0 in Hm−k`(N,Z). By the Mayer–Vietoris exact sequence, the last
condition is equivalent to (h`e|Nj )∗(σ ) = 0 in Hm−k`(Nj ,Z) for all j = 1, . . . , b.

If dimNj < m− k`, then trivially (h`e|Nj )∗(σ ) = 0.
Suppose that dimNj = m − k`. In that case necessarily ` = 1 and k1 = k0.

In order to ease notation, set h = h1e. Since Nj is connected and nonorientable,
(h|Nj )

∗(σ ) = 0 in Hm−k1(Nj ,Z) if and only if (h|Nj )∗(σ̄ ) = 0 in Hm−k1(Nj ,Z/2)
where σ̄ in Hm−k1(B

m−k1
0 ,Z/2) is the reduction modulo 2 of σ . It follows from (4) that

h∗(σ̄ ) is in 01, and hence (3) implies

〈h∗(σ̄ ) ∪ [Nj ]M , [M]〉 = 0.

Therefore denoting by ε : Nj ↪→ M the inclusion map, we have

〈(h|Nj )
∗(σ̄ ), [Nj ]〉 = 〈ε∗(h∗(σ̄ )), [Nj ]〉 = 〈h∗(σ̄ ), ε∗([Nj ])〉 = 〈h∗(σ̄ ), [Nj ]M ∩ [M]〉

= 〈h∗(σ̄ ) ∪ [Nj ]M , [M]〉 = 0.

Since Nj is connected, we get (h|Nj )∗(σ̄ ) = 0, as required. Assertion 1 is proved.

Choose a compact subset K of M such that N is contained in the interior of K and N
is a deformation retract of K , while (M,K) is a polyhedral pair. Then g|K : K → B is
null homotopic and, by the homotopy extension theorem [21, p. 118, Corollary 5], there
exists a continuous map g′ : M → B which is homotopic to g and g′|K is a constant
map. Thus there is a smooth map g′′ : M → B homotopic to g′ and equal to g′ on N .
Replacing, if necessary, g by g′′, we may assume that

g : M → B is constant on N = N1 ∪ · · · ∪Nb, (7)

while (4) and (6) still hold.
Let c : M → B be a constant map sending M to a point in B0.

Assertion 2. The maps (f, g) : M → G × B and (f, c) : M → G × B represent the
same bordism class in the unoriented bordism group N∗(G× B).
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In view of Theorem 2.3 and Künneth’s theorem, it suffices to prove that for every pair
(p, q) of nonnegative integers and all cohomology classes α in Hp(G,Z/2) and β in
H q(B,Z/2), we have

〈wi1(M) ∪ · · · ∪ wir (M) ∪ (f, g)
∗(α × β), [M]〉

= 〈wi1(M) ∪ · · · ∪ wir (M) ∪ (f, c)
∗(α × β), [M]〉 (8)

for all nonnegative integers i1, . . . , ir with i1 + · · · + ir = m − (p + q). Note that
(f, g)∗(α × β) = f ∗(α) ∪ g∗(β) and (f, c)∗(α × β) = f ∗(α) ∪ c∗(β).

If q = 0, then g∗(β) = c∗(β), and hence (8) holds.
Suppose now 0 < q ≤ m. Then c∗(β) = 0 and (8) is equivalent to

〈wi1(M) ∪ · · · ∪ wir (M) ∪ f
∗(α) ∪ g∗(β), [M]〉 = 0. (9)

If q 6∈ {m − k1, . . . , m − ks}, then β = 0 according to (4), and hence (9) holds. If
q = m − k` for some `, then g∗(β) is in 0` in view of (5). Since (b) is satisfied, (2)
implies that wi1(M) ∪ · · · ∪ wir (M) ∪ f

∗(α) is in Ak` . Thus (9) holds in view of (3).
Assertion 2 is proved.

The proof of Theorem 2.4 can be completed as follows. We may assume that M is a
Zariski closed nonsingular subvariety of Rµ for some µ. ThenN , being a union of finitely
many Zariski closed nonsingular subvarieties of Rµ, is a nice set, equivalently, a quasi-
regular subvariety, in the terminology used in [2] and [24], respectively (cf. [24, p. 75]).
Since (f, c) is a regular map, and by (7) the restriction (f, g)|N is also regular, it follows
from Assertion 2 that [2, Theorem 2.8.4] is applicable. Hence there exist a nonnegative
integer ν, a Zariski closed nonsingular subvariety X of Rµ+ν , a smooth diffeomorphism
ϕ : X → M , and a regular map (f̄ , ḡ) : X → G × B such that identifying Rµ with
Rµ× {0} ⊆ Rµ+ν , we have N ⊆ X, ϕ(x) = x for all x in N , and (f̄ , ḡ) is homotopic to
(f, g) ◦ ϕ = (f ◦ ϕ, g ◦ ϕ). In particular, setting

f̄ = (f̄1, . . . , f̄a) : X→ G = Gn,r1 × · · · ×Gn,ra ,

ḡ = (ḡ1, . . . , ḡs) : X→ B = Bm−k1(d)× · · · × Bm−ks (d),

we obtain f̄ ∗i = ϕ
∗
◦ f ∗i and ḡ∗` = ϕ

∗
◦ g∗` in cohomology for 1 ≤ i ≤ a and 1 ≤ ` ≤ s.

The cohomology class

ϕ∗(f ∗i (w(γn,ri ))) = f̄
∗

i (w(γn,ri ))

is in H ∗alg(X,Z/2), the map f̄i being regular. Clearly,

ϕ∗([Nj ]M) = [Nj ]X

is also in H ∗alg(X,Z/2). Hence (1) implies

ϕ∗(A) ⊆ H ∗alg(X,Z/2).
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In particular,

ϕ∗(Ak`) ⊆ H
k`
alg(X,Z/2) for ` = 1, . . . , s. (10)

It remains to prove that the inclusion in (10) is actually an equality. By (2.2) and (4),

0` = g
∗

` (Algm−k`(Bm−k`(d))),

and hence

ϕ(0`) = ϕ
∗(g∗` (Algm−k`(Bm−k`(d)))) = ḡ∗` (Algm−k`(Bm−k`(d))).

Consequently,

ϕ∗(0`) ⊆ Algm−k`(X), (11)

the map ḡ` : X→ Bm−k`(d) being regular. By the Poincaré duality,

H k`(M,Z/2)×Hm−k`(M,Z/2)→ Z/2, (u, v) 7→ 〈u ∪ v, [M]〉

is a dual pairing, and therefore (3), (10), (11) and Theorem 2.1 taken together imply

ϕ∗(Ak`) = H
k`
alg(X,Z/2) for ` = 1, . . . , s,

as required. The proof is complete. ut

We will need the following, purely technical, observation.

Lemma 2.5. Let M be a compact connected smooth manifold of dimension m. Then:

(i) Gm−1(M) ⊆ Sm−1(M) provided m ≥ 2.
(ii) Gm−2(M) ⊆ Sm−2(M) provided m ≥ 5 and Hm−2(M,Z) has no 2-torsion.

(iii) Gm−2(M) ⊆ Sm−2(M) provided m ≥ 5, M is orientable, and H1(M,Z) has no
2-torsion.

(iv) Hm−3(M,Z/2) = Sm−3(M) provided m ≥ 7, M is a spin manifold, and H2(M,Z)
has no 2-torsion.

Proof. Given a smooth manifold P , we denote by τP its tangent bundle. The normal
bundle of a smooth submanifold N ofM will be denoted by νN . Recall that νN is a trivial
vector bundle if and only if [N ]M is in Sk(M), k = codimM N .

(i) Let u be in Gm−1(M), that is, 〈w1(M) ∪ u, [M]〉 = 0. Since M is connected, we
have

w1(M) ∪ u = 0.

Choose a smooth connected curve C in M with u = [C]M . It suffices to prove that the
normal bundle νC is trivial or, equivalently, w1(νC) = 0. Since τC ⊕ νC = τM |C and τC
is trivial, we have

w1(νC) = w1(τM |C) = e
∗(w1(M)),
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where e : C ↪→ M is the inclusion map. A simple computation yields

e∗(e
∗(w1(M)) ∩ [C]) = w1(M) ∩ e∗([C]) = w1(M) ∩ ([C]M ∩ [M])

= (w1(M) ∪ [C]M) ∩ [M] = (w1(M) ∪ u) ∩ [M] = 0.

Since C is connected, we get e∗(w1(M)) ∩ [C] = 0, and hence e∗(w1(M)) = 0. Thus
w1(νC) = 0, as required.

(ii) By the universal coefficient theorem, the torsion subgroups of Hm−2(M,Z) and
Hm−1(M,Z) are isomorphic, and hence Hm−1(M,Z) has no 2-torsion. It follows from
another version of the universal coefficient theorem that the reduction modulo 2 homo-
morphism ρ : Hm−2(M,Z)→ Hm−2(M,Z/2) is surjective.

By Wu’s theorem [17, Theorem 11.14], the second Wu class ofM is equal tow1(M)∪

w1(M)+ w2(M), and consequently the Steenrod square

Sq2 : Hm−2(M,Z/2)→ Hm(M,Z/2)

is given by Sq2(u) = (w1(M)∪w1(M)+w2(M))∪ u. Therefore for u inGm−2(M), we
have 〈Sq2(u), [M]〉 = 0, which implies Sq2(u) = 0, the manifold M being connected.
Since ρ is surjective, Steenrod’s classification theorem [21, p. 460, Theorem 15] implies
that the cohomology class u is spherical. Thus u is in Sm−2(M), and the proof of (ii) is
complete.

(iii) By the universal coefficient theorem, the torsion subgroups of H 2(M,Z) and
H1(M,Z) are isomorphic. The Poincaré duality implies H 2(M,Z) ∼= Hm−2(M,Z), and
hence (iii) follows from (ii).

(iv) Since H2(M,Z) has no 2-torsion, the reduction modulo 2 homomorphism
H3(M,Z)→ H3(M,Z/2) is surjective. Hence by Thom’s theorem [22, Théorème II.27]
each homology class in H3(M,Z/2) can be represented by an orientable smooth sub-
manifold of M . It remains to prove that if N is an orientable smooth submanifold of
M of dimension 3, then the normal bundle νN is trivial. The orientability of N implies
wi(N) = 0 for i = 1, 2. Since τN ⊕ νN = τM |N and M is a spin manifold, we get
wi(νN ) = 0 for i = 1, 2. It follows from the last equality that νN is stably trivial (cf. for
example [9, Lemma 1.2]). Finally, νN is trivial, since rank νN ≥ 4 > 3 = dimN .

We are now ready to prove the results announced in Section 1.

Proof of Theorem 1.1. Every element of H 1(M,Z/2) is of the form w1(λ) for some real
line bundle λ on M . Clearly

w(λ) = 1+ w1(λ). (∗)

We claim that every element ofH 2(M,Z/2) is of the formw2(ξ) for some rank 2 real
vector bundle ξ on M with w1(ξ) = 0. Indeed, by the universal coefficient theorem, the
torsion subgroups of H2(M,Z) and H 3(M,Z) are isomorphic. Hence H 3(M,Z) has no
2-torsion, which implies that the reduction modulo 2 homomorphism ρ : H 2(M,Z) →
H 2(M,Z/2) is surjective. Every element of H 2(M,Z) is the first Chern class c1(ξ) of
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some complex line bundle ξ on M . Regarding ξ as a rank 2 real vector bundle, we get
w2(ξ) = ρ(c1(ξ)) and w1(ξ) = 0, which proves the claim. Note that

w(ξ) = 1+ w2(ξ). (∗∗)

Since M is a spin manifold, we have wi(M) = 0 for i = 1, 2, 3 (cf. [17, Problem
8-B]). Let B be the subring of H ∗(M,Z/2) generated by A and wj (M) for j ≥ 0. Then
B is an admissible subring with

A ⊆ B and Ak = Bk for k = 0, 1, 2, 3.

In view of (∗) and (∗∗), one can find a collection F of real vector bundles on M and a
collection G of smooth submanifolds of M such that B = A(F ,G) and codimM N ≥ 3
for allN in G. By Theorem 2.4 and Lemma 2.5(i), (iii), (iv), there exist an algebraic model
X of M and a smooth diffeomorphism ϕ : X→ M satisfying

ϕ∗(B) ⊆ H ∗alg(X,Z/2) and ϕ∗(Bk) = H k
alg(X,Z/2) for k = 0, 1, 2, 3.

The proof is complete. ut

Proof of Corollary 1.2. We first recall some results due to Thom [22]. LetN be a compact
n-dimensional manifold. By [22, Théorème II.26], every homology class in Hk(N,Z/2)
can be represented by a smooth submanifold, provided 2k ≤ n or k = n − 1 or (n, k) =
(7, 4). IfN is orientable and n ≤ 9, then according to [22, Corollaire II.28], every homol-
ogy class in H`(N,Z), ` ≥ 0, can be represented by an oriented smooth submanifold.

We can now easily complete the proof. By the Poincaré duality and the universal
coefficient theorem, the reduction modulo 2 homomorphism Hp(M,Z)→ Hp(M,Z/2)
is surjective in either of the following two cases:

(i) m = 7 and p = 5,
(ii) m = 8 or 9 and m/2 < p ≤ m− 2.

Hence Thom’s results recalled above imply that every homology class in Hk(M,Z/2),
k ≥ 0, can be represented by a smooth submanifold. In particular, every subring of
H ∗(M,Z/2) is admissible. The proof is complete in view of Theorem 1.1. ut

Proof of Theorem 1.3. We already recalled in the proof of Theorem 2.4 that w(Y ) is in
H ∗(Y,Z/2) for every compact nonsingular real algebraic variety Y . Hence (a) implies (b).

Assume that (b) holds. By Lemma 2.5, Gm−k(M) ⊆ Sm−k(M) for k = 1, 2. Since
every element of H 1(M,Z/2) is of the form w1(λ) for some real line bundle λ onM and
since w(λ) = 1 + w1(λ), we have A = A(F ,G), where F is a collection of real vector
bundles on M and G is a collection of smooth submanifolds of M with codimM N ≥ 2
for all N in G. It follows from Theorem 2.4 that (a) is satisfied. ut

We conclude this paper by examining consequences of Theorems 1.1 and 2.4 for the n-
fold product T n = S1

× · · · × S1. The interested reader will notice that there are other
examples of a similar type.
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Example 2.6. Every homology class in Hp(T n,Z/2), p ≥ 0, can be represented by
a smooth submanifold, and hence every subring A of H ∗(T n,Z/2) is admissible. By
Theorem 1.1, if n ≥ 7, then there exist an algebraic model X of T n and a smooth diffeo-
morphism ϕ : X→ T n satisfying

ϕ∗(A) ⊆ H ∗alg(X,Z/2) and ϕ∗(Ak) = H k
alg(X,Z/2) for k = 0, 1, 2, 3.

Furthermore, for any n ≥ 1, if A is generated by 1 and some cohomology classes in
H i(T n,Z/2), i = 1, 2, then X and ϕ can be chosen in such a way that

ϕ∗(A) ⊆ H ∗alg(X,Z/2) and ϕ∗(Ak) = H k
alg(X,Z/2) for 2k + 1 ≤ n.

Indeed, one readily checks that A = A(F), where F is a collection of real vector bundles
on T n. Since Hm−k(T n,Z/2) = Sm−k(T n) for all k with 2k + 1 ≤ n, the existence of X
and ϕ satisfying the required properties is guaranteed by Theorem 2.4.
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17–86 (1954) Zbl 0057.15502 MR 0061823
[23] Tognoli, A.: Su una congettura di Nash. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. (3) 27,

167–185 (1973) Zbl 0263.57011 MR 0396571
[24] Tognoli, A.: Algebraic approximation of manifolds and spaces. In: Séminaire Bourbaki,
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