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Abstract. For a finite Coxeter group W and a Coxeter element c of W, the c-Cambrian fan is a
coarsening of the fan defined by the reflecting hyperplanes of W. Its maximal cones are naturally
indexed by the c-sortable elements of W. The main result of this paper is that the known bijection
clc between c-sortable elements and c-clusters induces a combinatorial isomorphism of fans. In
particular, the c-Cambrian fan is combinatorially isomorphic to the normal fan of the generalized
associahedron for W. The rays of the c-Cambrian fan are generated by certain vectors in the W -
orbit of the fundamental weights, while the rays of the c-cluster fan are generated by certain roots.
For particular (“bipartite”) choices of c, we show that the c-Cambrian fan is linearly isomorphic
to the c-cluster fan. We characterize, in terms of the combinatorics of clusters, the partial order
induced, via the map clc, on c-clusters by the c-Cambrian lattice. We give a simple bijection from
c-clusters to c-noncrossing partitions that respects the refined (Narayana) enumeration. We relate
the Cambrian fan to well-known objects in the theory of cluster algebras, providing a geometric
context for g-vectors and quasi-Cartan companions.
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1. Introduction

Recent research in combinatorics has focused on the relationship between various objects
counted by the W -Catalan number, Cat(W), for W a finite Coxeter group. This number,
which has a simple formula in terms of fundamental numerical invariants ofW , has arisen
separately in a wide variety of the many fields with connections to Coxeter groups. These
unexplained numerical coincidences have led to efforts to discover deeper mathematical
connections between the different fields.

One set counted by Cat(W) is the set of clusters [13, 14] in the root system 8 asso-
ciated to W. A cluster is a collection of roots in 8 that are “compatible” in a sense which
will be made precise in Section 5. The positive linear spans of clusters are the maximal
cones in a complete simplicial fan which we refer to as the cluster fan and whose dual
polytope is called the generalized associahedron for W. Clusters of roots get their name
from cluster algebras. Although it is surprising a priori that a cluster algebra should have
anything to do with a Coxeter group, cluster algebras of finite type turn out to have a
classification [14] that exactly matches the classification of finite crystallographic root
systems8. Clusters of roots in8 turn out to encode the combinatorics of the correspond-
ing cluster algebra. For a very gentle introduction to cluster algebras and to “W -Catalan”
combinatorics, see [11]. For a more advanced survey, see [12].

Another set counted by the W -Catalan number [4, 13, 22, 24, 30] is the set of non-
crossing partitions associated to W . Both the name and the earliest examples of non-
crossing partitions come from algebraic combinatorics (see e.g. [21, 30]), while both the
general definition and important applications arise from geometric group theory. Specifi-
cally, noncrossing partitions are a powerful tool in the theory of Artin groups [4, 7]. For
an accessible introduction to this application, focusing on the special case of the sym-
metric group (and thus the braid group), see [23], which also discusses other applications
of noncrossing partitions to free probability and combinatorics. The definitions of both
noncrossing partitions and clusters involve the choice of a Coxeter element c for W, and
to emphasize this fact we will refer to them as c-noncrossing partitions and c-clusters.

A third combinatorial set counted by Cat(W) is the set of nonnesting partitions (an-
tichains in the root poset of 8), which will not play a role in the current paper. These
objects arose in several closely related contexts, including double affine Hecke algebras
(rational Cherednik algebras), two-sided cells and coinvariant rings. See [11, Lecture 5]
for a gentle introduction and for references.

One of the main results of [28] is a bijective proof that c-clusters and c-noncrossing
partitions are equinumerous. The proof begins with the definition of a fourth set counted
by Cat(W), the set of c-sortable elements ofW . Bijections are then given from c-sortable
elements to c-noncrossing partitions and from c-sortable elements to c-clusters. Sortable
elements and the bijections are defined simply without reference to the classification of
finite Coxeter groups, but the proofs that these are bijections rest on several lemmas which
are proved type by type using the classification.

Sortable elements have their origins in the lattice theory of the weak order. Specifi-
cally, the c-Cambrian congruence is a certain lattice congruence 2c on the weak order
on W whose congruence classes are counted [27, 29] by Cat(W). The c-Cambrian con-
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gruence classes are (by a general fact about congruences of a finite lattice) intervals in
the weak order. The quotient latticeW/2c (the Cambrian lattice) is isomorphic to the re-
striction of the weak order to the minimal elements of the c-Cambrian congruence classes.
These minimal elements turn out to be exactly the c-sortable elements [29].

As a special case of a construction given in [26], the congruence 2c defines a com-
plete fan Fc, called the c-Cambrian fan, whose maximal cones correspond to c-Cambrian
congruence classes. The fan Fc is a coarsening of the fan defined by the reflecting hyper-
planes of W. The goal of this paper is to understand in detail the polyhedral geometry
of the bijection between the maximal cones of Fc (indexed by c-sortable elements) and
the maximal cones of the c-cluster fan (defined by c-clusters). The bijection clc from c-
sortable elements to c-clusters was defined in [28] without reference to the fan Fc or the
c-cluster fan. The key result of this paper is the following theorem, a natural strengthening
of the statement that clc is a bijection.

Theorem 1.1. LetW be a finite Coxeter group and let c be a Coxeter element ofW. Then
the c-Cambrian fan Fc is simplicial and the map clc induces a combinatorial isomor-
phism from Fc to the c-cluster fan.

By a combinatorial isomorphism of simplicial fans, we mean a combinatorial isomor-
phism of the simplicial complexes obtained by intersecting with the unit sphere. Because
the fans are simplicial, this is equivalent to requiring that there be a piecewise linear
homeomorphism from Rn to itself, linear on each face of Fc, carrying the cones of Fc to
the cones of the c-cluster fan. The isomorphism of Theorem 1.1 is typically only piece-
wise linear. However, we show that for any W , there exists a special “bipartite” choice of
c such that the c-Cambrian fan and the c-cluster fan are linearly isomorphic. This result
(Theorem 9.1) verifies the first statement of [27, Conjecture 1.4].

Theorem 1.1 shows that c-sortable elements are not simply in bijection with c-
clusters, but define the same underlying combinatorial structure. This is a particularly
surprising result as the Cambrian fan and cluster fan are defined in very different ways:
the Cambrian fan is defined by removing walls of the fan defined by the reflecting
hyperplanes while the cluster fan is defined by choosing certain rays, all of which
are normal to reflecting hyperplanes, and specifying which rays lie in common cones.
Moreover, the Cambrian fan contributes combinatorial structure which is not present in
the cluster fan, including a poset (in fact lattice) structure which interacts well with the
fan structure, as well as a notion of projection to standard parabolic subgroups.

The definition of sortable elements is valid for infinite Coxeter groups. The theory of
sortable elements and Cambrian lattices/fans can be extended to infinite Coxeter groups
and we will describe this program in detail in a future paper. In particular, this future
paper will provide uniform proofs, valid for all finite and infinite Coxeter groups, of the
results which were proved using type by type analysis in [28] and [29]. Cluster algebras
of infinite type are not as well understood as cluster algebras of finite type, and one of the
key motivations of this paper is to establish connections between Cambrian lattices/fans
which can be generalized to give new insights into cluster algebras of infinite type.

Theorem 1.1 leads to further results which we now describe. The c-cluster fan is com-
binatorially isomorphic to the normal fan of the generalized associahedron for W. Thus,
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Theorem 1.1 implies that the c-Cambrian fan is combinatorially isomorphic to the normal
fan of the generalized associahedron. This isomorphism, combined with the close struc-
tural relationship which exists between the c-Cambrian lattice and the c-Cambrian fan
(see Section 4), implies that the Hasse diagram of the c-Cambrian lattice is combinatori-
ally isomorphic to the 1-skeleton of the generalized associahedron (Corollary 8.1). This
confirms [27, Conjecture 1.2.a].

The c-Cambrian lattice induces a partial order (the c-cluster lattice) on c-clusters via
the map clc. We characterize this partial order in terms of the combinatorics of clusters
(Theorem 8.4), generalizing and proving the second statement of [27, Conjecture 1.4].
The c-cluster lattice inherits many useful properties from the c-Cambrian lattice (see
Corollary 8.5), including the property that any linear extension of the c-cluster poset is
a shelling of the c-cluster fan. As a consequence of this shelling property we obtain, in
Section 8, a bijective proof of the fact that the kth entry of the h-vector of the c-cluster fan
coincides with the number of c-noncrossing partitions of rank k. (This number is called
the kth Narayana number associated to W.)

In Section 11 we give a purely geometric description (Theorem 11.4) of a bijection
between c-clusters and c-noncrossing partitions, in the case where c is a bipartite Coxeter
element. This result draws on a “twisted” version of the c-cluster poset as well as the linear
isomorphism, mentioned above, between the c-Cambrian fan and the c-cluster fan. An-
other connection between noncrossing partitions and clusters has arisen recently. Brady
and Watt [9] construct a simplicial fan associated to c-noncrossing partitions (for bipar-
tite c) and extend their construction to produce the c-cluster fan. Athanasiadis, Brady,
McCammond and Watt [1] use the construction of [9] to give a bijection between clusters
and noncrossing partitions. Their proof uses no type by type arguments and provides a
different bijective proof that the kth entry of the h-vector of the c-cluster fan coincides
with the number of c-noncrossing partitions of rank k. The bijection of [1] incorporates
elements which are similar in appearance to the constructions of the present paper (see
Remark 11.5), but many details of the relation between the two theories remain unclear.

The results described above resolve all conjectures from [27] except for Conjecture
1.1. This last result has been established by Hohlweg and Lange [17] for types A and B
and will be proven for all types in a future paper by Hohlweg, Lange and Thomas [18].

The relationship between the c-Cambrian fan and the c-cluster fan has several conse-
quences for the theory of cluster algebras, which we describe in more detail in Section 10.
WhenW admits a crystallographic root system8, Fomin and Zelevinsky associate a clus-
ter algebra Alg(8) to W. This is a commutative algebra with certain specified elements,
called cluster variables, and certain specified subsets of these variables, ordinarily called
clusters. We will call these subsets of variables algebraic clusters, to distinguish them
from the combinatorially defined clusters which are certain sets of roots.

The root system8 and a choice of Coxeter element c specify a certain algebraic clus-
ter tc of Alg(8). There is a bijection between cluster variables and almost positive roots,
such that the elements of tc are taken to the negative simple roots and such that algebraic
clusters are taken to c-clusters. For any cluster variable x ∈ Alg(8) and any cluster t ,
Fomin and Zelevinsky associate to the pair (x, t) two vectors in Zn: the denominator vec-
tor and the g-vector of x with respect to t . It is shown in [14] and [10] that when t = tc the
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denominator vector is found by expressing the corresponding root in the basis of simple
roots. We show, in the case where c is bipartite, that the g-vector is given by expressing
the corresponding ray of the c-Cambrian fan in the basis of fundamental weights; this
result would follow for other c if we knew Conjecture 7.12 of [15]. We also provide a
geometric context for the notion of quasi-Cartan companions, defined in [2].

In the following four sections, we lay out the necessary background concerning Cox-
eter groups, sortable elements and Cambrian congruences. We also give more precise
statements of several of the results described in this introduction. In Section 6, we begin
presenting our proofs.

2. The weak order

This section covers preliminary results on finite lattices and in particular on the weak
order on a finite Coxeter group. We assume that the reader is familiar with the most basic
definitions of Coxeter groups and lattices. Details about lattices are found in [16] and
details about Coxeter groups are found in [5, 6, 19].

A join-irreducible element of a finite lattice L is an element which covers exactly
one other element. A meet-irreducible element of L is an element which is covered by
exactly one other element. A homomorphism from the lattice L1 to the lattice L2 is a map
η : L1 → L2 with η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y) for every
x, y ∈ L1. The condition that η be a lattice homomorphism is strictly stronger than the
condition that η be order preserving.

The fibers of a lattice homomorphism from L to another lattice determine an equiva-
lence relation ≡ on L. An equivalence relation which arises in this way is called a lattice
congruence on L. More directly, an equivalence relation ≡ on L is a lattice congruence
if and only if a1 ≡ a2 and b1 ≡ b2 implies a1 ∨ b1 ≡ a2 ∨ b2 and a1 ∧ b1 ≡ a2 ∧ b2. It
is an easy exercise to show that an equivalence relation 2 on a finite lattice L is a lattice
congruence if and only if it satisfies the following three conditions (where [x]2 denotes
the 2-equivalence class of x):

(i) Each equivalence class [x]2 is an interval in L.
(ii) The map π2

↓
taking x to the minimal element of [x]2 is order preserving.

(iii) The map π↑2 taking x to the maximal element of [x]2 is order preserving.

Given a lattice congruence2 on L, the quotient lattice L/2 is the lattice whose elements
are the congruence classes, with join and meet defined by [x]2 ∨ [y]2 = [x ∨ y]2 and
[x]2 ∧ [y]2 = [x ∧ y]2. Equivalently, L/2 is the partial order on congruence classes
which sets [x]2 ≤ [y]2 if and only if there exist x′ ∈ [x]2 and y′ ∈ [y]2 such that
x′ ≤ y′ in L. It is easy to check that L/2 is isomorphic to the subposet of L induced by
the set π2

↓
(L) = {x ∈ L : π2

↓
(x) = x}. Note that π2

↓
(L) need not be a sublattice of L.

The following is [26, Proposition 2.2].

Proposition 2.1. Let L be a finite lattice,2 a congruence on L and x ∈ L. Then the map
y 7→ [y]2 restricts to a one-to-one correspondence between elements of L covered by
π2
↓
(x) and elements of L/2 covered by [x]2.
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We now remind the reader of some basic facts about Coxeter groups. We also establish
notation for what follows. Throughout the paper, W denotes a finite Coxeter group of
rank n with simple generators S. For J ⊆ S, let WJ be the subgroup of W generated by
J , called a standard parabolic subgroup ofW. Most often J will be S\{s} for some s ∈ S;
we write 〈s〉 for S \ {s}. The reflections of W are those elements which are conjugate to
elements of S. The set of reflections is written T . An element w ∈ W can be written as a
word in S. A word forw which is minimal in length among words forw is called reduced,
and the length of w, written `(w), is the length of a reduced word for w. An inversion
of w is a reflection t ∈ T such that `(tw) < `(w). If s1s2 · · · s` is a reduced word for
w then the inversions of w are s1, s1s2s1, . . . , s1s2 · · · s` · · · s2s1. The set of inversions is
written I (w), and w is uniquely determined by I (w). The (right) weak order on W is
the partial order on W induced by containment of inversion sets. Equivalently, the weak
order on W is the transitive closure of the cover relations w <· ws whenever s ∈ S and
`(w) < `(ws). This is further equivalent to the partial order defined by v ≤ w if and only
if there is a reduced word a for w such that some prefix (initial subword) of a is a word
for v. The weak order is known to be a lattice when W is finite.

The symbolW will now denote both the groupW and the setW viewed as a poset (lat-
tice). All references to a partial order onW will refer to the weak order. The phrase “join-
irreducible elements of the weak order on W” will be abbreviated to “join-irreducibles
of W” and similarly we will refer to “meet-irreducibles of W.”

The unique maximal element of W is called w0. Conjugation by w0 is an auto-
morphism of the weak order and in particular permutes the simple generators S. The
map w 7→ ww0 is an antiautomorphism of the weak order on W, and in particular
I (ww0) = T \ I (w).

A simple reflection s is called a descent of w if `(ws) < `(w) and an ascent of w if
`(ws) > `(w). A cover reflection of w ∈ W is a reflection t such that tw <· w; the set
of cover reflections of w can also be described as those reflections of the form wsw−1

for s a descent of w. The set of cover reflections is denoted by cov(w). There is one cover
reflection of w for each element of W covered by w. Thus the join-irreducibles of W are
the elements with exactly one cover reflection, or equivalently one descent. The following
is [29, Lemma 2.8].

Lemma 2.2. For x ∈ W〈s〉, cov(s ∨ x) = cov(x) ∪ {s}.

The map x 7→ sx is an involutive isomorphism between the intervals [s, w0] and [1, sw0].
In particular, we have the following observation, which we record now to avoid giving the
simple argument repeatedly later.

Lemma 2.3. Let w be join-irreducible with s < w. Then sw is join-irreducible and if t
is the unique cover reflection of w then sts is the unique cover reflection of sw.

Proof. Since w is join-irreducible, w covers at most one element of [s, w0]. If w does not
cover any element of [s, w0] then sw does not cover any element of [1, sw0] and must
thus be 1. But this contradicts the assumption that w 6= s. Thus, w covers exactly one
element of [s, w0], say w m wr . Then sw covers swr and no other element of W. The
unique cover reflections of w and sw are wrw−1 and swrw−1s respectively. ut
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For each w ∈ W and each subset J of S there is a unique factorization w = wJ · Jw such
that wJ ∈ WJ and Jw satisfies s 6≤ Jw for every s ∈ J . The element wJ appearing in
this factorization is the unique element wJ such that I (wJ ) = I (w) ∩ WJ . For a fixed
w ∈ W, the set of elements x such that xJ = wJ is an interval in W, specifically the
interval [wJ , wJ · J(w0)]. The map w 7→ wJ is a lattice homomorphism.

For more on the factorization w = wJ · Jw, see Section 2.4 of [5]. All the claims of
the preceding paragraph except for the last one are either in [5] or are easy consequences
of results proved there. The fact that w 7→ wJ is a lattice homomorphism is proven for
example in [20] or [25, Proposition 6.3].

3. Sortable elements and Cambrian congruences

In this section we review definitions and quote or prove some preliminary results about
sortable elements and Cambrian congruences. For more details, see [28, 29].

A Coxeter element ofW is an element ofW of the form s1 · · · sn, where s1, . . . , sn are
the simple generators S, listed in any order. (Recall that n = |S|.) Two orderings of the
generators produce the same Coxeter element if and only if they are related by a sequence
of transpositions of adjacent generators which commute inW. A generator s ∈ S is initial
in c, or is an initial letter of c, if c can be written s1 · · · sn with s1 = s. Final letters are
defined similarly.

Given w ∈ W, the half-infinite word

c∞ = s1 · · · sns1 · · · sns1 · · · sn · · ·

contains infinitely many subwords which are reduced words forw. The c-sorting word for
w ∈ W is the lexicographically leftmost subword of c∞ which is a reduced word for w.
Inserting dividers “|” into c∞,

c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| · · · ,

we view the c-sorting word for w as a sequence of subsets of S, namely the sets of letters
of the c-sorting word which occur between adjacent dividers.

An element w ∈ W is c-sortable if its c-sorting word defines a sequence of subsets
which is weakly decreasing under inclusion. Formally, this definition requires a choice of
reduced word for c. However, for a given w, the c-sorting words for w arising from dif-
ferent reduced words for c are related by commutations of letters, with no commutations
across dividers. Thus in particular, the set of c-sortable elements does not depend on the
choice of reduced word for c.

Example 3.1. Consider the Coxeter group B2 with simple generators s0 and s1. WhenW
is B2 and c = s0s1, the c-sortable elements of W are 1, s0, s0s1, s0s1s0, s0s1s0s1 and s1.
The non-c-sortable elements are s1s0 and s1s0s1.

The definition of sortability in terms of c∞ is intuitive but is not always the most
helpful definition. The following two lemmas, which are [28, Lemmas 2.4 and 2.5], give
a recursive description of c-sortability.
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Lemma 3.2. Let s be an initial letter of c and let w ∈ W with s 6≤ w. Then w is
c-sortable if and only if it is an sc-sortable element of W〈s〉.

Lemma 3.3. Let s be an initial letter of c and let w ∈ W with s ≤ w. Then w is
c-sortable if and only if sw is scs-sortable.

In [28], the two lemmas above appear with the hypothesis `(sw) > `(w) (resp. `(sw) <
`(w)) instead of s 6≤ w (resp. s ≤ w). The characterization of the weak order in terms
of inversion sets reconciles these two ways of stating the hypothesis. In Lemma 3.2, W〈s〉
is a Coxeter group of rank n − 1 and in Lemma 3.3, `(sw) < `(w), so these two lem-
mas characterize the c-sortable elements by induction on rank and length. (The identity
element 1 is c-sortable for any c.)

For each c, we define a map πc
↓

fromW to the c-sortable elements ofW. The notation
πc
↓

suggests the order-theoretic characterization of lattice congruences given in Section 2.
For any Coxeter element c, let πc

↓
(1) = 1 and for s an initial letter of c, define

πc
↓
(w) =

{
s · π scs

↓
(sw) if s ≤ w,

π sc
↓
(w〈s〉) if s 6≤ w.

In [29, Section 3], it is shown that πc
↓
(w) is the unique maximal c-sortable element weakly

below w. Furthermore, it is shown that the fibers of πc
↓

are a lattice congruence on W,
denoted by 2c. In particular, πc

↓
is order preserving. In [29, Section 5], 2c is identified

as the c-Cambrian congruence on W in the sense of [27]. (Although we leave the lattice-
theoretic details to [27] and [29], we will adopt the name “c-Cambrian congruence” for
2c.) We use the abbreviation [w]c for [w]2c .

The c-Cambrian lattice is the quotient W/2c of W modulo the c-Cambrian congru-
ence. This quotient is isomorphic to the restriction of the weak order to the c-sortable
elements of W. Despite this isomorphism, to avoid confusion the notation of this paper
will describe the c-Cambrian lattice as a partial order on congruence classes [w]c, while
comparisons of elements w will refer to the weak order on W. Thus [w]c <· [w′]c is a
cover relation in the quotient W/2c, while w <· w′ says that w is covered by w′ in the
weak order on W.

Example 3.4. Figure 1(a) shows the s1s2s3-Cambrian congruence on the weak order
for W of type A3. The gray shading indicates congruence classes of cardinality greater
than one, and each unshaded vertex is a singleton congruence class. The s1s2s3-Cambrian
lattice is the partial order on the congruence classes, as explained in Section 2. Equiva-
lently, the s1s2s3-Cambrian lattice is the restriction of the weak order to s1s2s3-sortable
elements (bottom elements of congruence classes), as indicated in Figure 1(b).

The c-Cambrian congruence has an upward projection map π↑c which takes each
w ∈ W to the top element of its 2c-congruence class. This map is given by π↑c (w) =
(π

(c−1)
↓

(ww0))w0, and satisfies the following recursion when s is final in c:

π↑c (w) =

{
s · π

↑
scs(sw) if s 6≤ w,

π
↑
cs(w〈s〉) ·

〈s〉w0 if s ≤ w.
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(a) (b)

Fig. 1. A Cambrian congruence and the associated Cambrian lattice.

In particular, the antiautomorphism w 7→ ww0 takes c-Cambrian congruence classes
to c−1-Cambrian congruence classes. An element w ∈ W is called c-antisortable if
π
↑
c (w) = w. Equivalently, w is c-antisortable if and only if ww0 is c−1-sortable. The

map π↑c takes w to the unique minimal c-antisortable element above w.
The elements 1 and w0 are alone in their c-Cambrian congruence classes. An initial

letter s of c also constitutes a singleton congruence class.
We now record three simple lemmas about πc

↓
, π↑c and c-antisortable elements.

Lemma 3.5. Let c be a Coxeter element, let r be a simple reflection and letw ∈ W . Then
r ≤ w if and only if r ≤ πc

↓
(w).

Proof. First, suppose that πc
↓
(w) ≥ r . Since πc

↓
(w) ≤ w, we also have w ≥ r . Now,

suppose w ≥ r . Then, since πc
↓

is order preserving, πc
↓
(w) ≥ πc

↓
(r) = r . ut

Lemma 3.6. Let s be an initial letter of c and let w ∈ W with s ≤ w. Then w is
c-antisortable if and only if sw is scs-antisortable.

Proof. The element w is c-antisortable if and only if ww0 is c−1-sortable. Observe that s
is initial in sc−1s and that s ≤ sww0. Thus, by Lemma 3.3, sww0 is sc−1s-sortable if
and only if ww0 is c−1-sortable. Now sww0 is sc−1s-sortable if and only if sw is scs-
antisortable. ut

Lemma 3.7. If s is final in c then π↑c (s) = w0 · ((w0)〈s′〉) for s′ = w0sw0.

Proof. The reflection s′ is a simple reflection because w0 permutes S. By the recursive
characterization, π↑c (s) is equal to

π↑cs(1) ·
〈s〉w0 =

〈s〉w0 = (w0)〈s〉 · w0 = w0 · (w0(w0)〈s〉w0) = w0 · ((w0)〈s′〉). ut
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The proofs in this paper will also rely on nontrivial properties of sortable elements which
we now quote. We begin with [28, Theorem 6.1]. In the present paper, it will not be
necessary to define noncrossing partitions or the map ncc. Full details, including citations,
are found in [28, Sections 5 and 6]. Following the statement of the theorem we discuss
how it applies to the present context.

Theorem 3.8. For any Coxeter element c, the map w 7→ ncc(w) is a bijection from the
set of c-sortable elements to the set of noncrossing partitions with respect to c. Further-
more, ncc maps c-sortable elements with k descents to c-noncrossing partitions of rank k.

The noncrossing partitions (with respect to W and c) of rank 1 are exactly the reflections
in W. For the purposes of this section, all we need to know about ncc is Theorem 3.8
and the following fact: If w is a c-sortable element with 1 descent (i.e. a c-sortable join-
irreducible) then ncc(w) is the unique cover reflection of w. Thus we have the following
corollary to Theorem 3.8.

Corollary 3.9. For each reflection t ofW, there is exactly one c-sortable join-irreducible
whose unique cover reflection is t .

The number of noncrossing partitions of rank n − 1 is also equal to the number |T | of
reflections in W. Thus c-sortable meet-irreducibles are also counted by |T |. (Recall that
an element of W is meet-irreducible if and only if it is covered by exactly one element,
or equivalently, covers exactly n − 1 elements.) Because the map w 7→ ww0 is an anti-
automorphism of the weak order on W and takes c-sortable elements to c−1-antisortable
elements, the same is true of c-antisortable join-irreducible or meet-irreducible elements.
We summarize in the following corollary to Theorem 3.8.

Corollary 3.10. ForW a finite Coxeter group and c a Coxeter element ofW, the follow-
ing numbers are all equal:

(i) the number of c-sortable join-irreducibles of W ;
(ii) the number of c-sortable meet-irreducibles of W ;

(iii) the number of c-antisortable join-irreducibles of W ;
(iv) the number of c-antisortable meet-irreducibles of W ;
(v) the number of reflections in W.

We conclude the section by quoting [29, Theorem 1.2] and using it to prove a lemma.

Theorem 3.11. Let c be a Coxeter element of a finite Coxeter group W. The c-sortable
elements constitute a sublattice of the weak order on W.

Lemma 3.12. Let s be an initial letter of c. If w is c-antisortable and s 6≤ w then

(i) sw ·> w,
(ii) s ∨ w = sw.

(iii) w is scs-antisortable.
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Proof. Let w be c-antisortable with s 6≤ w. The set of elements x such that x〈s〉 = w〈s〉
is an interval I in W . Now, if x ∈ I and x 6≥ s then πc

↓
(x) = π sc

↓
(x〈s〉) = π

sc
↓
(w〈s〉) =

πc
↓
(w) so, by the assumption that w is c-antisortable, we have w ≥ x for such an x.
On the other hand, since (s ∨ w)〈s〉 = s〈s〉 ∨ w〈s〉 = w〈s〉, I contains elements which

are greater than or equal to s. In particular,w is not maximal in I so we takew′ to be some
element coveringw with (w′)〈s〉 = w〈s〉. By the observation in the first paragraph,w′ ≥ s.
But since w′ ·> w with w 6≥ s and w′ ≥ s, we must have sw = w′ ·> w. Furthermore,
sw = s ∨ w because s ≤ sw. By the dual of Theorem 3.11, sw is c-antisortable, and by
Lemma 3.6, w is scs-antisortable. ut

4. Cambrian fans

In this section we define the c-Cambrian fan for each finite Coxeter groupW and Coxeter
element c of W. We also prove a few preliminary results. In Section 6 we make a careful
study of the rays of the c-Cambrian fan.

An arrangement of hyperplanes in a vector space V is a collection of hyperplanes
(codimension 1 subspaces). A central arrangement is called central if all of the hyper-
planes pass through the origin. That is, the hyperplanes are linear subspaces rather than
affine subspaces. A central arrangement is called essential if the intersection of the hy-
perplanes is the origin.

We continue to let (W, S) be a finite Coxeter system of rank n with reflections T and
longest element w0. Fix some root system 8 for W and let V be the geometric represen-
tation of W ; we write V (W) when it is necessary for clarity. This is the representation
of W on the real vector space spanned by the root system of W. A reflection t of W acts
by the orthogonal reflection

v 7→ v − 2
〈αt , v〉

〈αt , αt 〉
αt ,

where αt is the positive root corresponding to t and 〈·, ·〉 is the usual inner product. The
hyperplane fixed by the reflection t is denoted by Ht . The Coxeter arrangement A for W
is the collection of all such hyperplanes; we will write A(W) when necessary. The com-
plement V \

⋃
A of A is composed of open cones whose closures are called regions.

The regions are in canonical bijective correspondence with the elements of W, and each
region has n facet hyperplanes. More specifically, the dominant chamber D :=

⋂
s∈S{v :

〈v, αs〉 ≥ 0} corresponds to the identity and wD corresponds to w.
A subset U of V is below a hyperplane H ∈ A if every point in U is either on H or

on the same side of H as D. The subset is strictly below H if it is below H and does not
intersect H . Similarly, U can be above or strictly above H . The inversions of an element
w ∈ W , defined in Section 2 to be those reflections t for which `(tw) < `(w), can
also be described as the reflections t such that wD is above Ht . This result is perhaps
more frequently quoted in its dual form: a reflection t is an inversion of w if and only if
w−1(αt ) is a negative root [5, Proposition 4.4.6]. In the case of a simple reflection s ∈ S,
`(sw) < `(w) if and only if s ≤ w in the weak order. Thus deciding whether wD is
above Hs or below Hs is a weak order comparison.
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The Coxeter arrangement A is a central, essential arrangement. If J ⊂ S, let AJ
be the subset of A consisting of those hyperplanes Ht ∈ A(W) for which t is in WJ .
Then AJ is a central arrangement but it is not essential. If IJ =

⋂
H∈AJ H then we have

V (W) ∼= IJ × V (WJ ) and each hyperplane Ht in AJ is the direct product of IJ with the
hyperplane Ht in A(WJ ). We write ProjJ for the linear projection V (W) � V (W)/IJ ∼=

V (WJ ). This projection will be used in Lemma 6.3 and the proof of Theorem 1.1. The fol-
lowing proposition relates the geometric projection ProjJ to the combinatorial projection
w 7→ wJ .

Proposition 4.1. For w ∈ W , we have ProjJ (wD) ⊆ wJDJ , where DJ is the dominant
chamber for A(WJ ).

A fan F is a family of nonempty closed polyhedral (and in particular convex) cones in V
such that

(i) for any cone in F , all faces of that cone are also in F ;
(ii) the intersection of two cones in F is a face of both.

A fan is complete if its union is all of V. It is essential (or pointed) if the intersection of
all of the cones of F is the origin. For more information about fans, see [31, Lecture 7].

Let F be the fan consisting of the regions of A and all of their faces. The fan F is
complete and essential (see [19, Sections 1.12–1.15]). The faces of F have an elegant
description: they are in bijection with pairs (w, J ) where w is an element ofW and J is a
subset of the ascents of w. The pair (w, J ) corresponds to C(w, J ) := w · (D∩

⋂
s∈J {v :

〈v, αs〉 = 0}). We may recover w from C(w, J ) by the fact that w is the smallest element
of W (in weak order) such that wD contains C(w, J ). It is then easy to recover J . The
cone C(w, J ) has dimension n− |J |.

Let G be a complete fan in Rn and let v be a generic vector in Rn. Suppose that the
intersection of two maximal conesC andC′ spans a hyperplaneH with v on the same side
ofH as C. We put C′ > C. In general, it is possible that there is a sequence C1, . . . , Cr of
maximal cones of G such that C1 > · · · > Cr > C1. If this does not occur, then we define
a poset on the maximal cones of G by taking the transitive closure of all relations C′ > C

and we say that this poset is induced 1 on G by v; roughly speaking, going “down” in the
poset means moving in the direction of v. So, for example, the weak order is induced on
F by any v in the interior of D. If C is a maximal cone of G and if C is simplicial, then
we define the bottom face of C with respect to v to be the minimal (under containment)
face F of C such that for any vector x in the relative interior of F , there exists an ε > 0
such that x − εv is in C. In other words, the bottom face of C is the intersection of the
facets F of C which separate C from a face lower than C in the poset induced by v.

We now review a construction from [26] which, given an arbitrary lattice congruence
2 on the weak order onW, constructs a complete fan F2 which coarsens F (in the sense
that every cone of F2 is a union of cones of F). The maximal cones of F2 correspond
to congruence classes of 2. Specifically, each maximal cone is the union of the regions

1 An analogous construction in [26] featured posets induced on fans by linear functionals. The
vector v occurring here points in the direction which minimizes the linear functional of [26].
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ofA corresponding to the elements of the congruence class. In [26, Section 5] it is shown
that the collection F2 consisting of these maximal cones together with all of their faces
is indeed a complete fan. In what follows, we identify a congruence class with the corre-
sponding maximal cone of F2.

Example 4.2. For W = B2 with c = s0s1, the fan F is shown in Figure 2(a), with
maximal cones labeled by elements of W. Figure 2(b) shows Fc, with maximal cones
labeled by c-sortable elements. (cf. Example 3.1). The weak order on B2 is the poset on
the regions of F such that one moves up in the partial order by passing to an adjacent
region which is “higher” on the page. The c-Cambrian lattice is the poset on the maximal
cones of Fc with a similar description.

1

s0

s0s1

s0s1s0

s0s1s0s1

s1

s1s0

s1s0s1

1

s0

s0s1

s0s1s0

s0s1s0s1

s1

(a) (b)

Fig. 2. The fans F and Fc.

The lattice W/2 is a partial order on the maximal cones of F2. In fact, the pair
(F2,W/2) is a fan poset [26, Theorem 1.1], and thus by [26, Proposition 3.3], we have
the following.

Proposition 4.3. Let [w]2 and [w′]2 be maximal cones of F2. Then [w]2 and [w′]2
are a covering pair in W/2 if and only if they intersect in a common facet.

The proof of the following lemma is essentially contained in the proof of [26, Proposi-
tion 5.5]. However, since that result is stated quite differently and in broader generality,
we give a proof here. The dual statement about the upward projection π↑2 also holds.

Lemma 4.4. Let π2
↓

be the downward projection map associated to a lattice congruence
on the weak order on a finite Coxeter group. A hyperplane H separates a congruence
class [w]2 from a congruence class [x]2 <· [w]2 if and only ifH separates π2

↓
(w) from

an element of W covered by π2
↓
(w).
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Proof. Let L be the set of hyperplanes H in A such that H separates the congruence
class [w]2 from a congruence class covered by [w]2. Since the congruence classes are
convex cones, no two hyperplanes in L separate [w]2 from the same congruence class
covered by [w]2. By Proposition 2.1, congruence classes covered by [w]2 are in one-
to-one correspondence with elements x covered by π2

↓
(w). Each such x is separated

from π2
↓
(w) by a distinct hyperplane in L, so L is the set of hyperplanes H such that H

separates π2
↓
(w) from an element covered by π2

↓
(w). ut

The c-Cambrian fan Fc is the essential fan F2c arising from this construction, where
2c is the c-Cambrian congruence described in Section 3. The c-Cambrian fan Fc and
the c-Cambrian lattice W/2c have many pleasant properties following from a general
theorem [26, Theorem 1.1] which applies to fans F2 and quotients W/2 for general
lattice congruences 2 on W. We list some of these properties here for emphasis.

(i) Any linear extension of the c-Cambrian lattice is a shelling order of Fc.
(ii) The c-Cambrian lattice is the order induced on the maximal cones of Fc by any

vector lying in the interior of D.
(iii) For any interval in the c-Cambrian lattice, the union of the corresponding cones

of Fc is a convex cone.
(iv) For any cone F in Fc, the set of maximal cones in Fc containing F is an interval in

the c-Cambrian lattice.
(v) A closed interval I in the c-Cambrian lattice has proper part homotopy equivalent

to an (n−k−2)-dimensional sphere if and only if there is some k-dimensional cone
F of Fc such that I is the set of all maximal cones of Fc containing F .

(vi) A closed interval I has proper part homotopy equivalent to a (k − 2)-dimensional
sphere if and only if I has k atoms and the join of the atoms of I is the top element
of I .

(vii) If the proper part of a closed interval I is not homotopy-spherical then it is con-
tractible.

By applying Lemma 4.4 to the case of the c-Cambrian fan and appealing to Corol-
lary 3.10, we obtain the following useful fact about c-sortable and c-antisortable join-
irreducibles. Dually, the analogous statement for meet-irreducibles also holds.

Proposition 4.5. The upward projection π↑c restricts to a bijection from c-sortable join-
irreducibles to c-antisortable join-irreducibles. The inverse is the restriction of πc

↓
.

Proof. Let v be a c-sortable join-irreducible. Then v = πc
↓
(v) and since v covers exactly

one element, by Lemma 4.4 there is exactly one hyperplane separating [v]c from a con-
gruence class covered by [v]c. Since [v]c is a full-dimensional cone in an essential fan,
it must have at least n facet hyperplanes. Thus (using Proposition 4.4) there must be at
least n − 1 congruence classes covering [v]c and by the dual of Lemma 4.4 this means
that π↑c (v) is covered by at least n − 1 distinct elements. The only element of W cov-
ered by n elements is 1, and every other element of W is covered by fewer elements. If
π
↑
c (v) is 1 then v is 1, contradicting the assumption that v is join-irreducible. Therefore
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π
↑
c (v) is covered by exactly n − 1 elements and covers exactly one element. We have

shown the π↑c maps c-sortable join-irreducibles to c-antisortable join-irreducibles. Since
v = πc

↓
(π
↑
c (v)), the map is one-to-one and thus by Corollary 3.10 it is a bijection with

inverse πc
↓

. ut

We now describe the faces of F2 (cf. [26, Proposition 5.10]). We will use this description
in Section 6 when we discuss the rays ofFc. Letw be maximal in its2-equivalence class,
in other words, let w = π↑2(w), and let J be a collection of ascents of w. In particular,
for all s ∈ J , [ws]2 6= [w]2. Recall that C(w, J ) is an (n− |J |)-dimensional face of the
Coxeter fan F , and define C2(w, J ) to be the unique (n − |J |)-dimensional face of F2
containing C(w, J ).

To see that C2(w, J ) is well-defined, notice that by the dual of Lemma 4.4, there
is a collection of |J | facets of [w]2 all of which contain C(w, J ). Furthermore, since
each of these facets of [w]2 contains a facet of the region for w (a simplicial cone), the
intersection of these facets is (n− |J |)-dimensional. This is a face of F2 because it is an
intersection of faces of F2. Uniqueness is ensured because no two distinct k-dimensional
faces of a fan have a k-dimensional intersection.

Proposition 4.6. The map (w, J ) 7→ C2(w, J ) is a bijection from ordered pairs (w, J )
with w = π↑2(w) and [ws]2 ·> [w]2 for every s ∈ J to faces of F2.

Proof. We only give full details of the proof for the restriction of the map to pairs such
that |J | = n−1, i.e.C2(w, J ) is a ray. Only that restriction is used in this paper. For more
general J , we sketch how a proof can be constructed using ideas, terminology and results
of [26].2 The full proof is not difficult but would require quoting [26] in more detail than
is desirable.

We first show that the map (w, J ) 7→ C2(w, J ) is surjective. Let C be a k-dimen-
sional face in F2. By [26, Theorem 1.1] (cf. property (iv) of c-Cambrian fans, above),
the set of maximal cones of F2 which contain C is an interval I in W/2. Thus I has a
unique minimal element; this minimal element is a2-congruence class [w]2, where w is
chosen to be the maximal element in the class. (In other words, π↑2(w) = w.)

Since [w]2 is lowest in W/2 among congruence classes containing C, every facet of
[w]2 containing C separates [w]2 from a class that is higher in W/2. Thus, by Propo-
sition 4.3, every facet of [w]2 containing C separates [w]2 from a class [ws]2 ·> [w]2.
The hyperplanes separating w from those elements of W which cover it are transverse,
and by Lemma 4.4 these are exactly the hyperplanes separating [w]2 from the classes that
cover it. Thus, since C is k-dimensional, there are exactly n − k facets of [w]2 contain-
ing C. Let J be the set of generators s such that [ws]2 ·> [w]2 and such that the facet
separating the two contains C. Then C(w, J ) is k-dimensional and is contained in C, so
that C = C2(w, J ). We have shown that the map is surjective.

2 In fact, this proposition, and the proof sketched here, is valid in the more general setting of [26,
Section 5]. We can replace the weak order W with a poset of regions of a simplicial hyperplane
arrangement. Instead of pairs (w, J ), we take pairs (w, P ) where w is a region maximal in [w]2
and P is a set of facet hyperplanes of w separating [w]2 from classes above [w]2.
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The restriction of the map to pairs (w, J ) with |J | = n− 1 is injective because a ray
of F2 cannot contain two distinct rays of F . We now sketch a proof that the unrestricted
map is injective, continuing the notation of the previous two paragraphs. Suppose (w′, J ′)
obeys the conditions that w′ = π↑2(w

′), [w′s]2 ·> [w′]2 for every s ∈ J ′, |J ′| = |J | and
C(w′, J ′) ⊆ C. We will show that (w′, J ′) = (w, J ). Ifw′ = w then since J was defined
by considering the set of all facets of [w]2 containing C, we must have J ′ = J .

If w′ 6= w then [w′]2 is in particular not minimal in I with respect to W/2. Arguing
as in the proof of [26, Proposition 5.3], one shows that the interval I is isomorphic to the
quotient of a facial interval of F modulo the restriction of 2. This restriction is bisim-
plicial by [26, Proposition 5.5], leading to the conclusion that no element of I (except
the minimal element) is covered by n− k or more elements of I . Thus there do not exist
n− k distinct facets of [w′]2 containing C and separating [w′]2 from classes higher than
[w′]2 in W/2. In particular, the intersection of the facets separating [w′]2 from [w′s]2
for s ∈ J ′ is a k-dimensional face of [w′]2 distinct from C. This contradicts the supposi-
tion that C(w′, J ′) ⊆ C, thus proving that w′ = w and thus that (w′, J ′) = (w, J ). ut

5. The cluster complex

In this section we review the definition of the c-cluster complex, describe the map clc
from the c-Cambrian fan to the c-cluster fan and give examples. We begin by reviewing
the definition of clusters in the sense of Fomin and Zelevinsky [13] (as extended by Marsh,
Reineke and Zelevinsky [22] and extended slightly further in [28]). Let8 be a root system
forW with positive roots8+ and simple roots5. For any reflection t ofW, let αt denote
the positive root associated to t . The roots in 8≥−1 = 8+ ∪ (−5) are called almost
positive roots. For any J ⊆ S, the set (8J )≥−1 is the intersection of 8≥−1 with the
subset of 8 corresponding to the parabolic subgroup WJ .

For each s ∈ S, define an involution σs : 8≥−1 → 8≥−1 by

σs(α) :=
{
α if α ∈ (−5) and α 6= −αs,
s(α) otherwise.

The c-compatibility ‖c relation on 8≥−1 is defined by the following properties:

(i) For any s ∈ S, β ∈ 8≥−1 and Coxeter element c,

−αs ‖c β if and only if β ∈ (8〈s〉)≥−1.

(ii) For any α1, α2 ∈ 8≥−1 and any initial letter s of c,

α1 ‖c α2 if and only if σs(α1) ‖scs σs(α2).

The relations ‖c and ‖c−1 coincide. (See [22, Proposition 3.1] and [28, Proposition 7.4].)
A c-compatible subset of8≥−1 is a set of pairwise c-compatible almost positive roots.

A c-cluster is a maximal c-compatible subset. All c-clusters have cardinality n. Since
each element of a c-cluster is a vector, the positive real span of the elements of a c-cluster
is a well-defined cone. In fact each c-cluster defines an n-dimensional cone, and these
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cones are the maximal cones in a complete fan (defined on the linear span of 8). This
is the c-cluster fan. A set {α1, . . . , αn} is a c-cluster if and only if {σs(α1), . . . , σs(αn)}

is an scs-cluster. Thus, there is a continuous piecewise linear isomorphism between the
c-cluster fan and the scs-cluster fan which is linear on each cone and sends each α to
σs(α).

Example 5.1. The reflections in W = B2 are s0, s1, s0s1s0 and s1s0s1. For c = s0s1,
the c-cluster fan is shown in Figure 3, with each ray labeled by the corresponding almost
positive root.

−αs0
−αs1

αs0
αs1

αs0s1s0αs1s0s1

Fig. 3. The c-cluster fan.

The map clc takes a c-sortable element w to a set of n almost positive roots. Let
a = a1a2 · · · ak be the c-sorting word for w. If s ∈ S occurs in a then the last reflection
for s in w is a1a2 · · · aj−1ajaj−1 · · · a2a1, where aj is the rightmost occurrence of s in a.
The set clc(w) is obtained by taking the set of all positive roots for last reflections of w,
together with negative simple roots −αs for each s ∈ S not appearing in a. This set does
not depend on the choice of reduced word for c, because any two c-sorting words for w
are related by commutations of simple generators. One of the main results of [28] is the
following theorem, which is an abbreviated form of [28, Theorem 8.1].

Theorem 5.2. The map w 7→ clc(w) is a bijection from the set of c-sortable elements to
the set of c-clusters.

Example 5.3. In the case of W = B2 and c = s0s1, clc(1) = {−αs0 ,−αs1} and the table
below shows clc(w) for the other c-sortable elements w.

w s0 s0s1 s0s1s0 s0s1s0s1 s1
clc(w) αs0 ,−αs1 αs0 , αs0s1s0 αs1s0s1 , αs0s1s0 αs1s0s1 , αs1 −αs0 , αs1

The key result of this paper (Theorem 1.1) strengthens Theorem 5.2 by asserting that
clc induces a combinatorial isomorphism from Fc to the c-cluster fan. Via this combina-
torial isomorphism, the c-Cambrian lattice induces a partial order on c-clusters which we
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call the c-cluster lattice. The covering pairs of the c-cluster lattice are adjacent maximal
cones of the c-cluster fan. One moves down in the partial order by exchanging an almost
positive root for another almost positive root which is “closer” to being a negative simple
root, in a sense that is made precise in Section 8.

Example 5.4. For W = B2 with c = s0s1, the fan Fc is shown in Figure 4(a), with
maximal cones labeled by c-sortable elements. Figure 4(b) shows the c-cluster fan in
the same coordinate system. Each maximal cone in the c-cluster fan corresponds to the c-
cluster composed of the extreme rays of the cone. These maximal cones are labeled clc(w)
(with the subscript c suppressed) for appropriate c-sortable elements w. The labeling of
the rays is given in Figure 3. Observe that the obvious linear isomorphism between Fc
and the c-cluster fan is not induced by the bijection clc. However, this linear isomorphism
is an instance of a general result (Theorem 9.1), which constructs, for special Coxeter
elements called bipartite Coxeter elements, a linear isomorphism from the c-cluster fan
to Fc.

1

s0

s0s1

s0s1s0

s0s1s0s1

s1

cl(1)

cl(s0)

cl(s0s1)

cl(s0s1s0)

cl(s1)

cl(s0s1s0s1)

(a) (b)

Fig. 4. The c-Cambrian fan and the c-cluster fan.

The following simple lemma, which is [28, Lemma 8.5], is a key ingredient in the
proof (in [28]) of Theorem 5.2 and in the results of this paper.

Lemma 5.5. Let s be initial in c and let w be c-sortable. If s 6≤ w then w ∈ W〈s〉 and
clc(w) = {−αs} ∪ clsc(w). If s ≤ w then clc(w) = σs(clscs(sw)).

We have now surveyed the relevant background material. In Section 6, we undertake
a detailed study of the rays of the Cambrian fan and prove the main technical lemmas
underlying our main results. In Section 7, we prove Theorem 1.1. We spend the remaining
sections developing the further results described in Section 1.
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6. Rays in the c-Cambrian fan

In this section we prove the key lemmas which are used in the proof of Theorem 1.1.
These key lemmas, together with certain facts established in previous sections, can be
loosely summarized as follows: For s initial in c, all of the objects relevant to Theorem 1.1
are well-behaved under the operation of replacing c by scs or, in some cases, replacing c
by sc and passing to the standard parabolic subgroup W〈s〉. In particular, we define a
map ζs which describes how rays of the c-Cambrian fan transform under replacing c
by scs. We show that this map is compatible with the map σs on almost positive roots
(defined in Section 5).

The results of this section rely (indirectly through results proved or quoted in Sec-
tion 3) on nontrivial results from [28] and [29]. We now specialize the description of the
faces of F and F2 in the preceding section in order to describe the rays of Fc.

Rays in the Coxeter fanF are in bijection with pairs (w, J ), wherew ∈ W and J ⊆ S
satisfy |J | = n − 1 and `(ws) > `(w) for every s ∈ J . In particular, w is either 1 or a
join-irreducible element of W. The correspondence is as follows: For any s ∈ S, let ρs be
the ray in the Coxeter fan which is fixed byW〈s〉 and which is an extreme ray of the region
for 1. Note that ρs is usually not αs . Given (w, J ), the corresponding ray iswρs′ , where s′

is the unique element of S \J . We write ρ(w, J ) for the ray associated to (w, J ). Starting
with a ray ρ in the Coxeter fan, we recover (w, J ) as follows: The elements of W whose
regions contain ρ form an interval in W, and w is the minimal element of that interval.
The set J is uniquely defined by specifying that the elements covering w in that interval
are {ws : s ∈ J }.

The following alternative description of ρ(w, J ) is also useful: ρ(w, J ) is half of the
line I defined as the intersection of the hyperplanes associated to the reflections {wsw−1 :
s ∈ J }. Note that any reflecting hyperplane in A either contains I or intersects I only at
the origin. For w > 1, ρ(w, J ) is the half of I consisting of points weakly separated from
D (the region for 1) by any hyperplane in A which separates wD from D. For w = 1,
ρ(w, J ) is the half of I which is contained in D.

Proposition 4.6 implies that rays in the c-Cambrian fan are the rays of the form
ρ(w, J )wherew is c-antisortable. By Corollary 3.10, there are |T | such pairs withw 6= 1.
There are also n such pairs with w = 1, namely (1, 〈r〉) for each r ∈ S. We now pro-
ceed to define and then motivate a bijection φc from rays of the c-Cambrian fan to almost
positive roots. An example is given below (Example 6.1).

Given a ray ρ(w, J ) of the c-Cambrian fan, define v = πc
↓
(w). In the case w = 1

let φc(ρ) = −αs′ where J = 〈s′〉. If w 6= 1 then w is join-irreducible, so by Proposi-
tion 4.5, v is join-irreducible as well. Define φc(ρ) = αt , where t is the unique cover
reflection of v.

We now motivate the definition of φc by showing that it is forced on us by the require-
ment that φ−1

c (clc(v)) be the set of rays of the cone [v]c. If w = 1 then v = 1 and clc(v)
consists of all the negative simple roots for W. In this case we must set φc(ρ) = −αs for
some simple reflection s ∈ S. If instead we take s 6= s′ then φ−1

c (−αs) = ρs′ is a ray both
of [1]c and [s]c. This is inconsistent with the fact that −αs 6∈ clc(s).
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1

v

w
ρ(w, 〈s ′〉)

Hws′w−1

Ht

Fig. 5. An illustration of the definition of φc.

To motivate the definition of φc in the case w 6= 1, let v and t be as defined two para-
graphs earlier. Then any reduced word for v must end in the unique letter r ∈ S such that
t = vrv−1. In particular, the c-sorting word for v must end in r , so that t is the last reflec-
tion for r in v. The hyperplane Ht separates [v]c from the unique congruence class [x]c
covered by [v]c. Since every region in [x]c is below the hyperplane Ht , in particular t
is not an inversion of πc

↓
(x) and so αt 6∈ clc(πc↓(x)). If clc is to induce a combinato-

rial isomorphism from the c-Cambrian fan to the c-cluster fan (which is simplicial) then
clc(πc↓(x)) and clc(v) should have n− 1 roots in common and αt should be the only root
in clc(v) which is not in clc(πc↓(x)). Furthermore, the ray ρ associated to (w, J ) should
be the only ray of [v]c which is not a ray of [x]c. Thus we are forced to map ρ to αt .

To see that the map φc is a bijection, note first that the n rays ρ(1, J ) map to the n
negative simple roots. The remaining rays are ρ(w, J ) where w is a c-antisortable join-
irreducible, with a unique J appearing for each such w. Thus Proposition 4.5 shows that
there is a unique v (equal to πc

↓
(w)) for each such pair and so by Corollary 3.9, φc is a

bijection.

Example 6.1. Figure 5 illustrates the definition of φc in a typical instance of the case
w 6= 1. The solid lines show the intersection of the c-Cambrian fan with a unit hemi-
sphere. The dotted lines indicate how each maximal cone of the c-Cambrian fan is parti-
tioned into maximal cones (regions) of the Coxeter fan. Here s′ is the unique element of
S \ J and φc(ρ(w, J )) is the positive root associated to the hyperplane Ht , the reflecting
hyperplane for the unique cover reflection of v.

The following three lemmas constitute a recursive characterization of the rays of Cam-
brian fans. They play a key role in the proof of Theorem 1.1 in Section 7.

Lemma 6.2. If s is initial in c then ρs is the only ray of the c-Cambrian fan which is
below Hs but not contained in Hs .

Proof. Suppose ρ is a ray of the c-Cambrian fan which is on or below Hs and suppose
ρ 6= ρs . We will show that ρ is on Hs . Let ρ = ρ(w, J ). The claim is easy when
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(w, J ) = (1, 〈r〉) for r 6= s and we have excluded the case (w, J ) = (1, 〈s〉), so we
may assume that w 6= 1. Then since ρ is on or below Hs , w is also below Hs , or in other
words s 6≤ w. By Lemma 3.12, sw ·> w. The ray ρ is contained in the intersection of
all hyperplanes separating w from an element covering w, so in particular, ρ is contained
in Hs . ut

Lemma 6.3. Let s be initial in c. For any almost positive root α ∈ (8〈s〉)≥−1,

φ−1
c (α) = Proj−1

〈s〉 (φ
−1
sc (α)) ∩Hs,

where Hs is the hyperplane associated to the reflection s.

Recall that ProjJ is the linear projection V (W) � V (WJ ); in this case, the kernel of
Proj〈s〉 is SpanR ρs . Here φ−1

c (α) is a ray of the c-Cambrian fan, and thus in particular a
ray of the Coxeter fan for W. The ray φ−1

sc (α) is the ray in the sc-Cambrian fan mapped
to α by φsc. Thus Proj−1

〈s〉 (φ
−1
sc (α)) is two-dimensional and Proj−1

〈s〉 (φ
−1
sc (α))∩H〈s〉 is a ray

again.
Here is another description of Lemma 6.3: The projection Proj〈s〉 restricts to an iso-

morphism from Hs to V〈s〉. If we identify V〈s〉 and Hs by this isomorphism, Lemma 6.3 is
the statement that φ−1

c (α) = φ−1
sc (α). However, this identification of V〈s〉 with Hs is not

norm preserving, and we will therefore not pursue this viewpoint.

Proof of Lemma 6.3. Let ρ(w, J ) = φ−1
c (α) and let ρ(w′, J ′) = φ−1

sc (α). Let v =
πc
↓
(w), let v′ = π sc

↓
(w′) and let s̃ be the unique element of S \ J . If v = 1 then α = −αs̃

and thus v′ = 1 as well, with J ′ = J \ {s}. Now φ−1
c (α) = ρs̃ , where ρs̃ is a ray in

V (W), and φ−1
sc (α) is also ρs̃ , interpreted as a ray in V (W〈s〉). The desired conclusion

now follows from the definition of ρs̃ in each case.
If v > 1 then α is not a negative simple root, so v′ > 1 as well. Thus v′ is join-

irreducible, and since v′ is sc-sortable, it is in particular c-sortable. For both v and v′, the
positive root associated to the unique cover reflection is α. We have (by Corollary 3.9)
v = v′ and thusw = π↑c (v) andw′ = π↑sc(v). The ray ρ(w, J ) is half of the line I defined
as the intersection of the hyperplanes {Hwrw−1(V (W)) : r ∈ J }, and the ray ρ(w′, J ′) is
half of the line I ′ defined as the intersection of the hyperplanes {Hw′r(w′)−1(V (W〈s〉)) :
r ∈ J ′}. Here we have written Ht (V (W)) for the hyperplane in V (W) associated to the
reflection t . We have Proj−1

〈s〉 (Ht (V (W〈s〉))) = Ht (V (W)).

We next show that I = Proj−1
〈s〉 (I

′) ∩Hs by proving the stronger statement

{wrw−1 : r ∈ J } = {w′r(w′)−1 : r ∈ J ′} ∪ {s}.

Recall that the set {wrw−1 : r ∈ J } is the set of all reflections t such that Ht separates w
from an adjacent region covering w in weak order. By the dual of Lemma 4.4, these are
the reflections t such that Ht separates [w]c = [w′]c from an adjacent region covering it
in Fc. Similarly, {w′r(w′)−1 : r ∈ J ′} is the set of reflections t ∈ W〈s〉 such that Ht sep-
arates [w′]sc from an adjacent region covering it in Fsc. But the c-Cambrian congruence
restricted to W〈s〉 is simply the sc-Cambrian congruence, so any region covering [w′]sc
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in W/2sc also corresponds to a cover of [w′]c in W/2c with a separating hyperplane
corresponding to the same reflection. Thus, {w′r(w′)−1 : r ∈ J ′} ⊆ {wrw−1 : r ∈ J }.

Now, the set {wrw−1 : r ∈ J } contains exactly one additional element not contained
in {w′r(w′)−1 : r ∈ J ′}. Since s 6≤ v, Lemma 3.5 says that s 6≤ w. Thus Lemma 3.12
says that sw covers w, so that s ∈ {wrw−1 : r ∈ J }, completing the proof that {wrw−1 :
r ∈ J } = {w′r(w′)−1 : r ∈ J ′} ∪ {s}.

Having established that φ−1
c (α) and Proj−1

〈s〉 (φ
−1
sc (α)) ∩Hs each constitute half of the

line I , it remains to show that they are the same half of I . Since v′ > 1, there is a
hyperplane H in A〈s〉 which separates w′D from D, and since w ≥ w′, H separates wD
from D as well. Thus both φ−1

c (α) and Proj−1
〈s〉 (φ

−1
sc (α)) ∩ Hs are the half of I weakly

separated from D by H . ut

For a ray ρ of the Cambrian fan, define

ζs(ρ) =

{
sρ if ρ 6= ρs,
−ρ if ρ = ρs .

Since the Coxeter fan is preserved by the action of s and by the antipodal map, ζs(ρ)
is a ray of the Coxeter fan.3 The following lemma states that ζs(ρ) is a ray of the scs-
Cambrian fan and establishes the compatibility of ζs with φc, σs and φscs . The proof is
not difficult, but it has many cases.

Lemma 6.4. Let s be an initial letter of c and let ρ be a ray in the c-Cambrian fan. Then
ζs(ρ) is a ray in the scs-Cambrian fan and φscs(ζs(ρ)) = σs(φc(ρ)).

Proof. Let s, c and ρ be as in the statement of the lemma and let ρ = ρ(w, J ). Further,
let s′ be such that J = 〈s′〉 and let v = πc

↓
(w).

Case 1: w = 1. This case splits into two subcases:

Case 1a: (w, J ) = (1, 〈s〉). This is the exceptional case in the definition of ζs , where
ρ = ρs . In this case φc(ρ) = −αs , so σs(φc(ρ)) = αs . Since ζs(ρ) = −ρs , we
need to show that −ρs is a ray in the scs-Cambrian fan and that φscs(−ρs) = αs . Let
ρ′ = ρ(w′, J ′) be the unique ray of the scs-Cambrian fan with φscs(ρ′) = αs . Since s
is the unique scs-sortable join-irreducible whose associated reflection is s, we must have
π scs
↓
(w′) = s so that π↑scs(s) = w′. Thus w′ = w0 · ((w0)〈w0sw0〉) by Lemma 3.7. The as-

cents of w′ are J ′ = 〈w0sw0〉, so ρ′ = w′ρw0sw0 = w0ρw0sw0 , the latter equality holding
because (w0)〈w0sw0〉 fixes ρw0sw0 . But w0ρw0sw0 = −ρs .

Case 1b: (w, J ) = (1, 〈r〉) for r 6= s. In this case ρ = ρr and since ρr is on the
reflecting hyperplane for s, ζs(ρ) = sρ = ρ. Since 1 is also scs-sortable and J is a set
of n− 1 ascents of 1, ρ is also a ray of the scs-Cambrian fan with φscs(ρ) = −αr . Also,
σs(φc(ρ)) = σs(−αr) = −αr .

3 One should note that the inverse map ζ−1
s from rays of the scs-Cambrian fan to rays of the

c-Cambrian fan is not given by the same formula.
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Case 2: s ≤ w. By Lemmas 2.3 and 3.6, sw is scs-antisortable and sw is either 1 or
join-irreducible. Furthermore, J is a set of elements which lengthen not only w but also
sw on the right. We consider two subcases, depending on whether or not w = s. Notice
that since s is initial in c, the sole element in the c-Cambrian equivalence class of s is s
itself. Thus w = s if and only if v = s.

Case 2a: w = s. In this case (sw, J ) = (1, 〈s〉), with associated ray ρs = ζs(ρ). Also
v = s and ρ = sρs . So we have σs(φc(ρ)) = σs(αs) = −αs = φscs(ρs) = φscs(ζs(ρ)).

Case 2b: w 6= s. In this case φc(ρ) is a positive root αt for some reflection t 6= s and
thus σs(φc(ρ)) is αsts . The ray ρ(sw, J ) of the scs-Cambrian fan is ρ′ := swρs′ = ζs(ρ).
Also, πc

↓
(w) = s · π scs

↓
(sw), so that π scs

↓
(sw) = s · πc

↓
(w) = sv. The reflection t is the

unique cover reflection of v and, by Lemma 2.3, the element sv is join-irreducible with
unique cover reflection sts. In particular, φscs(ρ′) = αsts . This concludes the proof for
the case s ≤ w.

Case 3: s 6≤ w and w 6= 1. By Lemma 3.12, w is scs-antisortable and sw = s ∨ w.
Since w is scs-antisortable, the pair (w, J ) defines ρ not only as a ray of the c-Cambrian
fan but also as a ray of the scs-Cambrian fan. Since w 6= 1 but w is below Hs , ρ is
contained in Hs by Lemma 6.2, so ρ = ζs(ρ).

Let v′ = π scs
↓
(w). By definition, πc

↓
(sw) = s · π scs

↓
(w) = sv′. Since πc

↓
is a lattice

homomorphism, πc
↓
(sw) = πc

↓
(s ∨ w) = s ∨ πc

↓
(w) = s ∨ v. Thus v′ = s · (s ∨ v).

Because s 6≤ w, v is inW〈s〉, so by Lemma 2.2, the set of cover reflections of s∨v is {s, t},
where t is the unique cover reflection of v. Let t ′ be the unique cover reflection of v′; by
definition, φscs(w′) = αt ′ . Since the interval [1, sw0] is isomorphic to the interval [s, w0]
by the map x 7→ sx, the reflection st ′s is a cover reflection of sv′ = s ∨ v. But v′ 6≥ s, so
t ′ 6= s and thus st ′s = t . Therefore φscs(ρ) = αsts = σs(αt ) = σs(φc(ρ)). ut

7. Proof of the combinatorial isomorphism

In this section we prove the main theorem, Theorem 1.1, which states that, for W finite,
the map clc induces a combinatorial isomorphism from the c-Cambrian fan to the c-cluster
fan. We also discuss some first consequences of Theorem 1.1.

The c-cluster fan is simplicial. That is, each of its maximal faces is the positive lin-
ear span of a collection of linearly independent vectors. Specifically, this collection of
vectors is a c-cluster of almost positive roots. In contrast, we do not even know that
the c-Cambrian fan is simplicial. However, we know that the maximal cones of the c-
Cambrian fan are, by definition, unions of regions of the Coxeter arrangement (see Sec-
tion 4). Specifically, each maximal cone of the c-Cambrian fan is the union over a fiber of
the map πc

↓
. Showing that the c-Cambrian fan is simplicial means showing the following:

For each fiber of πc
↓

, there is a collection E of n rays of the c-Cambrian fan such that a
given region is a member of the fiber if and only if that region is contained in the positive
linear span of E.
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The stronger statement that clc induces a combinatorial isomorphism between the c-
Cambrian fan and the c-cluster fan is equivalent to the additional condition that there is
a bijection φ between the rays of the c-Cambrian fan and the rays of the c-cluster fan
such that the collection E of rays used to determine membership in (πc

↓
)−1(x) obeys

φ(E) = clc(x).
As was shown in Section 6, the map φc is a bijection from rays of the c-Cambrian

fan to almost positive roots—that is, to rays of the c-cluster fan. Thus the proof of Theo-
rem 1.1 is completed by Proposition 7.1 below. Recall that, if WJ is a standard parabolic
subgroup, then the dominant chamber of A(WJ ) is denoted by DJ .

Proposition 7.1. Let x be c-sortable. Then the following are equivalent for any w ∈ W .

(i) πc
↓
(w) = x.

(ii) The interior of the region wD intersects the positive span of φ−1
c (clc(x)).

(iii) The region wD is contained in the positive span of φ−1
c (clc(x)).

Here, since clc(x) is a cluster of almost positive roots, φ−1
c (clc(x)) represents the set of

rays obtained by applying φ−1
c to each member of the cluster.

Proof. The fact that (iii) implies (ii) is trivial. We prove that (i) implies (iii) and that (ii)
implies (i) by induction on the length of w and the rank of W. Let s be initial in c. For
each implication we will consider two cases: s 6≤ w and s ≤ w.

First, assume (i). If s 6≤ w then π sc
↓
(w〈s〉) = x, so that in particular x ∈ W〈s〉.

By Lemma 5.5, clc(x) = clsc(x) ∪ {−αs}. By Lemma 6.3, each ray in φ−1
c (clsc(x)) is

obtained from the corresponding ray ρ in φ−1
sc (clsc(x)) by intersecting Proj−1

〈s〉 (ρ) with the
hyperplane Hs . Since φ−1

c (−αs) = ρs is the half of the intersection of the hyperplanes
in A〈s〉 which is below the hyperplane Hs , the positive span of φ−1

c (clc(x)) is the part of
the positive span of Proj−1

〈s〉 (φ
−1
sc (clsc(x))) which is below the hyperplaneHs . Now, wD is

contained in Proj−1
〈s〉 (w〈s〉D〈s〉) (Proposition 4.1), which is, by induction on rank, contained

in the positive span of Proj−1
〈s〉 (φ

−1
sc (clsc(x))). Since s 6≤ w, wD is below the hyperplane

Hs . Thus we see that wD is in the positive span of φ−1
c (clc(x)).

If s ≤ w then (i) implies π scs
↓
(sw) = sx. By Lemma 3.5, s ≤ x, and thus x 6∈

W〈s〉, so that in particular ρs 6∈ φ−1
c (clc(x)). By induction on length, swD is com-

pletely in the positive span of φ−1
scs(clscs(sx)). By Lemma 5.5, φ−1

scs(clscs(sx)) equals
φ−1
scs(σs(clc(x))), which by Lemma 6.4 equals ζs(φ−1

c (clc(x))) = sφ−1
c (clc(x)). Since

swD is completely in the positive span of sφ−1
c (clc(x)), wD is completely in the positive

span of φ−1
c (clc(x)).

Now suppose (ii). If s 6≤ w then every point in the interior of wD is strictly belowHs .
By Lemma 6.2, φ−1

c (clc(x)) must contain the ray ρs , so that clc(x) contains −αs . In
particular, x ∈ W〈s〉, and furthermore by Lemma 5.5, clc(x) = clsc(x) ∪ {−αs}. By
Proposition 4.1, Proj〈s〉(wD) ⊆ w〈s〉D〈s〉 and the interior of wD is taken into the interior
ofw〈s〉D〈s〉 by Proj〈s〉 (by considerations of dimension). Since ρs is in the kernel of Proj〈s〉,
the interior of w〈s〉D〈s〉 intersects the positive span of φ−1

sc (clsc(x)). By induction on rank,
π sc
↓
(w〈s〉) = x and thus πc

↓
(w) = x.
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If s ≤ w then we claim that s ≤ x. Supposing to the contrary that s 6≤ x, by
Lemma 5.5, clc(x) = {−αs} ∪ clsc(x). Thus by Lemma 6.3, φ−1

c (clc(x)) consists of rays
which are weakly belowHs . But the interior of wD is strictly aboveHs , contradicting the
supposition that (ii) holds. This contradiction proves the claim that s ≤ x. In particular, ρs
is not in φ−1

c (clc(x)), so that ζs(φ−1
c (clc(x))) = sφ−1

c (clc(x)). Thus the interior of swD
meets the positive span of ζs(φ−1

c (clc(x))), which by Lemma 6.4 equals φ−1
scs(σs(clc(x))).

Since s ≤ x, Lemma 5.5 says that the latter is φ−1
scs(clscs(sx)). By induction on length,

π scs
↓
(sw) = sx, so that πc

↓
(w) = x. ut

This completes the proof of Theorem 1.1. In fact, we have proven the following more
detailed version of Theorem 1.1.

Theorem 7.2. The c-Cambrian fanFc is simplicial and the bijection φc between the rays
of the Cambrian fan and the almost positive roots induces a combinatorial isomorphism
of fans between the c-Cambrian fan and the c-cluster fan. Under this isomorphism, the
maximal cone [w]c is taken to the cluster clc(w).

If w is c-sortable and x <· w then the maximal cones [w]c and [πc
↓
(x)]c intersect in a

facet of dimension n − 1 and so have exactly n − 1 rays in common. Thus Theorem 1.1
has the following corollary.

Corollary 7.3. Let w be c-sortable and let x <· w. Then the c-clusters clc(w) and
clc(πc↓(x)) have exactly n− 1 almost positive roots in common.

In Section 5, we noted that the action of σs on almost positive roots induces a combinato-
rial isomorphism between the c-cluster fan and the scs-cluster fan. Thus, by Theorem 1.1,
the map φ−1

scs ◦ σs ◦ φc induces a combinatorial isomorphism between Fc and Fscs . But
Lemma 6.4 implies that φ−1

scs ◦ σs ◦ φc coincides with ζs . Since the combinatorial isomor-
phism is determined by its action on rays, we have the following.

Proposition 7.4. The action of ζs on the rays of the c-Cambrian fan Fc induces a com-
binatorial isomorphism between Fc and Fscs .

In particular, Fc and Fscs are related by a piecewise linear map that is only a slight
deformation of the linear map s. On and above Hs the map agrees with s. Below Hs the
map agrees with the linear map that fixes Hs and takes ρs to −ρs .

We now describe the isomorphism between Fc and Fscs directly in terms of sortable
elements (cf. [29, Remark 3.8]). For s initial in c, define a map Zs from the set of c-
sortable elements of W to the set of scs-sortable elements by

Zs(w) =

{
sw if s ≤ w,
s ∨ w if s 6≤ w.

We now check that Zs maps c-sortable elements to scs-sortable elements. If s ≤ w, this
is Lemma 3.3. If s 6≤ w then Lemma 3.2 states that w ∈ W〈s〉 and w is sc-sortable.
The sc-sorting word for w is identically equal to the scs-sorting word for w, so that w is
scs-sortable. The set of scs-sortable elements forms a sublattice of W (Theorem 3.11),
so s ∨ w is also scs-sortable.
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The inverse of Zs is

Z−1
s (w) =

{
w〈s〉 if s ≤ w,
sw if s 6≤ w.

There are only two nontrivial assertions in the statement that this map is indeed the
inverse of Zs : first, that any c-sortable element w with s 6≤ w obeys the condition
(s ∨ w)〈s〉 = w; and second, that an scs-sortable element w with s ≤ w obeys the
condition (w〈s〉 ∨ s) = w. Recall that x 7→ x〈s〉 is a lattice homomorphism, so that
(s ∨ w)〈s〉 = s〈s〉 ∨ w〈s〉 = w〈s〉. Thus the first assertion follows from Lemma 3.2. The
second assertion is exactly [29, Lemma 2.10].

The following lemma states that [w]c 7→ [Zs(w)]scs is the isomorphism between Fc
and Fscs corresponding to the isomorphism σs of cluster fans.

Lemma 7.5. For a c-sortable element w, clscs(Zs(w)) = σs clc(w).

Proof. If s ≤ w then Lemma 5.5 is the desired statement.
If s 6≤ w then the desired equality is clscs(s ∨ w) = σs clc(w). Since φscs is a bi-

jection, this is equivalent to checking that φ−1
scs clscs(s ∨ w) = φ−1

scsσs clc(w), which can
be rewritten, using Lemma 6.4, as φ−1

scs clscs(s ∨ w) = ζsφ−1
c clc(w). In other words, the

requirement is that the rays ρ1, . . . , ρn of the c-Cambrian cone [w]c are mapped by ζs to
the rays of the scs-Cambrian cone [s ∨w]scs . By Lemma 3.5 all the ρi are below Hs . By
Lemma 6.2, all of the ρi are in Hs except for possibly one, which is ρs . We know that
ρ1, . . . , ρn are linearly independent, so one of the ρi must be ρs ; without loss of general-
ity let ρn = ρs . Then ζs(ρn) = −ρs and ζs(ρi) = ρi for i < n. Now, for any u ∈ W, u is
in the positive span of −ρs and ρ1, . . . , ρn−1 if and only if the following conditions hold:
u ≥ s and u〈s〉, considered as a region of V (W〈s〉), is in the positive span of ρ1, . . . , ρn−1.

We have s ∨ w ≥ s and also (s ∨ w)〈s〉 = s〈s〉 ∨ w〈s〉 = w〈s〉 = w. Our hypothesis is
that w, when considered as a region of V (W), is in the positive span of ρ1, . . . , ρn. This
implies that w considered as a region of V (W〈s〉) is in the positive span of ρ1, . . . , ρn−1.
So we conclude that s ∨ w is in the positive span of the ζs(ρi) as desired. ut

Example 7.6. The map Zs is perhaps more easily visualized as a map from the c-
Cambrian lattice to the scs-Cambrian lattice. Figure 6(a) shows the s1s2s3-Cambrian
lattice for W of type A3; this is also the lattice depicted in Figure 1(b). The light gray
shading indicates (congruence classes of) s1s2s3-sortable elements not above s1, while
dark gray shading indicates s1s2s3-sortable elements above s1. Figure 6(b) shows the
s2s3s1-Cambrian lattice for the same W. The map Zs1 takes the s1s2s3-sortable elements
not above s1 to the s2s3s1-sortable elements above s1, which are shaded light gray in
Figure 6(b). The s1s2s3-sortable elements above s1 are taken to s2s3s1-sortable elements
not above s1, shaded dark gray in Figure 6(b). Notice that Zs1 restricted to light-shaded
elements in Figure 6(a) is a poset isomorphism to light-shaded elements in Figure 6(b),
and similarly for dark-shaded elements.
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(a) (b)

Fig. 6. The c- and scs-Cambrian lattices.

8. The cluster lattice

We have now established in great detail the combinatorial isomorphism between the c-
Cambrian fan and the c-cluster fan. The maximal cones of the c-Cambrian fan are partially
ordered by the Cambrian lattice W/2c, so we obtain an induced poset (in fact, lattice)
structure on the set of c-clusters. In this section we will apply our results to describe this
poset directly in terms of cluster combinatorics.

The exchange graph on c-clusters is the adjacency graph on maximal cones of the
c-cluster complex. In other words, the vertices are the c-clusters, with an edge between C
and C′ if and only if |C∩C′| = n−1. The exchange graph is isomorphic to the 1-skeleton
of the (simple) generalized associahedron forW as defined in [13]. We have the following
corollary of Theorem 1.1.

Corollary 8.1. The undirected Hasse diagram of the c-Cambrian lattice W/2c is iso-
morphic to the exchange graph on c-clusters and hence isomorphic to the 1-skeleton of
the generalized associahedron for W.

Proof. Proposition 4.3 implies that the Hasse diagram ofW/2c is the adjacency graph of
maximal cones of Fc, which, according to Theorem 1.1, is mapped by clc to the exchange
graph. ut

In light of Corollary 8.1, to describe the poset induced on c-clusters by the c-Cambrian
lattice, it is sufficient to give the correct orientation of the exchange graph. Two almost
positive roots α and α′ are said to be c-exchangeable if they are distinct and if there
is a set B ⊆ 8≥−1 \ {α, α

′
} such that both B ∪ {α} and B ∪ {α′} are c-clusters. Note



434 Nathan Reading, David E. Speyer

that c-exchangeable roots α and α′ are never c-compatible. We will show that the correct
orientation of an edge B ∪ {α}— B ∪ {α′} depends only on c and the pair (α, α′) of
c-exchangeable roots. Specifically, the orientation is given by comparing α and α′ using
a function Rc from almost positive roots to natural numbers which we now proceed to
define.

Recall from the introduction the involution σs : 8≥−1 → 8≥−1 for each s ∈ S. Let
s1 · · · sn be a reduced word for c and define σc = σs1 · · · σsn . Any two reduced words for c
differ only by interchanging commuting reflections and σsσt = σtσs whenever st = ts,
so σc is a well defined permutation of 8≥−1. Note that (σc)−1

= σc−1 .

Proposition 8.2. For any almost positive root α and any Coxeter element c, there exists
a nonnegative integer R such that σ−Rc (α) is a negative simple root.

Proposition 8.2 will be proved later in the section. We writeRc(α) for the smallest suchR.
Assuming the proposition, we define the c-cluster lattice Clustc to be the partial order on
c-clusters whose cover relations are B∪{α} <· B∪{α′} if and only if Rc(α) < Rc(α

′) (cf.
[27, Section 8]). It is not obvious from this definition that these relations are in fact cover
relations of the partial order they generate. However, in light of the preceding discussion,
the following proposition implies that the relations above are in fact cover relations.

Proposition 8.3. Suppose α and α′ are c-exchangeable almost positive roots and let B
be a subset of 8≥−1 \ {α, α

′
} such that B ∪ {α} and B ∪ {α′} are c-clusters. Then

[cl−1
c (B ∪ {α})]c is covered by [cl−1

c (B ∪ {α′})]c in the c-Cambrian lattice if and only
if Rc(α) < Rc(α

′).

Notice that the case Rc(α) = Rc(α
′) is impossible for α and α′ as in the proposition.

This is because if Rc(α) = Rc(α′), one can iterate the definition of c-compatibility (see
Section 5) to show that α ‖c α′, contradicting the fact that α and α′ are c-exchangeable.
Proposition 8.3 and Corollary 8.1 immediately imply the main theorem of this section,
which is a generalization of the second statement of [27, Conjecture 1.4].

Theorem 8.4. The map clc is an isomorphism of lattices from the c-Cambrian lattice
W/2c to the c-cluster lattice.

Before proving Propositions 8.2 and 8.3, we mention some consequences of Theorem 8.4.
The following corollary is immediate from Theorem 1.1, Theorem 8.4 and the properties
of Fc and W/2c listed in Section 4.

Corollary 8.5. The c-cluster lattice Clustc has the following properties.

(i) Clustc is a lattice.
(ii) Any linear extension of Clustc is a shelling order of the c-cluster complex.

(iii) For any set F of c-compatible almost positive roots, the set of c-clusters containing
F forms an interval in Clustc.

(iv) A closed interval I in Clustc has proper part homotopy equivalent to an (n− k−2)-
dimensional sphere if and only if there is some set F of k c-compatible almost posi-
tive roots such that I is the set of all c-clusters containing F .
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(v) A closed interval I in Clustc has proper part homotopy equivalent to an (k − 2)-
dimensional sphere if and only if I has k atoms and the join of the atoms of I is the
top element of I .

(vi) If the proper part of a closed interval I is not homotopy-spherical then it is con-
tractible.

Theorem 8.4 also has important enumerative consequences. Let C ⊂ 8≥−1 be a c-
cluster. For each α ∈ C, there is a unique α′ ∈ 8≥−1 such that (C \ {α}) ∪ {α′} is
also a c-cluster. Call α an upper root of C if Rc(α) > Rc(α

′) and a lower root of C if
Rc(α) < Rc(α

′). Equivalently, α is an upper root if C ·> (C \{α})∪{α′} or a lower root if
C <· (C \{α})∪{α′}. Note that the identification of α as a lower or upper root depends on
the c-cluster C. A root may be an upper root in one c-cluster and a lower root in another
c-cluster.

Corollary 8.6. The map clc takes c-sortable elements with k descents to c-clusters with k
upper roots.

Since any linear extension of Clustc is a shelling order, by standard arguments the number
of c-clusters with k upper roots is the kth entry in the h-vector of c-cluster fan, or equiva-
lently the h-vector of the generalized associahedron for W. Thus Corollary 8.6 combines
with the second sentence of Theorem 3.8 to give a bijective proof of the following.

Corollary 8.7. The number of noncrossing partitions (with respect to c) of rank k equals
the kth entry in the h-vector of the generalized associahedron for W.

This number is known as the kth Narayana number associated to W. Corollary 8.6 can
be viewed as a direct combinatorial interpretation of the Narayana numbers in terms of
c-clusters.

We now proceed to prove Propositions 8.2 and 8.3. We begin by proving a strength-
ening of Proposition 8.2. This argument follows a suggestion of a referee.

Proposition 8.8. For any almost positive root α and any reduced word s1 · · · sn for
a Coxeter element c, there exists a nonnegative integer r with the property that
σsrσsr−1 · · · σs2σs1α is a negative simple root.

Here, the subscripts are interpreted cyclically, so that sn+1 = s1, etc.

Proof. We first claim that the c-orbit of α contains a negative root. Suppose to the contrary
that every root in the c-orbit of α is positive. Then in particular the sum of the roots in
the c-orbit is a nonzero vector fixed by c. (The assumption thatW is finite is critical here.
If W is infinite then the c-orbit of α may be infinite, so it may not have a well-defined
sum.) However, it is well-known that c acts without fixed points (see for example [6,
Section V.6.2] or [19, Lemma 3.16]). This contradiction proves the claim.

If α is a negative simple root then take r = 0. Otherwise let R be the smallest nonneg-
ative integer such that c−R(α) is a negative root and let β be the positive root c−R+1(α).
We claim that for r between 0 and (−R+1)n, the root srsr−1 · · · s1α is positive. To prove
the claim by contradiction, take r to be the smallest exception and let r ′ be the smallest
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multiple of n greater than r . Since each s ∈ S only changes the positive/negative sta-
tus of the roots ±αs , necessarily srsr−1 · · · s1α = −αsr . Furthermore, sr ′sr ′−1 · · · s1α =

sr ′sr ′−1 · · · sr+1(−αsr ) is a negative root. But sr ′sr ′−1 · · · s1α = c
−R′(α) for some R′ with

0 < R′ < R, contradicting the choice of R. This proves the claim, implying in particular
that β = σ−R+1

c (α).
Since cβ is negative and since each s ∈ S only changes the positive/negative status

of the roots ±αs , there is some i ∈ [n] such that sj sj−1 · · · s1β is positive for all j < i

and si−1si−2 · · · s1β = αsi . Setting r = (−R + 1)n + i we have σsrσsr−1 · · · σs2σs1α =

srsr−1 · · · s1α = −αsi . ut

Let rs1···sn(α) be the smallest nonnegative integer r such that σsrσsr−1 · · · σs1α is a negative
simple root. The information given by rs1···sn is more refined than that of Rc and the
behavior of rs1···sn is simpler to describe. However, as the notation suggests, r depends
not only on c but on a choice of a reduced word for c. The following lemma shows how
Proposition 8.8 implies Proposition 8.2 and describes the relationship between Rc and
rs1···sn . Its proof follows immediately from the proof of Proposition 8.8.

Lemma 8.9. For any almost positive root α, the integer Rc(α) exists and equals
drs1···sn(α)/ne.

We now proceed with the proof of Proposition 8.3, which states that ifB∪{α} andB∪{α′}
are clusters then cl−1

c (B ∪ {α}) <· cl−1
c (B ∪ {α′}) if and only if Rc(α) < Rc(α

′).

Proof of Proposition 8.3. We shall in fact prove that, for any reduced word s1 · · · sn for c,
cl−1
c (B ∪ {α}) <· cl−1

c (B ∪ {α′}) if and only if rs1···sn(α) < rs1···sn(α
′). By Lemma 8.9

and the fact that Rc(α) cannot equal Rc(α′), this implies Proposition 8.3.
Let w = cl−1

c (B ∪ {α}), let w′ = cl−1
c (B ∪ {α′}) and let [w]c and [w′]c be the cor-

responding maximal cones in the c-Cambrian fan. By Corollary 8.1, either [w]c <· [w′]c
or [w]c ·> [w′]c. Since the possibility rs1···sn(α) = rs1···sn(α

′) is also ruled out, it suf-
fices by symmetry to prove one direction of implication. Thus we will prove that if
w <· w′ then rs1···sn(α) < rs1···sn(α

′). We will use Lemma 6.2 repeatedly. Let r =
min(rs1···sn(α), rs1···sn(α

′)). Our proof is by induction on r .
First, suppose that r = 0, so either α or α′ is a negative simple root. Let H be the

hyperplane separating [w′]c from [w]c in Fc. Then φ−1
c (α′) is strictly above H . The rays

ρsi are not strictly above any hyperplane in A(W), so φ−1
c (α′) 6= ρsi and α′ 6= φc(ρsi ) =

−αsi . In other words, α′ is not a negative simple root and rs1···sn(α
′) > rs1···sn(α) = 0 as

desired.
Now, we consider the situation where r ≥ 1. There are three cases. For brevity, set

s = s1. The first case is that s ≤ w and s ≤ w′. Then Zs(w′) = sw′ > sw = Zs(w).
By Lemma 7.5, clscs(Zs(w)) = σs(B) ∪ {σsα} and clscs(Zs(w′)) = σs(B) ∪ {σsα

′
}.

By Proposition 8.1, one of [Zs(w)]scs and [Zs(w′)]scs covers the other in W/2scs , but,
by the isomorphism [1, sw0] ∼= [s, w0], we have Zs(w) ≤ Zs(w

′) in weak order, so
[Zs(w)]scs <· [Zs(w′)]scs . By induction, rs2···sns1(σs(α)) < rs2···sns1(σs(α

′)) and thus
rs1···sn(α) < rs1···sn(α

′).
The second case, s 6≤ w and s 6≤ w′, is very similar to the preceding one. By

Lemma 7.5, clscs(w) and clscs(w′) differ only by the exchange of σs(α) for σs(α′).
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By Proposition 8.1, [Zs(w)]scs and [Zs(w′)]scs are a covering pair in W/2scs . Since
Zs(w) = s ∨ w ≤ s ∨ w

′
= Zs(w

′), the cover must be [Zs(w)]scs <· [Zs(w′)]scs . As in
the previous case, we conclude that rs1···sn(α) < rs1···sn(α

′).
The case s ≤ w and s 6≤ w′ is impossible because w′ > w. So we complete the

proof by considering the case s 6≤ w and s ≤ w′. Then φ−1
c (α) and φ−1

c (B) are on or
below Hs , and φ−1

c (α′) and φ−1
c (B) are on or above Hs . Thus all the rays in φ−1

c (B)

are contained in Hs . Since φ−1
c (α) is not in the linear span of φ−1

c (B), φ−1
c (α) must be

strictly below Hs . But then by Proposition 6.2, φ−1
c (α) = ρs and α = −αs . This is the

case r = rs1···sn(α) = 0, which we have already described. ut

For any Coxeter element c of W and any J ⊆ S, let c′ be the Coxeter element of WJ

obtained by deleting the letters S \J from any reduced word for c. Since the c′-Cambrian
lattice WJ /2c′ is a lower interval in W/2c, we have the following combinatorial fact
about clusters which appears to be difficult to prove directly:

Proposition 8.10. For c and c′ as above, if α and α′ are c-exchangeable almost positive
roots then Rc′(α) < Rc′(α

′) if and only if Rc(α) < Rc(α
′). Thus a root in a c′-cluster C is

an upper root in C if and only if it is an upper root in the c-cluster C ∪ {−αs : s ∈ S \ J },
and the same is true for lower roots.

Remark 8.11. It is known that every face of an associahedron is combinatorially isomor-
phic to another associahedron. Equivalently, the link of any cone in the cluster complex
is combinatorially isomorphic to a cluster complex. One can prove a stronger version of
this result in the Cambrian setting, showing that the star of a face in the Cambrian fan is
not only combinatorially a Cambrian fan, but has the polyhedral and lattice structure of a
Cambrian fan as well. Specifically, forw any c-antisortable element and J a set of ascents
of w, there is a choice of Coxeter element γ (w, J, c) such that the following proposition
holds.

Proposition 8.12. Let C2c (w, J ) be a face of the c-Cambrian fan. Identify4 the star of
C(w, J ) (in theW -Coxeter fan) with the star of C(e, J ), and hence with theWJ -Coxeter
fan, by the map w−1. Then Fγ (w,J,c) and the star of C2c (w, J ) coincide as coarsenings
of the WJ -Coxeter fan.

Defining γ (w, J, c) means deciding, for each r1, r2 ∈ J with r1r2 6= r2r1, whether the
reflection r1 comes before r2 in every reduced word for γ (w, J, c) or vice versa. In [28,
Section 3], a directed graph is defined on the set T of reflections of W, with arrows

c
→.

We put r1 before r2 in γ (w, J, c) if and only if wr1w−1 c
→ wr2w

−1.
To prove Proposition 8.12, one first reduces to the case that C2c (w, J ) is a ray

ρ(w, J ). For s initial in c, one analyzes the effect of ζs and Zs on the star of ρ(w, J ).
When w ≥ s the star is unaltered. When w 6≥ s and w 6= 1, the star of ρ(w, J ) is partly
below Hs and partly above. Passing from Fc to Fscs has the effect of swapping the part
above with the part below, as explained in Example 7.6 and illustrated in Figure 6. In

4 Note that we identify a cone κ in the (WJ )-Coxeter fan with a cone isomorphic to κ × Rn−|J |
in the star of C(w, J ).
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either case, the effect is compatible with the properties of
c
→ established in [28, Propo-

sition 3.1]. By Proposition 8.8, one eventually reaches a ray of the dominant chamber,
where the proposition is straightforward.

9. A linear isomorphism

In this section we show that for a special choice of c, the c-Cambrian fan is linearly
isomorphic to the c-cluster fan. We also describe, for a special choice of c, a “twisted”
version of the c-cluster lattice which is induced on the c-cluster fan by any vector in a
certain cone in Rn.

Recall that 8 is a fixed root system for W. For α ∈ 8, the corresponding coroot is
α∨ = 2α/〈α, α〉, so that the reflection of a vector v in the hyperplane perpendicular to
a root α is v − 〈v, α∨〉α. The simple coroots α∨s for s ∈ S are a basis for V , and the
fundamental weights ωs are the dual basis vectors to the simple coroots.5 We have

αs =
∑
r∈S

〈αs, α
∨
r 〉ωr . (9.1)

We define the Cartan matrix of8 to be the n×n square matrix A where Aij = 〈α∨si , αsj 〉.
A root system is called crystallographic if all the entries of A are integers.6

Fix a bipartition S = S+ t S− of the Coxeter diagram for W, let c+ be the product of
the elements of S+ (which commute pairwise) and let c− be the product of the elements
of S− (which likewise commute). The Coxeter element c+c− is called a bipartite Coxeter
element. For each s ∈ S, let εs be +1 if s ∈ S+ and let εs be −1 if s ∈ S−.

LetL be the linear map that sends a simple root αs to−εsωs (cf. [27, Conjecture 1.4]).
The map L depends on the choice of bipartition, but we suppress this dependence in our
notation. Following the notation of [13], for ε ∈ {+,−} let τε =

∏
s∈Sε

σs , where again
the order of composition is unimportant. Thus τ+τ− = σc (in the sense of Section 8) for
c = c+c−. The main result of this section is the following:

Theorem 9.1. For c = c+c−, the map L is a linear isomorphism from the c-cluster fan
to the c-Cambrian fan. As a map on rays, the map L coincides with φ−1

c ◦ τ−.

We begin the proof of Theorem 9.1 with a simple lemma.

Lemma 9.2. The linear maps c, c+, c− and L on V satisfy the following equalities.

(i) c+L = −Lc−.
(ii) c−L = −Lc+.

(iii) c−1L = Lc.

5 We abuse terminology slightly by calling these “weights” even in the noncrystallographic case,
where there is no “weight lattice.”

6 Our convention for Aij is the convention used in [13], [14] and [15]; some references use the
transpose of this choice.



Cambrian fans 439

Proof. We prove equality (i) by evaluating each side on the basis elements αs . If s ∈ S−
then c+Lαs = c+ωs = ωs , with the latter equality holding because ωs is orthogonal to
αr for each r 6= s. On the other hand, −Lc−αs = −L(−αs) = ωs .

If s ∈ S+ then c+Lαs = c+(−ωs) = −sωs = −ωs + αs . On the other hand,

−Lc−αs = −L
(
αs −

∑
r∈S−

〈αs, α
∨
r 〉αr

)
= ωs +

∑
r∈S−

〈αs, α
∨
r 〉ωr .

To see that these two sides are equal, we must show that

αs = 2ωs +
∑
r∈S−

〈αs, α
∨
r 〉ωr .

We have 〈αs, α∨s 〉 = 2 and 〈αs, α∨r 〉 = 0 for r ∈ S+ \ {s}, so the right hand side is∑
r∈S〈αs, α

∨
r 〉ωr , which, as already noted, equals αs .

Now (ii) follows by reversing the roles of “+” and “−”, and (iii) follows by combining
(i) and (ii), keeping in mind that c−1

= c−c+. ut

We now prove a version of equality (iii) in the previous lemma which is more complicated
in the sense that it involves maps which are not linear. Specifically, it uses the maps ζs
and σs which appear in Lemma 6.4. In what follows, we apply the maps ζs to vectors
rather than rays. To do this, we define the fundamental vector in a ray ρ of the Coxeter fan
to be the uniqueω in theW -orbit of the fundamental weights {ωs : s ∈ S} such thatω ∈ ρ.
Notice that Lemma 6.4 applies even when rays are replaced by fundamental vectors. For
ε ∈ {+,−} let ζcε =

∏
s∈Sε

ζs . For c = c+c−, let ζc = ζc+ζc− and ζc−1 = ζc−ζc+ .

Lemma 9.3. For c = c+c−, if α is a positive root then Lσcα = ζc−1Lα.

Proof. If α is a simple root αs for s ∈ S− then

Lσcα = Lτ+τ−α = Lτ+(−αs) = L(−αs) = −ωs .

On the other hand,
ζc−1Lα = ζc−ζc+ωs = ζc−ωs = −ωs .

If α is a positive root not of the form αs for s ∈ S− then

Lσcα = Lτ+τ−α = Lτ+c−α = Lc+c−α.

(The second equality holds because α is a positive root. The only positive roots which
are sent to negative roots by c− are roots of the form αs for s ∈ S−. Thus c−α is a
positive root and therefore the third equality holds as well.) On the other hand, since
L−1(ωs) = −αs when s ∈ s+, the vector Lα is not of the form ωs for s ∈ S+. Thus
ζc−1Lα = ζc−ζc+Lα = ζc−c+Lα. If c+Lα is ωs for some s ∈ S− then Lα = ωs as well,
so that α = αs . Since we are currently in the case which excludes such an α, we can write
ζc−c+Lα = c−c+Lα. Thus in this case the requirement is that Lcα = c−1Lα, which was
proved in Lemma 9.2. ut
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The map φ−1
c , as defined in Section 6, takes almost positive roots to rays. In what follows,

we continue to identify each ray ρ with the fundamental vector in ρ.

Proposition 9.4. For c = c+c−, the map L takes almost positive roots to rays of the
c-Cambrian fan. Specifically, L restricted to almost positive roots is φ−1

c ◦ τ−.

Proof. Let α be an almost positive root. We show by induction on Rc−1(α) that Lα is
a ray of the c-Cambrian fan and that φcLα = τ−α. First suppose that Rc−1(α) = 0, so
that α is a negative simple root −αs . In this case, Lα = ±ωs , which in either case is a
ray of the c-Cambrian fan. If s ∈ S+ then τ−α = α and φcLα = φcωs = −αs = α. If
s ∈ S− then

φcLα = φc(−ωs) = φc(ζc−ωs) = τ−φc−1ωs = τ−(−αs).

Here the next-to-last equality follows from Lemma 6.4, applied several times, and the fact
that c−1

= c−c+.
Next suppose that Rc−1(α) > 0 so that α is a positive root and σcα = α′ for some

α′ with Rc−1(α′) = Rc−1(α) − 1. By induction, Lα′ is a ray of the c-Cambrian fan and
φcLα

′
= τ−α

′. To evaluate φcLα, first note that by Lemma 9.3,

Lα = ζ−1
c−1Lσcα = ζ

−1
c−1Lα

′.

In particular, Lα is a ray in the c-Cambrian fan and φcLα = φcζ−1
c−1Lα

′. Repeated appli-
cations of Lemma 6.4 give the identity φcζc−1 = σc−1φc, so that φcζ−1

c−1 = σ
−1
c−1φc = σcφc.

Thus
φcLα = σcφcLα

′
= σcτ−α

′
= τ+α

′
= τ+σcα = τ−α. ut

The map τ− induces a combinatorial isomorphism between the (c+c−)-cluster fan and
the (c−c+)-cluster fan. These fans in fact coincide, so that τ− is a combinatorial auto-
morphism of the (c+c−)-cluster fan. By Theorem 1.1, φ−1

c+c−
induces a combinatorial

isomorphism as well. This completes the proof of Theorem 9.1.
We conclude the section with an application of Theorem 9.1. Proposition 9.4 suggests

the definition of a “twisted” cluster lattice on c-clusters, where c = c+c−. Namely, for c-
clusters C and C′, set C ≤tw C

′ in the twisted c-cluster lattice if and only if τ−C ≤ τ−C′

in the c-cluster lattice. In particular, the cover relations in the twisted c-cluster lattice are
B ∪ {α} <· B ∪ {α′} if and only if Rc(τ−α) < Rc(τ−α

′).
The twisted c-cluster lattice can be described in terms of a quantity ε(α, α′) which

plays an important role in [14], where cluster algebras of finite type are constructed in
terms of the combinatorics of clusters of almost positive roots. Let τ (k)− denote the k-fold
composition τ(−1)kτ(−1)k−1 · · · τ−τ+τ−. For each almost positive root α, let k−(α) be the

smallest nonnegative integer such that τ (k)− (α) is a negative simple root and τ (k)− (α) =

τ
(k+1)
− (α). Given two c-clusters B∪{α} and B∪{α′}, define ε(α, α′) to be−1 if k−(α) <
k−(α

′) or 1 if k−(α′) < k−(α). (see [14, Lemma 4.1]). As with Rc and rs1···sn , the case
k−(α) = k−(α

′) is impossible.
The following proposition says that the twisted c-cluster lattice is analogous to the

ordinary c-cluster lattice, except that k− plays the role of Rc+c− . The proof is a straight-
forward induction on k−(α), and we omit the details.
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Proposition 9.5. For c = c+c−, if α and α′ are c-exchangeable then

Rc(τ−α) < Rc(τ−α
′) if and only if ε(α, α′) = −1.

In particular, the cover relations of the twisted c-cluster lattice are of the form
B ∪ {α} <· B ∪ {α′} for ε(α, α′) = −1.

Since the twisted c-cluster lattice is isomorphic to the ordinary (c−c+)-cluster lattice by a
map which also induces a combinatorial isomorphism of fans, the twisted c-cluster lattice
inherits all of the properties listed in Corollary 8.5. (These properties are all combina-
torial.) Since the isomorphism between the twisted c-cluster lattice and the c-Cambrian
lattice is given by a linear map of fans, the following property of the c-Cambrian lattice
(see Section 4) carries over to the twisted c-cluster lattice:
Proposition 9.6. The twisted c-cluster lattice is the order induced on the maximal cones
of the c-cluster fan by any vector in the interior of the cone spanned by the c-cluster
{−εsαs : s ∈ S}.

10. Connections to cluster algebras

In this section we connect our results to the theory of cluster algebras. Rather than give
the lengthy definition of a cluster algebra, we merely describe the properties of cluster
algebras and refer the reader to [15] for definitions.

Let F be a field isomorphic to Q(x1, . . . , xn) and let B be an n×n integer matrix that
is skew-symmetrizable, meaning that there exists an invertible diagonal matrix D such
that DB is skew-symmetric. The combinatorial data for a cluster algebra is the matrix
B and an n-tuple (x1, . . . , xn) of rational functions generating F as a field. The clus-
ter algebra Alg(B, (x1, . . . , xn)) is a certain subalgebra of the Laurent-polynomial ring
Z[x±1 , . . . , x

±
n ], which is, in turn, a subring of F. The data (B, (x1, . . . , xn)) also deter-

mines a collection of transcendence bases of Alg(B, (x1, . . . , xn)), known as algebraic
clusters.7 The elements of the algebraic clusters are known as cluster variables. One al-
gebraic cluster is (x1, . . . , xn) and the others are defined by a certain recursive procedure.
The recursive procedure also associates a skew-symmetrizable matrix B t to each alge-
braic cluster t = (y1, . . . , yn) so that Alg(B, (x1, . . . , xn)) = Alg(B t , (y1, . . . , yn)) and
so that (B, (x1, . . . , xn)) and (B t , (y1, . . . , yn)) each give the same collection of algebraic
clusters.

A cluster algebra is of finite type if it has finitely many cluster variables. We now
briefly describe the connection between cluster algebras of finite type and finite Coxeter
groups/root systems. For more details, see [14]. Let 8 be a crystallographic root system
for the Coxeter group W. We refer the reader to the beginning of Section 9 for our con-
ventions regarding roots, coroots, Cartan matrices and fundamental weights. Let c be a
Coxeter element of W. If r and s are two simple reflections of W which do not commute,
then either r comes before s in every reduced word for c or vice versa. We write r → s

to indicate that r comes before s in every reduced word for c.

7 Typically, these are simply called “clusters,” but we use the adjective “algebraic” here to avoid
confusion with c-clusters.
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Define a square matrix Bc by

Bcjk =


0 if sj sk = sksj ,
−Ajk = −〈α

∨
sj
, αsk 〉 if sj → sk,

Ajk = 〈α
∨
sj
, αsk 〉 if sj ← sk.

Then the matrix Bc (together with any choice of (x1, . . . , xn)) defines a cluster alge-
bra of finite type. Furthermore, cluster algebras arising from different choices of c and
(x1, . . . , xn) are isomorphic; we thus suppress the choice of c and (x1, . . . , xn) and write
Alg(8) for a cluster algebra arising in this manner.

Conversely, given any cluster algebra of finite type, there exists8 a finite Coxeter
group W (with root system 8), a Coxeter element c in W and an algebraic cluster tc =
(xc1, . . . , x

c
n) such that the given cluster algebra is Alg(8) = Alg(Bc, (xc1, . . . , x

c
n)). Thus

the cluster algebras of finite type are precisely the cluster algebras of the form Alg(8), so
that the following theorem applies to any cluster algebra of finite type.

Theorem 10.1. Given a specific representation of Alg(8) as Alg(Bc, tc), there is a bi-
jection α 7→ xc(α) between 8≥−1 and the cluster variables of Alg(8) such that:

(i) xc(−αsj ) = x
c
j for all j ∈ [n];

(ii) c-clusters are mapped to algebraic clusters;
(iii) for positive roots α =

∑
aiαsi , the rational function xc(α) can be written in reduced

form with denominator
∏
xc(−αsi )

−ai .

Furthermore, if s is initial in c then tscs can be chosen so that xc(α) = xscs(σs(α)).

Proof. In the case of bipartite c, the first assertion is [14, Theorem 1.9]. For general c,
the entire theorem was proven for simply laced root systems (i.e. Aij = 0 or −1 for all
i 6= j ) in [10], relying on previous work cited therein. The result for non-simply laced
root systems can be established by folding arguments. ut

In rough terms, Theorem 10.1 says that the cluster variables of Alg(8) correspond to
almost positive roots by assigning a variable to its denominator vector

∏
xc(−αsi )

−ai .
There is another natural way to encode cluster variables by integer vectors, namely the
g-vector, defined in [15]. The g-vector of a cluster variable x depends on a fixed algebraic
cluster t and is written gt (x), with components gtj (x). In [15, Proposition 11.3], Fomin
and Zelevinsky compute the g-vector when (in the language of the current paper) t is of
the form tc for c a bipartite Coxeter element. They encode the g-vector as an element of
V by the sum gtroot(x) :=

∑n
j=1 g

t
j (x)αsj . (In [15], this sum is also denoted by gt (x).

However, it is important here to distinguish between the integer vector gt (x) and the
vector gtroot(x) lying in the root lattice.) They establish the formula

gtcroot(x
c(α)) = (E ◦ τ−)(α).

Here τ− has the same meaning as in Section 9, and E is the linear map such that E(αs) =
−ε(s)αs .

8 Most often, c does not uniquely determine tc. Here we assume that some choice of tc has been
made. On the other hand, outside of rank two, not every algebraic cluster can serve as tc.
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The g-vector has no obvious connection to the geometry of the c-cluster fan, but
remarkably, it arises naturally in the geometry of the c-Cambrian fan. To see this, we
encode the g-vector in the weight lattice by gtweight(x) :=

∑n
j=1 g

t
j (x)ωsj . Let U denote

the linear map which takes αs to ωs , so that gtweight(x) = U(gtroot(x)). Thus when c is
bipartite, Theorem 9.1 implies that

gtcweight(x
c(α)) = (U ◦ E ◦ τ−)(α) = (L ◦ τ−)(α) = φ

−1
c (α).

Theorem 10.2. If c is a bipartite Coxeter element, with tc a corresponding cluster, and if
α is an almost positive root, then

φ−1
c (α) = gtcweight(x

c(α)).

Thus g-vectors arise naturally from the correspondence between cluster variables and
rays in the Cambrian fan: the g-vector associated to a ray is recovered by computing the
fundamental-weight coordinates of the fundamental vector in the ray. This is precisely
analogous to the situation in the cluster fan, where the denominator vector associated to
a ray is recovered by taking the simple-root coordinates of the root in the ray.

We conjecture that Theorem 10.2 is true without assuming that c is bipartite. In [15,
Conjecture 7.12], Fomin and Zelevinsky give a conjectured recurrence for gt (x) as t
varies. By a straightforward but lengthy computation, one can verify that the more general
version of Theorem 10.2 follows from [15, Conjecture 7.12].

We now sketch an additional connection between Cambrian fans and cluster alge-
bras. Choose a Coxeter element c of W and a cluster tc of Alg(8) as above. Let t =
(x1, . . . , xn) be an arbitrary algebraic cluster in Alg(8). (In particular, we do not assume
that B t = Bc

′

for some c′.) Then xi = xc(αi) for some c-cluster (α1, . . . , αn). Let [w]c
be the cone of Fc represented by a c-sortable element w with clc(w) = (α1, . . . , αn).
There is another collection of roots, besides the αi , naturally associated to [w]c, namely
the roots (β1, . . . , βn) orthogonal to the walls of [w]c. More specifically, let βi be the root
determined by the requirements that 〈φ−1

c (αi), βj 〉 = 0 for i 6= j and 〈φ−1
c (αi), βi〉 < 0.

Let β∨i be the coroot corresponding to the root βi and letQt be the n×nmatrix 〈β∨i , βj 〉.
The matrix Qt depends on the choice of c and tc above. This dependence is not as

bad as one might suspect. If s is initial in c and tscs is the cluster referred to in Theo-
rem 10.1, then the cone corresponding to t changes from [w]c to [Zs(w)]scs . Either [w]c
and [Zs(w)]scs are related by an isometry or else they are two regions among the 2n re-
gions defined by the same set of n hyperplanes. In the first case, Qt is preserved, in the
second it is conjugated by a diagonal matrix all of whose diagonal entries are ±1. So
changing tc in this manner any number of times simply conjugates Qt by such a matrix.
We will see soon that it follows from results of [2] that Qt is well defined up to such
conjugation independent of any of our choices.9

9 In a previous version of this paper, we argued that this independence could be established by
a sequence of steps, each changing from tc to tscs for s initial. A comment by one of the referees
has led us to doubt this argument. It follows from [3, Theorem 1.2(1)] that we may change c to any
other Coxeter element c′ by such a sequence of steps. What is not clear is whether we may change
any cluster tc corresponding to c to any cluster tc′ corresponding to c′.
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Proposition 10.3. LetQt be as above and letB t be the matrix associated to the algebraic
cluster t . Then Qt

ij = ±B
t
ij for i 6= j .

Sketch of proof. For i 6= j , the quantity B tijB
t
j i is encoded in the combinatorics of

the algebraic cluster complex: One counts the number of algebraic clusters containing
t \{xti , x

t
j }. This number is 4, 5, 6 or 8, corresponding (in order) to B tijB

t
j i = 0,−1,−2 or

−3. To prove Proposition 10.3, we verify that −Qt
ijQ

t
j i takes only the values 0, −1, −2

or−3 and that the value of−Qt
ijQ

t
j i corresponds to the number (4, 5, 6 or 8) of c-clusters

containing (α1, . . . , αn) \ {αi, αj }. Once this is verified, we have

B tijB
t
j i = −Q

t
ijQ

t
j i

by the isomorphism between the c-cluster complex and the algebraic cluster complex.
The matrices Qt and B t are (respectively) symmetrizable and skew-symmetrizable. One
can check that the same diagonal matrix D makes both DQt symmetric and DB t skew
symmetric so we conclude from B tijB

t
j i = −Q

t
ijQ

t
j i that Qt

ij = ±B
t
ij .

Let F be the face of [w]c spanned by φ−1
c

(
(α1, . . . , αn) \ {αi, αj }

)
. In other words,

F is [w]c∩β⊥i ∩β
⊥

j . By Theorem 1.1, the number of c-clusters containing (α1, . . . , αn)\

{αi, αj } is equal to the number of maximal faces of the c-Cambrian fan containing F .
By Proposition 8.12, the star of F is a Cambrian fan for a (crystallographic) Coxeter
group of rank 2, of which there are only four types. Moreover, βi and βj are roots in a
rank 2 root subsystem of corresponding type. (Specifically, if F = C2c (w, J ) then βi
and βj ∈ w8J .) By inspection of Cambrian lattices of rank 2, we see that either (βi, βj )
or (βi,−βj ) form a simple system for this root subsystem. Thus −〈β

∨

i , βj 〉〈β
∨

j , βi〉 is 0,
−1, −2 or −3 according to whether the root subsystem is A1 ×A1, A2, B2 or G2; this in
turn corresponds to whether the star of F has 4, 5, 6 or 8 maximal cones. ut

Rephrased in the language of [2], Proposition 10.3 says that Qt is a quasi-Cartan com-
panion for B t . The matrix Qt is positive definite10 because it is (essentially) a matrix of
inner products between n linearly independent vectors. One direction of [2, Theorem 1.2]
states that B t has a positive definite quasi-Cartan companion which is (by [2, Proposi-
tions 1.4 and 1.5]) unique up to conjugation by diagonal matrices with diagonal entries
±1. Thus Qt is unique up to such conjugation. One of the virtues of this manner of ob-
taining Qt is that this uniqueness occurs for a geometrically natural reason, as described
above.

In this section we have suggested two new geometric approaches to the study of clus-
ter algebras. First, to encode g-vectors as linear combinations of the fundamental weights.
Second, to view quasi-Cartan companions as matrices of inner products between normal
vectors to a simplicial cone in the hyperplane arrangement. We hope that both of these
ideas will have wider applications, including applications beyond finite type.

10 More accurately, DQt is positive definite, but we follow the convention of [2] of saying that
Qt is positive definite in this case.
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11. Clusters and noncrossing partitions

In light of Theorems 3.8 and 5.2, the map ncc ◦ cl−1
c is a bijection from c-clusters to

c-noncrossing partitions. In this section we describe this composition as a direct map,
eliminating the intermediate c-sortable elements. For brevity, we continue to leave out
the precise details about noncrossing partitions. The c-noncrossing partitions are certain
elements of W . Brady and Watt showed [8, Lemma 5] that a c-noncrossing partition can
be recovered (among the set of all c-noncrossing partitions) from its fixed point set. The
fixed point set of a c-noncrossing partition is called a c-noncrossing subspace. The map
ncc takes the cover reflections of a c-sortable element w and multiplies them in a certain
specific order such that the result is a c-noncrossing partition. Let NCc be the map taking a
c-sortable element w to the fixed points of ncc(w); this is the intersection of the reflecting
hyperplanes associated to cover reflections of w. The map NCc is a bijection between
c-sortable elements and c-noncrossing subspaces.

The composition NCc ◦ cl−1
c takes a c-cluster C to the intersection I of the set of

hyperplanes separating [cl−1
c (C)]c from equivalence classes which it covers in W/2c.

The subspace I equals the linear span of the rays of [cl−1
c (C)]c contained in I . A ray is in

I if and only if it is not an upper root of C, i.e. if and only if it is a lower root of C. Thus

Theorem 11.1. The bijection NCc ◦ cl−1
c maps a c-cluster C to the c-noncrossing sub-

space SpanR{φ
−1
c (α) : α is a lower root in C}. In particular, the c-cluster C is uniquely

identified by this subspace.

This description of the bijection has the disadvantage of depending on the recursively
defined function φc and on a notion of lower roots in clusters which is also defined recur-
sively. We conjecture the following description of I , which would eliminate the map φc.

Conjecture 11.2. Let (α1, . . . , αk, β1, . . . , βn−k) be a c-cluster of W, with αi the lower
roots and βi the upper roots. Then

SpanR(φ
−1
c (α1), . . . , φ

−1
c (αk)) = β

⊥

1 ∩ · · · ∩ β
⊥

n−k.

It is easy to see that β⊥1 ∩ · · · ∩ β
⊥

n−k and SpanR(φ
−1
c (α1), . . . , φ

−1
c (αk)) have the same

dimension, so in order to prove Conjecture 11.2 it is enough to show that the former
contains the latter, i.e. that φ−1

c (αi) ⊥ βj for all i and j . This orthogonality has been
verified computationally for all choices of c in all Coxeter groups whose rank is at most 7.
Combined with Theorem 11.1, Conjecture 11.2 would immediately imply the following
conjecture.

Conjecture 11.3. Consider the map taking a c-cluster C to the intersection of the hy-
perplanes orthogonal to the upper roots of C. This map is a bijection from c-clusters to
c-noncrossing subspaces. It coincides with NCc ◦ cl−1

c .

In the case of bipartite c = c+c−, the related bijection NCc ◦ cl−1
c ◦ τ− can be described

in a completely geometric manner, as follows. Recall from Section 4 the definition of
the bottom face, with respect to a generic vector, of a maximal cone in a simplicial fan.
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Choosing a vector v as in Proposition 9.6, we map each maximal cone C to the subspace
SpanR(L(F )), where L is the linear map of Section 9 and F is the bottom face of C with
respect to v. In light of Propositions 9.4 and 9.6, SpanR(L(F )) is the span of {φ−1

c τ−α :
τ−α is a lower root in τ−C}. Thus

Theorem 11.4. The map C 7→ SpanR(L(F )) is the bijection NCc ◦ cl−1
c ◦ τ− from

(c+c−)-clusters to (c+c−)-noncrossing subspaces. In particular, a maximal cone C in
the (c+c−)-cluster complex is uniquely determined by SpanR(F ).

Remark 11.5. In [1], Athanasiadis, Brady, McCammond and Watt give another bijection
between c-clusters and c-noncrossing partitions for the case where c is bipartite. A key
element of their bijection is a labeling of the roots of each cluster as “left” or “right” roots
[1, Section 4]. The cluster is then mapped to the product of the reflections corresponding
to its right roots, in some specified order. Although the connection is not immediately
obvious, it is natural to suspect that the left-right dichotomy of [1] corresponds to the
upper-lower dichotomy of the present paper. In particular, it seems quite likely that the
map of [1] coincides, in the bipartite case, with the bijection of Conjecture 11.3.
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Zbl 1064.20039 MR 2032983

[5] Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Grad. Texts in Math. 231, Springer,
New York (2005) Zbl 1110.05001 MR 2133266

[6] Bourbaki, N., Lie Groups and Lie Algebras. Chapters 4–6. Springer, Berlin (2002)
Zbl 0983.17001 MR 1890629

[7] Brady, T., Watt, C.: K(π, 1)’s for Artin groups of finite type. In: Proc. Conf. Geometric
and Combinatorial Group Theory, Part I (Haifa, 2000), Geom. Dedicata 94, 225–250 (2002)
Zbl 1053.20034 MR 1950880

[8] Brady, T., Watt, C.: A partial order on the orthogonal group. Comm. Algebra 30, 3749–3754
(2002) Zbl 1018.20040 MR 1922309

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1112.20032&format=complete
http://www.ams.org/mathscinet-getitem?mr=2249994
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.05070&format=complete
http://www.ams.org/mathscinet-getitem?mr=2241966
http://www.ams.org/mathscinet-getitem?mr=0393065
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1064.20039&format=complete
http://www.ams.org/mathscinet-getitem?mr=2032983
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1110.05001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2133266
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0983.17001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1890629
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1053.20034&format=complete
http://www.ams.org/mathscinet-getitem?mr=1950880
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1018.20040&format=complete
http://www.ams.org/mathscinet-getitem?mr=1922309


Cambrian fans 447

[9] Brady, T., Watt, C.: Non-crossing partition lattices in finite real reflection groups. Trans. Amer.
Math. Soc. 360, 1983–2005 (2008) Zbl pre05229026 MR 2366971

[10] Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations and cluster tilted algebras. Al-
gebr. Represent. Theory 9, 359–376 (2006) Zbl 1127.16013 MR 2250652

[11] Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric Combi-
natorics, IAS/Park City Math. Ser. 13, Amer. Math. Soc., 63–131 92007) Zbl pre05222519
MR 2383126

[12] Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 conference. In: Current De-
velopments in Mathematics 2003, Int. Press, Somerville, MA, 1–34 (2003) Zbl 1119.05108
MR 2132323

[13] Fomin, S., Zelevinsky, A.: Y -systems and generalized associahedra. Ann. of Math. 158, 977–
1018 (2003) Zbl 1057.52003 MR 2031858

[14] Fomin, S., Zelevinsky, A.: Cluster algebras II: Finite type classification. Invent. Math. 154,
63–121 (2003) Zbl 1054.17024 MR 2004457

[15] Fomin, S., Zelevinsky, A.: Cluster algebras IV: Coefficients. Compos. Math. 143, 112–164
(2007) Zbl 1127.16023 MR 2295199

[16] Grätzer, G.: General Lattice Theory. 2nd ed., Birkhäuser, Basel (1998) Zbl 0909.06002
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