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Abstract. We prove a number of new restrictions on the enumerative properties of homology man-
ifolds and semi-Eulerian complexes and posets. These include a determination of the affine span
of the fine h-vector of balanced semi-Eulerian complexes and the toric h-vector of semi-Eulerian
posets.

The lower bounds on simplicial homology manifolds, when combined with higher dimensional
analogues of Walkup’s 3-dimensional constructions [47], allow us to give a complete characteri-
zation of the f -vectors of arbitrary simplicial triangulations of S1

× S3,CP 2, K3 surfaces, and
(S2
×S2)# (S2

×S2).We also establish a principle which leads to a conjecture for homology man-
ifolds which is almost logically equivalent to the g-conjecture for homology spheres. Lastly, we
show that with sufficiently many vertices, every triangulable homology manifold without boundary
of dimension three or greater can be triangulated in a 2-neighborly fashion.

1. Introduction

The fundamental combinatorial invariant of a (d − 1)-dimensional triangulated space is
its f -vector, (f0, . . . , fd−1), where fi counts the number of i-dimensional faces. After
the Euler–Poincaré formula, the Dehn–Sommerville equations for simplicial polytopes
are the best known restrictions on the f -vectors of manifolds. While algebraic topology
in general, and the topology of manifolds in particular, made great strides in the first half
of the twentieth century, it was not until 1964 that Klee published the manifold equivalent
of the Dehn–Sommerville equations.

In the 70’s, the introduction of commutative algebra in the form of the face ring by
Hochster [43, Theorems 4.1 and 4.8], Reisner [32] and Stanley [38], and the connec-
tion between toric varieties and rational polytopes (see, for instance, [8]), led to dramatic
advances in the understanding of the enumerative properties of polytopes and spheres.
By 1980, McMullen’s conjectured characterization of the f -vectors of simplicial convex
polytopes [28] was verified by Stanley [40] (necessity), and Billera and Lee [3] (suffi-
ciency). Since then, one of the most important problems in understanding the combina-
torics of triangulations has become known as the g-conjecture (cf. Conjecture 4.22): Do
f -vectors of simplicial spheres, or more generally homology spheres, also satisfy Mc-
Mullen’s conditions?
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Motivated by a desire to understand the face posets of polytopes, the 1980’s and
90’s saw the introduction of balanced complexes [39], the cd-index [1], [2], and the
toric h-vector [44, Section 3.14]. All of these invariants make sense and were studied
in the context of Eulerian posets, which include the face posets of regular cell decom-
positions of spheres and odd-dimensional compact manifolds without boundary. Section
3 is devoted to extending these ideas to semi-Eulerian posets and complexes. These in-
clude the face posets of regular cell decompositions of compact even-dimensional man-
ifolds without boundary. The main results determine the affine span of each of these
invariants.

The great variety and complications possible in the topology of manifolds has made
the study of their f -vectors a daunting task. At present there is not even a guess as to
what the set of all possible f -vectors of manifolds (without boundary) would look like in
dimensions greater than three. The two most comprehensive conjectures in print are due
to Kalai, [31, Conjecture 7.5] and Kühnel, [26, Conjecture 18]. While these conjectures
would have far reaching consequences for f -vectors of manifolds, they only concern
the rational Betti numbers. It is not an exaggeration to say that at this point there is no
understanding whatsoever of the impact on the combinatorics of triangulations of many
of the classical manifold invariants such as the cohomology ring structure, characteristic
classes, or even torsion Betti numbers! Perhaps it is appropriate that as of the beginning of
the twenty-first century it is still an open question in dimensions five and above whether
or not every compact topological manifold without boundary has a triangulation. For
information on what is known, especially concerning combinatorial manifolds, see the
recent surveys by Datta [9] and Lutz [26].

One of the main results in Section 4, Theorem 4.26, can roughly be interpreted to
mean that the distance between what we know about spheres and manifolds, while still
substantial, is not as great as it might seem. It turns out that there is a conjecture for
homology manifolds which is almost logically equivalent to the g-conjecture for spheres.
The rest of the section contains a number of restrictions on the f -vectors of homology
manifolds. All of our proofs work for arbitrary triangulations, not just combinatorial ones.
The main new feature is the use of the face ring to produce lower bounds for the number
of vertices and edges. One consequence is that Kühnel’s triangulations of sphere bundles
over the circle [21] minimize the f -vector over all homology manifolds without boundary
and nonzero first Betti number (Theorem 4.7).

The last section contains several constructions, most of which are higher dimensional
analogues of those introduced by Walkup in dimension three [47]. In combination with
our previous results, these techniques allow us to give complete characterizations of the
f -vectors of S1

×S3,CP 2, any K3 surface, and (S2
×S2)# (S2

×S2). In addition, many
partial results are possible, such as a description of all possible pairs (f0, f1) which can
occur in triangulations of S3

× S3. We end with another extension to higher dimensions
of a result of Walkup’s in dimension three. This theorem says that for any boundaryless
homology manifold Md−1 which can be triangulated, there exists γ (Md−1) such that
if f1 − df0 ≥ γ (Md−1) and f1 ≤

(
f0
2

)
, then there is a triangulation of Md−1 with

f0 vertices and f1 edges. In particular, for sufficiently many vertices, Md−1 has a 2-
neighborly triangulation.
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We have covered all of the manifolds for which we know necessary and sufficient con-
ditions on the f -vectors of all possible triangulations. Otherwise, we have not attempted
to be encyclopedic in listing all possible applications of our methods to the large num-
ber of currently known triangulations. Rather, we have given a sample of the ways these
techniques might be employed.

Note: Since this paper was originally written the set of all possible f -vectors of the
nonorientable S3 -bundle over S1 was determined in [7] using Theorem 4.30.

2. Notations and conventions

Throughout, 1 is a connected, pure, (d − 1)-dimensional simplicial complex with n ver-
tices and vertex set V = {v1, . . . , vn}. A simplicial complex is pure if all of its facets
(maximal faces) have the same dimension. In addition, we will always assume that d ≥ 4.
The geometric realization of 1, |1|, is the union in Rn over all faces {vi1 , . . . , vij } of 1
of the convex hull of {ei1 , . . . , eij },where {e1, . . . , en} is the standard basis of Rn.We say
1 is homeomorphic to another space whenever |1| is. A triangulation of a topological
space M is any simplicial complex 1 such that 1 is homeomorphic to M.

The link of a face ρ ∈ 1 is
lk ρ =

⋃
τ∪ρ∈1
τ∩ρ=∅

τ.

The closed star of a face ρ ∈ 1 is

st ρ =
⋃

σ⊆τ,τ⊇ρ
σ∈1

σ.

The join of 1 and 1′, where the vertex set V ′ of 1′ is disjoint from V , is

1 ∗1′ = {ρ ∪ ρ′ : ρ ∈ 1, ρ′ ∈ 1′}.

For any poset (P,≤), the order complex of P is the simplicial complex whose vertices
are the elements of P and whose faces are the chains of P. If P contains a greatest element
1̂ and/or a least element 0̂, then the reduced order complex of P is the order complex of
P − {0̂, 1̂}.

Homology manifolds are a natural generalization of topological manifolds. Fix a
field k. If for all x ∈ |1|, H̃i(|1|, |1|−x; k) = 0 when i < d−1, and either k or 0 when
i = d − 1, then 1 is a k-homology manifold. Equivalently, for every nonempty face ρ ∈
1, H?(lk ρ; k) is isomorphic to the k-homology of either Sd−|ρ|−1 or Bd−|ρ|−1, where
Bd−|ρ|−1 is the (d−|σ |−1)-dimensional ball. The boundary of a homology manifold, de-
noted ∂1, is all of the faces ρ such that Hd−|ρ|−1(lk ρ; k) = 0. If Hd−1(1, ∂1; k) ' k,

then 1 is orientable over k. We say 1 is a closed homology manifold over k if 1 has no
boundary and is orientable over k. If the boundary of1 is not empty and1 is a homology
manifold over all fields, then ∂1 is a (d − 2)-dimensional k-homology manifold without
boundary [30]. Otherwise, we assume the boundary is a (d−2)-dimensional k-homology
manifold without boundary.
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The f -vector of 1 is (f0, . . . , fd−1), where fi is the number of i-dimensional faces
in1. Sometimes it is convenient to set f−1 = 1 corresponding to the empty set. The face
polynomial of 1 is

f1(x) = f−1x
d
+ f0x

d−1
+ · · · + fd−2x + fd−1.

The h-vector of 1 is (h0, . . . , hd) and is defined so that the corresponding h-poly-
nomial, h1(x) = h0x

d
+ h1x

d−1
+ · · · + hd−1x + hd , satisfies h1(x + 1) = f1(x).

Equivalently,

hi =

i∑
j=0

(−1)i−j
(
d − j

d − i

)
fj−1. (1)

Each fi is a nonnegative linear combination of h0, . . . , hi+1. Specifically,

fi−1 =

i∑
j=0

(
d − j

d − i

)
hj . (2)

A simplicial complex 1 is i-neighborly if every subset of vertices of cardinality i is a
face of 1.

A stacked polytope is the following inductively defined class of polytopes. The sim-
plex is a stacked polytope and any polytope obtained from a stacked polytope by adding a
pyramid to a facet is a stacked polytope. Stacked polytopes are simplicial and the bound-
ary of a stacked polytope is a stacked sphere. A purely combinatorial characterization of
stacked spheres is due to Kalai. Let φi(n, d) be the number of i-dimensional faces in a
(d − 1)-dimensional stacked sphere with n vertices. Equivalently,

φi(n, d) =


(
d

i

)
n−

(
d + 1
i + 1

)
i for 1 ≤ i ≤ d − 2,

(d − 1)n− (d + 1)(d − 2) for i = d − 1.
(3)

Theorem 2.1 ([16, Theorem 1.1]). Let 1 be a homology manifold without boundary.
Then fi(1) ≥ φi(n, d). If fi(1) = φi(n, d) for any 1 ≤ i ≤ d − 1, then 1 is a stacked
sphere.

Corollary 2.2 ([16]). Let 1 be a homology manifold without boundary. Then 1 is a
stacked sphere if and only if h1(1) = h2(1).

Let 1′ be another (d − 1)-dimensional complex and let σ ′ be a facet of 1′. Let σ be a
facet of 1 and choose a bijection between the vertices of σ ′ and the vertices of σ. The
connected sum of 1 and 1′, 1 # 1′, is the complex obtained by identifying the ver-
tices (and corresponding faces) of 1 and 1′ by the chosen bijection, and then removing
the facet corresponding to σ (= σ ′). If both complexes are (d − 1)-dimensional homol-
ogy manifolds without boundary, then any connected sum is also a homology manifold
without boundary. However, the homeomorphism type of1 #1′ may depend on the cho-
sen bijection. Direct calculation shows that hd(1 # 1′) = hd(1) + hd(1′) − 1 and for
0 < i < d, hi(1 #1′) = hi(1)+ hi(1′).
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Another method for forming new complexes out of old is handle addition. Let σ and
σ ′ be disjoint facets of 1. Also, let φ be a bijection between the vertices of the two
facets. Identify each pair of vertices (v, φ(v)) and any corresponding faces. As long as
v and φ(v) are not neighbors and there are no vertices which have both v and φ(v) as
neighbors, the resulting space will still be a simplicial complex and we say it is obtained
by handle addition. If the original complex is a homology manifold without boundary,
then so is the new complex. As before, the homeomorphism type of the new complex
may depend on the choice of bijection.

In [47] Walkup introducedHd−1, the set of simplicial complexes that can be obtained
from (d − 1)-dimensional stacked spheres by repeated handle addition. As we will see
(cf. Theorem 4.10 and Theorem 4.30), the triangulations inHd−1 are minimal in a certain
sense.

Theorem 2.3 ([47], [16]). 1 ∈ Hd−1 if and only if the link of every vertex of 1 is a
stacked sphere.

3. Linear relations

After the Euler–Poincaré formula, the Dehn–Sommerville equations for simplicial poly-
topes ([10], [36]) were one of the first known restrictions on the f -vectors of a class of
manifolds. These relations for polytopes were generalized to semi-Eulerian complexes by
Klee. We say 1 is a semi-Eulerian complex if for every nonempty face ρ of 1, the Eu-
ler characteristic of its link, χ(lk ρ), equals χ(Sd−|ρ|−1). Homology manifolds without
boundary are a motivating example. If in addition χ(1) = χ(Sd−1), then we say 1 is an
Eulerian complex.

Theorem 3.1 ([19]). Let 1 be a semi-Eulerian complex. Then

hd−i − hi = (−1)i
(
d

i

)
(χ(1)− χ(Sd−1)). (4)

Our semi-Eulerian complexes were called Eulerian manifolds in [19]. Related equations
were discovered earlier by Vaccaro [46].

If 1 is an odd-dimensional semi-Eulerian complex, then setting i = d/2 shows that
the Euler characteristic of 1 is zero and hence 1 is Eulerian. We will refer to the above
equations as the generalized Dehn–Sommerville equations.

Under certain conditions there is a refinement of the generalized Dehn–Sommerville
equations. Let a = (a1, . . . , am) be a sequence of positive integers. Define |a| = a1 +

· · · + am. Let φ : V → [m], with [m] = {1, . . . , m}, be a surjective function and set
Vj = φ

−1(j).

Definition 3.2. Suppose |a| = d. The pair (1, φ) is a balanced complex of type a if for
every facet σ ∈ 1 and j, 1 ≤ j ≤ m,

|σ ∩ Vj | = aj .
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Balanced complexes of type (1, . . . , 1) are called completely balanced. The canonical
example of a completely balanced complex is the order complex of a graded poset with
φ(v) = rk(v). If b = (b1, . . . , bm) is a sequence of nonnegative integers with bj ≤ aj ,
then we write b ≤ a. When 1 is completely balanced we can identify sequences b ≤
(1, . . . , 1) with subsets of [d] in the usual way, b↔ {i ∈ [d] : bi = 1}.

One way to produce examples of balanced complexes is to start with a completely
balanced complex (1, φ) and specialize. Given a with |a| = d, let ψ : [d] → [m] be
the map such that ψ−1(j) = [a1 + · · · + aj−1 + 1, a1 + · · · + aj ]. Then (1,ψ ◦ φ) is
a balanced complex of type a. Under these conditions we write S → b if S ⊆ [d] and
|S ∩ [a1+· · ·+aj−1+1, a1+· · ·+aj ]| = bj for each j. If1 is any (d−1)-dimensional
pure complex and |a| = d, then we can construct a balanced complex of type a which
is homeomorphic to 1. Indeed, the (reduced) order complex of the face poset of 1 is a
completely balanced complex homeomorphic to1which can then be specialized to a. For
a simple example of a balanced complex which is not the specialization of a completely
balanced complex, see Figure 1.

Let (1, φ) be a balanced complex of type a. For b ≤ a define fb (if necessary, fb(1))
to be the number of faces ρ such that for all j , |ρ ∩φ−1(j)| = bj . The collection {fb}b≤a
is the fine f -vector of 1 and is a refinement of the f -vector in the sense that∑

|b|=i
fb = fi−1(1).

The fine h-vector of 1 is defined for b ≤ a by

hb =
∑
c≤b

fc

m∏
i=1

(−1)bi−ci
(
ai − ci

bi − ci

)
. (5)

Example 3.3. The bipyramid in Figure 1 is a balanced complex of type (1, 2). The fine
f - and h-vectors are

f0,0 = 1, h0,0 = 1,
f1,0 = 2, h1,0 = 1,
f0,1 = 5, h0,1 = 3,
f1,1 = 10, h1,1 = 3,
f0,2 = 5, h0,2 = 1,
f1,2 = 10, h1,2 = 1.

Theorem 3.4 ([39]). Let (1, φ) be a balanced complex of type a. Then

hi =
∑
|b|=i

hb. (6)

If 1 is completely balanced and we have identified b ≤ (1, . . . , 1) with subsets of [d]
as above, then the collections fS and hS , S ⊆ [d], are called the flag f -vector and flag
h-vector respectively. Here fS is the number of faces ρ such that the image of the vertices
of ρ under φ is S. In this case equation (5) becomes

hS =
∑
T⊆S

(−1)|S−T |fS . (7)
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An equivalent way to define h and hb is through the face ring. Let k be a field and set
R = k[x1, . . . , xn].

Definition 3.5. The face ring (also known as the Stanley–Reisner ring) of 1 is k[1] =
R/I1, where

I1 = 〈{xi1 , . . . , xik : {vi1 , . . . , vik } /∈ 1}〉.

The Hilbert function of k[1] encodes the h-vector of 1 in a nice way. Let k[1]i be the
degree i component of k[1]. Define

F(1, λ) =

∞∑
i=0

dimk k[1]i λi .

Theorem 3.6 (see, for instance, [43, II.2]).

F(1, λ) =

d∑
i=0

hiλ
i

(1− λ)d
.

When 1 is balanced, k[1] has a natural Nm grading by assigning xi to λφ(vi ). For in-
stance, let 1 be the boundary of a bipyramid over a pentagon in R3 as in Figure 1. With
φ as given, 1 is a balanced complex of type {1, 2}. The fine Hilbert function for k[1] is

1+ 2λ1 + 5λ2 + 2λ2
1 + 10λ2

2 + 10λ1λ2 + 2λ3
1 + 10λ2

1λ2 + 20λ1λ
2
2 + 15λ3

2 + · · · .

Fig. 1. Balanced bipyramid, φ(•) = 1, φ(◦) = 2.

Theorem 3.7 ([39]). Let 1 be a balanced complex of type a = (a1, . . . , am). Then

F(k[1], λ) =
m∏
j=1

1
(1− λj )aj

∑
b≤a

hbλ
b. (8)

As usual λb
= λ

b1
1 · · · λ

bm
m . When b ≤ a, denote by a − b the m-tuple (a1 − b1, . . . ,

am − bm). For the special case of balanced Eulerian complexes, the following theorem
was first stated in [4].



456 Ed Swartz

Theorem 3.8. If 1 is a balanced semi-Eulerian complex of type a, then for all b ≤ a,

ha−b − hb = (−1)|b|[χ(1)− χ(Sd−1)]
m∏
j=1

(
aj

bj

)
. (9)

Proof. The strategy of the proof is not new and follows the ideas of [43, II.7]. We compute
the fine Hilbert function F(k[1], 1/λ) in two different ways. From equation (8),

F(k[1], 1/λ) =
m∏
j=1

1
(1− 1/λj )aj

∑
b≤a

hb/λ
b
=

m∏
j=1

1
(λj − 1)aj

∑
b≤a

hbλ
a−b

= (−1)d
m∏
j=1

1
(1− λj )aj

∑
b≤a

hbλ
a−b.

For a face ρ, define ρ(l) = |{v ∈ ρ : φ(v) = l}|. By [43, Corollary 7.2],

(−1)dF(k[1], 1/λ)

= (−1)d−1χ̃(1)+
∑
ρ 6=∅

∏
vi∈ρ

λφ(vi )

1− λφ(vi )

= (−1)d−1χ̃(1)+

m∏
j=1

1
(1− λj )aj

∑
ρ 6=∅

∏
vi∈ρ

λφ(vi )

m∏
l=1

(1− λl)al−ρ(l)

= (−1)d−1χ̃(1)+

m∏
j=1

1
(1− λj )aj

∑
b≤a

∑
c≤b
|c|6=0

(−1)|b−c|fc

m∏
l=1

(
al − cl

bl − cl

)
λb

= (−1)d−1χ̃(1)+

m∏
j=1

1
(1− λj )aj

{∑
b≤a

hb − (−1)|b|
m∏
l=1

(
al

bl

)}
λb.

Multiplying both equations by
∏m
j=1(1− λj )

aj leaves

∑
b≤a

hbλ
a−b
=

∑
b≤a

{
hb + (−1)|b|[(−1)d−1χ̃(1)− 1]

m∏
j=1

(
aj

bj

)}
λb.

Since (−1)d−1χ̃(1) − 1 = χ(1) − χ(Sd−1), comparing the coefficients of λb finishes
the proof. ut

As far as we know, the only other place where semi-Eulerian balanced (as opposed to
completely balanced) complexes are considered is Magurn [27], where balanced compact
2-manifolds are analyzed. Equation (9) for completely balanced semi-Eulerian posets
appears in [41, Proposition 2.2]. Balanced complexes of type a = (d) are just pure com-
plexes, and in this case (9) recovers the generalized Dehn–Sommerville equations.
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Corollary 3.9. If 1 is a completely balanced semi-Eulerian complex, then

h[d]−S − hS = (−1)|S|[χ(1)− χ(Sd−1)]. (10)

For Eulerian complexes the relations in the above corollary are also called the generalized
Dehn–Sommerville equations. For the history of these equations see the discussion in [1].

Let HE(d) be the affine span of fine h-vectors of balanced (d − 1)-dimensional Eule-
rian complexes of type a. Billera and Magurn determined the dimension of HE(d) in [4].
Their answer was in terms of the number of b ≤ a, n(a) =

∏m
j=1(aj + 1). Equation (9)

allows us to extend their result to semi-Eulerian complexes.

Theorem 3.10. Let 1 be a semi-Eulerian complex. Fix a with |a| = d. Let H1 be the
affine span of {hb(1

′)}, where 1′ ranges over all balanced complexes of type a homeo-
morphic to 1. Then

dimH1 =

{
1
2 (n(a)− 1) if every ai is even,
1
2 (n(a)− 2) otherwise.

(11)

Proof. If b ≤ a, then b 6= a − b unless each ai is even and bi = ai/2 for every i. Also,
h{0,...,0} = 1 for any balanced complex. Hence, Theorem 3.8 implies thatH1 satisfies 1+
(n(a)−1)/2 linearly independent equations if every ai is even, and 1+(n(a)/2) otherwise.
Therefore, the dimension of H1 is bounded above by the right-hand side of (11).

In order to prove the opposite inequality, we first construct the requisite number of
balanced spheres of type a whose fine h-vectors affinely span H1 for 1 = Sd−1. This
is accomplished in [4, Section 5]. Denote by {Pc

}c∈C the corresponding collection of
balanced spheres.

Now let 1 be an arbitrary semi-Eulerian complex. As noted before, there exists 1′

homeomorphic to 1 with 1′ a balanced complex of type a. For c ∈ C, b 6= (0, . . . , 0),
b 6= a we have hb(1

′ # Pc) = hb(1
′) + hb(Pc), where the connected sum identifies

vertices so that the resulting complex is still balanced of type a. In addition, h{0,...,0}(1′ #
Pc) = 1 and ha(1

′#Pc) = ha(1
′). So, the affine span of {hb(1

′#Pc)}c∈C is a translation
of the affine span of {hb(Pc)}c∈C and hence has the same dimension. ut

When 1 is the order complex of a poset there are further restrictions on the flag h-
vector of 1. A finite graded poset P with a least element 0̂ and greatest element 1̂
is semi-Eulerian if µ(x, y) = (−1)rk(x)−rk(y) for all x ≤ y, (x, y) 6= (0̂, 1̂). Equiv-
alently, the reduced order complex of P is a semi-Eulerian complex. If in addition,
µ(0̂, 1̂) = (−1)rk(P ), then we say P is Eulerian.

Let FE(d) be the affine span of flag f -vectors of reduced order complexes of rank d
Eulerian posets. Bayer and Billera determined FE(d) explicitly [1]. For the purposes of
stating the linear equations satisfied by the elements of FE(d), we temporarily extend the
definition of fS to subsets S ⊆ {0, 1, . . . , d − 1}. If 0 ∈ S, then define fS = fS−{0}.

Theorem 3.11 ([1]). Let P be an Eulerian poset of rank d, let 1 be the order complex
of P and let S ⊆ [d − 1]. If {i, k} ⊆ S ∪ {−1, d}, i < k − 1, and S contains no j such
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that i < j < k, then

k−1∑
j=i+1

(−1)j−i−1fS∪j = fS(1− (−1)k−i−1). (12)

Bayer and Billera proved that the affine span of the set of flag f -vectors which satisfy (12)
has dimension ed − 1, where ed is the d-th Fibonacci number. Then they constructed a
family, Pd , of polytopes whose flag f -vectors were affinely independent with |Pd | = ed ,
thus proving that FE(d) consists of all {fS} which satisfy (12).

J. Fine gave a basis for FE(d) which we now describe. The coefficients with respect
to this basis have come to be known as the cd-index of P. Encode the flag h-vector of
P (or more accurately, of the reduced order complex of P ) as a polynomial hP (a,b) in
noncommuting variables a and b (not to be confused with the indices in the previous
section) by

S ↔

{
a, i /∈ S,

b, i ∈ S.

For instance, if P is the face poset of the bipyramid in Figure 1, then

hP (a,b) = aaa+ 6baa+ 14aba+ 9aab+ 6abb+ 14bab+ 9bba+ bbb.

Now let c = a+b and d = ab+ba. In the above example, hP (a,b) = ccc+5dc+8cd.
Let F(c,d) be the linear subspace spanned by all monomials in c and d of degree d − 1
other than cd−1, where the degree of c is one and the degree of d is two. Bayer and
Klapper proved that FE(d) = cd−1

+ F(c,d) [2, Theorem 4].
The results for flag f -vectors of semi-Eulerian posets are similar. Suppose P is a

rank d semi-Eulerian poset and let 1P be the reduced order complex of P. Note that the
dimension of 1P is d − 2. In order to describe FP , the affine span of flag f -vectors of
posets whose order complexes are homeomorphic to 1P , set X = χ(1P )− χ(Sd−2).

Theorem 3.12. Let fX(d) be the flag f -vector which is zero for all S ⊆ [d − 1] except
f{d−1} = X. Then FP = FE(d)+ fX(d).

Proof. If d is odd, then P is Eulerian and X = 0. Hence, FP ⊆ FE(d). So assume that d
is even. Since P is semi-Eulerian the flag f -vector of 1P satisfies all of the equations in
(12) except the one equivalent to Euler’s formula for the sphere,

d−1∑
j=0

(−1)jf{j} = f∅(1− (−1)d−1).

Let f ′ be the flag f -vector defined by f ′S = fS(1P )− f
X
S (d). The only expressions

of (12) which are different for f ′ are the one above, which by the definition of X is now
valid, and

d−2∑
j=0

(−1)jf ′
{d−1}∪j = f

′

{d−1}(1− (−1)d).
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Comparing this expression with the corresponding expression for f shows that the left
hand side is unchanged, while the right hand side in both cases is zero since d is even.
Hence f ′ is in FE(d). Therefore, FP ⊆ FE(d)+ fX(d).

To establish the opposite inclusion, consider the family of flag f -vectors given by the
(reduced) order complex of {1P # ∂Pt }, where Pt is the collection of (d − 1)-polytopes
given by Bayer and Billera whose flag f -vectors (affinely) span FE(d) [1]. As this set
of flag f -vectors is a translation of the flag f -vectors of the reduced order complex of
{∂Pt }, its affine dimension is the same. Since each1P # ∂Pt is homeomorphic to1P we
have dimFP ≥ dimFE(d). ut

The containment FP ⊆ FE(d) + f
X(d) is a special case of [11, Theorem 4.2], where

Ehrenborg considers posets whose intervals of varying lengths are Eulerian.
In view of Karu’s proof that the cd-index of any Gorenstein* poset has nonnegative

coefficients [18], and the fact that the flag f -vectors of semi-Eulerian posets with the
same Euler characteristic and dimension lie in the same affine subspace of flag f -vectors,
it seems natural to ask the following question.

Problem 3.13. For a fixed semi-Eulerian poset P, describe the cone of flag f -vectors of
posets P ′ such that 1P is homeomorphic to 1P ′ .

An alternative approach to the combinatorics of semi-Eulerian posets is through the toric
h-vector. Originally introduced to correspond to the Betti numbers of the intersection
cohomology of toric varieties associated to rational polytopes, the toric h-vector can be
defined for any finite graded poset with a minimum element 0̂ and a maximum element 1̂.
With the exception noted below, we follow Stanley’s presentation [44, Section 3.14] and
refer the reader to [42] for background on the motivation and history behind its definition.

Let P be a finite graded poset with 0̂ and 1̂ and let ρ be the rank function of P. Let P̃
be the set of all intervals [0̂, z] in P ordered by inclusion. The map z 7→ [0̂, z] is a poset
isomorphism from P to P̃ . Define two polynomials h̃ and g̃ inductively as follows.

• ĥ(1, x) = ĝ(1, x) = 1. Here 1 is the poset with only one element 1̂ = 0̂.
• If the rank of P is d + 1, then ĥ(P , x) has degree d. Write ĥ(P , x) = ĥd + ĥd−1x +

ĥd−2x
2
+ · · · + ĥ0x

d . Then define

ĝ(P , x) = ĥd + (ĥd−1 − ĥd)x + (ĥd−2 − ĥd−1)x
2
+ · · · + (ĥd−m − ĥd−m+1)x

m,

where m = bd/2c.
[NOTE: Our ĥi is ĥd−i in [44].]
• If the rank of P is d + 1, then define

ĥ(P , x) =
∑
Q∈P̃
Q 6=P

ĝ(Q, x)(x − 1)d−ρ(Q). (13)

Induction shows that if Bd is the face poset of the (d − 1)-simplex, then ĥ(Bd , x) =
1+ x + · · · + xd−1 and ĝ(Bd , x) = 1. From this it follows that if P is the face poset of a
simplicial complex 1 with 1̂ adjoined, then ĥi(P, x) = hi(1).
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Example 3.14. Figure 3 shows the Hasse diagram, P , of the face poset of the cell decom-
position of the torus depicted in Figure 2. The rank one and rank two elements correspond
to simplices. The four rank two elements, which correspond to the four rectangles of the
cell decomposition have ĝ = 1+ x. So,

ĥP (x) = (x − 1)3 + 4(x − 1)2 + 8(x − 1)+ 4(x + 1) = x3
+ x2

+ 7x − 1.

B BA

C

C

D

D

C

C

Fig. 2. Cell decomposition of the torus.

A B C D

0

1

Fig. 3. Hasse diagram of P .

Theorem 3.15. Let P be a semi-Eulerian poset of rank d + 1 and let 1P be the reduced
order complex of P. Then

ĥd−i − ĥi = (−1)i
(
d

i

)
[χ(1P )− χ(Sd−1)]. (14)

Proof. The proof is a small variation of Stanley’s proof of this equation in the special
case that P is Eulerian [44, p. 139]. Write ĥ(P ) for ĥ(P , x) and ĝ(P ) for ĝ(P , x). Let
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y = x − 1. Mutliply (13) by y and add ĝ(P ) to obtain for P 6= 1,

ĝ(P )+ yĥ(P ) =
∑
Q∈P̃

g(Q)yρ(P )−ρ(Q).

Hence for P 6= 1,

y−ρ(P )(ĝ(P )+ yĥ(P )) =
∑
Q

ĝ(Q)y−ρ(Q).

Since
∑
Q∈1 ĝ(Q)y

−ρ(Q)
= 1, Möbius inversion implies

ĝ(P )y−ρ(P ) = µP (0̂, 1̂)+
∑
Q∈P̃
Q6=1

(ĝ(Q)+ y ĥ(Q))y−ρ(Q)µ
P̃
(Q, P ).

Since P̃ is semi-Eulerian, µ
P̃
(Q, P ) = (−1)ρ(P )−ρ(Q). So,

ĝ(P ) = yρ(P )µP (0̂, 1̂)+
∑
Q 6=1

(ĝ(Q)+ yĥ(Q))(−y)ρ(P )−ρ(Q). (15)

Let ĥ(Q) = a0 + a1x + · · · + arx
r , where ρ(Q) = r + 1. Then

ĝ(Q)+ yĥ(Q) = (as − as+1)x
s+1
+ (as+1 − as+2)x

s+2
+ · · · ,

where s = br/2c. Since each Q is neither 1 nor P, it is Eulerian, so we may assume by
induction on the rank of Q that ai = ar−i, where r + 1 = ρ(Q), r < d. In this case,

ĝ(Q)+y ĥ(Q) = (as−as−1)x
s+1
+(as−1−as−2)x

s+2
+· · · = xρ(Q)ĝ(Q, 1/x). (16)

Now subtract yĥ(P )+ ĝ(P ) from both sides of (15) and use (16) to obtain

−yĥ(P ) = yρ(P )µP (0̂, 1̂)+
∑

0̂<Q<1̂

xρ(Q)ĝ(Q, 1/x)(−y)ρ(P )−ρ(Q)

and so

ĥ(P ) = −(yd)[µP (0̂, 1̂)− (−1)d+1]+
∑
Q<1̂

xρ(Q)ĝ(Q, 1/x)(−y)d−ρ(Q)

= −(yd)[µP (0̂, 1̂)− (−1)d+1]+ xd ĥ(P , 1/x).

Comparing like terms of the last equation gives

ĥd−i − ĥi = (−1)d−i−1
(
d

i

)
[µP (0̂, 1̂)− (−1)d+1]. (17)

When d is even, P is Eulerian, so the right hand side of (17) is zero and the equal-
ity agrees with (14). If d is odd, then, since µP (0̂, 1̂) = χ(1P ) − 1 and (−1)d+1

=

χ(Sd−1)− 1, (17) also agrees with (14). ut

As the toric h-vector agrees with the usual h-vector for simplicial complexes, it is easy to
see that if we fix the order complex homeomorphism type of a semi-Eulerian poset, then
(14) spans all of the linear relations among the ĥi .
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4. Inequalities

There are two very general inequalities for h-vectors of homology manifolds. One is due
to Schenzel (Theorem 4.14 below), and the following rigidity inequality is due to Kalai
and, independently, Gromov.

Theorem 4.1 (Rigidity inequality, [13, 2.4.10], [16]). Suppose 1 is a homology mani-
fold without boundary and d ≥ 3. Then h0 ≤ h1 ≤ h2.

The rigidity inequality has a strong implication when the fundamental group of 1 is
nontrivial. Suppose 1̃ is a t-sheeted covering of 1. Then the triangulation of 1 lifts to a
triangulation of 1̃ with fi(1̃) = tfi(1) for i ≥ 0.

Proposition 4.2. If 1̃ is a t-sheeted covering of 1, then

• h1(1̃) = t · h1(1)+ d(t − 1).
• h2(1̃) = t · h2(1)− (t − 1)

(
d
2

)
.

Proof. This is a straightforward application of fi(1̃) = tfi(1) and the definition of h-
vectors in terms of f -vectors. ut

Theorem 4.3. Let1 be a closed homology manifold. If π1(1) has a subgroup of index t,
then

t − 1
t

(
d + 1

2

)
≤ h2 − h1 ≤

(
h1

2

)
.

In particular, if |π1(1)| is finite and greater than
(
d+1

2

)
, or if β1 > 0, then(

d + 1
2

)
≤ h2 − h1 ≤

(
h1

2

)
.

Proof. The inequality h2 − h1 ≤
(
h1
2

)
holds for any pure complex. Let 1̃ be a t-sheeted

covering space of 1 corresponding to a subgroup of π1(1) of index t. By the rigidity
inequality, 0 ≤ h2(1̃)− h1(1̃). But, by the above proposition,

0 ≤ h2(1̃)− h1(1̃) = t · h2(1)− (t − 1)
(
d

2

)
− t · h1(1)− d(t − 1).

If β1 ≥ 0, then π1 has subgroups of arbitrarily large index, so the second inequality
follows from the first. ut

The inequality involving only h1 in Theorem 4.3 can be improved if1 is a combinatorial
manifold. A combinatorial (d − 1)-manifold is a simplicial complex in which the link of
every vertex is PL-homeomorphic to the boundary of the (d − 1)-simplex.

Theorem 4.4 ([5]). Let 1 be a combinatorial manifold. If π1(1) is not trivial, then
d + 1 ≤ h1.
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Problem 4.5. Do there exist triangulated manifolds with nontrivial fundamental group
and h2 − h1 <

(
d+1

2

)
or h1 < d + 1?

One application of Theorem 4.3 is a proof that a family of triangulations of spherical
bundles over S1 given by Kühnel have the minimum possible f -vector for homology
manifolds without boundary and nonzero first Betti number. This family of complexes
has the following properties.

Theorem 4.6 ([21]). For every d ≥ 3 there is a simplicial complex Md with the follow-
ing properties.

• Md has 2d + 1 vertices.
• Md is 2-neighborly, i.e. f1(M

d) =
(2d+1

2

)
.

• If d is odd, then Md is homeomorphic to S1
× Sd−2. If d is even, then Md is homeo-

morphic to the nonorientable Sd−2-bundle over S1.

• Md is vertex transitive with dihedral symmetry group.
• The link of every vertex of Md is a stacked sphere.

Our Md is called Md−1 in [21]. These triangulations were generalized by Kühnel and
Lassmann [23]. While we will consider all of the Kühnel–Lassmann triangulations of
S1
× S2m−1 in Section 5, we refer the reader to [23] for details on the others.

Theorem 4.7. If 1 is a homology manifold without boundary and nonzero first Betti
number, then for all i, fi(1) ≥ fi(Md).

Proof. By Theorem 4.3, f0(1) ≥ 2d + 1 = f0(M
d) and f1(1) ≥

(2d+1
2

)
= f1(M

d).

Define

f̃i(1) =

n∑
j=1

fi(lk1 vj ). (18)

Since fi+1 = f̃i/(i + 2), it suffices to prove that

f̃i(1) ≥ f̃i(M
d). (19)

Recall that φi(n, d) is the minimal number of i-faces in a (d−1)-dimensional homol-
ogy manifold without boundary which has n vertices. Define

8i(N, n, d) =

n∑
j=1

φi(Nj , d),

where N = N1 + · · · + Nn is any composition of N into n nonzero parts. The formula
for φ, equation (3), implies that this definition is independent of the choice of the Nj .

Now let Nj be the number of vertices in the link of vj . So, N1+ · · ·+Nn = f̃0(1) =

2f1(1) ≥ 2f1(M
d) = 2d(2d + 1). Theorem 2.1 tells us that

f̃i(1) ≥

n∑
j=1

φi(Nj , d − 1) = 8i(2f1(1), f0(1), d − 1).
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Theorem 4.3 says that f1(1) ≥ df0(1). As 8i(N, n, d) is monotonically increasing
for fixed n, d and i, f̃i(1) will be minimized by the least value of8i((d−1)n, n, d−1).
However, for fixed d ≥ 4 and 1 ≤ i ≤ d − 1 this function is strictly increasing as a
function of n. Since Md minimizes n and f̃i(Md) = 8i((d − 1)n, n, d − 1), where
n = 2d + 1, we are done. ut

Another way to use the rigidity inequality is to sum it over the links of all the faces of
a fixed dimension. For this purpose we consider a generalization of the short simplicial
h-vector introduced by Hersh and Novik in [14].

Definition 4.8.
h̃
(m)
i (1) =

∑
|ρ|=m

hi(lk ρ).

The vector (h̃(1)0 , . . . , h̃
(1)
d−1) was called the short simplicial h-vector in [14].

Proposition 4.9 ([45]).

(m+ 1) h̃(m+1)
i−1 = ih̃

(m)
i + (d −m− i + 1)h̃(m)i−1. (20)

As long as all of the links in question are homology manifolds of dimension at least
three, the rigidity inequality implies h̃(m)0 ≤ h̃

(m)
1 ≤ h̃

(m)
2 . Here are two examples of this

principle.

Theorem 4.10. Suppose the link of every vertex of1 is a (d − 2)-dimensional homology
manifold without boundary. Then

(d − 1)h1 ≤ 3h3 + (d − 4)h2. (21)

Furthermore, when d ≥ 5, equality occurs if and only if 1 ∈ Hd−1. In this case, the
h-vector of 1 is determined by h1 and h2.

Proof. From the previous proposition, h̃(1)1 = 2h2+(d−1)h1 and h̃(1)2 = 3h3+(d−2)h2.

The rigidity inequality applied to these two equations gives (21). In addition, equality
occurs if and only if for each vertex v of 1,h1(lk v) = h2(lk v). By Corollary 2.2 each
such link must be a stacked sphere and thus h1(lk v) = h2(lk v) = · · · = hd−2(lk v).
Hence h̃(1)1 = h̃

(1)
2 = · · · = h̃

(1)
d−2. Since h1 and h2 determine h̃(1)1 they determine all of

the h̃(1)i . It is not difficult to see that (20) ensures that this determines the entire h-vector.
Finally, the link of every vertex of 1 is a stacked sphere if and only if 1 ∈ Hd−1. ut

The above theorem is optimal in the following sense. When d = 4, (21) reduces to
h1 ≤ h3. Both h1 = h3 (any homology manifold without boundary) and h1 < h3 (for
instance, the suspension of RP 2) can occur. For d > 4, any triangulation inHd−1 satisfies
equality, including, for instance, the Kühnel–Lassmann triangulations of S1

× S2m+1 and
the nonorientable S2m bundle over S1 [23], stacked spheres, and connected sums along
facets of any of these spaces.
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When d = 5, (21) becomes

4h1 ≤ 3h3 + h2, i.e. 4(h1 − h2) ≤ 3(h3 − h2).

Any three-manifold without boundary has Euler characteristic zero, so1 is semi-Eulerian
and we can substitute 10(χ(1)− 2) for h3 − h2. Hence,

h2 − h1 ≥ −
15
2
(χ(1)− 2). (22)

This formula first appears in [47], as does the characterization of equality. As
Walkup’s proof is logically equivalent to the one above, (21) can be viewed as a higher
dimensional analog of (22). For another example, we consider m = 2.

Theorem 4.11. If the link of every edge is a homology manifold without boundary and
d ≥ 5, then

12h4 + 6(d − 4)h3 + (d − 2)(d − 7)h2 − (d − 1)(d − 2)h1 ≥ 0. (23)

Proof. From (20), 2h(2)1 = 2h(1)2 + (d−2)h(1)1 and 2h(2)2 = 3h(1)3 + (d−3)h(1)2 . Applying
(20) again to the right hand side of these equations, we obtain

2h(2)1 = 2[3h3 + (d − 2)h2]+ (d − 2)[2h2 + (d − 1)h1],

2h(2)2 = 3[4h4 + (d − 3)h3]+ (d − 3)[3h3 + (d − 2)h2].

The rigidity inequality implies 2h(2)2 ≥ 2h(2)1 . ut

Corollary 4.12. If 1 is a 6-dimensional homology manifold without boundary, then

χ(1) ≤ 2+
1

14
(h3 − h1).

Furthermore, χ(1) = 2+ 1
14 (h3 − h1) if and only if 1 ∈ Hd−1.

Proof. For d = 7, (23) is equivalent to

12(h4 − h3) ≥ 30(h1 − h3).

By the generalized Dehn–Sommerville equations, h4 − h3 = −35(χ(1)− 2). So,

χ(1)− 2 ≤
30

12 · 35
(h3 − h1).

Now suppose χ(1) = 2+ 1
14 (h3−h1). Let1v be the link of a vertex of1. The proof

of (23) shows that for every vertex w ∈ 1v, h1(lk1v w) = h2(lk1v w). Indeed, equality
holds if and only if this is true. Since1 is a homology manifold,H1(1v;Q) = 0. Kalai’s
first proof of [16, Theorem 1.1] shows that 1v is a stacked sphere and thus 1 ∈ Hd−1.

Conversely, suppose 1 ∈ Hd−1. Since the link of every vertex of a stacked sphere is a
stacked sphere, h(2)1 = h

(2)
2 and equality in (23) follows. ut
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Corollary 4.13. If 1 is a 6-dimensional Eulerian homology manifold, then the h-vector
of 1 is positive.

For further estimates we turn to the face ring. By introducing a linear system of pa-
rameters, the face ring can be a powerful tool in understanding the combinatorics of 1.
Let 2 = {θ1, . . . , θd} be a set of one-forms in R = k[x1, . . . , xn]. For each i, write
θi = θi,1x1 + · · · + θi,nxn and for each facet σ ∈ 1 let Tσ be the d × d matrix whose
entries are {θi,j }vj∈σ . We say 2 is a linear system of parameters (l.s.o.p.) for k[1] if Tσ
has rank d for every facet σ of 1.

Theorem 4.14 (Schenzel’s formula, [35]). Let 2 be a l.s.o.p. for k[1], and let h′i =
dimk (k[1]/〈2〉)i . If 1 is a k-homology manifold (with or without boundary), then

h′i = hi +

(
d

i

) i−1∑
j=2

(−1)i−j−1βj−1, (24)

where the βj are the k-Betti numbers of 1.

Schenzel’s proof of the above formula applies to the much more general class of con-
nected Buchsbaum complexes. As an application of (24), we note that if1 is a homology
manifold without boundary, then h′d(1) = 1 if 1 is orientable, and h′d(1) = 0 if 1 is
not orientable.

Schenzel’s formula frequently allows us to move back and forth between the com-
mutative algebra of k[1]/〈2〉 and the combinatorics of 1. As an example, the rigidity
inequality has an interpretation in k[1]/〈2〉 due to Lee.

Theorem 4.15 ([24]). Let 1 be a homology manifold without boundary and let k be a
field of characteristic zero. For generic pairs (ω,2), ω a one-form in R and 2 a l.s.o.p.
for k[1], multiplication

ω : (k[1]/〈2〉)1 → (k[1]/〈2〉)2

is an injection.

In view of Theorem 4.14, the study of f -vectors, h-vectors and h′-vectors, where we
define h′i by (24), are all equivalent for homology manifolds. The value of the h′-vectors
is that for homology manifolds, (h′0, h

′

1, . . . , h
′

d) is the Hilbert function of k[1]/〈2〉, and
Hilbert functions of homogeneous quotients of polynomial rings were characterized by
Macaulay.

Given a and i positive integers there is a unique way to write

a =

(
ai

i

)
+

(
ai−1

i − 1

)
+ · · · +

(
aj

j

)
with ai > ai−1 > · · · > aj ≥ j ≥ 1. Define

a〈i〉 =

(
ai + 1
i + 1

)
+

(
ai−1 + 1

i

)
+ · · · +

(
aj + 1
j + 1

)
.
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Theorem 4.16 ([43, II.2.2]). Let (h0, . . . , hd) be a sequence of nonnegative integers.
Then the following are equivalent.

• (h0, . . . , hd) is the Hilbert function of a homogeneous quotient of a polynomial ring.
• h0 = 1 and hi+1 ≤ h

〈i〉
i for all 1 ≤ i ≤ d − 1.

Any sequence (h0, . . . , hd) which satisfies the above conditions is called an M-vector.
In combination with our previous results and the following theorem, Macaulay’s for-

mula leads to restrictions on n and h2 − h1 for 2m-dimensional homology manifolds
without boundary.

Theorem 4.17 ([31]). Let1 be a homology manifold,2 a l.s.o.p. for k[1], and ω ∈ R1
(one-forms in R). Then the kernel of multiplication ω : (k[1]/〈2〉)i → (k[1]/〈2〉)i+1
has dimension greater than or equal to

(
d−1
i

)
βi−1.

Kalai has conjectured that the correct lower bound for homology manifolds without
boundary is

(
d
i

)
βi−1 [17, Conjecture 36].

For connected 2m-dimensional homology manifolds without boundary, h′m+1 − h
′
m

does not depend on the triangulation. Define

G(1) = (−1)m
(

2m+ 1
m

)
[(β1 − β2m−1)− (β2 − β2m−2)+ · · ·

· · · + (−1)m−1(βm−2 − βm+2)+ (−1)m(βm − βm+1)].

By the generalized Dehn–Sommerville equations and Schenzel’s formula, h′m+1 − h
′
m =

G(1) [31]. If 1 is orientable, then G(1) reduces to
(2m+1

m

)
(βm − βm−1).

Theorem 4.18. Let 1 be a 2m-dimensional connected homology manifold without
boundary and suppose G(1) > 0, where G(1) is computed using rational coefficients.
Write h2 − h1 =

(
a
2

)
+
(
b
1

)
with a > b. Then

(a) G(1)+
(2m
m

)
βm−1 ≤

(
n−m−2
m+1

)
.

(b) G(1)+
(2m
m

)
βm−1 ≤

(
a+m−1
m+1

)
+
(
b+m−1
m

)
.

Proof. Let 2 be a l.s.o.p. for Q[1] and ω ∈ Q[1]1 satisfy the conclusion of Theorem
4.15. Define g′i = dimQ (Q[1]/〈2,ω〉)i . Then g′m+1 ≥ h

′

m+1 − h
′
m +

(2m
m

)
βm−1, with

equality if and only if the dimension of the kernel of multiplication ω : (Q[1])/〈2〉)m→
(Q[1])/〈2〉)m+1 is

(2m
m

)
βm−1. The choice of 2 and ω implies that g′2 = h′2 − h

′

1 and
by Schenzel’s formula this is h2 − h1. The inequalities now follow from Macaulay’s
arithmetic criterion for Hilbert functions. ut

If βm−1 = 0 and 1 is orientable, then the left hand side of both inequalities reduces
to
(2m+1

2m

)
βm. If Kalai’s conjecture concerning the lower bound for the dimension of the

kernel of multiplication by a one-form is correct, then again the left hand sides of both
inequalities reduce to

(2m+1
2m

)
βm whenever 1 is orientable.
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While the second inequality is new and a key ingredient to the complete characteriza-
tion of f -vectors in the next section, the first inequality is neither new nor best. See [31,
Theorem 5.7] for a related stronger inequality and a discussion.

When 1 is a homology sphere or ball, hi = h′i . In the special case of 1 equal to the
boundary of a simplicial polytope even more can be said. In [28] P. McMullen conjectured
the following characterization of h-vectors of simplicial polytopes.

Conjecture 4.19 ([28]). A sequence (h0, h1, . . . , hd) is the h-vector of the boundary of
a simplicial d-polytope if and only if

(a) h0 = 1.
(b) h0 ≤ h1 ≤ · · · ≤ hbd/2c.

(c) (h0, h1 − h0, . . . , hbd/2c − hbd/2c−1) is an M-vector.

The sequence (g0, . . . , gbd/2c) = (h0, h1 − h0, . . . , hbd/2c − hbd/2c−1) is usually called
the g-vector of 1. The correctness of McMullen’s conjecture was proved in two sepa-
rate papers. In their 1981 paper [3] Billera and Lee showed how to construct a simpli-
cial d-polytope with a given h-vector whenever it satisfied McMullen’s conditions. Stan-
ley’s proof of the necessity of McMullen’s conditions used a hard Lefschetz theorem for
toric varieties associated to rational polytopes [40]. The main point is that, generically,
k[1]/〈2〉 has Lefschetz elements.

Definition 4.20. Let 1 be a homology sphere. A Lefschetz element for k[1]/〈2〉 is a
one-form ω ∈ R such that for all i ≤ bd/2c multiplication

ωd−2i : (k[1]/〈2〉)i → (k[1]/〈2〉)d−i

is an isomorphism.

Suppose that ω is a Lefschetz element for k[1]/〈2〉. Then for i ≤ bd/2c multiplication
ω : (k[1]/〈2〉)i−1 → (k[1]/〈2〉)i must be an injection. Hence, for such i, hi−1 ≤ hi . In
addition, we can see that gi = dimk (k[1]/〈2,ω〉)i, so the g-vector of 1 must be an M-
vector. Hence, if L(1) = {(ω,2) : ω is a Lefschetz element for k[1]/〈2〉} is nonempty,
then 1 satisfies McMullen’s conditions.

Theorem 4.21 ([40], [29]). If 1 is the boundary of a simplicial polytope, then L(1) is
nonempty.

Perhaps the most important problem involving f -vectors is whether or not McMullen’s
conditions extend to simplicial spheres or even homology spheres. This question is some-
times referred to as the g-conjecture. As the above discussion shows, the following alge-
braic g-conjecture would imply the g-conjecture.

Conjecture 4.22. If 1 is a homology sphere, then L(1) 6= ∅.

For a related, even stronger conjecture, see [45].
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Definition 4.23. A Lefschetz sphere is a homology sphere 1 such that L(1) 6= ∅.
A Lefschetz ball is a homology ball 1 which is a full dimensional subcomplex of a Lef-
schetz sphere.

Unlike homology spheres, for an arbitrary homology manifold1 we do not expect multi-
plication by a one-form in k[1]/〈2〉 to be an injection in degrees larger than two. Indeed,
by Theorem 4.17 the dimension of the kernel of multiplication ω : (k[1]/〈2〉)i →
(k[1]/〈2〉)i+1 is at least

(
d−1
i

)
βi−1. However, as we will now show, if “enough” links of

the vertices of1 are Lefschetz spheres or balls, then multiplication by a generic one-form
is a surjection in the higher degrees.

Let ρ = {vm1 , . . . , vm|ρ|} be an ordered face of 1, and let σ = {vm1 , . . . , vm|ρ| ,

vm|ρ|+1 , . . . , vmd } be a facet containing ρ. Suppose 2 is a l.s.o.p. for k[1] with corre-
sponding matrix T = θi,j . Then there is a unique set 2′ = {θ ′1, . . . , θ

′

d} of one-forms
such that 〈2〉 = 〈2′〉 and for any i, 1 ≤ i ≤ d,

θ ′i,j =

{
1, j = mi,

0, j = ml, 0 ≤ l ≤ d, l 6= i.

Indeed, T ′ corresponds to the reduced row echelon form of T with pivot columns
{m1, . . . , md}. For future reference, we note that the θ ′i,j are rational functions of the θi,j .

In order to use 2′ as a l.s.o.p. for k[lk ρ], let Rρ be the polynomial ring over k with
variables {xi}vi /∈ρ . For each θ ′i , let θρi be the one-form inRρ obtained from θ ′i by removing
all the variables corresponding to vertices in ρ. Equivalently, θρi is the image of θ ′i under
the natural surjection from R to Rρ . It is now easy to check that 2ρ = {θρ

|ρ|+1, . . . , θ
ρ
d }

is a l.s.o.p. for k[lk ρ]. While these definitions depend on the choice of facet σ ⊇ ρ, we
will suppress this dependence as it will not matter.

We intend to analyze ideals of the form 〈xρ〉 ⊆ k[1]/〈2〉, where xρ = xm1 · · · xm|ρ| ,

by using k[lk ρ]/〈2ρ〉. This requires us to give k[lk ρ]/〈2ρ〉 an R-module structure. It is
sufficient to describe xmi ·q(x) for q(x) ∈ k[lk ρ]/〈2ρ〉. For each vmi ∈ ρ the construction
of 2′ forces θ ′mi to be of the form

θ ′mi = xmi +
∑
vj /∈σ

θ ′mi ,jxj .

So we define
xmi · q(x) =

(
−

∑
vj /∈σ

θ ′mi ,jxj

)
· q(x). (25)

As θ ′i is in 2, this definition ensures that multiplication by xρ is an R-module homo-
morphism of degree |ρ| from k[lk ρ]/〈2ρ〉 to the ideal 〈xρ〉 in k[1]/〈2〉. Indeed, if Rρ

is given an R-module structure in the same way as k[lk ρ], then there is a commutative
diagram of R-modules:

Rρ/〈2ρ〉
·xρ
−→ 〈xρ〉(R/〈2

′
〉)

↓ ↓

k[lk ρ]/〈2ρ〉
·xρ
−→ 〈xρ〉(k[1]/〈2〉)
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Proposition 4.24. Let 1 be a homology manifold. Then the multiplication map

xρ : k[lk ρ]/〈2ρ〉 → 〈xρ〉(k[1]/〈2〉)

is a surjective graded R-module homomorphism of degree |ρ|. If 1 is a homology mani-
fold without boundary, then xρ is an isomorphism unless i = d and 1 is not orientable.

Proof. Evidently, the map has degree equal to the cardinality of ρ. To see that the map is
surjective, let xρ · q(x) ∈ 〈xρ〉. Replace each occurrence of a variable xmi in q(x) using
(25). This leaves a polynomial which is clearly in the image of multiplication by xρ .

In order to show that multiplication is an isomorphism when 1 is a homology mani-
fold without boundary and either 1 is orientable or i 6= d, it is sufficient to show that the
dimensions over k agree. Since1 has no boundary, the link of ρ is a homology sphere, so
dimk(k[lk ρ]/〈2ρ〉)i is hi(lk ρ). To compute dimk〈xρ〉i+|ρ|, consider the exact sequence

0→ 〈xρ〉 → k[1]/〈2〉 → k[1− ρ]/〈2〉 → 0,

where 1 − ρ is 1 with ρ and any incident faces removed. Since 1 − ρ is a homology
manifold with boundary, Schenzel’s formula says

dimk 〈xρ〉i+|ρ| = dimk (k[1]/〈2〉)i+|ρ| − dimk (k[1− ρ]/〈2〉)i+|ρ|
= h′i+|ρ|(1)− h

′

i+|ρ|(1− ρ).

The Mayer–Vietoris sequence for1 = (1− ρ)∪ st ρ shows that if1 is orientable or
j 6= d − 2, βj (1) = βj (1 − ρ). Hence, dimk 〈xρ〉i+|ρ| = hi+|ρ|(1) − hi+|ρ|(1 − ρ).

This difference is the coefficient of td−i−|ρ| in∑
φ∈st ρ
φ /∈∂ st ρ

(t − 1)d−|φ|.

This is known to be hd−i−|ρ|(st ρ) [37, Lemma 2.3]. Since the h-vector of a cone is
the h-vector of the original space, hd−i−|ρ|(st ρ) = hd−i−|ρ|(lk ρ). As the dimension of
the link of ρ is d − 1− |ρ|, the generalized Dehn–Sommerville equations show that this
is hi(lk ρ). ut

Define Lis(1) to be the set of all pairs (ω,2) such that ω ∈ R1, 2 is a l.s.o.p. for 1, and
multiplication

ω : (k[1]/〈2〉)i → (k[1]/〈2〉)i+1

is a surjection. If 1 is a homology sphere, then L(1) ⊆ Lbd/2cs (1).

Proposition 4.25. If 1 is a homology manifold and Lis(1) 6= ∅, then for all j with
i ≤ j ≤ d − 1,

h′j ≥ h
′

j+1 +

(
d − 1
j

)
βj−1.
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Proof. Let (ω,2) ∈ Lis(1). Then for any j, i ≤ j ≤ d − 1, multiplication ω :
(k[1]/〈2〉)j → (k[1]/〈2〉)j+1 is a surjection with a kernel whose dimension is at least(
d−1
j

)
βj−1. ut

Theorem 4.26. Suppose 1 is a k-homology manifold with k an infinite field. If for at
least n− d of the vertices v of 1, Lis(lk v) 6= ∅, then Li+1

s (1) 6= ∅.

Proof. Let Vs = {vj }n−dj=1 be vertices of 1 such that for every j, Lis(lk vj ) is nonempty.
For each such vertex v, consider the set of pairs

Lis(v) = {(ω,2) : 2 is a l.s.o.p. for k[1], and (ω,2{v}) ∈ Lis(lk v)}.

Since2 7→ 2{v} is a rational map andLis(lk v) is a nonempty Zariski open set [45],Lis(v)
is a nonempty Zariski open set. We call 2 generic if every d × d minor of the associated
matrix T is nonsingular. To finish the proof we show that

L = {(ω,2) : 2 is generic} ∩
n−d⋂
j=1

Lis(vj )

is a nonempty subset of Li+1
s (1).

Since each of the intersecting subsets in L is a nonempty open Zariski subset of
k(d+1)n, L is nonempty. So let (ω,2) ∈ L. In order to see that multiplication ω :
(k[1]/〈2〉)i+1 → (k[1]/〈2〉)i+2 is surjective it is sufficient to show that every mono-
mial in (k[1]/〈2〉)i+2 is in the image. We consider two cases.

Case 1: The monomial can be written in the form xj · x
α, where vj ∈ Vs . Using the fact

that xα is in the image of multiplication by ω in k[lk vj ]/〈2{vj }〉, and Proposition 4.24,
we see that this monomial is in the image of multiplication by ω in 〈xj 〉 ⊆ k[1]/〈2〉.

Case 2: All of the variables in the monomial correspond to vertices not in Vs . Write the
monomial xl · xα. Since 2 is generic, it contains an element θ of the form

θ = xl +
∑

j,vj∈Vs

θjxj .

This implies that the monomial is equivalent to a sum of monomials from Case 1 and
hence is in the image of multiplication by ω. ut

The above results suggest the following conjectures for homology manifolds (with or
without boundary).

Conjecture 4.27 (Manifold algebraic g-conjecture). If 1 is a homology manifold, then
Lis(1) 6= ∅ for i ≥ dd/2e.

Conjecture 4.28 (Manifold g-conjecture). If 1 is a homology manifold, then h′i ≥

h′i+1 +
(
d−1
i

)
βi−1 for i ≥ dd/2e.
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If Kalai’s conjecture concerning the kernel of multiplication by a one-form is correct
(see discussion following Theorem 4.17), then the manifold g-conjecture would be h′i ≥
h′i+1 +

(
d
i

)
βi−1. Figure 4 shows the interrelationships among the various g-conjectures.

The dotted arrows indicate partial implications. The manifold algebraic g-conjecture does
not imply the existence of Lefschetz elements for homology spheres. However, the sur-
jective maps promised by the manifold algebraic g-conjecture, combined with the Goren-
stein property of face rings of homology spheres, is enough to establish the injective
maps needed to establish the g-conjecture. The manifold g-conjecture would ensure that
g-vectors of homology spheres are nonnegative, but would not show that they are M-
vectors.

Alg. g-conj. g-conj.

Manifold alg. g-cong. Manifold g-conj.

Fig. 4. Various g-conjectures.

Even without an affirmation of the algebraic g-conjecture, Theorem 4.26 can be used
effectively to limit the possible h-vectors of homology manifolds.

Corollary 4.29. If k has characteristic zero and 1 is a k-homology manifold, then
Ld−2
s (1) 6= ∅.

Proof. Every two-dimensional homology sphere 1′ is the boundary of a simplicial 3-
polytope, hence by Theorem 4.21, L(1′) 6= ∅. By [37], L1

s is nonempty for two-dimen-
sional homology balls. Now apply induction and Theorem 4.26. ut

Theorem 4.30. If 1 is a homology manifold and βi are the rational Betti numbers of 1,
then

h′d−2 ≥ h
′

d−1 + (d − 1)βd−3. (26)

If, in addition, 1 is closed, then

h2 ≥ h1 +

(
d + 1

2

)
β1 −

(
d − 1

2

)
β2. (27)

Furthermore, if 1 is closed, d ≥ 5, β2 = 0 and h2 = h1 +
(
d+1

2

)
β1, then 1 ∈ Hd−1.

Proof. The first formula is an immediate consequence of Proposition 4.25 and the above
corollary. So assume that1 is closed and orientable. By Schenzel’s formula, h1 = h

′

1 and
h2 = h

′

2. On the other hand, by [31], h′d−2 = h
′

2 +
(
d
2

)
(β2 − β1) and h′d−1 = h

′

1 + dβ1.

Combining this with (26) and Poincaré duality gives (27).
Now suppose β2 = 0, h2 = h1 +

(
d+1

2

)
β1, d ≥ 5 and 1 is closed. These con-

ditions imply that h′d−2 = h′d−1. This means that for (ω,2) ∈ Ld−2
s (1) multiplica-

tion ω : (k[1]/〈2〉)d−2 → (k[1]/〈2〉)d−1 is a bijection. So it must be an injection



Face enumeration—from spheres to manifolds 473

when considered as a map ω : 〈xi〉d−2 → 〈xi〉d−1. By Proposition 4.24, multiplication
ω : (k[lk vi]/〈2xi 〉)d−2 → (k[lk vi]/〈2xi 〉)d−1 must be an injection. Hence, for any
vertex vi of 1, hd−2(lk vi) ≤ hd−1(lk vi). Each such link is a homology sphere, so the
generalized Dehn–Sommerville equations imply h2 ≤ h1 in each vertex link. The rigid-
ity inequality and Corollary 2.2 imply that every vertex link is a stacked sphere. Finally,
Theorem 2.3 says that 1 ∈ Hd−1. ut

Kalai conjectured in [16] that for homology manifolds without boundary,

h2 − h1 ≥

(
d + 1

2

)
β1. (28)

The above theorem verifies this conjecture when β2 = 0 and 1 is closed. Theorem 4.3
confirms (28) when β1 = 1. If Kalai’s conjecture concerning the lower bound for the
dimension of the kernel of multiplication by a one-form is correct (see comment following
Theorem 4.17), the suitably altered statement of Proposition 4.25 and proof of Theorem
4.30 would prove (28) for closed homology manifolds. In dimension four with β2 = 0,
(28) is equivalent to (22).

5. Constructions

In order to completely characterize the f -vectors of all possible triangulations of a given
space, we will need ways of constructing new triangulations from old ones which preserve
homeomorphism type and alter the f -vector in a predictable fashion. Two such techniques
are bistellar moves and central retriangulations.

Let F and G be disjoint subsets of the vertices of 1 such that |F | + |G| = d + 1.
Suppose that the vertex induced subcomplex of 1 with respect to F ∪ G is F ∗ ∂G.
Removing F ∗ ∂G and replacing it with ∂F ∗ G is a (|G| − 1)-bistellar move. A 0-
bistellar move is also called subdividing a facet. If 1′ is obtained from 1 by a bistellar
move, then 1′ is homeomorphic to 1. The effect of a bistellar move on the h-vector is
contained in the proposition below. We omit its elementary proof.

Proposition 5.1. Suppose 1′ is obtained from 1 by an m-bistellar move. Then

hi(1
′) =

{
hi(1), i ≤ m or i ≥ d −m,
hi(1)+ 1, m < i < d −m.

There are very few manifolds for which a complete characterization of all possible f -
vectors of triangulations is known. Aside from S1 and closed 2-manifolds [15] [33], the
only other spaces for which this question has been solved are S3, S1

× S2,RP 3, the
nonorientable S2 bundle over S1, and S4. The four 3-manifolds and S4 were done by
Walkup [47].

The first manifold we will consider in detail is S1
× S3. For every n ≥ 11, Kühnel

and Lassmann constructed a vertex-transitive triangulation of S1
× S3 with n vertices

and dihedral symmetry [23]. We use 1S1×S3(n) to denote these complexes. (In [23]
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they used M4
3 (n) for these triangulations.) Identify the vertices with [n] = {1, . . . , n}.

Since the triangulation is invariant under the action of Zn, it is sufficient to specify
for which 4-tuples (y1, y2, y3, y4) there are simplices of the form {x1, x2, x3, x4, x5},

with xi+1 − xi = yi mod n, 1 ≤ i ≤ 4. The 4-tuples which generate 1S1×S3(n) are
[1, 1, 1, 2], [1, 1, 2, 1], [1, 2, 1, 1], and [2, 1, 1, 1]. The link of each vertex has 10 ver-
tices, so f1 = 5n and h2 = 5n− 10− 4(n− 5) = n+ 10. So, g2 = h2−h1 = 15. By the
generalized Dehn–Sommerville equations, the g-vector of a homology manifold without
boundary determines its h-vector, and hence its f -vector.

Theorem 5.2. The following are equivalent.

(i) (1, g1, g2) is the g-vector of a triangulation of S1
× S3.

(ii) (1, g1, g2) is the g-vector of a closed four-dimensional homology manifold 1 with
β1 = 1 and β2 = 0.

(iii) 15 ≤ g2 ≤
(
g1+1

2

)
.

Proof. Evidently (i)⇒(ii). All simplicial complexes satisfy g2 ≤
(
g1+1

2

)
. For S1

×S3 with
β1 = 1, Theorem 4.3 implies 15 ≤ g2, hence (ii)⇒(iii).

For (iii)⇒(i), assume h2 ≤
(
h1+1

2

)
, h2 − h1 ≥ 15, and h1 ≥ 6. As h1(1S1×S3(n)) =

n − 5 and h2(1S1×S3(n)) = n + 10, it is sufficient to show that for each n, beginning
with 1S1×S3(n), it is possible to perform consecutive 1-bistellar moves, each such move
adding exactly one edge to the 1-skeleton, until the 1-skeleton is the complete graph on n
vertices.

What are the nonedges of 1S1×S3(n)? From the description of the facets, the link of
x ∈ [n] consists of all y within ±5 mod n of x. Hence (x, y) is a nonedge of 1S1×S3(n)

if and only if x and y are separated by at least 6 modulo n.
First, group the nonedges of 1S1×S3(n) by the value of y − x mod n, where we insist

this difference be between 6 and n − 1. For instance, if n = 14, then the first group
contains the pairs

(1, 7), (2, 8), . . . , (7, 13), (8, 14), (9, 1), . . . , (14, 6).

Similarly, the second group would contain

(1, 8), (2, 9), . . . , (6, 13), (7, 14), (8, 1), . . . , (14, 7).

In general, if n is odd, then the nonedges will partition into blocks each of which has
cardinality n, while if n is even, the last block will have cardinality n/2.

Starting with the first group, for each pair (x, x+ 6) perform a 1-bistellar move using
the facets {x, x + 1, x + 2, x + 4, x + 5} and {x + 1, x + 2, x + 4, x + 5, x + 6}. Now
consider the pairs (x, x + 7) in the second group. From the bistellar move applied to the
pair (x, x+ 6), x is contained in a facet {x, x+ 1, x+ 2, x+ 5, x+ 6}, while the bistellar
move applied to (x + 1, x + 7) puts x + 7 in the facet {x + 1, x + 2, x + 5, x + 6,
x + 7}. Hence, we can now perform a 1-bistellar move for each pair in the second group.
Similarly, a bistellar move corresponding to (x, x+8) in the third group can use the facets
{x, x + 1, x + 2, x + 6, x + 7} and {x + 1, x + 2, x + 6, x + 7, x + 8} obtained via the
bistellar move from the second group. Continuing in this way, it is possible to perform
bistellar moves until the 1-skeleton is the complete graph on n vertices. ut
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An examination of the proof shows that after kn 1-bistellar moves the resulting complex
once again has dihedral vertex-transitive symmetry.

Corollary 5.3. If n ≥ 11, k ≥ 5, and kn ≤
(
n
2

)
, then there is a vertex-transitive triangu-

lation of S1
× S3 with n vertices, kn edges and dihedral symmetry.

When n is odd, this is the best result possible since any vertex-transitive triangulation will
have kn edges for some k. For even n, any vertex-transitive triangulation must have n +
(kn/2) edges, and the catalog of small vertex-transitive triangulations by Köhler and Lutz
[20] suggests that this may be possible once n ≥ 14. The manifolds 4132

1,
4132

2,
4143

2,
4143

3,
4152

1,
4152

2, and 4152
3 in [20] come from the above construction.

As indicated previously, the complexes1S1×S3(n) are part of a much larger family of
triangulations introduced by Kühnel and Lassmann in [23]. All of their spaces are disk or
sphere bundles over tori. They include a collection 1S1×S2m−1(n), denoted by M2m

2m−1(n)

in [23], of triangulations of S1
× S2m−1 for m ≥ 2 and n ≥ 4m+ 3. When n = 4m+ 3,

1S1×S2m−1(n) = M2m, which we recall from Theorem 4.7, is a minimum triangulation
of S1

× S2m−1. The construction of 1S1×S2m−1(n) is along the same lines as 1S1×S3(n).

The facets are specified by the 2m difference vectors (modulo n) obtained by all possible
permutations of [1, 1, . . . , 1, 2]. The resulting complex has dihedral symmetry. Using 1-
bistellar moves in a fashion similar to above, and Theorem 4.3, it is possible to prove the
following.

Proposition 5.4. Let m ≥ 2. There exists a triangulation of S1
× S2m−1 with n vertices

and e edges if and only if n ≥ 4m+3 and e− (2m+1)n ≥ 0. If in addition e is a multiple
of n, then there exists a triangulation which is vertex-transitive with dihedral symmetry.

A second technique for creating new triangulations out of old ones is the central retrian-
gulation of a simple (d − 1)-tree. Let B be a subcomplex of 1 which is a simplicial ball.
Remove all of the interior faces of B and replace them with the interior faces of the cone
on the boundary of B, where the cone point is a new vertex. We call this new complex
the central retriangulation of B. See Figure 5 for a simple example in dimension two. If
1′ is obtained from 1 by a retriangulation of B, then 1 and 1′ are homeomorphic.

Fig. 5. Central retriangulation of a simple 2-tree.
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Let T be a pure (d−1)-dimensional complex. We say T is a simple (d−1)-tree if the
facets of T can be ordered, σ1, . . . , σm, so that for each i ≥ 2 the intersection of σi with
the union of all previous facets is a codimension one face of σi which is on the boundary
of
⋃i−1
j=1 σj . A simple 1-tree is a path. The bold face subcomplex on the left hand side of

Figure 5 is a simple 2-tree. The length of a simple (d − 1)-tree is the number of facets
in the tree. Each facet, other than the first, adds exactly one new vertex to the tree. An
ordering of the vertices, (v1, . . . , vd+m−1), of a simple (d − 1)-tree T is natural if there
exists an ordering of the facets of T such that the vertices of σ1 are (v1, . . . , vd) and for
i ≥ 2, the new vertex introduced by σi is vd+i−1. Any simple (d − 1)-tree is a simplicial
ball and its boundary is a stacked sphere.

Proposition 5.5. If1′ is obtained from1 by central retriangulation of a simple (d − 1)-
tree of length m, then h1(1

′) = h1(1)+ 1, and h2(1
′) = h2(1)+m.

The following idea is due to Walkup. Indeed, our statement and proof are just the (d−1)-
dimensional analogue of [47, Lemma 7.3]. A simple (d − 1)-tree in 1 is spanning if it
contains all of the vertices of 1.

Proposition 5.6. Let 1 be a 2-neighborly triangulation of a homology manifold without
boundary. Suppose 1 contains a spanning (d − 1)-tree T such that every facet of T con-
tains a fixed set of distinct vertices {v1, . . . , vd−3}. Equivalently, there is a codimension
three face ρ, and a spanning simple 2-tree in the link of ρ. Then for every pair (a, b)
satisfying a ≥ h1(1) and g2(1) + a ≤ b ≤

(
a+1

2

)
there exists a complex 1′ which is

homeomorphic to 1 with h1(1
′) = a and h2(1

′) = b.

Proof. Let 1 = 10 and let 11 be the complex obtained by a central retriangulation of
T and let w1 be the new vertex in 11. As 1 was neighborly and T is spanning, 1′ is
neighborly. For each i > d − 3, {v1, . . . , vd−3, vi} is a face of the boundary of T . Hence
{w1, v1, . . . , vd−3, vi} is a face of 11, so the link of {w1, v1, . . . , vd−3} contains all of
the other vertices of 11. Since 11 is a closed homology manifold, this link must be a
circle. This implies that 11 has a spanning simple (d − 1)-tree T1 and distinct vertices
{v′1, . . . , v

′

d−2} which are contained in every facet of T1. Repeating this process we obtain
an infinite family of complexes1k. For each k, 1k is homeomorphic to1, 2-neighborly,
and h1(1k) = h1(1) + k. In addition, each 1k has a spanning simple (d − 1)-tree Tk .
Given j with 1 ≤ j ≤ h1(1) + k + 1, define 1k,j to be the complex obtained from 1k
by a central retriangulation of the simple (d − 1)-tree consisting of the the first j facets
of Tk. By Proposition 5.5 the collection of pairs (h1(1k,j ), h2(1k,j )) is exactly the pairs
(a, b) guaranteed by the theorem. ut

Theorem 5.7. The following are equivalent.

(i) (1, g1, g2) is the g-vector of a triangulation of CP 2.

(ii) (1, g1, g2) is the g-vector of a triangulation of a closed four-dimensional homology
manifold with β1 = 0 and β2 = 1.

(iii) 6 ≤ g2 ≤
(
g1+1

2

)
.
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Proof. As before, (i)⇒(ii) is trivial and any complex satisfies g2 ≤
(
g1+1

2

)
. Theorem 4.18

implies 6 ≤ g2, and hence (ii)⇒(iii).

Table 1. 1(CP 2), a triangulation of CP 2 with h1 = 4, h2 = 10 [22].

[1, 2, 3, 4, 5], [1, 2, 3, 4, 7], [1, 2, 3, 5, 8], [1, 2, 3, 7, 8],
[1, 2, 4, 5, 6] , [1, 2, 4, 6, 7], [1, 2, 5, 6, 8], [1, 2, 6, 7, 9],
[1, 2, 6, 8, 9] [1, 2, 7, 8, 9] [1, 3, 4, 5, 9], [1, 3, 4, 7, 8],
[1, 3, 4, 8, 9] , [1, 3, 5, 6, 8], [1, 3, 5, 6, 9], [1, 3, 6, 8, 9],
[1, 4, 5, 6, 7] , [1, 4, 5, 7, 9], [1, 4, 7, 8, 9], [1, 5, 6, 7, 9],
[2, 3, 4, 5, 9] , [2, 3, 4, 6, 7], [2, 3, 4, 6, 9], [2, 3, 5, 7, 8],
[2, 3, 5, 7, 9] , [2, 3, 6, 7, 9], [2, 4, 5, 6, 8], [2, 4, 5, 8, 9],
[2, 4, 6, 8, 9] , [2, 5, 7, 8, 9], [3, 4, 6, 7, 8], [3, 4, 6, 8, 9],
[3, 5, 6, 7, 8] , [3, 5, 6, 7, 9], [4, 5, 6, 7, 8], [4, 5, 7, 8, 9]

Table 2. A spanning simple 2-tree in the link of [1, 2] in 1(CP 2).

[3, 4, 7], [3, 4, 5], [4, 5, 6], [5, 6, 8], [6, 8, 9]

For (iii)⇒(i), the previous proposition shows that it is sufficient to find a triangulation
of CP 2 with g-vector (1, 3, 6) and simple 4-tree which satisfies the conditions of the
previous proposition. Table 1 contains such a triangulation, originally due to Kühnel [22],
and Table 2 shows an appropriate simple 2-tree in the link of an edge. ut

A similar technique can be used to characterize g-vectors of triangulations of K3 sur-
faces. Any nonsingular quartic in CP 3 is a K3 surface. While different quartics can lead
to distinct complex structures, all K3 surfaces are homeomorphic. In fact, they are dif-
feomorphic (see, for instance, [12, Theorem 3.4.9]). As a closed four-manifold, every K3
surface is simply connected with second Betti number equal to twenty-two. Hence any
triangulation satisfies h3 − h2 = 220 =

(12
3

)
.

Theorem 5.8. The following are equivalent.

(i) (1, g1, g2) is the g-vector of a triangulation of a K3 surface.
(ii) (1, g1, g2) is the g-vector of a triangulation of a closed four-dimensional homology

manifold with β1 = 0, β2 = 22.
(iii) 55 ≤ g2 ≤

(
g1+1

2

)
.

Proof. The proof of (i)⇒(ii) and (ii)⇒(iii) follows the same reasoning as in Theorem
5.7. In addition, as in that proof, (iii)⇒(i) will be established with the existence of a
triangulation 1K3 of a K3 surface with g-vector (1, 10, 55) and an appropriate simple
4-tree. Such a triangulation was given by Casella and Kühnel [6]. We refer the reader to
this reference for the triangulation and a verification of its g-vector. Figure 6, which is [6,
Figure 1], shows the link of an edge in this triangulation and contains a spanning simple
2-tree in this link. The labeled vertices on the boundary of the hexagons are identified and
the numbering of the triangles is an ordering for the facets of the tree. Coning this tree
with the edge provides the desired 4-tree. ut
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Fig. 6. Spanning 2-tree in the link of an edge of 1K3.

Theorem 5.9. The following are equivalent.

(i) (1, g1, g2) is the g-vector of a triangulation of the connected sum of S2
× S2 with

itself.
(ii) (1, g1, g2) is the g-vector of a triangulation of a closed four-dimensional homology

manifold with β1 = 0 and β2 = 4.
(iii) 18 ≤ g2 ≤

(
g1+1

2

)
.

Proof. Using the same logic as the previous two theorems, g2 ≥ 18. Table 3 shows
a triangulation with g-vector (1, 6, 18). This triangulation comes from [25]. Every pair
of vertices in this triangulation span an edge except for {1, 5}, {5, 6} and {1, 6}. For g2
equal to 18,19 or 20, first perform zero, one or two 1-bistellar moves from Table 4. Then
subdivide facets until the desired number of vertices are obtained. As before, for g2 ≥ 21
Proposition 5.6 tells us that it is sufficient to find a spanning simple 2-tree in the link of
some edge of a 2-neighborly triangulation of (S2

×S2)# (S2
×S2) with 12 vertices. After

the three 1-bistellar moves in Table 4, the triangulation in Table 3 is 2-neighborly. Table 5
lists such a tree in the link of [1, 2]. ut

While the methods we have introduced are not sufficient to completely characterize
the h-vectors of higher dimensional spaces, many partial results are possible. For instance,
consider S3

× S3.

Proposition 5.10. The componentwise minimum h-vector for triangulations of S3
×S3 is

(1, 6, 21, 56, 126,−21, 20,−1). There exists a triangulation1 of S3
× S3 with h1(1) =

a and h2(1) = b if and only if 15 ≤ b − a ≤
(
a
2

)
.
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Table 3. 1((S2
× S2) # (S2

× S2)), a triangulation of (S2
× S2) # (S2

× S2) with h1 = 7 and
g2 = 18 [25].

[1, 2, 3, 4, 7] , [1, 2, 3, 4, 10], [1, 2, 3, 7, 10], [1, 2, 4, 7, 8],
[1, 2, 4, 8, 11] , [1, 2, 4, 9, 10], [1, 2, 4, 9, 12], [1, 2, 4, 11, 12],
[1, 2, 7, 8, 10] , [1, 2, 8, 9, 10], [1, 2, 8, 9, 12], [1, 2, 8, 11, 12],
[1, 3, 4, 7, 11] , [1, 3, 4, 10, 11], [1, 3, 7, 8, 11], [1, 3, 7, 8, 12],
[1, 3, 7, 9, 10] , [1, 3, 7, 9, 12], [1, 3, 8, 11, 12], [1, 3, 9, 10, 12],
[1, 3, 10, 11, 12] , [1, 4, 7, 8, 11], [1, 4, 9, 10, 11], [1, 4, 9, 11, 12],
[1, 7, 8, 9, 10] , [1, 7, 8, 9, 12], [1, 9, 10, 11, 12], [2, 3, 4, 6, 9],
[2, 3, 4, 6, 10] , [2, 3, 4, 7, 12], [2, 3, 4, 9, 12], [2, 3, 5, 7, 9],
[2, 3, 5, 7, 10] , [2, 3, 5, 8, 10], [2, 3, 5, 8, 11], [2, 3, 5, 9, 11],
[2, 3, 6, 9, 11] , [2, 3, 6, 10, 11], [2, 3, 7, 9, 12], [2, 3, 8, 10, 11],
[2, 4, 5, 7, 8] , [2, 4, 5, 7, 12], [2, 4, 5, 8, 11], [2, 4, 5, 11, 12],
[2, 4, 6, 9, 10] , [2, 5, 7, 8, 10], [2, 5, 7, 9, 11], [2, 5, 7, 11, 12],
[2, 6, 7, 9, 11] , [2, 6, 7, 9, 12], [2, 6, 7, 11, 12], [2, 6, 8, 9, 10],
[2, 6, 8, 9, 12] , [2, 6, 8, 10, 12], [2, 6, 10, 11, 12], [2, 8, 10, 11, 12],
[3, 4, 5, 8, 9] , [3, 4, 5, 8, 12], [3, 4, 5, 9, 12], [3, 4, 6, 7, 11],
[3, 4, 6, 7, 12] , [3, 4, 6, 8, 9], [3, 4, 6, 8, 12], [3, 4, 6, 10, 11],
[3, 5, 7, 9, 10] , [3, 5, 8, 9, 11], [3, 5, 8, 10, 12], [3, 5, 9, 10, 12],
[3, 6, 7, 8, 11] , [3, 6, 7, 8, 12], [3, 6, 8, 9, 11], [3, 8, 10, 11, 12],
[4, 5, 7, 8, 10] , [4, 5, 7, 10, 12], [4, 5, 8, 9, 11], [4, 5, 8, 10, 12],
[4, 5, 9, 11, 12] , [4, 6, 7, 10, 11], [4, 6, 7, 10, 12], [4, 6, 8, 9, 10],
[4, 6, 8, 10, 12] , [4, 7, 8, 9, 10], [4, 7, 8, 9, 11], [4, 7, 9, 10, 11],
[5, 7, 9, 10, 11] , [5, 7, 10, 11, 12], [5, 9, 10, 11, 12], [6, 7, 8, 9, 11],
[6, 7, 8, 9, 12] , [6, 7, 10, 11, 12]

Table 4. Three 1-bistellar moves on 1((S2
× S2) # (S2

× S2)).

([1, 2, 3, 7, 10], [2, 3, 5, 7, 10])
([2, 3, 5, 9, 11], [2, 3, 6, 9, 11])
([1, 2, 4, 9, 10], [2, 4, 6, 9, 10])

Table 5. A spanning simple 2-tree in the link of {1, 2} in 1((S2
× S2) # (S2

× S2)) after three
1-bistellar moves.

{[3, 5, 10], [5, 7, 10], [7, 8, 10], [8, 9, 10], [8, 9, 12], [4, 9, 12], [4, 6, 9], [4, 11, 12]}

Proof. Let 1 be a triangulation of S3
× S3. By Schenzel’s formula (see Theorem 4.14)

hi = h′i for i = 1, 2, 3 or 4. The generalized Dehn–Sommerville equations imply that
h′4 − h

′

3 = 70 =
(8

4

)
. Hence, h′4 = h4 ≥

(9
4

)
, h′3 = h3 ≥

(8
3

)
, h′2 = h2 ≥

(7
2

)
and

h′1 = h1 ≥
(6

1

)
. In [26, Section 7], Lutz gives a triangulation of S3

× S3 with this h-
vector. In addition, the link of the face denoted by [1, 2, 3, 4] in that triangulation has a
spanning simple 2-tree, so Proposition 5.6 applies. ut

In [47] Walkup proved that for any closed three-manifold M there exists γ (M) such that
for any pair (a, b) with γ (M) ≤ b ≤

(
a+1

2

)
, there exists a triangulation 1 of M with
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g1(1) = a and g2(1) = b. In fact, this is true for all closed homology manifolds of
dimension at least three which can be triangulated. We prove this in a series of lemmas
which are an adaptation of Walkup’s proof to higher dimensions.

Lemma 5.11. Let M be a connected homology manifold without boundary of dimension
d − 1. If M has a triangulation, then M has a triangulation which contains a spanning
simple (d − 1)-tree.

Proof. Let1 be a triangulation of T . Since1 is connected, there exists a simple (d− 1)-
tree T and a dimension preserving simplicial map φ : T → 1 which maps surjectively
onto the vertices of1. Indeed, T and φ can be constructed inductively by beginning with
a facet of 1 and attaching new facets to T along codimension one faces corresponding
to free codimension one faces of the image of T until all of the vertices of 1 are in the
image of φ.

If φ is one-to-one on the vertices of T , then the image of T satisfies the conclusion
of the lemma. Otherwise, let y1, . . . , ys be a natural ordering of the vertices of T . Let
yt be the last vertex of T such that |φ−1(φ(y))| ≥ 2. The definition of yt implies that
φ is a simplicial isomorphism when restricted to the closed star of yt . Hence B, the
image of st(yt ), is a ball. Now let 1′ be the complex obtained from 1 by the central
retriangulation of B. Define a new map φ′ by φ′(yi) = φ(yi), except φ(yt ) = w, where
w is the new vertex of 1′. To see that φ′ induces a simplicial map, it is sufficient to note
that if φ(yt ) ∪ ρ is a facet of 1 which includes φ(yt ), then ρ is a face on the boundary
of B, so w ∪ ρ is a face of 1′. Thus, φ′ : T → 1′ is a simplicial map which also
maps surjectively onto the vertices of 1′, is one-to-one on all the vertices after yt , and
|φ′
−1
(φ′(yt ))| = |φ

−1(φ′(yt ))| − 1. Repeating this procedure enough times gives the
desired triangulation and (d − 1)-tree. See Figure 7 for a two-dimensional portrayal. ut

Lemma 5.12. Let M be a connected homology manifold without boundary of dimension
d− 1. IfM has a triangulation, thenM has a triangulation1 which contains a spanning
simple (d−1)-tree T in which every facet of T contains a fixed (d−3)-dimensional face.

Proof. By the previous lemma we can choose a triangulation 10 of M and a spanning
simple (d − 1)-tree T0 of 10. Let 1′1 be the complex obtained from the central retri-
angulation of T0 and let w1 be the new vertex. The link of w1 contains all of the other
vertices of 1′1. Now we repeat the procedure used in the proof of the previous lemma.
However, the original tree T and φ are constructed by first choosing a simple (d−2)-tree
T̃1 and simplicial map φ̃1 : T̃1 → lkw1 such that all of the vertices in the link of w1
are in the image of φ̃1. Then let T1 = {w1} ∗ T̃1 and φ1 be φ̃1 extended to T1 by setting
φ1(w1) = w1.Now each facet of the image of φ1 containsw1 and |φ−1

1 (w1)| = 1.Hence,
while retriangulating 1′1 for the purposes of forcing φ1 to be one-to-one on the vertices,
w1 will remain in all of the facets in the image. At the end of this process we will have a
triangulation 11 and spanning simple (d − 1)-tree T1 all of whose facets contain w1. If
d = 4 we are done. Otherwise, let 1′2 be the complex obtained from 11 by the central
retriangulation of T1 and let w2 be the new vertex. Repeat this process beginning with a
simple (d − 3)-tree T̃2 and a vertex spanning simplicial map φ̃2 from T̃2 into the link of
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Fig. 7. Creating a spanning simple (d − 1)-tree.

{w1, w2}. Arguing as before we will end up with a simple (d − 1)-tree T2 in 12 all of
whose facets contain {w1, w2}. This process can be repeated until we obtain the promised
triangulation and spanning simple (d − 1)-tree. ut

Lemma 5.13. Let M be a connected homology manifold without boundary of dimension
d − 1. If M has a triangulation, then M has a 2-neighborly triangulation which contains
a spanning simple (d − 1)-tree T and a codimension three face σ such that σ is in every
facet of T .

Proof. Using the previous lemma, we begin with a triangulation 10 and spanning simple
(d − 1)-tree T0 every facet of which contains the codimension three face ρ0. If 10 is
2-neighborly we are done. So suppose 10 has m pairs of vertices which do not have an
edge between them. Let 11 be the complex obtained by the central retriangulation of T0
and let w1 be the new vertex. As in the proof of Proposition 5.6, the link of ρ0 ∪ {w1}

contains all of the other vertices of 11. So 11 has the same m pairs of vertices without
edges. Induction will complete the proof if we can construct a triangulation 1 and face
ρ ∈ 1 which satisfy the hypothesis of the lemma such that 1 has only m − 1 pairs of
vertices with no edge between them.

Let x, y be vertices in 11 with no edge between them. Since ρ0 ∪ {w1} has codimen-
sion two, its link is a circle. As x and y do not have an edge between them, they must be
in the link of ρ0 ∪ {w1} and be separated by at least one vertex as one travels around the
circle. The construction of 1 and ρ consists of three steps.



482 Ed Swartz

Step 1: Retriangulate so that x and y are only separated by one vertex in the link of a
codimension two face whose link contains all of the other vertices. Write the vertices in
the link of ρ0∪w1 in cyclic order, (x, v1, . . . , vs, y, u1, . . . , ut ). If either s or t is one, then
Step 1 is complete. If not, let P1 be the path with ordered vertices (x, v1, . . . , vs, y) and let
P2 be the path with ordered vertices (vs, y, u1, . . . , ut ). Choose w0 ∈ ρ0 and set ρ′0 to be
ρ0 withw0 removed. If d = 4, then ρ′0 = ∅. Set S = (({w1}∪ρ

′

0)∗P1)∪(({w0}∪ρ
′

0)∗P2)

and T = (ρ0 ∪w1)∗ (P1 ∪P2). Now T is a spanning simple (d− 1)-tree in11 and S is a
spanning simple (d − 2)-tree in the boundary of T . Every facet of S contains ρ′0. Figure 8
shows S in the link of ρ′0.

w1

w0

x

v1

v2

u

u

v3

y

1

2

Fig. 8. The tree S in the link of ρ′0.

Let 12 be the complex obtained from 11 by the central retriangulation of T and let
w2 be the new vertex. In this complex S ∗ {w2} is a spanning simple (d − 1)-tree. So now
we let 13 be the complex obtained from 12 by the central retriangulation of S ∗ {w2}

and call the new vertex w3. Using Figure 8, we can see that the link of {w2, w3} ∗ ρ
′

0
in 13 is the circle (y,w1, x, v1, . . . , vs, w0, ut , ut−1, . . . , u1). Note that in each of the
retriangulations the pairs of vertices without edges have not changed.

Step 2: Perform a 1-bistellar move on ∂({x, y})∗({w1, w2, w3}∗ρ
′

0) and call the resulting
complex 14. This introduces an edge between x and y and leaves m− 1 pairs of vertices
without edges. However, w1 is no longer in the link of {w2, w3} ∗ ρ

′

0.

Step 3: Let P4 be the path whose vertices in order are (x, y, u1, . . . , ut , w0, vs, . . . , v1).

Form a new (d − 2)-tree, S̃4 = ρ′0 ∗ (({w2} ∗ P4) ∪ {x,w1, y}). Now T4 = {w3} ∗ S̃4

is a spanning simple (d − 1)-tree in 14. In addition, S4 = S̃4 ∪ {{y,w1, w3} ∗ ρ
′

0} is a
spanning simple (d − 2)-tree in the boundary of T4. Two more triangulations will finish
the job. First, 15 is the complex obtained from 14 by the central retriangulation of T4
with new vertex w4. In this complex T5 = {w4} ∗ S4 is a spanning simple (d − 1)-tree.
Finally, set 1 to be the complex obtained from the central retriangulation of T5 with new
vertex w5, and let ρ = {w4, w5} ∪ ρ

′

0. Here we see that the link of the codimension two
face ρ contains all the other vertices of 1 and there are only m − 1 pairs of vertices that
do not span an edge. ut
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Theorem 5.14. Let M be a connected homology manifold without boundary of dimen-
sion d−1. Then there exists γ (M) such that for every pair (a, b) with γ (M) ≤ b ≤

(
a+1

2

)
there exists a triangulation 1 of M with g1(1) = a and g2(1) = b.

Proof. Apply Proposition 5.6 to the triangulation guaranteed by Lemma 5.13. ut

Corollary 5.15. Let M be a closed homology manifold of dimension at least three. If M
has a triangulation, then for n sufficiently large there exist 2-neighborly triangulations of
M with n vertices.

As mentioned before, our proof of the existence of 2-neighborly triangulations is based
on Walkup’s proof of this for 3-manifolds [47]. A very different approach in dimension
three is Sarkaria’s proof of the existence of 2-neighborly triangulations of 3-manifolds
with or without boundary [34].
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Dreiecke zerlegen kann. Math. Ann. 130, 317–326 (1955) Zbl 0066.41702 MR 0075591
[34] Sarkaria, K. S.: On neighbourly triangulations. Trans. Amer. Math. Soc. 277(1), 213–239

(1983) Zbl 0522.57010 MR 0690049
[35] Schenzel, P.: On the number of faces of simplicial complexes and the purity of Frobenius.

Math. Z. 178, 125–142 (1981) Zbl 0472.13012 MR 0627099
[36] Sommerville, D.: The relations connecting the angle-sums and volume of a polytope in space

of n dimensions. Proc. Roy. Soc. London Ser. A 115, 103–119 (1927) Zbl 53.0578.03

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0651.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0864505
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1015.52007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1923232
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0451.57005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0586595
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0624.52004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0877009
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.57021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1890098
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1103.14029&format=complete
http://www.ams.org/mathscinet-getitem?mr=2231198
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0134.42403&format=complete
http://www.ams.org/mathscinet-getitem?mr=0189039
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0552.52003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0841439
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0526.52008&format=complete
http://www.ams.org/mathscinet-getitem?mr=0712103
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0866.52011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1425789
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0809.52014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1322066
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0717.52012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1094907
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0209.53701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0278183
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0803.52007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1228132
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0835.57011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1019276
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0922.52004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1669325
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0345.13017&format=complete
http://www.ams.org/mathscinet-getitem?mr=0407036
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0066.41702&format=complete
http://www.ams.org/mathscinet-getitem?mr=0075591
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0522.57010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0690049
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0472.13012&format=complete
http://www.ams.org/mathscinet-getitem?mr=0627099
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:53.0578.03&format=complete


Face enumeration—from spheres to manifolds 485

[37] Stanley, R. P.: A monotonicity property of h-vectors and h?-vectors. Eur. J. Combin. 14, 251–
258 (1993) Zbl 0799.52008 MR 1215335

[38] Stanley, R. P.: Cohen–Macaulay complexes. In: M. Aigner (ed.), Higher Combinatorics, Rei-
del, Dordrecht, 51–62 (1977) Zbl 0376.55007 MR 0572989

[39] Stanley, R. P.: Balanced Cohen–Macaulay complexes. Trans. Amer. Math. Soc. 249, 139–157
(1979) Zbl 0411.05012 MR 0526314

[40] Stanley, R. P.: The number of faces of a simplicial convex polytope. Adv. in Math. 35, 236–
238 (1980) Zbl 0427.52006 MR 0563925

[41] Stanley, R. P.: Some aspects of groups acting on finite posets. J. Combin. Theory Ser. A 32,
132–161 (1982) Zbl 0496.06001 MR 0654618

[42] Stanley, R. P.: A survey of Eulerian posets. In: T. Bisztricky et al. (eds.) Polytopes: Abstract,
Convex and Computational, Kluwer, 301–333 (1994) Zbl 0816.52004 MR 1322068

[43] Stanley, R. P.: Combinatorics and Commutative Algebra. Progr. Math. 41, Birkhäuser Boston
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