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Abstract. A near-symplectic structure on a 4-manifold is a closed 2-form that is symplectic away
from the 1-dimensional submanifold along which it vanishes and that satisfies a certain transver-
sality condition along this vanishing locus. We investigate near-symplectic 4-manifolds equipped
with singular Lagrangian torus fibrations which are locally induced by effective Hamiltonian torus
actions. We show how such a structure is completely characterized by a singular integral affine
structure on the base of the fibration whenever the vanishing locus is nonempty. The base equipped
with this geometric structure generalizes the moment map image of a toric 4-manifold in the spirit
of earlier work by the second author on almost toric symplectic 4-manifolds. We use the geo-
metric structure on the base to investigate the problem of making given smooth torus actions on
4-manifolds symplectic or Hamiltonian with respect to near-symplectic structures and to give inter-
esting constructions of structures which are locally given by torus actions but have nontrivial global
monodromy.
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1. Introduction

Advances in symplectic topology in the last decade have shown that symplectic 4-mani-
folds populate a vast portion of the world of smooth 4-manifolds, extending far beyond
the class of Kähler manifolds (see [5, 7] among others). Meanwhile, some of the most
powerful techniques for studying them are motivated by complex algebraic geometry. For
a 2-form ω on a 2n-dimensional manifold to be symplectic, it must be nondegenerate
(i.e. ωn must be nonvanishing) and it must be closed (i.e. dω = 0). The first condition
guarantees that the manifold admits an almost complex structure, while the additional
condition of closedness allows one to get control of solutions to differential equations in-
volving an “approximate Cauchy–Riemann” operator and obtain compact moduli spaces
of solutions.
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Currently it is becoming apparent that one can study a more general class of ori-
ented smooth 4-manifolds using the techniques of pseudo-holomorphic curves [19] and
Lefschetz fibrations [3]. Indeed, it suffices that there be a cohomology class whose square
induces the given orientation of the 4-manifoldX, i.e. b+2 (X) > 0. Honda [8] showed that
on such a manifold there always exists what is now known as a near-symplectic form:

Definition 1.1. On a smooth, oriented 4-manifold X, consider a closed 2-form ω such
that ω2 ≥ 0 and let Zω denote the vanishing locus, the set of points where ω = 0. The
form ω is near-symplectic if

(1) ω2 > 0 on the complement of Zω
(2) at each point x ∈ Zω, if we use local coordinates on a neighborhoodU of x to identify

the map ω : U → 32(T ∗U) as a smooth map ω : R4 → R6, then its linearization
at x, Dωx : R4 → R6, has rank 3.

We call the set X \ Zω the symplectic locus. A near-symplectic manifold is an oriented
smooth 4-manifold equipped with a near-symplectic form.

Definition 1.1 is a rephrasing, in local coordinates, of the definition of a near-symplectic
form given in [3]. Indeed, if φ : R4 → R4 is a change of coordinates on U and 8 :
R6 → R6 is the corresponding change of coordinates on 32(T ∗U), then, restricted to
Zω, Dωx ◦ φ = 8 ◦Dωx . Consequently, on Zω the map Dωx represents an intrinsically
defined derivative, denoted in [3] by ∇ωx : TxX → 32(T ∗x X). The same paper explains
why 3 is the maximum possible rank for Dωx and that this definition is equivalent to the
original definition (see [8]) in terms of metric properties. Specifically, a closed 2-form ω

on a 4-manifold X is near-symplectic if it is self-dual with respect to some metric g and,
viewed as a section of the bundle 3+2 of g-self-dual 2-forms, is transverse to the zero
section.

Several threads of emerging research indicate that one should be able to understand
the moduli spaces of pseudo-holomorphic curves in near-symplectic manifolds and that
the extra structure of a fibration induced by a Hamiltonian torus action should aid in this
endeavor. Specifically, Taubes has made initial steps in his program to develop Gromov–
Witten invariants for near-symplectic manifolds that should be invariants of the underly-
ing smooth structure [19, 20]; Mikhalkin has calculated, via tropical algebraic geometry,
the Gromov–Witten invariants of toric surfaces in terms of 1-complexes in their moment
map images [14]; and Parker has used symplectic field theory to gain an understand-
ing of moduli spaces of pseudo-holomorphic curves in T ∗T 2 in terms of 1-complexes
in R2 [17]. Presuming success on these fronts, the results in this paper lead one to expect
to be able to calculate Taubes’ invariants for locally toric near-symplectic manifolds by
counting 1-complexes suitably immersed in the bases of the induced fibrations.

This paper can usefully be read in parallel with the work of Kaufman [10], which also
develops a theory of toric structures on near-symplectic manifolds.

We begin by giving a characterization of Hamiltonian torus actions on symplectic
4-manifolds that is convenient for generalizing to the near-symplectic setting and that
emphasizes the induced fibration.
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The following proposition can be read as a definition by those unfamiliar with Hamil-
tonian group actions, but is really a statement that a certain characterization of “Hamilto-
nian” is equivalent to the standard definition (see Definition A.1).

Proposition 1.2. A smooth torus action σ : T 2 × X → X on a symplectic 4-manifold
(X, ω) is Hamiltonian if and only if there exists a smooth map µ : X → R2, called the
moment map, such that, for any ξ ∈ R2, the vector field Vξ whose flow is x 7→ σ(tξ, x)

(for t ∈ R) is defined by the equation ω(Vξ ,W) = −ξ ·Dµ(W) for all W ∈ TX.

A proof of this proposition is provided for convenience in the appendix. Note that this
proposition is true only for torus actions. Indeed, the proof relies on the fact that the
group is both abelian and compact.

Remark 1.3. As part of the proof of Proposition 1.2, we establish that ω(Vξ , Vη) = 0
for all ξ, η ∈ R2. This implies that preimages of the moment map are isotropic, and in
particular the top-dimensional preimages are Lagrangian.

Generalizing to the near-symplectic setting we have:

Definition 1.4. A smooth torus action σ : T 2×X→ X on a near-symplectic 4-manifold
(X, ω) which preserves ω is Hamiltonian if there exists a smooth map µ : X → R2

such that µ|X\Zω is a moment map for σ |X\Zω . In particular, σ |X\Zω is Hamiltonian
in the usual sense. We call µ : X → R2 the moment map for σ . An action is locally
Hamiltonian if every orbit has an open neighborhood in which the action is Hamiltonian.

The assumption of the smoothness ofµ is not constraining. Indeed, given any moment
map µ : X \Zω → R2 for the restriction of a smooth torus action to the symplectic locus
of a near-symplectic manifold (X, ω), it can be shown that µ extends smoothly acrossZω.

Two questions we address in this paper are:

Question 1.5. Which closed T 2-manifolds (4-manifolds equipped with smooth effective
torus actions) admit near-symplectic forms with respect to which the actions are Hamil-
tonian?

Question 1.6. Which closed T 2-manifolds admit near-symplectic forms with respect to
which the actions are locally Hamiltonian?

Recall that a toric manifold is a symplectic manifold equipped with an effective
Hamiltonian torus action (i.e. only the identity acts trivially). This definition generalizes
immediately to near-symplectic manifolds.

We are particularly interested in the fibrations induced by Hamiltonian and locally
Hamiltonian torus actions. These structures, rather than the actions themselves, appear to
be useful for the study of pseudo-holomorphic curves [17]. Furthermore, shifting the fo-
cus to fibrations, there is no need for the manifold to admit a global effective torus action,
thereby extending the scope of our results. Therefore we make the following definitions.

Definition 1.7. The boundary of a smooth surface has corners if its boundary is piecewise
smooth and each nonsmooth point of the boundary has a neighborhood that smoothly
surjects onto a neighborhood of the vertex of a sector in R2.
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Definition 1.8. Let (X, ω) be a near-symplectic manifold. A toric fibration of a near-
symplectic manifold is a smooth surjective map π : X → B to a smooth surface with
boundary and corners such that the top-dimensional fibers of π are Lagrangian tori and,
ignoring the smooth structure on B, the map π is the orbit space projection for an effec-
tive Hamiltonian torus action on (X, ω). A locally toric fibration of (X, ω) is a smooth
surjective map π : X → B to a smooth surface with boundary and corners such that
each fiber has an open neighborhood in which the fibration is toric for some Hamilto-
nian torus action on the neighborhood. A (locally) toric near-symplectic manifold is a
near-symplectic manifold equipped with a (locally) toric fibration.

These generalizations lead us to the following question:

Question 1.9. Which smooth 4-manifolds with b+2 > 0 can be equipped with near-
symplectic forms so as to admit locally toric fibrations?

Our central results (Theorems 3.5 and 3.7) assert that toric near-symplectic structures
are in one-to-one correspondence with surfaces equipped with certain singular integral
affine structures. (See Definition 3.3). This result generalizes naturally to locally toric
near-symplectic manifolds (Theorems 5.2 and 5.4). These theorems allow us to answer
questions about realizing smooth torus actions in the near-symplectic world and give a
number of interesting constructions of near-symplectic 4-manifolds.

For simply connected manifolds we can answer Questions 1.5, 1.6 and 1.9 concisely:

Theorem 1.10. Every locally toric fibration of a simply connected near-symplectic man-
ifold is toric.

Every smooth effective torus action on a simply connected 4-manifold X with b+2 (X)
> 0 is Hamiltonian with respect to some near-symplectic structure. Furthermore, the
vanishing locus for any such near-symplectic structure must have exactly b+2 (X) − 1
components.

In [16], which we use extensively here, it is shown that the simply connected T 2-mani-
folds are precisely S4, S2 × S2, and all connected sums of CP 2 and CP 2. Of course, to
support a near-symplectic structure the manifold must either be S2 × S2 or have at least
one CP 2 summand to make b+2 > 0.

To state other results requires the notion of positive turning along boundary compo-
nents of the orbit space of a torus action (Definition 4.5). Briefly, each boundary compo-
nent of the orbit space is naturally decomposed as a union of edges, to each of which is
associated a “slope” in Q∪{∞}, corresponding to the stabilizer subgroups of orbits above
the segments (as shown in [16]). The orbit space, together with this decomposition, is the
weighted orbit space. As one traverses a boundary component, the positive turning is the
total angular turning of these slopes, where from one edge to the next one turns always
counterclockwise. Because each boundary component is a closed curve, this number is
always a nonnegative integral multiple of π .

The following proposition shows how the notion of positive turning can be used to
recognize the topological type of a T 2-manifold from its orbit space. Accordingly, this
result is complementary to those in [16].
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Proposition 1.11. Consider a simply connected T 2-manifold (X, σ ) whose weighted or-
bit space has more than four edges. Let T be the positive turning of the weighted orbit
space and let V be the number of its vertices. Then X is diffeomorphic to mCP 2 # nCP 2

where m = T/π − 1 and n = V −m− 2.

Note that when there are four or fewer edges, the topology can be determined merely by
comparing the weighted orbit space with a short set of examples.

Theorem 1.12. Consider a closed T 2-manifold (X, σ ) such that σ has no nontrivial fi-
nite stabilizers. Let T0 be the largest positive turning along any of the boundary compo-
nents of the orbit space B. Then there exist near-symplectic forms with respect to which
σ is Hamiltonian only if T0 ≥ 2π . If g = 0 then having T0 ≥ 2π is in fact sufficient to
give the existence of such a near-symplectic form.

Meanwhile, given any compact surface with nonempty boundary, there is a toric near-
symplectic manifold with orbit space B.

Question 1.13. In the preceding theorem, when g > 0, is there a clean statement of a
necessary and sufficient condition for making the action Hamiltonian?

The second author is investigating this question. In the meantime, we can provide
necessary and sufficient conditions for making the action locally Hamiltonian:

Theorem 1.14. Consider a closed T 2-manifold (X, σ ) whose action σ has no nontrivial
finite stabilizers. Let g and k be the genus and Euler characteristic of the orbit space B.
Let T be the sum of the positive turnings along all of the boundary components of the
weighted orbit space. Then there exist near-symplectic forms on X with respect to which
σ is locally Hamiltonian if and only if either

(1) B is a torus, or
(2) B has nonempty boundary and either

(a) g ≥ 1,
(b) g = 0 and T ≥ (3− k)π , or
(c) B is an annulus, T = 0, and the two boundary components each have one edge

of the same slope.

The number of components of the vanishing locus must be (T − 2πχ)/π where χ =
2− 2g − k is the Euler characteristic of the surface.

Theorem 1.14 implies that, up to homeomorphism, any surface with nonempty boundary
is the orbit space of a near-symplectic manifold with a torus action that is locally Hamil-
tonian. Furthermore, there are no constraints on the one-dimensional stabilizer subgroups
unless B is a disk or an annulus.

A locally toric fibration can arise from a global torus action only if the integral affine
monodromy of the base (Definition 5.3) is trivial. With regard to locally toric fibrations
not induced by global torus actions we show:
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Proposition 1.15. Given any compact surface with boundary B and any homomorphism
h : π1(B)→ GL(2,Z), there is a closed near-symplectic manifold (X, ω) that admits a
locally toric fibration with base B and monodromy h. (Here, as part of the construction,
B inherits a smooth structure.)

Proposition 1.16. There is an infinite family of mutually nondiffeomorphic closed near-
symplectic manifolds that support locally toric structures with nontrivial monodromy,
none of which are diffeomorphic to a locally toric near-symplectic manifold with trivial
monodromy.

The general philosophy in this paper, thanks to Theorems 3.5, 3.7, 5.2 and 5.4, is to
study toric and locally toric near-symplectic manifolds in terms of immersed polygons
in the plane that represent the base, or a fundamental domain of the base, of the induced
fibration.

The bases of toric and locally toric fibrations carry a naturally defined geometry whose
local isometries belong to Aff(2,Z) := {p 7→ Ap + b | A ∈ GL(2,Z), b ∈ R2},
namely an integral affine structure. Isometric immersions of such surfaces into the plane,
equipped with the standard integral affine structure (Definition 3.1), are such that almost
every point has a neighborhood whose image is equivalent, up to the action of an element
of Aff(2,Z), to a domain in the first quadrant Q of R2. At the remaining points, all of
which are on the boundary, singularities are allowed where the boundary can double back
on itself as in Figure 1.
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Fig. 1. Various examples of integral affine surfaces, with and without edge folds.
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Example 1.17. To conclude this introduction, Figure 1 gives an indication of the variety
of integral affine surfaces with edge folds, and hence of locally toric near-symplectic
manifolds. Each open circle represents a component of the vanishing locus. The parts of
an edge that limit onto an open circle are drawn slightly displaced as a visual aid, although
they should be understood to coincide. By Theorem 5.4 each of these surfaces determines
a unique locally toric near-symplectic manifold.

All but one of the figures is the image in (R2,A0) of the base of a locally toric fibra-
tion via an immersion that preserves integral affine structures. The figure with the dotted
lines is the image under such an immersion of the complement of a line segment, across
which there is nontrivial monodromy. To reconstruct the surface, identify the dotted edges
by the element of Aff(2,Z) determined by the linear map indicated and an appropriate
translation.

From left to right in the top row, the first figure is the usual moment map image of CP 2

while the second is an integral affine base of CP 2 # CP 2. (Seeing this would be a good
exercise to test one’s understanding of Section 3.) The bottom right figure is the immersed
image of a surface of genus one with one boundary component. It can be modified easily
to give examples with higher genus or more boundary components.

2. Local models

We devote this section to models for the neighborhoods of orbits in a near-symplectic
manifold equipped with an effective Hamiltonian torus action. There are four types of
orbits that can appear in this setting, characterized by the dimension of the stabilizer
subgroup and whether or not the orbit belongs to the vanishing locus.

In general, for a smooth torus action on a 4-manifold, the possible stabilizer sub-
groups are the identity, a circle subgroup, the whole torus, or a nontrivial finite sub-
group [16]. Following [16] we denote circle subgroups (stabilizers of circle orbits) by
G(a,b) := {(t1, t2) | (t1, t2) · (a, b) = 0}. Here and throughout this paper, (t1, t2) are
R/2πZ-valued coordinates on the 2-dimensional Lie group T 2 = S1 × S1.

An important feature of a Hamiltonian torus action is that the orbits are isotropic (i.e.,
the symplectic form evaluates trivially on pairs of vectors tangent to an orbit). Hence, for
an effective Hamiltonian torus action on a 4-manifold, the generic orbits are Lagrangian
tori (isotropic and half the dimension of the ambient manifold). Arnold’s Theorem [1]
asserts that Lagrangian torus orbits have a standard product neighborhood, and thereby
prevents the presence of orbits with nontrivial finite stabilizer. Therefore, in the sym-
plectic locus there are isolated point fibers, circle fibers that come in one-dimensional
families, and the generic torus orbits. Meanwhile, because a Hamiltonian action on a
near-symplectic manifold preserves the near-symplectic form, the vanishing locus must
be a union of orbits. The fact that point orbits are isolated then implies that each compo-
nent of the vanishing locus is one circle orbit.

We will see that the following two examples provide all the local information about
Hamiltonian torus actions on near-symplectic manifolds.
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Example 2.1 (Standard torus action on R4). Convenient coordinates on R4 = R2 × R2

are the square polar coordinates (p, q) := (p1, q1, p2, q2) which, with respect to polar
coordinates (r, θ), are given by p = 1

2 r
2, q = θ . Then the standard symplectic structure

on R4, which with respect to Euclidean coordinates (x, y) is ω0 = dx ∧ dy := dx1 ∧
dy1 + dx2 ∧ dy2, takes the form ω0 = dp ∧ dq := dp1 ∧ dq1 + dp2 ∧ dq2. On (R4, ω0)

we have the standard torus action given by

t · (p, q) = (p, q + t)
and the corresponding standard moment map µ0 : R4 → Q = {(x, y) | x ≥ 0, y ≥ 0}
given by µ0(p, q) = p, so x = p1 and y = p2.

The closed first quadrant Q is the orbit space of this action. For the reader unfamiliar
with toric manifolds, we point out that:

(1) The vertex of Q is the image of a point orbit, with torus stabilizer.
(2) A nonvertex point on the boundary of Q is the image of a circle orbit with stabilizer

G(1,0) or G(0,1) depending on whether the point is in the positive x-axis or positive
y-axis, respectively.

(3) A point in the interior of Q is the image of a torus orbit, with trivial stabilizer.

Example 2.2 (Standard toric action near the vanishing locus). Following [6] we con-
struct a model neighborhood of a component of the vanishing locus in a near-symplectic
manifold as follows: Let α ∈ S1 be the 2π -periodic coordinate on S1 and let (x, y, z) be
Euclidean coordinates on R3. Then

ω1 = 2z(dz ∧ dα + dx ∧ dy)+ x(dz ∧ dy − dx ∧ dα)− y(dz ∧ dx + dy ∧ dα)
is a near-symplectic form on S1×R3 with vanishing locus Zω1 = S1×{(0, 0, 0)}. Indeed,
ω1 is self-dual with respect to g = dz2 + dα2 + dx2 + dy2 and transverse to the zero
section of3+2 . (Note that the symplectic orientation is opposite to the standard orientation
on S1 × R3.)

Letting (r, θ) be polar coordinates in the (x, y)-plane in R3, the form ω1 is invariant
under the torus action (t1, t2) · (α, r, θ, z) = (α + t1, r, θ + t2, z). The orbit space can
be identified with the closed upper half-plane H = {(X, Y ) | Y ≥ 0}, so that we have a
singular fibration π : S1 × R3 → H whose fibers are orbits, which we may take to be
given by the equations X = z and Y = r2/2. This particular choice of parameterization
facilitates certain calculations in the next section.

Note that if (X, Y ) is a point in the interior of H then π−1(X, Y ) is a torus orbit with
trivial stabilizer, while if (X, Y ) lies on the X-axis then π−1(X, Y ) is a circle orbit with
stabilizer G(1,0).

While the half-plane H is the orbit space, it is not the image of the moment map.
To find the moment map, we find action-angle coordinates—coordinates on the union of
principal orbits such that the moment map is projection to the linear coordinates. (Com-
pare with Example 2.1.) Accordingly, define f : H → R2 by p1 = X2 − Y , p2 = 2XY
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Fig. 2. The moment map image of the standard toric action near a component of the vanishing
locus in a toric near-symplectic manifold.

and let µ1 = f ◦ π : S1 × R3 → R2. Because µ1 is a submersion onto the comple-
ment of the positive p1-axis and is torus invariant, we can pull p1, p2 back via µ1 and get
coordinates

p1 = z2 − r2/2, q1 = α, p2 = zr2, q2 = θ
on the complement of S1 × R × {0, 0}, with respect to which ω1 = dp ∧ dq = dp1 ∧
dq1 + dp2 ∧ dq2. The torus action then becomes t · (p, q) = (p, q + t) and the image of
the union of circle orbits with stabilizer G(1,0) is the nonnegative p1-axis. Consequently,
as the reader can verify explicitly, µ1 is the moment map for the action on all of S1 ×
(R3 \ {(0, 0, 0)}), and hence a near-symplectic moment map on S1 × R3.

The preimage under µ1 of a point on the positive p1-axis is a disjoint union of two
circle orbits and the preimage of the origin is one circle orbit, the one belonging to Zω1 .
To emphasize these features, we draw the moment map image as the (p1, p2)-plane with
a double line along the positive p1-axis and a hole at the origin; see Figure 2.

We now show that, up to an automorphism of the torus, these examples provide a
complete set of examples.

First, it is important to understand the effect of an automorphism of the torus on the
moment map. The following lemma is standard for symplectic manifolds (and is easily
verified), and extends to near-symplectic manifolds by continuity.

Lemma 2.3. The moment mapµ for a toric near-symplectic manifold (X, ω, σ ) (where σ
is the torus action) is unique up to addition of a constant b ∈ R2. Furthermore, if t 7→ At ,
A ∈ GL(2,Z), is any automorphism of the torus, then the toric manifold (X, ω, σ ′), with
action σ ′ = σ ◦ (A× Id), has moment map AT ◦ µ where AT is the transpose of A.

Note that the set of orbit preserving symplectomorphisms is precisely the set of equiv-
alence classes of equivariant symplectomorphisms in which two equivariant symplecto-
morphisms are deemed equivalent if one can be obtained from the other by precomposing
with an automorphism of the torus.
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Lemma 2.4. Each orbit in a toric (symplectic) 4-manifold has a torus-invariant neigh-
borhood that symplectically embeds, in an orbit-preserving fashion, into (R4, ω0)

equipped with the standard Hamiltonian torus action described in Example 2.1. Such
an embedding can be chosen to be equivariant if and only if the stabilizer subgroup is the
identity, G(1,0), G(0,1), or the whole torus.

Proof. The equivariant tubular neighborhood theorem (or slice theorem) states that any
orbit has a neighborhood that is equivariantly symplectomorphic to a neighborhood of the
zero section of its normal bundle equipped with a linear Hamiltonian torus action (cf. [2]).
The germs of such equivariant neighborhoods are classified by their orbit types and their
stabilizer subgroups. The standard Hamiltonian action on (R4, ω0) has point and torus
fibers, and circle orbits whose stabilizer subgroups are G(1,0) or G(0,1). The stabilizer
subgroups for point and torus orbits are unique (equal to the torus and the identity, re-
spectively). Meanwhile, an automorphism A of the torus that is acting on the 4-manifold
changes a stabilizer subgroup for a circle orbit from Gv to GAT v , allowing any stabilizer
subgroup to be achieved by an automorphism of the torus. ut
Observation 2.5. The moment map image of the neighborhood of a fixed point in a toric
manifold is a convex sector bounded by rays with primitive integral tangent vectors u, v
such that the determinant |uv| has norm 1, and conversely all such sectors appear as
moment map images of R4. Meanwhile, the moment map image of the neighborhood of
an orbit with stabilizer subgroup Gv is a neighborhood of a point in a half-plane whose
boundary has v as its tangent vector.

Lemmas 2.4 and 2.3 tell us that Example 2.1 and its variants induced by automor-
phisms of the torus provide a complete set of local models for the neighborhood of an
orbit in a toric symplectic manifold, and that these models are distinguished by their mo-
ment map images.

We now turn to the question of what toric structures can look like in the neighborhood
of a component of the vanishing locus in a near-symplectic manifold.

Proposition 2.6. Each component C of the vanishing locus in a toric near-symplectic
manifold (X, ω, σ ) has an open torus-invariant neighborhoodN and an orbit-preserving
map φ : (N, ω, σ ) → (S1 × R3, ω1, σ1) which is a smooth symplectic embedding of
N \ C that maps C to S1 × 0 and is a homeomorphism onto its image. Again, up to an
automorphism of the torus, this embedding can be taken to be equivariant.

Proof. Whenever we use Cartesian coordinates (x, y, z) on R3, then we will freely also
use cylindrical coordinates (r, θ, z) on R3 without further ado.

Following the discussion of smooth torus actions in Section 2 (based on [16]), we
know that, up to an automorphism of T 2, we can choose coordinates α ∈ S1, (x, y, z)
∈ R3 on a neighborhood N of C so that C is {(α, x, y, z) | x = y = z = 0} and so that
the action is σ((t1, t2), (α, r, θ, z)) = (α + t1, r, θ + t2, z).

Suppose µ = (µ1, µ2) : N → R2 is a moment map for σ on N .
The orbit space is homeomorphic to the upper half-plane which, as in Example 2.2,

we parameterize by coordinates X, Y so that the projection π to the orbit space is given
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by X = z and Y = r2/2. (Note that we are using (X, Y ) as coordinates on this copy of
R2 to distinguish them from (x, y) which are coordinates on N .)

Then the moment map µ factors through the orbit space, µ = p ◦ π where p =
(p1, p2) : H → R2. The map p is smooth and is an immersion on H \ (0, 0). Because
the isotropy subgroup of the circle orbits is G(1,0), the map p sends both the positive and
negativeX-axes to straight lines of slope 0. The fact that µ is a moment map for the given
action then means that ω = dp1 ∧ dq1 + dp2 ∧ dq2, where q1 = α and q2 = θ .

Since we can freely translate the image of a moment map and can apply the torus
automorphism

(−1 0
0 1

)
without changing the isotropy subgroup, we assume without loss

of generality that p maps the origin to the origin and the positive X-axis to the positive
p1-axis. Consider a small semicircular arc inH starting on the positiveX-axis and ending
on the negative X-axis, avoiding (0, 0). This arc is mapped by p to a path starting on the
positive p1-axis and ending either on the negative or positive p1-axis, avoiding (0, 0),
completing a total of k half-rotations, for some positive integer k which is independent of
the choice of arc. We claim that k = 2. In other words, p also maps the negative X-axis
to the positive p1-axis and is injective on the interior of H .

We prove this claim by means of the following calculations.
We express ω in local coordinates near a point on C as a map ω : R4 → R6,

where the R4-coordinates are (α, x, y, z) and the R6 coordinates are the coefficients of
(dα ∧ dx, dα ∧ dy, dα ∧ dz, dx ∧ dy, dx ∧ dz, dy ∧ dz). We compute differentials:

dp1 = x ∂p1

∂Y
dx + y ∂p1

∂Y
dy + ∂p1

∂X
dz,

dp2 = x ∂p2

∂Y
dx + y ∂p2

∂Y
dy + ∂p2

∂X
dz,

dq1 = dα,
dq2 = 1

r2 (−ydx + xdy) = −
y

2
1
Y
dx + x

2
1
Y
dy.

Then because

dp1 ∧ dq1 + dp2 ∧ dq2 = − x ∂p1

∂Y
dα ∧ dx − y ∂p1

∂Y
dα ∧ dy − ∂p1

∂X
dα ∧ dz

+ ∂p2

∂Y
dx ∧ dy + y

2

(
1
Y

∂p2

∂X

)
dx ∧ dz

− x
2

(
1
Y

∂p2

∂X

)
dy ∧ dz,

we have the following expression for ω as a map to R6:

ω(α, x, y, z) =
(
−x ∂p1

∂Y
,−y ∂p1

∂Y
,−∂p1

∂X
,
∂p2

∂Y
,
y

2

(
1
Y

∂p2

∂X

)
,−x

2

(
1
Y

∂p2

∂X

))
. (1)

The derivative Dω is simply the 6-by-4 matrix of partial derivatives of this function. The
claim will follow from the fact that, on the vanishing locus Zω = {x = y = z = 0} where
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X = Y = 0, this matrix must have rank 3, together with the requirements that ω must be
everywhere well-defined and equal to 0 on Zω. For ω to be well-defined, ∂p2/∂X must
be divisible by Y , i.e.

∂p2

∂X
= Yf (X, Y )

for some smooth function f , and in particular

∂p2

∂X
= 0 when X = Y = 0.

That ω must vanish on Zω implies

∂p1

∂X
= ∂p2

∂Y
= 0 when X = Y = 0.

Now we computeDω, noting that everything is α-invariant, that for any function h(X, Y )
we have

∂h

∂x
= x ∂h

∂Y
,

∂h

∂y
= y ∂h

∂Y
,

∂h

∂z
= ∂h

∂X
, (2)

and that
∂2p2

∂X∂Y
= ∂

∂Y
(Yf (X, Y )) = f (X, Y )+ Y ∂f

∂Y
(3)

so that
∂2p2

∂X∂Y
(0, 0) = f (0, 0).

Thus, on Zω where X = Y = 0, we get

Dω =




0 − ∂p1
∂Y

0 0
0 0 − ∂p1

∂Y
0

0 0 0 − ∂2p1
∂X2

0 0 0 f

0 0 1
2f 0

0 − 1
2f 0 0



.

Therefore, to have rank 3, we need either that

f (0, 0) = ∂2p2

∂X∂Y
(0, 0) 6= 0,

or that
∂2p1

∂X2 (0, 0) 6= 0 and
∂p1

∂Y
(0, 0) 6= 0.

We now complete the proof of the claim by contradiction. Suppose k 6= 2. Note that
p2 is a real-valued function of two variables mapping (0, 0) to 0 with (0, 0) as a critical
point. (Since p2 is smooth on H we may extend its domain to an open neighborhood
of H .) If k = 1 then p2(X, Y ) > 0 for all Y > 0, while p2(X, 0) = 0 for all X, so (0, 0)
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must be a degenerate critical point for p2. Also if k > 2 then (0, 0) must be a degenerate
critical point, and so in either case the Hessian of p2 at (0, 0) must be singular. Since
∂p2
∂X
= Yf (X, Y ), we know that ∂

2p2
∂X2 (0, 0) = 0, so the Hessian being singular implies

that at (0, 0) we have ∂2p2
∂X∂Y

= 0.
Now consider p1. If k = 1 then, along the X-axis, p1(X, 0) is an increasing function

of X whose first derivative vanishes at X = 0, so its second derivative must also vanish
at X = 0, i.e. ∂

2p1
∂X2 = 0 at (0, 0). On the other hand, if k > 2, consider p1 evaluated

along semicircles centered at (0, 0) and of radius ε, as ε → 0. Define 0ε := {(X, Y ) |
X2+Y 2 = ε2 and ∂2p1

∂X2 = 0}. On each semicircle, ∂
2p1
∂X2 takes on both positive and negative

values, so for each ε > 0, 0ε is nonempty. Since ∂2p1
∂X2 = 0 is a closed condition,

⋃
ε 0ε

is a closed subset of H , implying that 00 is nonempty. Therefore, ∂
2p1
∂X2 = 0 at (0, 0).

Thus we must have k = 2, which establishes the claim.
The above claim means that these coordinates (p1, q1, p2, q2) behave, topologically,

exactly the same as the (p1, q1, p2, q2) coordinates in Example 2.2. Thus, identifying
these coordinates here with the corresponding coordinates in Example 2.2 gives the de-
sired homeomorphism which can fail to be smooth only on the vanishing locus p1 =
p2 = 0. ut

3. Toric near-symplectic manifolds

Recall that a toric near-symplectic manifold is a near-symplectic manifold equipped with
an effective smooth torus action that is Hamiltonian on the symplectic locus. As such,
there are two relevant classifications that are well-understood: that of T 2-manifolds in the
smooth category and that of toric manifolds in the symplectic category.

Orlik and Raymond classify T 2-manifolds in terms of their weighted orbit spaces.
They first note that the orbit space is a surface with boundary such that each point in
the interior of the surface is the image of a torus, and each point on the boundary is the
image of a lower-dimensional fiber (circle or point). Furthermore, the boundary is a union
of edges, the interiors of which parameterize circle orbits and the endpoints of which
are the images of point orbits. The weighted orbit space of a T 2-manifold is then the
oriented orbit space together with a labeling of the edges by the corresponding stabilizer
subgroups.

Meanwhile, Delzant’s Theorem classifies closed toric manifolds in terms of their mo-
ment map images [4], which are polygons (and in fact are weighted orbit spaces because
the tangent vectors to their edges encode the stabilizer subgroups).

We cannot apply Delzant’s classification to the symplectic locus of a toric near-
symplectic manifold because it is noncompact, thereby allowing the preimage of a point
in the moment map image to be disconnected. To accommodate this feature we introduce
integral affine surfaces, which are essentially weighted orbit spaces with an induced ge-
ometry that encodes the essential structure of the moment map. We then determine the
extent to which one can classify such manifolds in terms of their orbit spaces equipped
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with integral affine structures (Theorem 3.7). For a more leisurely discussion of this mat-
ter in the symplectic case the reader can consult [18].

Consider a toric near-symplectic manifold (X, ω, σ ) and the projection to its orbit
space, π : X → B. Let F be the discrete subset of ∂B that is the image of the vanishing
locus. Then the restriction of the moment map µ to the symplectic locus factors through
an orientation preserving immersion8 : B \F → R2 which extends to a continuous map
8 such that µ = 8 ◦ π .

The immersion8 induces a geometric structure on the orbit space whose local isome-
tries are elements of Aff(2,Z). Henceforth, unless otherwise noted, we assume that “sur-
face” means “surface with possibly nonempty boundary.”

Definition 3.1. An integral affine structure on a surface is a maximal atlas of charts to
a sector of R2 whose boundary rays have rational slope, with transition functions in
Aff(2,Z). The standard integral affine structure on R2, denotedA0, is the atlas containing
the identity map. Two integral affine surfaces (B,A) and (B ′,A′) are isomorphic if there
exists a homeomorphism φ : B → B ′ such that φ∗A′ = A.

Note that the homeomorphism φ is a diffeomorphism on the complement of the vertices.

Definition 3.2. A vertex on the boundary of an integral affine surface is a point that
maps, via a chart, to a vertex of a sector in R2, while an edge is the closure of a connected
component of the boundary minus its vertices. The boundary of an integral affine surface
is right polygonal if every vertex has a neighborhood that is isomorphic to a neighborhood
of the origin in the quadrant (Q,A0) ⊂ (R2,A0).

For near-symplectic manifolds equipped with a toric structure, the local model near a
component of the vanishing locus (Example 2.2) dictates the geometric structure in the
base near the image of such a component (Figure 2). This inspires the following:

Definition 3.3. The boundary of an integral affine surface has edge folds if there is a set
of points F ⊂ ∂B, called fold points, such that each point p ∈ F has a neighborhood U
and a homeomorphism φ : U → V to a neighborhood V of (0, 0) in the upper half-plane
H = {(X, Y ) | Y ≥ 0}, such that the integral affine structure on U \p is φ∗ψ∗A0, where
ψ : (X, Y ) 7→ (X2 − Y, 2XY) and A0 is the standard integral affine structure on R2.

If the set of fold points is nonempty, we always indicate these singularities explicitly,
so the integral affine surface whose boundary has edge folds is a triple (B,A, F ). Two
surfaces with such structures, (B,A, F ) and (B ′,A′, F ′), are equivalent if there exists
a homeomorphism from B to B ′, taking F bijectively to F ′, which is an integral affine
equivalence of (B \ F,A) and (B ′ \ F ′,A′).
The orbit space of a toric near-symplectic manifold acquires the structure of an integral
affine surface whose boundary is right polygonal with edge folds by pulling back to B \F
the standard integral affine structure via the immersion 8. Note that Lemma 2.3 implies
that if two toric near-symplectic manifolds are equipped with actions that differ by an
automorphism of the torus, then the integral affine structures on their orbit spaces are
isomorphic.
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Definition 3.4. Given a toric near-symplectic manifold (X, ω, σ ) with moment map µ
and orbit space projection π , there is a unique map 8 defined by µ = 8 ◦ π . The
local models for the moment map near any orbit imply that 8 is an immersion on the
complement of a set of isolated points which we denote by F . Let8 = 8|B\F , where B =
π(X). The integral affine base of the fibration defined by π and µ is then (B,8∗A0, F ),
an integral affine surface whose boundary is right polygonal with edge folds.

Theorem 3.5. Suppose (B,A, F ) is an integral affine surface whose boundary is right
polygonal boundary with edge folds. Then (B,A, F ) is the integral affine base of a
toric near-symplectic manifold if and only if there is an integral affine immersion 8 :
(B \F,A)→ (R2,A0) that extends to a continuous map8 : B → R2 so that each point
in F has a neighborhood N on which 8|N\∂B is injective and 8|(N\F)∩∂B is two-to-one
and linear.

Notice that there is no requirement here that B be compact.

Proof. The “only if” direction follows directly from the factorization of the moment map
for a toric near-symplectic manifold mentioned just before Definition 3.1 and the local
models in Examples 2.1 and 2.2, together with Lemma 2.4 and Proposition 2.6, invoking
automorphisms of the torus as needed. The “if” direction follows by construction.

Fix a torus T 2 with cyclic coordinates q = (q1, q2) of period 2π and consider the
manifold B × T 2 with the smooth torus action t · (x, q) = (x, q + t) where t = (t1, t2).
Equip B\F with local coordinates (p1, p2) = 8(x), x ∈ B. Then dp∧dq is a symplectic
form on (B \ F) × T 2 with respect to which the action is Hamiltonian. Notice that the
moment map for this action amounts to forgetting the cyclic coordinates.

Take the quotient of B×T 2 by identifying points as follows: if x belongs to a vertex in
the boundary of (B,A, F ) then identify (x, q) and (x, q ′) for all q, q ′; if x belongs to the
interior of an edge E of B, then identify (x, q) and (x, q ′) whenever t · (x, q) = (x, q ′)
for some t ∈ Gv where v is a primitive integral tangent vector to 8(E). Example 2.1,
together with automorphisms of the torus, and the fact that (B \F,A) is an integral affine
surface with right polygonal boundary, ensure that the quotient is a smooth manifold
with a smooth torus action, and that the symplectic structure (on the symplectic locus)
descends to the quotient, making the action Hamiltonian there. Call this manifold X and
let ω be the symplectic structure defined on the symplectic locus. Let π : X → B be
projection induced on X by the projection B × T 2 → B that merely forgets the T 2

factor.
Now, for any point p in F , let N be a small neighborhood of p satisfying the hy-

potheses. Let N ′ = N \ p. Then by construction, up to an automorphism of the torus,
(π−1(N ′), ω|π−1(N ′)) embeds symplectically and equivariantly into the complement of
the vanishing locus in Example 2.2. Let φ be the continuous extension of this embedding
to π−1(N). Pulling back via φ the near-symplectic structure ω1 and the torus action of
Example 2.2 we get a toric structure on π−1(N) that is compatible with the toric structure
on the symplectic locus of X. Doing this for each p ∈ F completes the construction. ut
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The question of what integral affine surfaces immerse in (R2,A0) is being investigated by
the second author. However, there is one case in which one can be ensure of the existence
of an integral affine immersion.

Lemma 3.6. If (B,A) is an integral affine surface such that B has trivial fundamental
group, then there exists an integral affine immersion (B,A)→ (R2,A0).

Proof. (B,A) is a manifold locally modeled on (R2,A0). As such, its developing map
(cf. [22]) D : (B̃, 9∗A) → (R2,A0) from the universal cover (whose covering map is
9 : (B̃, 9∗A) → (B,A)) is an integral affine immersion. But since B is contractible,
B̃ = B and 9 = Id. ut
We can now state and prove the generalization of Delzant’s Theorem for toric near-sym-
plectic manifolds.

Theorem 3.7. An integral affine surface (B,A, F ), with possibly nonempty right polyg-
onal boundary with edge folds, together with an integral affine immersion8 : (B \F,A)
→ (R2,A0), determines a toric near-symplectic manifold uniquely up to equivariant
homeomorphisms that, restricted to the symplectic locus, are symplectomorphisms. The
integral affine base (B,A, F ) by itself determines the toric near-symplectic manifold up
to an orbit-preserving homeomorphism that is a symplectomorphism on the symplectic
locus.

Proof. Without loss of generality, we restrict to open covers such that each component
of the vanishing locus belongs to a unique open set—so the gluing of open sets occurs
only on the symplectic locus. Use Theorem 3.5 to construct a toric near-symplectic man-
ifold (X, ω, σ ) whose integral affine base is (B,A, F ) with projection π : X → B. Let
S be the sheaf on B that associates to any open set U ⊂ B the group of equivariant
symplectomorphisms of (π−1(U), ωπ−1(U)). The sheaf cohomology groupH 1(B,S) en-
codes the transition maps between such torus invariant neighborhoods and classifies, up
to isomorphism, toric manifolds whose moment map µ factors as 8 ◦ π .

Our goal is to show thatH 1(B,S) is trivial. To do so we follow the argument put forth
in [12, Prop. 7.3], which the reader may consult for further details. Since the equivariant
symplectomorphisms are all time-one flows of Hamiltonian vector fields, S fits into an
exact sequence of sheaves,

0→ L→ C∞→ S → 0, (4)

where C∞ is the sheaf of smooth torus invariant functions on X (which is equivalent
to the sheaf of smooth functions on B),1 and L is the sheaf of torus invariant functions
whose time-one flows generate the identity map. This short exact sequence induces the
long exact sequence

· · · → H i(B,L)→ H i(B, C∞)→ H i(B,S)→ H i+1(B,L)→ · · · , (5)

so it suffices to show that H 1(B, C∞) = H 2(B,L) = 0.

1 In [12] the sheaf C∞ is isomorphic to the sheaf of continuous functions on B that lift to smooth
functions on the total space because the authors are working with orbifolds.
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The sheaf L is isomorphic to the sheaf of locally constant functions on B with values
in R × 3∗ where 3∗ ∼= Z2 is the lattice in the Lie algebra t∗ consisting of covectors
ξ whose infinitesimal vector field has the identity map as its time-one flow. Indeed, the
elements of L are precisely the functions f(c, ξ) defined by f(c, ξ)(b) = c + 〈ξ,8(b)〉
for each (c, ξ) ∈ R × 3∗. Because B is locally contractible, we have isomorphisms
between sheaf cohomology with coefficients in R and Z, and both de Rham and singular
cohomology. Consequently, H 2(B,L) = 0 because

H i(B,L) ∼= H i(B,R)×H i(B,Z)×H i(B,Z), (6)

and the fact that B immerses in R2 implies H 2(B,Z) ∼= H 2(B,R) = 0. Meanwhile,
because C∞ is a fine sheaf, H i(B, C∞) = 0 for all i > 0.

A different choice of integral affine immersion would yield a new toric manifold with
moment map8′ = 9 ◦8 for some9 ∈ Aff(2,Z). If A were the linear part of9, then by
Lemma 2.3 and the uniqueness proved above, the corresponding toric manifold would be
(X, ω, σ ′) with σ ′ = σ ◦ (AT × Id), which is indeed orbit-preserving symplectomorphic
to (X, ω, σ ). ut
The fact that our maps may not be smooth across the vanishing loci is a reflection of the
fact [9] that Moser’s method for near-symplectic forms near their vanishing loci does not
give smoothness at the vanishing loci. Thus it is really a feature of the germ of the toric
structure on a component of the vanishing locus, rather than a feature of how we glue in
a neighborhood of the component.

4. Making T 2-manifolds near-symplectic

4.1. Simply connected T 2-manifolds

Equipped with Orlik and Raymond’s technology [16] for understanding torus actions in
the smooth category, as outlined in Section 3, we now investigate the problem of find-
ing near-symplectic structures adapted to given smooth torus actions. The goal is to
prove Theorems 1.10, 1.12 and Proposition 1.11. In light of Theorem 3.7, proving The-
orems 1.10 and 1.12 amounts to realizing given weighted orbit spaces as integral affine
surfaces with appropriate boundaries isometrically immersed in (R2,A0).

We separate Theorem 1.10 into three propositions (4.1, 4.10, and 4.11), the first of
which is:

Proposition 4.1. Every locally toric fibration of a closed simply connected near-sym-
plectic manifold is toric.

Proof. Let π : (X, ω)→ (B,A, F ) be the locally toric fibration. By Theorem 3.5, (X, ω)
is toric if there is an integral affine immersion 8 : (B \ F,A)→ (R2,A0).

Because any loop in B lifts to a loop in X, X being simply connected implies B is
simply connected. Because a sphere cannot admit an integral affine structure, B must be
homeomorphic to a disk. Finally, by Lemma 3.6 we know that (B \ F,A) does immerse
isometrically in (R2,A0). ut
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Before proving the rest of Theorem 1.10 we introduce language to describe the image of
the boundary of an immersed integral affine surface.

Definition 4.2. A list of slopes s1, . . . , sk , or slope list, is right polygonal if sj ∈ Q ∪∞
for each j and, writing sj = mj/nj as a reduced fraction (with mj = 1, nj = 0 if
sj = ∞), if the determinant

(mj mj+1
nj nj+1

)
has norm 1 for each j ≤ n− 1. When the indices

of a list of k slopes are understood mod k, the slope list is cyclic.

Definition 4.3. A polygonal path with folds is a piecewise linear map γ : [0, n] →
R2, n ∈ N, well defined up to reparameterization relative endpoints on the subintervals
[j − 1, j ], j = 1, . . . , N , such that

(1) the image ej of γ |[j−1,j ], j ∈ {1, . . . , N}, has constant slope (and is called an edge),
(2) the slopes of ej and ej+1 are different for each j = 1, . . . , N − 1.

The vertices are the images of the integral points, γ (j), while the fold points are the
interior points of edges at which γ is not smooth, i.e. where the oriented tangent vector
changes direction.

A polygonal path (possibly with folds) is right polygonal if each vertex γ (j) has a
neighborhood that contains no fold points and in which oriented tangent vectors vj and
vj+1 to the edges ej , ej+1 have determinant |vjvj+1| = 1.

The definitions are analogous for polygonal loops with the usual additional stipulation
that γ (0) = γ (n). Notice that polygonal paths and loops are oriented in accordance with
the standard orientation of the domain interval [0, n]—and the indexing of the edges and
vertices.

Given a (cyclic) slope list, we say that a polygonal path (or loop) with folds realizes
this list if the list of slopes of the edges, ordered according to the orientation, equals the
given slope list.

Definition 4.4. Abusing correct terminology considerably, let us say that a polygonal
path with folds is embedded if the only intersections between distinct edges occur when
two consecutive edges meet at a vertex and if there are no triple points.

In other words, an edge with a fold obviously intersects itself, but this is the only type of
self-intersection allowed and such an edge may not intersect itself too much. In particular
a given edge may have at most two folds. To justify the use of the term “embedded”,
note that if we remove all double points and take the closure of the remainder, we get an
honestly embedded polygonal path.

Definition 4.5. Given two slopes s1, s2 ∈ Q ∪ {∞}, define the positive angle from s1 to
s2 to be the angle α(s1, s2) ∈ [0, π) from a line of slope s1 to a line of slope s2 measured
counterclockwise. Given a list of slopes s1, . . . , sn ∈ Q∪ {∞}, define the positive turning
for the list to be T := α(s1, s2)+· · ·+α(sn−1, sn) or, if the list is cyclic, T := α(s1, s2)+
· · · + α(sn−1, sn) + α(sn, s1). Given a T 2-manifold with weighted orbit space B, the
positive turning for a component of ∂B with weights {mi/ni}, i = 1, . . . , n, is the positive
turning for the cyclic slope list {mi/ni}, i = 1, . . . , n.
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Note that, for any list, T = kπ for some nonnegative integer k, and that T = 0 if and
only if the boundary component has only one edge.

Definition 4.6. Given a polygonal path with folds, define the total turning to be the sum
of the amounts of counterclockwise turning of the tangent vectors at the vertices (between
0 and π ) and at the folds (always −π ). If the path is closed, we include the turning at the
initial vertex (which is also the final vertex).

The following is an immediate consequence of Definitions 4.4, 4.5 and 4.6.

Lemma 4.7. Given a slope list with positive turning T and a right polygonal loop with
folds realizing the list with total turning T ′, we have T ′ = T − |F |π , where |F | is the
number of folds. An embedded right polygonal loop with folds in R2 always has total
turning ±2π .

Lemma 4.8. Given a right polygonal slope list s1, . . . , sk , k ≥ 2, with s1 = 0 and
s2 = ∞, and a point (x0, y0) ∈ R2 with x0, y0 > 0, there exists an embedded right
polygonal path with folds that realizes the slope list, has initial endpoint (0, 0) and final
endpoint (x0, y0), and whose first edge e1 has oriented tangent vector (1, 0).

Proof. Let a, b, δ and ε be indeterminates that will be fixed later. Let e1 = [0, a] × {0}
and let e2 be an edge that starts with {a}×[0, b], has a fold at (a, b) and then doubles back
a distance δ, ending at (a, b − δ). Now turn counterclockwise onto an edge e3 of slope
s3 and length ε. Henceforth, turn counterclockwise from ei onto an edge ei+1 of slope
si+1 and length ε if this does not require moving in the negative x direction. Otherwise,
put a fold at the current end of ei and extend ei by doubling back a distance δ, then turn
counterclockwise onto ei+1, of slope si+1 and length ε. Continue up to ek . Given any
preassigned λ > 0, there exists a choice of ε and δ (ε small and δ much smaller) such
that, for any a, b > 0, the entire path is embedded and ends at (a + a0, b + b0), where
0 ≤ a0 < λ and −λ < b0 < λ. Then, if we choose a = x0 − a0 and b = y0 − b0, we can
arrange that the path ends at (x0, y0). ut
Notice that a slope list s1, . . . , sn can be realized by a right polygonal path if and only if
one can also realize the slope list s′1, . . . , s

′
n where the reduced fractionsmi/ni andm′i/n

′
i

representing the slopes satisfy (n′i, m
′
i)
T = A(ni, mi)T for some fixed A ∈ GL(2,Z).

Lemma 4.9. Any cyclic reduced slope list with positive turning T ≥ 2π can be realized
by an embedded right polygonal loop with folds.

Proof. Let s1, . . . , sn be the given list. Without loss of generality assume that s1 = 0 and,
for each i, si 6= ∞. Let p be the smallest integer between 2 and n such that sp 6= 0 and
such that the cyclic slope list s1, sp, . . . , sn has total positive turning 2π . (Notice that this
new slope list may fail to be right polygonal at the intersection of the pth and 1st edges.)
Without loss of generality we can also assume that sp > 0. If p = 2 then it is standard to
construct the desired loop, a closed convex polygon without folds. Now assume p > 2.

Figure 3 illustrates the following construction.



506 David T. Gay, Margaret Symington

pppppppppppppppp
pppppppp ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppp

...

......

.........

............

.........

......

...

..
..
..
..
..
..

..
..
..
..
.

..
..
....

.

..
..
..
..
.

..
..
..

..
.

ppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

..........................................................................................................................................................................................................................................................................................................................................................................................
...................................

...................
...........
............
....................

Fig. 3. An example construction of a right polygonal loop with folds.

First construct a closed convex polygon (without folds) with edges e1, ep, . . . , en re-
alizing the cyclic slope list s1, sp, . . . , sn, with the vertex joining e1 to ep located at (0, 0).
Next, choose some (x0, y0) on the interior of ep and replace the portion of ep connect-
ing (0, 0) and (x0, y0) by a right polygonal path representing the slope list s1, . . . , sp−1,
constructed as in Lemma 4.8. Note that in doing so the edge ep is shortened, its initial
point becoming (x0, y0), while e1 is lengthened, its final point becoming (a, 0) rather
than (0, 0). We can ensure that this procedure yields an embedded polygonal loop by
choosing the point (x0, y0) sufficiently close to (0, 0) and the parameter λ of Lemma 4.8
sufficiently small. ut
The next part of Theorem 1.10 that we prove is:

Proposition 4.10. Every closed simply connected T 2-manifold (X, σ ) with b+2 (X) > 0
is toric with respect to some near-symplectic structure.

Proof. The T 2 structure yields a slope list with positive turning T for some T ≥ 0.
Assume for the moment that T ≥ 2π .

Appealing to Lemma 4.9 and its proof, construct an embedded right polygonal loop
with folds representing the given slope list, thereby defining a near-symplectic structure
with respect to which (X, σ ) is toric. This loop is then the right polygonal boundary with
edge folds of an integral affine disk.

If T ≤ π any attempt to draw such an embedded polygonal loop fails: all right polyg-
onal paths representing the slope list fail to close up. It remains to show that T ≤ π

cannot occur. First note the T = 0 cannot occur for any T 2-manifold because a slope list
with just one slope would define a weighted orbit space with just one edge and one vertex.
With only one isotropy subgroup, it is impossible to satisfy the condition that |uv| = ±1
whereGu,Gv are the isotropy subgroups of circle orbits in the neighborhood of the fixed
point.

Now suppose T = π . Consider the weighted orbit space for (X, σ ) with edges
e1, . . . , ek having slopes si = mi/ni for each i = 1, . . . , k, where the signs of mi, ni
are chosen so that | ni ni+1

mi mi+1 | = 1 for each i = 1, . . . , k − 1. (The fact that T = π

corresponds to the fact that, with these choices of signs, | nk n1
mk m1 | = −1.)
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Consider the T 2-manifold defined by the weighted orbit space that is a disk with
weights given by the cyclic slope list s1, . . . , sk, sk+1, sk+2 where sk+1 = s1 and
sk+2 = mk+2/nk+2 with mk+2, nk+2 satisfying

( nk+2 n1
mk+2 m1

) = 1. Call this new T 2-
manifold (X′, σ ′). Then, topologically, X′ is obtained from X by removing a copy of
S1 ×D3 and gluing in a D2 × S2. Therefore b+2 (X

′) = b+2 (X)+ 1.
Because ∣∣∣∣

nk −nk+1
mk −mk+1

∣∣∣∣ =
∣∣∣∣
−nk+1 nk+2
−mk+1 mk+2

∣∣∣∣ =
∣∣∣∣
nk+2 n1
mk+2 m1

∣∣∣∣ = 1, (7)

the total turning of the new cyclic slope list is 2π and X′ admits a symplectic structure
for which σ ′ is Hamiltonian. Therefore b+2 (X

′) = 1, implying b+2 (X) = 0. ut
Finally, the third part of Theorem 1.10 is:

Proposition 4.11. If (X, ω, σ ) is a closed toric near-symplectic manifold that is simply
connected, then the vanishing locus Zω must have exactly |Zω| = b+2 (X)−1 components.

Notice that Proposition 4.11 is trivially true when |Zω| = 0 because the only toric sym-
plectic manifolds are S2 × S2 and CP 2 # CP 2

, all of which have b+2 = 1.

Example 4.12. Consider the moment map image of CP 2 # CP 2 shown in Figure 1, for
which one can easily verify Proposition 4.11. This toric near-symplectic manifold is an
equivariant connected sum, and the decomposition can be performed via a symplectic
cut [11] along the preimage of the vertical line segment that connects the fold point and
the horizontal edge (cutting X along that 3-sphere and then collapsing the circles on
the resulting boundaries that are in the kernel of the symplectic form). Note that the
preimage of the vertical segment is indeed a 3-sphere because the circle orbits mapping
to the endpoints of the segment have isotropy subgroups G(1,0) and G(0,1), and

∣∣ 1 0
0 1

∣∣ has
modulus 1.

The essence of our proof of Proposition 4.11 is to decompose (X, ω) via symplectic
cutting as a connected sum of manifolds, each of which has no vanishing locus, and show
that the quantity b+2 (X)−|Zω| remains constant for all the manifolds involved. However,
in general a toric manifold may have a 3-sphere on which a one-dimensional subtorus
acts freely, with one orbit being a component of the vanishing locus, i.e. a 3-sphere whose
moment map image is a line segment with one endpoint being a fold point. For instance,
consider the T 2-manifold with weighted orbit space whose slope list is ∞, 0,−1,−2.
This manifold is diffeomorphic to CP 2 # CP 2, but is not an equivariant connected sum.
(We leave it to the reader to use the techniques of this section to draw the moment map
image for this action.) Here we thank Brett Parker for asking us a question which brought
the possibility of such examples to our attention.

We circumvent this by recognizing that

(1) in light of Lemma 4.7, b+2 (X) − |Zω| depends only on the underlying T 2-manifold
and the existence of a near-symplectic structure that makes the T 2-manifold toric, but
does not depend on the particular near-symplectic structure;

(2) the quantity b+2 (X)− |Zω| is invariant under equivariant blow-ups.
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Proof of Proposition 4.11. In this proof, let manifolds have more than one connected
component. Let (Xi, ωi, σi), i = 1, . . . , N , be a sequence of toric near-symplectic man-
ifolds such that (X1, ω1, σ1) and (X, ω, σ ) are equivalent as T 2-manifolds, |Zi+1| =
|Zi | − 1, |Zn| = 0, and (Xi+1, ωi+1, σi+1) is obtained from (Xi, ωi, σi) by

(1) choosing a convenient near-symplectic structure on the T 2-manifold (Xi, σi),
(2) performing equivariant blow-ups of some connected component of (Xi, σi) as neces-

sary, and then
(3) performing a symplectic cut of that component along a 3-sphere that contains a com-

ponent of the vanishing locus.

The proposition will be proved if we show that b+2 (Xi) − |Zi | = ci where ci is the
number of connected components of Xi . This is true for XN because |ZN | = 0 and
each component has b+2 = 1. All we need to do is show that we can always find a near-
symplectic structure such that the toric manifold with underlying T 2-manifold (Xi, σi),
or a blow-up of it, can be equivariantly decomposed so as to reduce by 1 the number of
fold points in the boundary of its moment map image.

Given the toric manifold (Xi, ωi, σi), choose a connected component that contains a
component of the vanishing locus and construct its moment map image as in the proof
of Lemma 4.9. Recall that, by construction, the edge e2 is vertical and contains one fold
point. If the vertical line segment on the interior of the image with one endpoint at the
fold point of e2 has its other vertex on an edge of integral slope mi ∈ N, then perform a
symplectic cut, eliminating the fold point on edge e2. As in Example 4.12, this is possible
because the determinant

∣∣ 0 1
1 mj

∣∣ has modulus 1.
If not, proceed as follows, noting that on edges ep, . . . , en there are no fold points.

(1) Suppose there is an edge ej , j ≥ p, such that

(a) ej has integral slope mj 6= 0,
(b) ej lies in a closed half-plane whose boundary contains the edge e2,
(c) the lower vertex of ej is higher than the fold point p.

Then lengthen ej and e3 (or e1, depending on which is on the opposite side of l
from ej ), scaling the edges e4, . . . , ej−1 (or ej+1, . . . , en) by a single constant so as
to maintain an embedded polygonal path with folds.

(2) Or, if there is an edge ej , j ≥ p, that has slope 0 and lies above p, then lengthen ej+1
and e3 (or ej−1 and e1, depending on which side of e2 the edge ej lies on), scaling
the edges e4, . . . , ej−1 (or ej+1, . . . , en) by a single constant so as to maintain an
embedded polygonal path with folds.

(3) Or, if there are no edges with integral slope, find the vertex with maximal y coordinate
and name the edges on its left and right ej and ej−1 with slopes sj = mj/nj and
sj−1 = mj−1/nj−1. Remove a neighborhood of the corner, shortening ej and ej−1
and inserting a new edge e′ whose slope equals zero. If mj = 1 (mj−1 = 1) then
the boundary of the polygon is right polygonal at the left (right) vertex of e′. If not,
the vertex defines an orbifold singularity. But any such singularity can be resolved
equivariantly, replacing the singular point with a union of spheres. After resolving,
the polygon will have right polygonal boundary. Next, go back to Step 2.
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Now we may perform a symplectic cut to obtain (Xi+1, ωi+1, σi+1). If we carry out this
procedure N = |Z| times, we obtain (XN , ωN , σN ) for which b+2 (XN ) − |ZN | = cN .
Since this relation remains unchanged through all of our constructions and X is con-
nected, b+2 (X1)− |Z1| = b+2 (X)− |Zω| = 1. ut
Proposition 1.11 allows us to recognize a simply connected T 2-manifold from its
weighted orbit space, provided the orbit space has at least five vertices. An ingredient
in its proof is the calculation of the Euler characteristic of a locally toric near-symplectic
manifold from its weighted orbit space.

Lemma 4.13. Given a locally toric near-symplectic manfiold (X, ω, σ ) with integral
affine base (B,A, F ), χ(X) = V where V is the number of vertices on the boundary
of the integral affine base.

Recall that fold points do not count as vertices.

Proof. The total space of a locally toric manifold can be built up out of open sets, each of
which is a neighborhood of a fiber. This can be done so that each neighborhood has Euler
characteristic equal to 0, except for a small neighborhood of the preimage of each vertex
(which can be chosen to be a ball with Euler characteristic equal to 1). Furthermore, one
can perform this operation so that as each neighborhood gets glued in, the gluing locus
has Euler characteristic equal to 0. ut
Proof of Proposition 1.11. If the orbit space has at least five vertices then it must be
diffeomorphic to a connected sum of copies of CP 2 and CP 2

(cf. [16]). Then, invoking
Proposition 4.11 and Lemma 4.7, we can calculate

m = b+2 (X) = |Zω| + 1 = |F | + 1 = T − 2π
π

+ 1 = T

π
− 1.

Then
n = b−2 (X) = χ(X)− b+2 (X)− 2 = V −m− 2,

where the last equality follows from Lemma 4.13. ut

4.2. T 2-manifolds with nontrivial fundamental groups

The orbit space of any T 2-manifold whose fundamental group is nontrivial must also have
nontrivial fundamental group. In order to describe and construct integral affine structures
on orbit spaces of closed manifolds we define a few noncompact integral affine surfaces
that serve as building blocks.

Definition 4.14. Given an open interval I in the positive reals, let AI be the annulus
AI = {(x, y) | x2 + y2 ∈ I }. For any positive integer q, define the q-fold integral
affine structure AI,q on AI to be the pullback of the standard integral affine structure on
AI ⊂ R2 via the q-fold cover (r, θ) 7→ (r, qθ).
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Fig. 4. On the left, an integral affine annulus with a 2-hole, and on the right, a 3-plug homeomor-
phic to an annulus. (In fact, the figure on the right could also represent a 1-plug homeomorphic to
a twice-punctured torus.)

Definition 4.15. An integral affine surface with right polygonal boundary and edge folds
(B,A, F ) is a q-plug if B has exactly one end modeled on the outer end of A(a,b) (for
some interval (a, b) ⊂ R), i.e. if there is an integral affine embedding8 : (A(a,b),Aq)→
(B \F,A) such that B0 := B \8(A(a,b)) is compact and any sequence of points in A(a,b)
converging to r = a is sent via 8 to a sequence of points converging to ∂B0 ⊂ B.

Definition 4.16. An integral affine surface with right polygonal boundary and edge folds
(B,A, F ) has a q-hole if B has one end modeled on the inner end of A(a,b) (for some
interval (a, b) ⊂ R), i.e. if there is an integral affine embedding 8 : (A(a,b),Aq) →
(B \ F,A) such that B0 := B \ 8(A(a,b)) is connected and any sequence of points in
A(a,b) converging to r = b is sent via 8 to a sequence of points converging to ∂B0 ⊂ B.

Figure 4 shows the immersed images of an integral affine annulus with a 2-hole (without
any folds) and a 3-plug (with four folds). The shaded regions are the annular ends.

Lemma 4.17. Given any q and any cyclic slope list s1, . . . , sn that is right polygonal,
there exists a q-plug whose boundary realizes the given slope list.

Proof. Without loss of generality, assume s1 = 0 and add a slope, forming the slope list
s1, s2, . . . , sn, sn+1 with s1 = sn+1 = 0. Use Lemma 4.8 to construct a right polygo-
nal path ending at (x0, y0) and representing this new slope list s1, s2, . . . , sn, sn+1. By
construction, (x0, y0) is in the interior of the first quadrant. Extend e2 near the endpoint
it shares with e3 by the length y0, thereby “lowering” the part of the path representing
the slopes s3, . . . , sn, sn+1. The result is a right polygonal path with endpoints at (0, 0)
and (x0, 0). Replace these two endpoints with fold points, concatenating the edges en+1
and e1. Although the resulting path is probably no longer embedded, it can be taken as
the restriction to one boundary component of a continuous map of a closed annulus into
R2. Furthermore, this continuous map can be assumed to be an immersion on the com-
plement of a finite number of points on that boundary component and to map the other
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Fig. 5. Constructing a plug: Top left, a 1-plug with three edges. Top right, a 1-plug with one edge.
On the bottom row, we indicate how to cut these open and glue them together (one of the first and
two of the second) to make a 3-plug with three edges (letters a, b, c indicate gluing instructions).

boundary component to a large circle. Then the interior of this annulus, with the integral
affine structure induced by the immersion into (R2,A0), is a 1-plug. To get a q-plug for
q > 1, introduce 2(q − 1) more folds in the edge e1; see Figure 5. ut

We now prove Theorem 1.12 which asserts that there exists a near-symplectic structure
making a torus action Hamiltonian only if there is a component of the boundary of the
weighted orbit space on which the positive turning is at least 2π ; that this suffices if the
genus of the base is zero; and that a compact surface of any given genus and at least one
boundary component can be the orbit space for a toric near-symplectic manifold.

Proof of Theorem 1.12. Suppose (X, σ ) admits a near-symplectic structure with respect
to which the action is Hamiltonian. Let (B,A, F ) be the integral affine base and 8 :
B → R2 be the continuous extension of the integral affine immersion 8 : (B \ F,A)→
(R2,A0) that defines the action on the symplectic locus. The image under 8 of each
component of ∂B is the image of a polygonal loop with folds. Because B is compact, its
image 8(B) is a compact domain in R2. Consider an edge whose image contains points
belonging to the boundary of 8(B). Then that edge belongs to an immersed piecewise
linear loop with folds γ : [0, n]→ R2 that is the image of one component of ∂B.

For some indexing of the edges, there are real numbers a, b such that [a, b] ⊂ [0, n]
and γ |[a,b] is an embedded loop. Then γ |[a,b], with its orientation or the reverse, bounds a
disk inside the image of 8. Because part of the image of γ[a,b] belongs to ∂8(B), it must
be γ |[a,b] with its induced orientation that bounds this disk.

Let bac denote the greatest integer less than or equal to a, and dbe denote the least
integer greater than or equal to b. Then the positive turning of the path γ |[bac,dbe] is greater
than π . The positive turning along the entire loop γ must be at least as large, and an integer
multiple of π . Therefore, it is at least 2π .



512 David T. Gay, Margaret Symington

If g = 0 then the base is a disk with k holes for some k ≥ 0. Choose a component of
the boundary of the orbit space on which the total turning is at least 2π . Then use the proof
of Lemma 4.9 to construct an embedded right polygonal loop with folds representing the
slope list for that boundary component. This polygonal loop bounds a disk D in R2.
Remove k disjoint closed disks from the interior of D so as to create k 1-holes. Finally,
glue in k 1-plugs, the boundaries of which realize the remaining cyclic slope lists encoded
in the weighted orbit space.

Meanwhile, the punctured torus example in Example 1.17 generalizes to give im-
mersed examples for any g and any k ≥ 1, and hence to give examples of toric near-
symplectic manifolds with these orbit spaces. ut
A complete answer to the question of what T 2-manifolds admit near-symplectic struc-
tures with respect to which the actions are Hamiltonians is not available, but is under
investigation by the second author. However, in the next section we prove Theorem 1.14
which provides a complete answer to an intermediate question: Given a T 2-action, when
does there exist a near-symplectic form with respect to which the action is symplectic,
and Hamiltonian in a neighborhood of any orbit?

5. Locally toric near-symplectic manifolds

As we have seen, an integral affine surface (B,A, F ) defines a toric near-symplectic
manifold up to orbit preserving symplectomorphism if and only if its boundary is right
polygonal with folds and there exists an integral affine immersion 8 : (B \ F,A) →
(R2,A0).

For the purposes of studying pseudo-holomorphic curves in a symplectic 4-manifold
via 1-complexes in a surface, the presence of a global torus action is not necessary. All one
needs is a singular Lagrangian fibration2 in which the behavior of pseudo-holomorphic
curves in the neighborhood of each singular fiber is understood. Locally toric fibrations
constitute a convenient class of manifolds for this purpose. When the total space is sym-
plectic, the list of manifolds that admit locally toric fibrations is short [13]. However, as
we show in this section, there is a vast set of near-symplectic examples.

The following lemma implies that the base of a locally toric fibration is, like a toric
fibration, equipped with a natural integral affine structure.

Lemma 5.1 ([18]). Consider the Lagrangian fibration π : (R2 × T 2, dp ∧ dq) → R2

in which the map π forgets the torus factor. Suppose U is a connected open subset of R2.
Then an embedding 8 : µ−1(U)→ R2 × T 2 is a fiber-preserving symplectic embedding
if and only if it is of the form (p, q) 7→ (Ap + b,A−T q + f (p)), where A ∈ GL(2,Z),
b ∈ R2, A−T is the inverse transpose of A, and f : U → T 2 is a smooth map such that
AT ◦Df is symmetric.

2 Loosely, a singular Lagrangian fibration is a symplectic manifold (X, ω) together with a pro-
jection to a half-dimensional space B such that over a dense open subset of B the projection defines
a locally trivial fibration, each of whose fibers is Lagrangian.



Toric structures on near-symplectic 4-manifolds 513

Of course, the symplectic manifold (R2 × T 2, dp ∧ dq) also supports the torus action
t · (p, q) = (p, q + t) whose moment map is π , so the equivariant symplectomorphic
embeddings are precisely those fiber-preserving embeddings with A = Id.

Theorem 5.2. Suppose (B,A, F ) is an integral affine surface with right polygonal
boundary with edge folds. Then (B,A, F ) is the integral affine base of a locally toric
near-symplectic manifold.

Proof. Cover B by a union of open sets {Uα}, each of which is contractible. Then for
each α there exists an integral affine immersion 8α : (Uα \ F,A) → (R2,A0) and
hence a toric near-symplectic manifold (Xα, ωα, σα)with integral affine base (Uα,A, F ),
constructed as in the proof of Theorem 3.5. By Lemma 2.3, on overlaps Uα ∩ Uβ , the
two toric near-symplectic manifolds (Xα, ωα, σα) and (Xβ , ωβ , σβ) are orbit-preserving
symplectomorphic (since Uα ∩ Uβ must be homeomorphic to a union of contractible
spaces). On triple intersections these gluing maps will be compatible, thereby yielding a
locally toric near-symplectic manifold. ut
The only obstruction to the existence of a smooth global torus action inducing a locally
toric fibration is monodromy.

Definition 5.3. An integral affine structure A on a surface B determines a lattice 3(A)
in T B (coming via the defining atlas for A from the standard integral lattice in R2). The
monodromy of A is the monodromy representation π1(B)→ GL(2,Z) of 3(A).

Note that this is not the only obstruction if one requires the global action to be Hamilto-
nian. For example, consider the square {(p1, p2) | |pi | ≤ 1} ⊂ (R2,A0) and identify the
top and bottom edges to form an integral affine cylinder. The failure of this integral affine
cylinder to isometrically immerse in (R2,A0) implies, by Theorem 3.5, that it cannot be
the integral affine base for a toric fibration.

In the locally toric setting, we do not always have uniqueness of the locally toric
manifolds with a given integral affine base.

Theorem 5.4. An integral affine surface whose boundary is right polygonal with edge
folds, (B,A, F ), defines a unique locally toric near-symplectic manifold if and only ifB is
either noncompact or has nonempty boundary (i.e. has the homotopy type of a 1-complex).
The uniqueness is up to fiber-preserving homeomorphism that is a symplectomorphism on
the symplectic locus.

Note that the base B need not be orientable.

Proof. If B has the homotopy type of a 1-complex then we can find in B a collection {γα}
of disjoint properly embedded arcs in B \ F such that B \⋃α γα is a disjoint union of
simply connected surfaces. Choose disjoint open collar neighborhoods {Vα} of the {γα}
such that for each α, Vα ⊂ B \ F . Define open sets {Uβ} such that each Uβ is the union
of one component of B \⋃α γα and all of the Vα that have nonempty intersection with
that component. Arrange that each Uβ is simply connected by going back and including
more arcs in the set {γα} if necessary.
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By Lemma 3.6, each of these integral affine surfaces (Uβ \ F,A) immerses iso-
metrically in (R2,A0) and hence defines a unique toric near-symplectic manifold,
say (Xβ , ωβ , σβ). Then all of the locally toric near-symplectic manifolds defined by
(B,A, F ) can be built out of the (Xβ , ωβ , σβ) by gluing maps between neighborhoods
that project to the Vα . By Lemma 5.1, each of these maps can be expressed, in local co-
ordinates on the top-dimensional fibers, as (p, q) 7→ (Ap + b,A−T q + φ(p)) for some
(A, b) ∈ Aff(2,Z) and some φ(p) that is the time-one flow of a Hamiltonian vector field.
The element (A, b) ∈ Aff(2,Z) is uniquely determined by the integral affine structure
on B, while the arguments in the proof of Theorem 3.7 show that particular choices of φ
have no effect on the global structure. Thus the global structure defined by (B,A, F ) is
unique.

The hypothesis that B have the homotopy type of a 1-complex is necessary because
there exist closed integral affine surfaces that each are the integral affine base of more
than one locally toric manifold. This is true even if H 2(B,Z) = 0 as evidenced by the
existence of multiple locally toric manifolds whose integral affine base is a single integral
affine Klein bottle, as shown in [13]. ut
We now take up the problem of realizing T 2-manifolds as locally toric with respect to
some near symplectic structure, i.e. constructing integral affine surfaces with right polyg-
onal boundary that define the underlying fibration.

Lemma 5.5. For any g ≥ 1 and k ≥ 1, there exists a noncompact integral affine surface
B with empty boundary, genus g and k ends, each of which is a q-hole for some q (not
necessarily the same q for each end).

Proof. For an appropriately chosen positive integer p, let R be a p-by-1 rectangle in R2

with quarter- and half-circles, all of radius r < 1/2, removed at the corners of the p 1-by-1
rectangles making up R. Use R as a fundamental domain to build B, gluing appropriate
edges to each other via translations. (Without removing the quarter- and half-circles this
is a method to produce a flat metric on a closed genus g surface with k singular points; the
first author learned this trick from A. Abrams, who claims to have learned it from [21].)
Note that, to avoid monodromy, the left edge must be glued to the right, and edges on the
top must be glued to edges on the bottom. Figure 6 shows an example for g = 2, k = 2,
with one end having q = 1 and the other having q = 3. ut
Lemma 5.6. Given any slope s ∈ Q ∪ ∞, there exists an integral affine annulus with
trivial monodromy, with each boundary consisting of a single edge with slope s.

Proof. Glue two sides of a parallelogram via a translation. ut
Lemma 5.7. Given two right polygonal cyclic slope lists, one of which has at least two
slopes, there exists an integral affine annulus with trivial monodromy whose boundary
realizes the two slope lists.

Proof. Let the slope lists be s1, . . . , sk and t1, . . . , tl . If one list has only one slope, then
let τ be a translation in the direction of this slope such that (x0, y0) := τ((0, 0)) is in
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Fig. 6. A fundamental domain for a genus 2 surface with holes; arrows indicate gluing rules.

the closed right half-plane. Otherwise choose such a translation τ arbitrarily. If x0, y0 >

0 then construct, as in the proof of Lemma 4.8, two right polygonal paths with folds
representing s1, . . . , sk, s1 and t1, . . . , tl, t1 starting at (0, 0) and ending at (x0, y0) =
τ((0, 0)). If x0 > 0 and y0 ≤ 0, then construct the path with endpoint (x0, y1) for some
y1 > 0 and lengthen the edge e2 so as to lower the endpoint from y1 to y0. If x0 = 0, then
interchange the roles of x and y (thereby affecting the slopes also), make the construction,
and switch back.

Construct two τ -invariant periodic paths by concatenating translated copies of these
paths. Translate one of the periodic paths so that they become disjoint, and rotate one by
180◦ so that they are the oriented boundary of the strip S in between. Then S/〈τ 〉 is a base
with folds homeomorphic to an annulus with boundary realizing the two slope lists. ut

Lemma 5.8. Given three slopes s1, s2, s3 ∈ Q ∪ {∞}, there exists an integral affine
twice-punctured disk with trivial monodromy with each boundary component consisting
of a single edge of slope si .

Proof. If two of the slopes are equal, use Lemma 5.6 with one 1-hole, and fill with a
plug from Lemma 4.17. Otherwise, without loss of generality we can assume that s1 <
0 = s2 < s3 < ∞ (recall that the order is unimportant). Figure 7 then illustrates the
construction by means of a fundamental domain embedded in R2. ut
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Fig. 7. Building a twice-punctured disk with one edge per boundary.
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Proof of Theorem 1.14. Theorems 5.2 and 5.4 reduce our proof to proving that, given a
genus g and k slope lists, there exists an immersion of a genus g surface with k boundary
components—or a fundamental domain of such a surface—into R2 so that its boundary is
a union of right polygonal loops with folds realizing the prescribed slope lists if and only
if the hypotheses of the theorem are satisfied.

Notice that since the union of principal orbits is an oriented T 2-bundle, the integral
affine structure must have trivial monodromy. Accordingly, the gluing maps used to con-
struct the surface from an immersion of a fundamental domain must be translations.

We now go through the various cases of specific genera and numbers of boundary
components.

If the surface has no boundary, then the presence of an integral affine structure implies
that the tangent bundle admits a flat connection, and therefore has zero Euler characteris-
tic. Since the monodromy is trivial, the surface must be orientable, and therefore a torus.
Any torus bundle over a torus with trivial monodromy (but not necessarily trivial Chern
class) supports a near-symplectic structure with respect to which the action is locally
toric. Since the boundary is empty, the near-symplectic structure is in fact symplectic.
Such manifolds were classified by Mishachev [15]. The bases of such locally toric sym-
plectic manifolds can be constructed by choosing a parallelogram in the plane that is
integral affine equivalent to a rectangle, and pairwise identifying the opposite edges via
translations.

Now suppose the surface has nonempty boundary. We first suppose that g ≥ 1. Then
Lemma 5.5 tells us how to construct a noncompact integral affine surface (without bound-
ary) with k ends, and Lemma 4.17 asserts that we can glue into each of these ends the
collar neighborhood of a boundary component that realizes any given slope list.

If the surface has genus zero we have three cases to consider: k ≥ 3, k = 2, and
k = 1.

Suppose k ≥ 3. If all of the slope lists consist of exactly one slope, we can use
Lemma 5.8 and any three of the slopes to construct a punctured annulus realizing these
three slopes, and then remove neighborhoods of slits and use Lemma 4.17 to fill in the
remaining boundary components. Otherwise, Lemma 5.7 tells us how to construct an
annulus realizing two of the slope lists, one of which has at least two slopes; then again,
we can remove disks to create 1-holes and then glue in 1-plugs realizing the remaining
slope lists.

If k = 2 and one slope list has at least two slopes (which happens if and only if
T0 ≥ π ) then we can use Lemma 5.7 together with 1-plugs from Lemma 4.17 to construct
the required immersed surface. Otherwise, if both slope lists consist of just one slope,
then we merely need to invoke Lemma 5.6. In this latter case T0 = 0. Notice that the two
slopes must be equal for otherwise we would be trying to glue the two parallel sides of a
trapezoid via a translation—which we can do only if they have the same length, i.e. if the
trapezoid is actually a rectangle.

For the last case, suppose k = 1. In this case the weighted orbit space is simply
connected. Therefore given any integral affine structure A on the orbit space, there is
an integral affine immersion (B,A) → (R2,A0). Consequently, if the action is locally
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Hamiltonian it must be Hamiltonian. Therefore, the necessary and sufficient conditions
are contained in Theorem 1.12.

Lastly, to compute the number of components of the vanishing locus, note that |Zω| =
|F |, the number of folds. The total turning on all boundaries of the base is T−|F |π , where
T is the sum of the positive turnings over all boundary components. The Gauss–Bonnet
Theorem implies that 2πχ = T − π |F |, and hence |Zω| = T/π − 2χ . ut
We now forget about torus actions. In order to highlight the plenitude of closed locally
toric near-symplectic manifolds we prove Propositions 1.15 and 1.16. Recall that the first
proposition asserts that any monodromy representation of the fundamental group of any
surface can arise as the monodromy of a locally toric fibration of a closed near-symplectic
manifold, while the second asserts that there is an infinite family of mutually nondif-
feomorphic closed near-symplectic manifolds that support locally toric fibrations having
nontrivial monodromy, none of which could support a locally toric fibration with trivial
monodromy.

Proof of Proposition 1.15. Suppose the free group has n generators x1, . . . , xn, and the
homomorphism maps xi to the matrix ( ai cibi di

) ∈ GL(2,Z). Draw a (probably nonconvex)
polygon with at least 3n edges in R2 having rational slope, such that at every vertex the
two incident edges have primitive integral tangent vectors v,w satisfying det(v,w) =
±1. Draw the polygon so that it has 2n distinguished edges e1, . . . , en and f1, . . . , fn,
satisfying the following properties:

(1) The primitive integral tangent vector to each ei is ( 1
0 ), while the primitive integral

tangent vector to the edge immediately preceding ei (with the boundary orientation)
is ( 0−1 ) and the primitive integral tangent vector to the edge immediately following
ei (with the boundary orientation) is ( 0

1 ).
(2) The primitive integral tangent vector to each fi is ( aibi ), while the primitive integral

tangent vector to the edge immediately preceding fi (with the boundary orientation)
is ( cidi ) and the primitive integral tangent vector to the edge immediately following fi
(with the boundary orientation) is ( −ci−di ).

(3) The lengths of the ei and fi are chosen so that, for each i, the Euclidean lengths of
(
ai ci
bi di

)ei and fi are equal.
(4) As one traverses the boundary of the polygon counterclockwise, the edges ei and fi

are ordered so that identification of each ei with each fi produces the surface B.

Now construct a base with folds from this polygon by replacing each concave corner
with a convex corner and a nearby fold (extend one incident edge a little past the corner
and then immediately double back, creating a fold point, then turn onto the other incident
edge) and by gluing a rectangular neighborhood of ei to a rectangular neighborhood of fi
via ( ai cibi di

) followed by a suitable translation. ut
Proof of Proposition 1.16. Figure 8 gives the construction of the infinite family, where the
ellipses in the middle are to be interpreted as representing n “slits.” Call these manifolds
Xn, n ≥ 0.

These manifolds are mutually nondiffeomorphic because adding a slit has the effect
of adding a generator and no relations to the fundamental group of the 4-manifold.
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Fig. 8. An infinite family of examples with nontrivial monodromy. (All lines in this figure have
slope 0, ±1/2, ±1, ±2 or∞.)

To see why no Xn can be diffeomorphic to a locally toric near-symplectic manifold
whose fibration has trivial monodromy we note that, by Lemma 4.13, χ(Xn) = 1 for all n.
However, a near-symplectic manifold equipped with a locally toric fibration having trivial
monodromy can never have Euler characteristic equal to 1. Indeed, this would imply that
the integral affine base would have a boundary component with just one vertex. With
trivial monodromy, this means that the isotropy subgroups for orbits whose images are on
either side of the vertex are the same, violating the requirement that the boundary of the
integral affine base have right polygonal boundary. ut

Appendix. Hamiltonian actions

In this section we prove Proposition 1.2 which gives a simplified definition of a Hamilto-
nian action when the group is a torus (what we called a “topologist’s definition”).

In general, given a group action σ : G × X → X on a symplectic manifold (X, ω),
there are two types of natural vector fields. For each ξ in the Lie algebra G there is the in-
finitesimal action Vξ , while for each smooth function f : X→ R there is the Hamiltonian
vector field Vf defined by ω(Vf , ·) = −df .

Definition A.1. A group action σ : G × X → X on a symplectic manifold (X, ω) is
Hamiltonian if there is a Lie algebra homomorphism from G to C∞(X) (equipped with
the Poisson bracket) that sends ξ to the function fξ so that Vfξ = Vξ .

Proof of Proposition 1.2. When the group is a torus T n, G = G∗ = Rn. In that case,
Definition A.1 implies the existence of a moment map µ : M → G∗ defined implicitly by
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〈µ(x), ξ〉 = fξ (x). Since dfξ (W) = ξ · Dµ(W) for any vector W , one direction of the
proposition is clear.

For the converse, the functions fξ are just ξ · µ. We only need to check that ξ 7→ fξ
is a Lie algebra homomorphism. Since the action is abelian, for any ξ, η ∈ R2 = T
we have [ξ, η] = 0. Therefore, ξ 7→ fξ will be a Lie algebra homomorphism provided
{fξ , fη} = ω(Vξ , Vη) = 0.

First of all, for any ξ, η, ω(Vξ , Vη) is constant on the orbit of Vη. This follows from
two facts: the time-t flow φt of Vη is a symplectomorphism for each t ∈ R and the action
is abelian so (φt )∗Vν = Vν ◦ φt for each ν ∈ T . Calculating ω(Vξ , Vη) = −dfξ (Vη) =
−Vηfξ we see that Vηfξ is constant on the orbit of Vξ . For almost all η, the orbit is a
circle, and hence the derivative Vηfξ , being equal to a constant, must be equal to zero,
implying that fξ is constant on the orbit of Vη. Continuity of the moment map then implies
that this is true for all η, thereby establishing that ω(Vξ , Vη) = 0 for all ξ, η. ut
Remark A.2. The compactness of the torus is essential here. Note that there is a sym-
plectic action of R2 on (R2, ω0), by translation, that satisfies the “topologist’s definition”
(Proposition 1.2) but is certainly not Hamiltonian.
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