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Abstract. Fix a number field k. We prove that if there is an algorithm for deciding whether a
smooth projective geometrically integral k-variety has a k-point, then there is an algorithm for
deciding whether an arbitrary k-variety has a k-point and also an algorithm for computing X(k) for
any k-variety X for which X(k) is finite. The proof involves the construction of a one-parameter
algebraic family of Châtelet surfaces such that exactly one of the surfaces fails to have a k-point.
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1. Statement of results

Given a field k, a k-variety is a separated scheme of finite type over k. We will consider
algorithms (Turing machines) accepting as input k-varieties where k is a number field.
Each such variety may be represented by a finite number of affine open patches together
with gluing data, so it admits a finite description suitable for input into a Turing machine.
We do not require algorithms to run in polynomial time or any other specified time, but
they must terminate with an answer for each allowable input.

Theorem 1.1. Fix a number field k. Suppose that there exists an algorithm for deciding
whether a regular projective geometrically integral k-variety has a k-point. Then

(i) there is an algorithm for deciding whether an arbitrary k-variety has a k-point,
(ii) there is an algorithm for computingX(k) for any k-varietyX for whichX(k) is finite.

Remark 1.2.

(a) For a field k of characteristic 0, a k-variety is regular if and only if it is smooth over k.
Nevertheless, we have two reasons for sometimes using the adjective “regular”:
• In some situations, for instance when speaking of families of varieties, it helps to

distinguish the absolute notion (regular) from the relative notion (smooth).
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• In Section 11, we say what can be said about the analogue for global function
fields.

(b) For regular proper integral k-varieties, the property of having a k-point is a birational
invariant, equivalent to the existence of a (not necessarily rank 1) valuation v on the
function field such that v is trivial on k, and k maps isomorphically to the residue
field: this follows from [Nis55] and is also close to [Lan54, Theorem 3]; see also
[CCS80, Lemme 3.1.1]. Thus one might wonder whether the decision problem is
easier for regular projective geometrically integral varieties than for arbitrary ones.
But Theorem 1.1(i) says that in fact the two problems are equivalent.

(c) For k = Q, Theorem 1.1(i) was more or less known: it is easily deduced from a result
of R. Robinson [Smo91, §II.7] that the problem of deciding the existence of a rational
zero of a polynomial over Q is equivalent to the problem of deciding the existence of
a nontrivial rational zero of a homogeneous polynomial over Q. Robinson’s argument
generalizes easily to number fields with a real place.

(d) Theorem 1.1 becomes virtually trivial if the word “projective” is changed to “affine”.
On the other hand, there are related statements for affine varieties that are nontrivial:
for instance, if there is an algorithm for deciding whether any irreducible affine plane
curve of geometric genus at least 2 has a rational point, then there is an algorithm for
determining the set of rational points on any such curve [Kim03].

(e) By restriction of scalars, if we have an algorithm for deciding whether a regular pro-
jective geometrically integral Q-variety has a rational point, then we have an anal-
ogous algorithm over any number field. But there is no number field for which the
existence of such algorithms is known.

(f) Remark 8.2 will imply that to have algorithms as in (i) and (ii) of Theorem 1.1 for
curves, it would suffice to be able to decide the existence of rational points on regular
projective geometrically integral 3-folds. (If over Q one uses Robinson’s reduction
instead, one would need an algorithm for 9-folds!)

Theorem 1.1 will be deduced in Section 10 from the following:

Theorem 1.3. Let k be a number field. Let X be a projective k-variety. Let U ⊆ X

be an open subvariety. Then there exists a regular projective variety Y and a morphism
π : Y → X such that π(Y (k)) = U(k). Moreover, there exists an algorithm for construct-
ing (Y, π) given (k,X,U).

The key special case, from which all others will be derived, is the case where U = A1

and X = P1. In this case we can arrange also for π−1(t) to be smooth and geometrically
integral for all t ∈ P1(k): see Proposition 7.2. Thus we will have a family of smooth pro-
jective geometrically integral varieties in which every rational fiber but one has a rational
point, an extreme example of geometry not controlling arithmetic!

Remark 1.4. Theorem 1.3 fails for many fields k that are not number fields, even for
those that have a complicated arithmetic. Proposition 7.3 implies that it fails for the func-
tion field of any C-variety, for instance.
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2. Notation

Let k be a number field. Let Ok be the ring of integers in k. Let �k be the set of places
of k. If v ∈ �k , let kv be the completion of k at v. If v is nonarchimedean, let Fv be the
residue field. Call v odd if it is nonarchimedean and #Fv is odd. If a ∈ Ok generates a
prime ideal, let va be the associated valuation, and let Fa = Fva . For a ∈ k, let a � 0
mean that a is totally positive, i.e., positive for every real embedding of k. For any field L,
let L× be the unit group L− {0}.

3. Conic bundles

A conic over k is the zero locus in P2
= Proj k[x0, x1, x2] of a nonzero degree-2 homo-

geneous polynomial s in k[x0, x1, x2]. If E is the k-vector space with basis x0, x1, x2,
then we may view P2 as PE := Proj SymE, and s as a nonzero element of Sym2 E.
By analogy, a conic bundle C over a k-scheme B is the zero locus in PE of a nowhere-
vanishing global section s of Sym2 E , where E is some rank-3 vector sheaf on B. We will
consider only the special case where E = L0 ⊕ L1 ⊕ L2 for some line sheaves Li and
s = s0 + s1 + s2 where si ∈ 0(B,L⊗2

i ); we then call C → B a diagonal conic bundle.

Lemma 3.1. Let B be a smooth curve over k. Let k be an algebraic closure of k. Let
C → B be a diagonal conic bundle, with notation as above, such that

∑2
i=0 ordP (si) ≤ 1

for every P ∈ B(k). Then the total space C is smooth over k.

Proof. We may assume that k is algebraically closed. Let π be the morphism C → B.
Since B is smooth, C is smooth over k at any point where π is smooth. Thus we need
only check the singular points of the fibers of π .

Given P ∈ B, choose a neighborhood U of P in B such that Li |U ' OU ; then
π−1(U) is isomorphic to a conic bundle a0x

2
0 + a1x

2
1 + a2x

2
2 = 0 in P2

U where the
ai ∈ OB(U) satisfy

∑2
i=0 ordP (ai) ≤ 1. If all the ai are nonvanishing at P , then the fiber

π−1(P ) is a smooth conic. Otherwise, at most one of the ai vanishes at P , say ordP (a2) =

1. Then π−1(P ) has a unique singularity Q, the point ((0, 0), P ) in the affine patch
a0X

2
0+a1X

2
1+a2 = 0 in the smooth k-variety A2

×U , whereXi := xi/x2. Let mQ be the
maximal ideal of Q in A2

× U . Then a0X
2
0 + a1X

2
1 ∈ m2

Q but ordP (a2) = 1, so a0X
2
0 +

a1X
2
1 + a2 /∈ m2

Q. Thus C is regular at Q, and hence C is smooth over k even at Q. ut

4. Hilbert symbol

For v ∈ �k and t, u ∈ k×v , let (t, u)v ∈ {±1} be the v-adic Hilbert symbol: by definition,
(t, u)v = 1 if and only if x2

− ty2
− uz2

= 0 has a solution (x, y, z) 6= (0, 0, 0) in k3
v .

We recall some basic properties of the Hilbert symbol:

Lemma 4.1. For all t, t ′, u, u′ ∈ k×v , we have
(a) (t, u)v = 1 if and only if t belongs to the image of the norm map kv(

√
u)×→ k×v .

(b) (t, u)v = (u, t)v .
(c) (tt ′, u)v = (t, u)v(t ′, u)v and (t, uu′)v = (t, u)v(t, u′)v; in particular, (t, u2)v = 1.
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(d) (t,−t)v = 1.
(e) (t, 1− t)v = 1, assuming in addition that t 6= 1.
(f) Suppose that v is odd and v(t) = 0. Then (t, u)v = −1 if and only if v(u) is odd and

the image of t in Fv is a nonsquare.
If t, u ∈ k×, we have the product formula
(g)

∏
v∈�k

(t, u)v = 1.

Proof. See [Ser73, Chapter III] for the case k = Q. See [Ser79, Chapter XIV] for the
general case: in particular, Proposition 7 there yields (a)–(e); Proposition 8 implies (f);
and p. 222 contains (g). ut

5. Châtelet surfaces

Fix α ∈ k× and P(x) ∈ k[x] of degree at most 4. Let V0 be the affine surface in A3 given
by y2

− αz2
= P(x). We want a smooth projective model V of V0. Define P̃ (w, x) :=

w4P(x/w); view P̃ as a section of O(4) on P1 := Proj k[w, x]. The construction of
Section 3 with B = P1, L0 = L1 = O, L2 = O(2), s0 := 1, s1 := −α, and s2 := −P̃
gives a diagonal conic bundle V → P1 containing V0 as an affine open subvariety. Since
V → P1 is projective, V is projective over k too. If P(x) is not identically 0, then V is
geometrically integral. If P(x) is separable and of degree 3 or 4, then P̃ (w, x) is separable
and V is smooth over k by Lemma 3.1; in this case V is called the Châtelet surface given
by y2

− αz2
= P(x).

Iskovskikh [Isk71] showed that the Châtelet surface over Q given by
y2
+ z2
= (x2

− 2)(3− x2)

violated the Hasse principle. Several years later it was shown that this violation could be
explained by the Brauer–Manin obstruction, and that more generally, any Châtelet surface
over a number field given by y2

− az2
= f (x)g(x) with f and g distinct irreducible

quadratic polynomials satisfies the Hasse principle if and only if there is no Brauer–
Manin obstruction [CCS80, Theorem B]. Finally, the two-part paper [CSS87a, CSS87b]
generalized this to all Châtelet surfaces over number fields. For an introduction to the
Brauer–Manin obstruction, see [Sko01, §5.2].

Proposition 5.1. There exists a Châtelet surface V over k that violates the Hasse
principle.

The rest of this section is devoted to the proof of Proposition 5.1, so a reader interested
in only the case k = Q may accept the Iskovskikh example and proceed to Section 6. We
generalize the argument presented in [Sko01, p. 145].

By the Chebotarev density theorem and global class field theory applied to a ray class
field, we can find b ∈ Ok generating a prime ideal such that b � 0 and b ≡ 1 (mod 8Ok).
Similarly we find a ∈ Ok generating a prime ideal such that a � 0 and a ≡ 1 (mod 8Ok)
and a is a not a square modulo b. We may assume that #Fa, #Fb > 5. Fix c ∈ Ok such
that b | (ac + 1).

We use the abbreviation (t, u)b := (t, u)vb . We will need the following Hilbert symbol
calculations later:



Rational points on smooth projective varieties 533

Lemma 5.2. We have

(i) (−1, a)v = 1 for all v ∈ �k .
(ii) (−1, b)v = 1 for all v ∈ �k .

(iii) (ab, a)b = −1.
(iv) (ab, c)b = −1.

Proof.
(i) For v archimedean or 2-adic, we have a ∈ k×2

v , so Lemma 4.1(c) implies (−1, a)v
= 1. For all other v except va , we have v(−1) = v(a) = 0, so Lemma 4.1(f) implies
(−1, a)v = 1. For v = va , it follows from Lemma 4.1(g).

(ii) The proof is the same as that of (i).
(iii) By (i) and Lemma 4.1(c,d,f), we have (ab, a)b = (−1, a)b(ab, a)b =

(−a, a)b(b, a)b = 1 · (b, a)b = −1.
(iv) Since b | (ac+ 1), we have ac ∈ (−1)k×2

vb
, so Lemma 4.1(c) implies (ab, ac)b =

(ab,−1)b = (a,−1)b(b,−1)b = 1, where we used (i) and (ii) in the last step. Divide by
(iii) to get (ab, c)b = −1. ut

Let V be the Châtelet surface given by

y2
− abz2

= (x2
+ c)(ax2

+ ac + 1). (1)

(The quadratic factors on the right are separable and generate the unit ideal of k[x], so V
is smooth over k.)

Lemma 5.3. The variety V has a kv-point for every place v of k.

Proof. Suppose that v is archimedean or 2-adic. Then ab ∈ k×2
v , so the left hand side of

(1) factors as (y + dz)(y − dz) for some d ∈ k×v ; now, choose x ∈ kv , write the value of
the right hand side of (1) as x1x2 for some x1, x2 ∈ kv , and solve the system y+dz = x1,
y − dz = x2 for y, z ∈ kv to obtain a kv-point of V .

Suppose that v is odd and v /∈ {va, vb}. Choose x ∈ k with v(x) < 0. Then the
right hand side of (1) has even valuation and is hence a norm for the unramified extension
kv(
√
ab)/kv . So V has a kv-point.

Suppose that v = vb. Because a is not a square modulo b, all Fb-points on the projec-
tive closure of the affine curve y2

= a(x2
+ c) over Fb lie on the affine part, so there are

#Fb + 1 solutions (x, y) ∈ F2
b. Then the number of solutions with x2

+ c 6= 0 and x 6= 0
is at least (#Fb + 1) − 2 − 2 − 2 > 0. Choose x ∈ Ok reducing to the x-coordinate of
such a solution. The right hand side of (1) is congruent modulo b to (x2

+ c)(ax2), so by
Hensel’s lemma it is in k×2

v . Thus V has a kv-point.
Suppose that v = va . The same argument as in the previous paragraph shows that we

may choose x ∈ Ok such that x2
+ c ∈ k×2

v . The other factor ax2
+ ac + 1 is 1 mod a,

hence in k×2
v . Therefore the right hand side of (1) is in k×2

v , so V has a kv-point. ut

Let κ(V ) be the function field of V . Let A ∈ Br κ(V ) be the class of the quaternion
algebra (ab, x2

+ c). Since for any g ∈ κ(V )× the class of (ab, g) is unaffected by
multiplying g by a square or by a norm from κ(V )(

√
ab), the class A equals the class of

(ab, 1+ c/x2) and of (ab, ax2
+ ac + 1).
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Lemma 5.4. The element A belongs to the subgroup BrV of Br κ(V ).

Proof. First of all, V is a regular integral scheme, so BrV is a subgroup of Br κ(V ), and
it consists of the elements whose residue at every codimension-1 point P of V vanishes.
To check that A satisfies this residue condition at P , it is sufficient to show that A can be
represented by a quaternion algebra (f, g) where f, g ∈ κ(V )× are regular and nonvan-
ishing at P . In fact, at every P ∈ V , one of the three representations of A given in the
paragraph preceding Lemma 5.4 is of this form. ut

We will show that A gives a Brauer–Manin obstruction to the Hasse principle. For Pv ∈
V (kv), let A(Pv) ∈ Br kv be the evaluation of A at Pv . Let invv : Br kv ↪→ Q/Z be the
usual invariant map. Given Pv ∈ V (kv), if A is represented by (f, g) with f, g ∈ κ(V )×

regular and nonvanishing at Pv , then invv(A(Pv)) is 0 or 1/2 according to whether the
Hilbert symbol (f (Pv), g(Pv))v is 1 or −1.

Lemma 5.5. For any Pv ∈ V (kv),

invv(A(Pv)) =

{
0 if v 6= vb,
1/2 if v = vb.

Proof. Since V is smooth, the implicit function theorem shows that V0(kv) is v-adically
dense in V (kv). Since invv(A(Pv)) is a continuous function on V (kv) with the v-adic
topology, it suffices to prove the result for Pv ∈ V0(kv).

Suppose that v is archimedean or 2-adic. Then ab ∈ k×2
v , so for any t ∈ k×v the Hilbert

symbol (ab, t)v is 1. Hence invv(A(Pv)) = 0.
Suppose that v is odd and v /∈ {va, vb}. If v(x) < 0 at Pv , then v(x2

+ c) is even, so
Lemma 4.1(f) implies invv(A(Pv)) = 0. If v(x) ≥ 0, then either x2

+ c or ax2
+ ac + 1

is a v-adic unit, so using an appropriate representation of A and applying Lemma 4.1(f)
shows that invv(A(Pv)) = 0.

Suppose that v = va . If v(x) < 0 at Pv , then x2
+ c ∈ k×2

v , so Lemma 4.1(c) implies
invv(A(Pv)) = 0. If v(x) ≥ 0, then ax2

+ ac + 1 is 1 mod a so it is in k×2
v , and again

invv(A(Pv)) = 0.
Finally, suppose that v = vb. Each of the following two sentences will use the fol-

lowing observation: if elements t, u ∈ k×v and ε ∈ kv satisfy v(u) ≤ 0 < v(ε), then
(u+ ε)/u ∈ k×2

v , so Lemma 4.1(c) implies (t, u+ ε)b = (t, u)b. If v(x) ≤ 0, then taking
ε = ac+1 yields (ab, ax2

+ac+1)b = (ab, ax2)b = (ab, a)b = −1, by Lemma 5.2(iii).
If v(x) > 0, then taking ε = x2 yields (ab, x2

+c)b = (ab, c)b = −1, by Lemma 5.2(iv).
In either case, invv(A(Pv)) = 1/2. ut

Lemma 5.5, together with the reciprocity law
∑
v∈�k

invv(α) = 0 for α ∈ Br k (or the
special case for quaternion algebras given by Lemma 4.1(g)), implies that V has no k-
point. This completes the proof of Proposition 5.1.

6. Châtelet surface bundles

By a Châtelet surface bundle over P1 we mean a flat proper morphism V → P1 such that
the generic fiber is a Châtelet surface; then for t ∈ P1(k), we let Vt be the fiber above t .
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We retain the notation of Section 5. Let P̃0(w, x) ∈ k[w, x] be the homogeneous form
of degree 4 obtained by homogenizing the right hand side of (1). Let P̃∞(w, x) be any
irreducible degree-4 form in k[w, x]. Thus P̃0 and P̃∞ are linearly independent.

Let V be the diagonal conic bundle over P1
× P1 := Proj k[u, v] × Proj k[w, x]

obtained by taking L0 = L1 := O, L2 := O(1, 2), s0 := 1, s1 := −ab, and s2 :=
−(u2P̃∞+v

2P̃0). Composing V → P1
×P1 with the first projection P1

×P1
→ P1 lets us

view V as a Châtelet surface bundle over P1
= Proj k[u, v] with projective geometrically

integral fibers. If u, v ∈ k are not both 0, the fiber above (u : v) ∈ P1(k) is the Châtelet
surface given by

y2
− abz2

= u2P̃∞(1, x)+ v2P̃0(1, x),

if smooth over k. In particular, the fiber V(0:1) is isomorphic to V .
Call a subset T of P1(k) thin if and only if there exist finitely many regular projective

geometrically integral curves Ci and morphisms νi : Ci → P1 of degree greater than 1
such that T ⊆

⋃
νi(Ci(k)); cf. [Ser97, §9.1]. Such sets arise in the context of the Hilbert

irreducibility theorem.

Lemma 6.1. The set of specializations (u : v) ∈ P1(k) such that u2P̃∞+v
2P̃0 ∈ k[w, x]

is reducible (for any or all choices of (u, v) ∈ k2
− {(0, 0)} representing (u : v)) is a thin

set.

Proof. We may assume u = 1. The degree-4 form P̃∞ + v
2P̃0 over k(v) is irreducible

since it has an irreducible specialization, namely P̃∞. Apply [Ser97, §9.2, Proposition 1].
ut

Lemma 6.2. There exists a finite set S of noncomplex places of k and a neighborhood
Nv of (0 : 1) in P1(kv) for each v ∈ S such that for t ∈ P1(k) belonging to Nv for each
v ∈ S, the fiber Vt has a kv-point for every v ∈ �k .

Proof. This is an application of the “fibration method”, which has been used previously
in various places (e.g., [CSS87a], [Col98, 2.1], [CP00, Lemma 3.1]). Since all geometric
fibers of the k-morphism V → P1 are integral, the same is true for a model over some
ring Ok,S of S-integers. By adding finitely many v to S, we can arrange that for nonar-
chimedean v /∈ S the residue field Fv is large enough that every Fv-fiber has a smooth
Fv-point by the Weil conjectures; then by Hensel’s lemma any kv-fiber has a kv-point.
Include the real places in S, and exclude the complex places since for complex v the ex-
istence of kv-points on fibers is automatic. For v ∈ S, since the fiber above (0 : 1) has
a kv-point, and since V → P1 is smooth above (0 : 1), the implicit function theorem
implies that the image of V(kv)→ P1(kv) contains a v-adic neighborhood Nv of (0 : 1)
in P1(kv). ut

7. Base change

The following lemma combines the idea of [CP00, Lemma 3.3] with some new ideas.

Lemma 7.1. Let P ∈ P1(k). Let S be a finite set of noncomplex places of k. For each
v ∈ S, let Nv be a neighborhood of P in P1(kv). Let T be a thin subset of P1(k) con-
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taining P . Then there exists a k-morphism γ : P1
→ P1 such that both of the following

hold:

(1) γ (P1(kv)) ⊆ Nv for each v ∈ S.
(2) γ−1(T ) ∩ P1(k) consists of a single point Q with γ (Q) = P .

Proof. We will construct γ as a composition. But we present the argument as a series
of reductions, each step of which involves taking the inverse image of all the data under
some β : P1

→ P1 and replacing P by some P ′ ∈ β−1(P ) ∩ P1(k).
Choose finitely many regular projective geometrically integral curves Ci and mor-

phisms νi : Ci → P1 of degree greater than 1 such that T ⊆
⋃
νi(Ci(k)). By choosing

a suitable coordinate on P1, we may assume that 0,∞ ∈ P1(k) are disjoint from the
branch points of every νi , and that 1 ∈ P1(k) is the point P . Choose n ∈ Z>0 such that
n > 2 deg νi for every i, and let β : P1

→ P1 be the morphism corresponding to the ratio-
nal function t 7→ tn; note that there exists P ′ ∈ P1(k) with β(P ′) = P . Define the fiber
product C′i with morphisms ν′i : C

′

i → P1 and βi : C′i → Ci making a cartesian diagram

C′i

ν′i
��

βi // Ci

νi

��
P1

β // P1

Since β is totally ramified above 0, the morphism βi is totally ramified above ν−1
i (0), so

C′i is geometrically integral. Since the branch loci of β and νi are disjoint, C′i is regular
and the ramification divisors R′i and Ri of ν′i and νi , respectively, satisfy R′i = β∗i Ri .
Since P1 has no everywhere unramified cover, degRi > 0. By the Hurwitz formula, the
genus g′i of C′i satisfies

2g′i − 2 = (deg ν′i)(−2)+ degR′i = (deg νi)(−2)+ n degRi ≥ −2 deg νi + n > 0,

so g′i > 1. By Faltings’ theorem [Fal83], C′i(k) is finite. We have β−1(T ) ∩ P1(k) ⊆⋃
ν′i(C

′

i(k)), so β−1(T )∩P1(k) is finite. By pulling all the data back under β and replac-
ing P by P ′, we reduce to the case where T is finite.

Choose a new coordinate on P1 for which P is 0 ∈ P1(k). Then the rational function
t 7→ 1/(t2+m)maps∞ to 0 and maps P1(R) intoNv for each real v ifm ∈ Z>0 is chosen
large enough. Pulling all the data back under the corresponding endomorphism of P1, we
reduce to the case where S contains no archimedean places. Now suppose that S contains
a nonarchimedean place v. Let q = #Fv . Choose a large positive integer r , and let m :=
qr(q−1). Then the rational function t 7→ tm maps all t ∈ kv with v(t) > 0 into a small v-
adic neighborhood of 0, all t ∈ kv with v(t) < 0 (including∞) into a small neighborhood
of∞, and all t ∈ kv with v(t) = 0 into a small neighborhood of 1 (raising to the power
q − 1 already maps the t with v(t) = 0 into the 1-units, and successively raising to
the power q brings these closer and closer to 1). Choose a rational function g mapping
{0, 1,∞} to P ; then choosing r large enough arranges that the rational function g(tm)
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maps P1(kv) into Nv . Pulling back everything under the corresponding endomorphism of
P1 lets us replace S by S − {v}. Eventually we reduce to the case in which S = ∅.

For a suitable choice of coordinate, P is the point 0 ∈ P1(k), and ∞ /∈ T . Choose
c ∈ k× such that the images of c and T −{0} in k×/k×2 do not meet. Let γ : P1

→ P1 be
given by the rational function ct2. Then γ−1(T )∩P1(k) consists of the single point 0. ut

Proposition 7.2. There exists a Châtelet surface bundle µ : W → P1 over k such that

(i) µ is smooth over P1(k),
(ii) µ(W(k)) = A1(k).

Proof. Obtain γ : P1
→ P1 from Lemma 7.1 with P = (0 : 1), with S and Nv as in

Lemma 6.2, and with T the thin set of Lemma 6.1; note that T contains the finitely many
t ∈ P1(k) above which V → P1 is not smooth. We may assume that the Q in Lemma 7.1
is∞. Define W as the fiber product

W
µ

��

// V

��
P1

γ // P1

and let µ be the projection W → P1 shown. Then µ is smooth above P1(k), and for
every t ∈ P1(k) the fiber Wt has a kv-point for every v. If t ∈ A1(k), then γ (t) /∈ T ,
hence Wt is a Châtelet surface defined by an irreducible degree-4 polynomial, so by
[CSS87a, Theorem B(i)(b)], Wt satisfies the Hasse principle; thus Wt has a k-point. But
if t = ∞, then Wt is isomorphic to V(0:1) ' V , which has no k-point. ut

The following proposition will not be needed elsewhere. Its role is only to illustrate that
Theorem 1.3 and Proposition 7.2 depend subtly upon properties of k: for instance, they
are not true over all fields of cohomological dimension 2.

Proposition 7.3. Let k0 be an uncountable algebraically closed field, and let k be a field
extension of k0 generated by a set S of cardinality less than #k0. Then there is no mor-
phism π : W → P1 of projective k-varieties such that π(W(k)) = A1(k).

Proof. Suppose that π(W(k)) = A1(k). Fix a projective embedding W ↪→ Pn. Let
0 ⊆W × P1

⊆ Pn × P1 be the graph of π . Since W is projective, 0 is the zero locus of
a finite set of bihomogeneous polynomials γi with coefficients in k.

Let L be a finite-dimensional k0-subspace of k. Let

Pn[L] = { (a0 : · · · : an) ∈ Pn(k) | (a0, . . . , an) ∈ L
n
− {0}}.

Let W[L] = Pn[L] ∩W(k) ⊆ Pn(k).
We claim that the subset IL := π(W[L]) ∩ P1(k0) of P1(k) is finite. Choose a k0-

basis of L to identify (Ln+1
− {0})/k×0 with PN (k0), where N + 1 = (n + 1) dimk0 L.

For each i, the coefficients obtained when the value of γi at

(v0, . . . , vN , w0, w1) ∈ k
N+1
0 × k2

0 ' L
n+1
× k2

0
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is expressed as a linear combination of elements in a fixed k0-basis of k are bihomoge-
neous polynomials in k0[v0, . . . , vN ;w0, w1]. These bihomogeneous polynomials, taken
for all i, define a Zariski closed subset CL ⊆ PN (k0) × P1(k0). By definition of 0 and
the γi , the projection of CL onto the second factor equals IL. Thus IL is Zariski closed in
P1(k0). On the other hand, IL ⊆ π(W[L]) ⊆ π(W(k)) = A1(k), so∞ /∈ IL. Thus IL is
finite, as claimed.

Let L be the collection of finite-dimensional k0-subspaces L of k spanned by a finite
set of monomials in the elements of S. Then

⋃
L∈L L is the k0-subalgebra of k generated

by S, and its fraction field is k. Therefore
⋃
L∈L Pn[L] = Pn(k) and

⋃
L∈LW[L] =

W(k). Applying π and intersecting with P1(k0) yields
⋃
L∈L IL = π(W(k)) ∩ P1(k0).

Thus

#(π(W(k)) ∩ P1(k0)) = #
⋃
L∈L

IL ≤ #L · ℵ0 = max{#S,ℵ0} < #k0 = #A1(k0).

The strict inequality implies π(W(k)) 6= A1(k). ut

8. Reductions

Lemma 8.1. There exists a projective k-variety Z and a morphism η : Z→ Pn such that
η(Z(k)) = An(k) and η is smooth above An(k).

Proof. Start with the birational map (P1)n 99K Pn given by the isomorphism (A1)n →

An. Resolve the indeterminacy, i.e., find a projective k-variety J and a birational mor-
phism J → (P1)n whose composition with (P1)n 99K Pn extends to a morphism J → Pn
that is an isomorphism above An. Define Z to make a cartesian square

Z

��

// Wn

µn

��
J // 66(P1)n //___ Pn

where W µ
→ P1 is as in Proposition 7.2. Let η be the composition Z→ J → Pn.

By construction of W , we have µn(Wn(k)) = (A1)n(k), so the image of Z(k) →
J (k) is contained in the copy of An in J . Therefore η(Z(k)) ⊆ An(k).

On the other hand, if t ∈ An(k), then J → (P1)n is a local isomorphism above t ,
and Wn

→ (P1)n is smooth above t , so Z → J is smooth above t , and the fiber
η−1(t) is isomorphic to the corresponding fiber of Wn

→ (P1)n so it has a k-point.
Thus η(Z(k)) = An(k). ut

Proof of existence in Theorem 1.3. We use strong induction on dimX. The case where X
is empty is trivial. We may assume that X is integral; then X is generically smooth, and
the nonsmooth locus Xsing is of lower dimension. Let Using = U ∩ Xsing. The inductive
hypothesis gives π1 : Y1 → Xsing such that π1(Y1(k)) = Using(k). If we prove the con-
clusion for the smooth open subvariety U −Using ⊆ X, i.e., if we find π2 : Y2 → X such
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that π2(Y2(k)) = (U−Using)(k), then the disjoint union Y1qY2 serves as a Y for U ⊆ X.
Thus we reduce to the case where U is smooth over k.

If U is a finite union of open subvarieties Ui , then it suffices to prove the conclusion
for eachUi ⊆ X and take the disjoint union of the resulting Y ’s. In particular, by choosing
a projective embedding ofX and expressingX−U as a finite intersection of hypersurface
sections ofX, we may reduce to the case whereU = X−D for some very ample effective
divisor D ⊆ X. In other words, we may assume that X ⊆ Pn and U = X ∩ An.

Let Z→ Pn be as in Lemma 8.1. Define Y0 to make a cartesian diagram

Y

  A
AA

AA
AA

A

π

��

Y0 //

��

Z

η

��
X

� � // Pn

U
� � //
. �

>>}}}}}}}}
An

. �

==||||||||

and let Y → Y0 be a resolution of singularities that is an isomorphism above the smooth
locus of Y0, so Y is a regular projective variety. Let π be the composition Y → Y0 → X.

Suppose that t ∈ U(k). Then Z→ Pn is smooth above t , by choice of Z. So Y0 → X

is smooth above t . Moreover, U → Spec k is smooth, so Y0 → Spec k is smooth above t .
Therefore Y → Y0 is a local isomorphism above t . Thus π−1(t) ' η−1(t), and the latter
has a k-point.

On the other hand, if t ∈ X(k)−U(k), then π−1(t) cannot have a k-point, since such
a k-point would map to a k-point of Z lying over t ∈ Pn(k) − An(k), contradicting the
choice of Z.

Thus π(Y (k)) = U(k). ut

Remark 8.2. In the special case where X is a regular projective curve and U is an
affine open subvariety of X, the reductions may be simplified greatly. Namely, using the
Riemann–Roch theorem, construct a morphism f : X→ P1 such that f−1(∞) = X−U ;
now define Y0 to make a cartesian diagram

Y

��@
@@

@@
@@

π

��

Y0 //

��

W
µ

��
X

f // P1

and let Y be a resolution of singularities of Y0.
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9. Effectivity

The construction of Y in Theorem 1.3 as given is not effective, because it used Faltings’
theorem. More specifically, in the proof of Lemma 7.1 we know that C′i(k) is finite but
might not know what it is, so when we reach the last paragraph of the proof, we might not
know what the finite set T is, and hence we have no algorithm for computing a good c,
where good means that the images of c and T − {0} in k×/k×2 do not meet.

Existence of an algorithm for Theorem 1.3. Let F be the (finite) set of t ∈ P1(k) such
that Vt is not smooth. Suppose that instead of requiring that c be good, we require only
the effectively checkable condition that the images of c and F in k×/k×2 do not meet.
Then the proof of existence in Theorem 1.3 still yields a regular projective variety Yc and
a morphism πc : Yc → X, but it might not have the desired property πc(Yc(k)) = U(k).
Indeed, in the proof of Proposition 7.2, some of the Châtelet surfaces Wt other than W∞
may be defined by a reducible degree-4 polynomial and hence may violate the Hasse
principle; thus the conclusion µ(W(k)) = A1(k) in Proposition 7.2 must be weakened to
µ(W(k)) ⊆ A1(k), and this eventually implies πc(Yc(k)) ⊆ U(k).

On the other hand, an argument of Parshin (see [Szp85]) shows that Faltings’ proof
of the Mordell conjecture can be adapted to give an upper bound on the size of each set
C′i(k) in the proof of Lemma 7.1. Therefore we can compute a bound on #T . Choose a
finite subset 0 ⊆ k× whose image in k×/k×2 is disjoint from the image of F and has size
greater than #T . Then 0 contains at least one good c.

Let Y =
∐
c∈0 Yc, and define π : Y → X by π |Yc = πc. Then π(Y (k)) =⋃

c∈0 πc(Yc(k)) = U(k) since all terms in the union are subsets of U(k) and some term
equals U(k). ut

10. Algorithms for rational points

Lemma 10.1. Any connected regular k-variety with a k-point is geometrically integral.

Proof. We give an argument that works over any ground field k.
Let Y be the variety and let y be the k-point. Then Y is geometrically connected by

[EGA IV.II, IV.4.5.14]. If Y were reducible, there would be a point in the intersection of
two irreducible components, and Y would not be regular there. Therefore Y is irreducible.
Let ks be a separable closure of k, and let Ys = Y ×k ks . Then Ys is regular [EGA
IV.II, IV.4.5.14] and connected, so by the same argument as above, Ys is irreducible. This
suffices to prove that Y is geometrically irreducible, by [EGA IV.II, IV.4.5.9].

Since Y is regular, Y is reduced. Combining this with the previous paragraph shows
that Y is integral. Since Y is smooth at any regular k-point [EGA IV.IV, IV.17.15.1],
there exists an open neighborhood U of y in Y that is smooth, or equivalently, geomet-
rically regular [EGA IV.IV, IV.17.15.2], which implies geometrically reduced. For an
integral variety, being geometrically reduced depends only on the function field [EGA
IV.II, IV.4.6.1], so Y is geometrically reduced too.

Combining the previous two paragraphs shows that Y is geometrically integral [EGA
IV.II, IV.4.6.2]. ut
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Proof of Theorem 1.1(i). Suppose that we want to know whether the k-variety U has a
k-point. By passing to a finite open cover, we may assume that U is affine. Let X be a
projective closure of U . Construct Y → X as in Theorem 1.3. Then U has a k-point if
and only if Y has a k-point, so we reduce to the problem of deciding whether a regular
projective variety Y has a k-point. Connected components are computable, so we may
assume that Y is also connected. Check whether Y is geometrically integral; if so, by
assumption we can decide whether Y has a k-point; if not, Lemma 10.1 implies that Y
has no k-point. ut

Proof of Theorem 1.1(ii). We want to compute #X(k). Apply the algorithm of Theo-
rem 1.1(i) to X. If it says that X has no k-point, we are done. Otherwise, search until a
k-point P on X is found, and start over with the variety X−{P }. If X(k) is finite, this al-
gorithm will eventually terminate. (This kind of argument was also used in [Kim03].) ut

11. Global function fields

In this section, we investigate whether the proofs of the previous sections carry over to
the case where k is a global function field of characteristic p > 2.

The main issues are:

(1) The two-part paper [CSS87a, CSS87b], which is key to all our main results, works
only over number fields. But it seems likely that the same proofs work, with at most
minor modifications, over any global field of characteristic not 2.

(2) The proof of Theorem 1.3 uses resolution of singularities, which is not proved in
positive characteristic. Moreover, the proof of Theorem 1.1 uses Theorem 1.3 so it
also is in question. Without assuming resolution of singularities, one would obtain
the weaker versions of Theorem 1.1 and 1.3 in which the word “regular” is removed
from both.

There are a few other issues, but these can be circumvented, as we now discuss.
The proof of Proposition 5.1 works for any global function field k of characteristic

not 2: fix a place∞ of k, let Ok be the ring of functions that are regular outside∞, and
replace the archimedean and 2-adic conditions on a and b by the condition that a and b
be squares in the completion k∞; then the proof proceeds as before.

The second paragraph of the proof of Lemma 7.1 encounters two problems in positive
characteristic: first, it needs νi and β to be separable, and second, to apply the function
field analogue [Sam66] of Faltings’ theorem it needs C′i to be nonisotrivial. As for the
first problem, if in Section 6 we choose P̃∞(w, x) to be separable, then the same will be
true of P̃∞ + v2P̃0 over k(v), and the same will be true of the νi in the application of
Lemma 7.1, since the νi correspond to field extensions of k(v) contained in the splitting
field of P̃∞ + v2P̃0 over k(v); moreover, β can be made separable simply by choosing n
not divisible by p. As for the second problem, the flexibility in the choice of coordinate
used to define β in the proof of Lemma 7.1 lets us arrange for C′i to be nonisotrivial.
Moreover, in this case, one can bound not only the number of k-points on each C′i , but
also their height [Szp81, §8, Corollaire 2].
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There is another thing that is better over global function fields k than over num-
ber fields. Namely, by a proved extension of Hilbert’s tenth problem to such k

[Phe91, Shl92, Vid94, Eis03], it is already known that there is no algorithm for deciding
whether a k-variety has a k-point. Therefore, if k is a global function field of characteristic
not 2, and we assume that [CSS87a,CSS87b] works over k, then there is no algorithm for
deciding whether a projective geometrically integral k-variety has a k-point (and if we
moreover assume resolution of singularities, we can add the adjective “regular” in this
final statement).

Remark 11.1. Bianca Viray [Vir09] has proved an analogue of Proposition 5.1 for every
global function field of characteristic 2.

12. Open questions

(i) Can one generalize Remark 1.2(f) to show that to have algorithms as in (i) and (ii)
of Theorem 1.1 for n-folds, it would suffice to be able to decide the existence of
rational points on regular projective geometrically integral (n+ 2)-folds?

(ii) Is there a proof of Proposition 5.1 that does not require such explicit calculations?
(iii) Is the problem of deciding whether a smooth projective geometrically integral hyper-

surface over k has a k-point also equivalent to the problem for arbitrary k-varieties?
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