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Abstract. The question in the title, first raised by Goldman and Donaldson, was partially answered
by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental
group of a closed 3-manifold and of a compact Kähler manifold, then G must be finite—and thus
belongs to the well-known list of finite subgroups of O(4), acting freely on S3.
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1. Introduction

1.1. As is well-known, every finitely presented group G occurs as the fundamental
group of a smooth, compact, connected, orientable 4-dimensional manifoldM . As shown
by Gompf [14], the manifold M can be chosen to be symplectic. Requiring a complex
structure on M is no more restrictive, as long as one is willing to go up to complex
dimension 3 (see Taubes [32]).

Suppose now G is the fundamental group of a compact Kähler manifold M . Groups
arising this way are called Kähler groups (or, projective groups, ifM is actually a smooth
projective variety). The Kähler condition puts strong restrictions on whatG can be. For in-
stance, the first Betti number, b1(G), must be even, by classical Hodge theory. Moreover,
G must be 1-formal, by work of Deligne, Griffiths, Morgan, and Sullivan [9]. Also, G
cannot split non-trivially as a free product, by a result of Gromov [17]. On the other hand,
every finite group is a projective group, by a classical result of Serre [29]. We refer to [1]
for a comprehensive survey of Kähler groups, and to the recent work of Delzant–Gromov
[11], Napier–Ramachandran [25], and Delzant [10] for further geometric restrictions im-
posed by the Kähler condition on a group G.
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Requiring that M be a 3-dimensional compact, connected manifold also puts severe
restrictions on G = π1(M). For example, if G is abelian, then G is either Z/nZ, Z,
Z⊕ Z2, or Z3 (see [20]).

1.2. A natural question—raised by Goldman and Donaldson in 1989, and indepen-
dently by Reznikov in 1993—is then: what are the 3-manifold groups which are Kähler
groups?

In [28], Reznikov proved the following result, which Simpson [31] calls “one of
the deepest restrictions” on the homotopy types that may occur for Kähler manifolds:
Let M be an irreducible, atoroidal 3-manifold, and suppose there is a homomorphism
ρ : π1(M) → SL(2,C) with Zariski dense image. Then G = π1(M) is not a Kähler
group. The same conclusion was reached by Hernández-Lamoneda in [19], under the
assumption that M is a geometrizable 3-manifold, with all pieces hyperbolic.

In this note, we answer the above question for all 3-manifold groups, as follows.

Theorem 1.1. LetG be the fundamental group of a compact, connected 3-manifold. IfG
is a Kähler group, then G is finite.

By the 3-dimensional spherical space-form conjecture, now established by Perelman
[26, 27], a closed 3-manifold M has finite fundamental group if and only if it admits
a metric of constant positive curvature (for a detailed proof, see Morgan and Tian [24,
Corollary 0.2]). Thus, M = S3/G, where G is a finite subgroup of O(4), acting freely
on S3. The list of such finite groups (essentially due to Hopf) is given by Milnor in [23].

1.3. The paper is organized as follows. In §2, we discuss the characteristic and reso-
nance varieties of a group G, and two notions of isotropy. In §3, we recall the Isotropic
Subspace Theorem of Catanese, and a correspondence due to Beauville. In §4, we use
these tools to prove a key result, tying the first resonance variety of a Kähler manifold to
the rank of the cup-product map in low degrees. In §5, we investigate the first resonance
variety of a closed, oriented 3-manifold; Poincaré duality and properties of Pfaffians yield
a very different conclusion in this setting.

All this works quite well, provided the first Betti number ofG is positive. To deal with
the remaining case, we need two theorems of Reznikov and Fujiwara, relating the Kähler,
respectively the 3-manifold condition on a group to Kazhdan’s property T ; we recall those
in §6. Finally, we put everything together in §7, and give a proof of Theorem 1.1.

A natural question arises out of this work: Which 3-manifold groups are quasi-Kähler?
(A group G is quasi-Kähler if G = π1(M \D), where M is a compact Kähler manifold
and D is a divisor with normal crossings.) We have some partial results in this direction;
those results will be presented elsewhere.

2. Cohomology jumping loci and isotropic subspaces

2.1. LetX be a connected CW-complex with finitely many cells in each dimension. Let
G = π1(X) be the fundamental group of X, and T = Hom(G,C∗) its character variety.
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Every character ρ ∈ T determines a rank 1 local system, Cρ , onX. The characteristic va-
rieties of X are the jumping loci for cohomology with coefficients in such local systems:

V id (X) = {ρ ∈ T | dimH i(X,Cρ) ≥ d}. (1)

The varieties Vd(X) = V 1
d (X) depend only on G = π1(X), so we sometimes denote

them as Vd(G).

2.2. Consider now the cohomology algebra A = H ∗(X,C). Left multiplication by
an element x ∈ A1 yields a cochain complex (A, x) : A0 x

−→ A1 x
−→ A2

→ · · · . The
resonance varieties of X are the jumping loci for the homology of this complex:

Rid(X) = {x ∈ A
1
| dimH i(A, x) ≥ d}. (2)

The varieties Rd(X) = R1
d(X) depend only on G = π1(X), so we sometimes denote

them by Rd(G). By definition, an element x ∈ A1 belongs to Rd(X) if and only if there
exists a subspace W ⊂ A1 of dimension d + 1 such that x ∪ y = 0 for all y ∈ W .

Fix bases {e1, . . . , en} for A1 and {f1, . . . , fm} for A2. Writing the cup-product as
ei ∪ ej =

∑m
k=1 µi,j,kfk , we may define an m × n matrix 1 of linear forms in variables

x1, . . . , xn, with entries

1k,j =

n∑
i=1

µi,j,kxi . (3)

It is readily seen thatRd(X) = V (Ed(1)), whereEd denotes the ideal of (n−d)×(n−d)
minors. Note also that x ∪ x = 0 for all x ∈ A1 implies 1 · Ex = 0, where Ex is the column
vector with entries x1, . . . , xn.

2.3. Foundational results on the structure of the cohomology support loci for local sys-
tems on compact Kähler manifolds were obtained by Beauville [2], Green–Lazarsfeld
[15], Simpson [30], and Campana [5]: if G is the fundamental group of such a manifold,
then Vd(G) is a union of (possibly translated) subtori of the algebraic group T.

In addition, Theorem A from [12] establishes a strong relationship between the char-
acteristic and resonance varieties of a Kähler group G: the tangent cone to Vd(G) at the
identity of T equals Rd(G) for all d ≥ 1.

2.4. A non-zero subspace E ⊂ H 1(X,C) is (totally) isotropic if the restriction of the
cup-product map ∪X : H 1(X,C)∧H 1(X,C)→ H 2(X,C) to E ∧E is identically zero.
By analogy, we say E is 1-isotropic if the restriction of ∪X to E ∧ E has 1-dimensional
image.

Note that these properties of E depend only on G = π1(X). Indeed, let h : X →
K(G, 1) be a classifying map. Then h∗ : H1(X,Z) → H1(G,Z) is an isomorphism,
and h∗ : H2(X,Z) → H2(G,Z) is an epimorphism. Using Kronecker duality and the
functoriality of the cup-product, it is readily seen that E is a (1-) isotropic subspace of
H 1(G,C) for ∪G if and only if h∗(E) is a (1-) isotropic subspace of H 1(X,C) for ∪X.
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3. The Isotropic Subspace Theorem

By a fibration we mean a surjective morphism f : M → N with connected fibers between
two compact complex manifoldsM and N . Two fibrations f : M → C and f ′ : M → C′

over projective curves C and C′ are said to be equivalent if there is an isomorphism
φ : C → C′ such that f ′ = φ ◦ f . We denote by E(M) the set of equivalence classes of
fibrations f : M → C, with C a projective curve of genus g ≥ 2.

Let M be a compact Kähler manifold. Beauville’s work [2] establishes a bijection
between the set E(M) and the set of irreducible components of the first characteristic
variety V1(M) passing through the identity of the algebraic group T = Hom(π1(M),C∗).
In particular, the set E(M) must be finite.

The Isotropic Subspace Theorem, due to Catanese [6, Theorem 1.10], establishes a
relation between the set of equivalence classes of fibrations of a Kähler manifold M over
curves of genus g ≥ 2, and the maximal isotropic subspaces in H 1(M,C).

Theorem 3.1 (Catanese [6]). Let M be a compact Kähler manifold. Then, for any
maximal isotropic subspace E ⊂ H 1(M,C) of dimension g ≥ 2, there is a fibra-
tion f : M → C onto a smooth curve of genus g and a maximal isotropic subspace
E′ ⊂ H 1(C,C) such that E = f ∗E′.

For more information on this correspondence, see [7].

4. The first resonance variety of a Kähler manifold

Theorem 4.1. Let M be a compact Kähler manifold with b1(M) 6= 0. If R1(M) =

H 1(M,C), then H 1(M,C) is 1-isotropic.

Proof. By Hodge theory, we must have b1(M) ≥ 2. The equality R1(M) = H
1(M,C)

says that, for any non-zero cohomology class x ∈ H 1(M,C), there is a class y ∈
H 1(M,C) \ C · x such that x ∪ y = 0. Consequently, the vector space spanned by x
and y is a (2-dimensional) isotropic subspace containing x.

Let Ux be a maximal isotropic subspace of H 1(M,C) containing x; we must then
have dimUx ≥ 2. Thus, by Theorem 3.1, there is a fibration fx : M → Cx onto a smooth
projective curve Cx of genus gx = dimUx , with x ∈ f ∗x (H

1(Cx,C)).
Recall now that the set E(M) of equivalence classes of fibrations of M over curves of

genus at least 2 is finite. Thus, we may write the first cohomology group of M as a finite
union of linear subspaces,

H 1(M,C) =
⋃

[f ]∈E(M)
f ∗(H 1(Cf ,C)), (4)

where f = fx for some x ∈ H 1(M,C), and Cf := Cx . This is possible only if there is a
fibration f1 : M → C1 such that H 1(M,C) = f ∗1 (H

1(C1,C)).
Since f1 is a fibration, the induced morphism f ∗1 : H 1(C1,C) → H 1(M,C) is in-

jective. The defining property of f1 implies that f ∗1 : H 1(C1,C) → H 1(M,C) is an
isomorphism.
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On the other hand, the induced morphism f ∗1 : H 2(C1,C)→ H 2(M,C) is also injec-
tive. To prove this claim, first note that any cohomology class in H 1(M,C) is primitive.
Using the Hodge–Riemann bilinear relations (see e.g. [16, p. 123]), it follows that, for
any non-zero (1, 0)-class α ∈ H 1(M,C), the product β =

√
−1α∪α is a non-zero, real,

(1, 1)-class in H 2(M,C). Since f ∗1 : H 1(C1,C)→ H 1(M,C) is an isomorphism, there
is an element a ∈ H 1(C1,C) such that f ∗1 (a) = α. Hence, f ∗1 (

√
−1 a ∧ a) = β, and the

claim is proved.
Consider now the commuting diagram

H 1(M,C) ∧H 1(M,C)
∪M // H 2(M,C)

H 1(C1,C) ∧H 1(C1,C)

f ∗1 ∧f
∗

1

OO

∪C1 // H 2(C1,C)

f ∗1

OO
(5)

As we saw above, the left arrow is an isomorphism, and the right one is an injection. Since
∪C1 surjects onto H 2(C1,C) = C, we conclude that ∪M has 1-dimensional image. ut

Remark 4.2. An alternative way to prove Theorem 4.1 is by using the much more general
Theorem C from [12], which guarantees that every positive-dimensional component of
R1(M) is an 1-isotropic subspace ofH 1(M,C). This is the argument we had in an earlier
version of this paper; at the urging of one of the referees, we came up with the above,
more self-contained proof.

5. The first resonance variety of a 3-manifold

Let M be a compact, connected, orientable 3-manifold. Fix an orientation on M , that
is, pick a generator [M] ∈ H 3(M,Z) ∼= Z. With this choice, the cup-product on M
determines an alternating 3-form µ = µM on H 1(M,Z), given by

µ(x, y, z) = 〈x ∪ y ∪ z, [M]〉, (6)

where 〈 , 〉 is the Kronecker pairing. In turn, the cup-product map ∪M : H 1(M,Z) ∧
H 1(M,Z) → H 2(M,Z) is determined by µ, via 〈x ∪ y, γ 〉 = µ(x, y, z), where z =
PD(γ ) is the Poincaré dual of γ ∈ H2(M,Z).

Now fix a basis {e1, . . . , en} forH 1(M,C), and choose as basis forH 2(M,C) the set
{e∨1 , . . . , e

∨
n }, where e∨i denotes the Kronecker dual of the Poincaré dual of ei . Then

µ(ei, ej , ek) =
〈 ∑
1≤m≤n

µi,j,me
∨
m,PD(ek)

〉
= µi,j,k. (7)

Recall from (3) the n × n matrix with entries 1k,j =
∑n
i=1 µi,j,kxi . Since µ is an alter-

nating form, 1 is a skew-symmetric matrix.

Proposition 5.1. Let M be a closed, orientable 3-manifold. Then:

(1) H 1(M,C) is not 1-isotropic.
(2) If b1(M) is even, then R1(M) = H

1(M,C).
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Proof. To prove (1), suppose dim im(∪M) = 1. This means there is a hyperplane E ⊂
H := H 1(M,C) such that x ∪ y ∪ z = 0 for all x, y ∈ H and z ∈ E. Hence, the
skew 3-form µ :

∧3
H → C factors through a skew 3-form µ̄ :

∧3
(H/E) → C. But

dimH/E = 1 forces µ̄ = 0, and so µ = 0, a contradiction.
To prove (2), recall R1(M) = V (E1(1)). Since 1 is a skew-symmetric matrix of

even size, it follows from Buchsbaum–Eisenbud [4, Corollary 2.6] that V (E1(1)) =

V (E0(1)) (see [8, eq. (6.9)]). But 1 · Ex = 0 implies det1 = 0, and so V (E0(1)) = H .
ut

Remark 5.2. As noted by S. Papadima, the following holds. Suppose M is a closed,
orientable 3-manifold, with b1(M) odd. Then R1(M) 6= H

1(M,C) if and only if µM is
generic, in the sense of [3].

6. Kazhdan’s property T

The following question is due to J. Carlson and D. Toledo (see J. Kollár [22]): For a Kähler
group G, is b2(G) 6= 0? This question was answered in the affirmative by A. Reznikov
in [28], under an additional assumption, as follows.

Theorem 6.1 (Reznikov [28]). LetG be a Kähler group. IfG does not satisfy Kazhdan’s
property T , then b2(G) 6= 0.

Recall that a discrete group G satisfies Kazhdan’s property T (for short, G is a Kazhdan
group) if and only if H 1(G,H) = 0 for all orthogonal or unitary representations of G on
a Hilbert space H (see de la Harpe and Valette [18, p. 47]). In particular, if b1(G) 6= 0,
then G is not Kazhdan. (For a simple proof of Theorem 6.1 in this case, see [21].)

We will also need the following relationship between 3-manifold groups and Kazh-
dan’s property T , established by K. Fujiwara in [13].

Theorem 6.2 (Fujiwara [13]). Let G be the fundamental group of a closed, orientable
3-manifold. If G satisfies Kazhdan’s property T , then G is finite.

In fact, the theorem is valid for any subgroup G < π1(M), where M is a compact (not
necessarily boundaryless), connected, orientable 3-manifold. Fujiwara further assumes
that each piece of the canonical decomposition of M along embedded spheres, disks and
tori admits one of the eight geometric structures in the sense of Thurston, but this is now
guaranteed by the work of Perelman [26, 27].

7. Kähler 3-manifold groups

We are now in a position to prove Theorem 1.1 from the introduction.
Let G be the fundamental group of a compact, connected 3-manifold M . Suppose G

is a Kähler group, and G is not finite.
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Step 1. A finite-index subgroup of a Kähler group is again a Kähler group (see [1, Ex-
ample 1.10]). Passing to the orientation double cover of M if necessary, we may as well
assume M is orientable.

Step 2. Since G is an infinite, orientable 3-manifold group, G is not Kazhdan, by Fu-
jiwara’s Theorem 6.2. Since G is Kähler and not Kazhdan, b2(G) 6= 0, by Reznikov’s
Theorem 6.1.

Step 3. Since b2(M) ≥ b2(G), we must also have b2(M) 6= 0. By Poincaré duality,
b1(M) = b2(M). Hence, b1(G) = b1(M) is not zero.

Step 4. Since G is Kähler, b1(G) must be even. Since M is a closed, orientable 3-
manifold with G = π1(M), Proposition 5.1 tells us that R1(G) = H 1(G,C) and
H 1(G,C) is not 1-isotropic. Since, on the other hand, G is Kähler, Theorem 4.1 tells
us that b1(G) = 0.

Our assumptions have led us to a contradiction. Thus, the theorem is proved.
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