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Abstract. Consider the following nonlinear Schrödinger equation:

(∗) −1u+ (1+ λg(x))u = f (u) and u > 0 in RN , u ∈ H 1(RN ), N ≥ 3,

where λ ≥ 0 is a parameter, g ∈ L∞(RN ) vanishes on a bounded domain in RN , and the function
f is such that

lim
s→0

f (s)/s = 0 and 1 ≤ α + 1 = lim
s→∞

f (s)/s <∞.

We are interested in whether problem (∗) has a solution for any given α, λ ≥ 0. It is shown in [14]
and [31] that problem (∗) has solutions for some α and λ. In this paper, we establish the existence
of solution of (∗) for all α and λ by using a variant of the Mountain Pass Theorem. Based on these
results, we give a diagram in the (λ, α)-plane showing how the solvability of problem (∗) depends
on the parameters α and λ.

Keywords. Nonlinear Schödinger equations, mountain pass theorem, potential well, asymptoti-
cally linear

1. Introduction

In this paper, we are concerned with the existence of positive solutions for the following
type of nonlinear Schrödinger equation:{

−1u+ Vλ(x)u = f (u) in RN ,
u ∈ H 1(RN ), N ≥ 3,

(1.1)

where Vλ(x) = 1 + λg(x), λ > 0, and the functions f and g satisfy the following
assumptions:

(F1) f ∈ C(R,R+), f (s) ≡ 0 for all s < 0 and f (s)/s → 0 as s → 0+.
(F2) There exists α ≥ 0 such that f (s)/s → α + 1 as s →∞.
(F3) f (s)/s is nondecreasing in s > 0.
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(G1) g ∈ L∞(RN ,R) and there exists a nonempty bounded smooth domain � ⊂ RN
such that

g(x) ≡ 0 on �̄, g(x) ∈ (0, 1] on RN \ �̄ and lim
|x|→∞

g(x) = 1.

Remark 1.1. f (s) with property (F2) is usually called asymptotically linear in s at infin-
ity. Let F(t) =

∫ t
0 f (s) ds. Condition (F3) implies that for any constantD ≥ 1, t ∈ [0, 1]

and s ≥ 0,

0 ≤
1
2
t2f (s)s − F(ts) ≤ D

[
1
2
f (s)s − F(s)

]
, or (1.2)

0 ≤
1
2
f (ts)ts − F(ts) ≤ D

[
1
2
f (s)s − F(s)

]
. (1.3)

Condition (F3) is only used to get the condition (1.2) or (1.3), which is required in proving
the boundedness of a (PS) sequence in Section 3. Therefore, we may slightly weaken (F3)
by simply assuming (1.2) or (1.3) for some D ≥ 1 as in [6, 17].

By condition (G1), the potential Vλ has a potential well with bottom � and depth
controlled by the parameter λ.

Notation. Throughout this paper, we denote by ξ1 the first eigenvalue of the Dirichlet
problem {

−1ϕ = ξϕ in �, � is given by (G1),
ϕ ∈ H 1

0 (�),
(1.4)

and let ϕ1 > 0 be a normalized ξ1-eigenfunction. Denote by ‖ · ‖ and | · |p, respectively,
the standard norms of H 1(RN ) and Lp(RN ) with 1 ≤ p ≤ ∞. Let λ = 3(α) be the
principal eigenvalue of the linear eigenvalue problem

−1u− αu+ λg(x)u = 0, α > 0. (1.5)

It is proved in [32] that 3(α) always exists if α ∈ (0, ξ1) with

0 = inf
{∫

RN
|∇u|2 dx : u ∈ H 1(RN ) and

∫
RN
(1− g)u2 dx = 1

}
, (1.6)

and the 3(α)-eigenfunction ϕ3 is the only eigenfunction which does not change sign.
Moreover, 3(α) > α, and 3(α) is the greatest eigenvalue of (1.5).

If f (s) is superlinear in s at infinity, i.e. α = ∞ in (F2), problem (1.1) for λ large,
that is, when Vλ has a steep potential well, has been widely studied (see, for example,
[25, 2, 3, 7, 12, 10, 14, 1, 22, 19, 5] etc.). If f (s) is asymptotically linear, i.e. α < ∞ in
(F2), problem (1.1) was studied by van Heerden and Wang [14], who proved that problem
(1.1) has a positive solution (or multiple solutions for odd f ) if α > ξ1 and λ is large. The
multiple existence results of [14] were extended to more general cases [13, 22], in which
α > ξ1 may not be satisfied. If f (s) is sublinear, some existence results for (1.1) were
obtained recently in [33]. Moreover, we mention that the asymptotically linear problem
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(1.1) with Vλ(x) ≡ V (x) was also discussed by many authors, for example, Jeanjean and
Tanaka [16, 17], Liu and Wang [24, 23] et al., even if V (x) vanishes at infinity [21]. As
pointed out in [31], the results of [16, 24] imply that (1.1) may have a positive solution
for λ not necessarily large. In our notation, the existence results for (1.1) proved in [16]
and [24] are based on the following conditions:

(i) α + 1 > inf σ(−1+ Vλ),
(ii) there exists δ > 0 such that

λ+ 1− δ >
2
s2

∫ s

0
f (t) dt for all s > 0,

where σ(−1 + Vλ) denotes the spectrum of the Schrödinger operator −1 + Vλ in
L2(RN ).

In fact, condition (i) implies that λ < 3(α), and (ii) gives that λ > α.
Very recently, under these conditions the authors of [31] showed that problem (1.1)

has a positive solution for any λ in the interval (α,3(α)) with 0 < α < ξ1, while (1.1)
has no positive solution if (λ, α) ∈ A ∪ B with

A = {(λ, α) : α ≤ 0 and λ ≥ α}, B = {(λ, α) : 0 < α < ξ1 and λ ≥ 3(α)}.

With the above mentioned results, we can draw a diagram in the (λ, α)-plane (see
Figure 1) below, where λ = 3(α) is a curve which is shown in [31] such that 3(α)→ 0

as α → 0+ and 3(α) → ∞ as α → ξ−1 . From Figure 1, it is clear that problem (1.1)
has always a positive solution in region I = {(λ, α) : λ > α is large and α > ξ1} by [14]
and also in region II = {(λ, α) : λ ∈ (α,3(α)) with α ∈ (0, ξ1)} by [31]. Problem (1.1)
has no positive solution in regions III ∪ IV = B ∪ A by [31]. It is natural to ask whether
there is any positive solution for problem (1.1) in regions V, VI and VII as well as the
corresponding boundaries. In this paper, we answer this question completely and we find
that there is a boundary, denoted by

` = {(λ, α) : λ = α and α ∈ [0, 0]} ∪ {(λ, α) : λ = 3(α)},

which splits the first quadrant of the (λ, α)-plane into two parts such that problem (1.1)
has no positive solution for (λ, α) below ` (including ` itself and the positive λ-axis, see
the region marked with × in Figure 1), and problem (1.1) has always a positive solution
for (λ, α) above ` (including the positive α-axis). Moreover, just using the Mountain Pass
Theorem we also give a simple proof for the existence of a positive solution to problem
(1.1) in regions I and II, although these results were essentially contained in [14, 31].
Therefore, it is now clear how the existence of positive solutions of problem (1.1) depends
on the parameters λ and α. In other words, for any given α ≥ 0 and λ ≥ 0, to see whether
problem (1.1) has a positive solution we need only check on which side of the curve ` the
point (λ, α) is located.

In [31], the authors proved that a positive solution obtained in region II = {(λ, α) :
λ ∈ (α,3(α)), α ∈ (0, ξ1)} is bounded away from zero when λ → α+ and blows up
as λ → 3(α)−. In this paper, we also prove that in regions VI and VII, the solution is
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Fig. 1. ` is the bold curve, which is the boundary between the existence and nonexistence.

bounded away from zero and bounded above for all λ ∈ (0, λ0] and each fixed λ0 < α.
However, the behavior of the solutions when λ is close to α on both sides of the line
λ = α is still open. Do the limits of the solutions from both sides of λ = α coincide?

Here are the main results of this paper.

Theorem 1.1 (Existence). Suppose that (F1), (F2), (F3), (G1) hold, and λ and α sat-
isfy one of the following five possibilities:

(i) α > 0 and 0 < λ < α, i.e., regions VI and VII in Figure 1.
(ii) λ = α and α > 0, where 0 is given by (1.6).

(iii) α > ξ1 and λ ∈ (0,∞), i.e., regions I, V and VII in Figure 1.
(iv) α = ξ1 and λ ∈ (α,∞).
(v) λ ∈ (α,3(α)) and α ∈ (0, ξ1), i.e., region II in Figure 1.

Then problem (1.1) has a positive solution.

Remark 1.2. (1) For λ > 0 large, case (iii) was proved in [14]. Case (v) was essentially
shown in [31] by bifurcation theory. The aim of this paper is to prove Theorem 1.1 in all
cases (i)–(v) simply by a variant of the Mountain Pass Theorem.

(2) Condition (F3) of this theorem can be replaced by assuming (1.2) or (1.3) for some
D ≥ 1.

Theorem 1.2. Suppose that (F1), (F2), (G1) hold and λ = 0. Then problem (1.1) has a
positive solution for any α > 0.

Theorem 1.3 (Nonexistence). Suppose that (F1), (F2), (F3), (G1) hold and α = 0.
Then problem (1.1) has no positive solution for any λ ≥ 0.

Theorem 1.4. For any α > 0 and λ0 ∈ (0, α), there exist C1, C2 > 0, depending on α
and λ0, such that

C2 ≤ ‖uλ‖ ≤ C1 for all λ ∈ (0, λ0],
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where uλ is the positive solution of (1.1) given by Theorem 1.1. If g(x) is radial, then

uλ→ u0 strongly in H 1(RN ) as λ→ 0+,

and u0 6≡ 0 solves the equation

−1u+ u = f (u), u ∈ H 1(RN ).

It is well known that a positive solution of problem (1.1) corresponds to a nonzero
critical point of the energy functional I defined on H 1(RN ) by

I (u) =
1
2

∫
RN
|∇u|2 + (1+ λg(x))u2 dx −

∫
RN
F(u) dx, (1.7)

where F(t) =
∫ t

0 f (s) ds. It is easy to see that I is C1 under our conditions (F1), (F2),
(G1). Instead of using abstract critical point theorems, we seek critical points of I by
simply using the following version of the Mountain Pass Theorem, applied in [8, 16].

Proposition 1.1 (Mountain Pass Theorem). Let E be a real Banach space with dual E∗,
and I ∈ C1(E,R) with I (0) = 0 be such that

I (u) ≥ 0 for all u ∈ E with ‖u‖ ≤ ρ, inf
‖u‖=ρ

I (u) ≥ α and I (e) < 0,

for some ρ, α > 0, and e ∈ E with ‖e‖ > ρ. Define

c = inf
γ∈0

max
0≤t≤1

I (γ (t)),

where 0 = {γ ∈ C([0, 1], E) : γ (0) = 0, I (γ (1)) < 0}. Then there exists a sequence
{un} ⊂ E such that

I (un)
n
→ c ≥ α and (1+ ‖un‖)‖I ′(un)‖E∗

n
→ 0. ut (1.8)

A more general version of Proposition 1.1 can be found in Chapter IV of [11] or in [26],
for example. Based on [11], a simple proof to Proposition 1.1 was given by Stuart [28].
A sequence with properties (1.8) is usually called a Cerami sequence at level c, (Ce)c
sequence for short. Clearly, a (Ce)c sequence is also a usual (PS)c sequence.

Under the assumptions of Theorem 1.1 and using the properties of the eigenfunctions
ϕ1 in (1.4) and ϕ3 in (1.5), it is not difficult to verify that the function I defined by
(1.7) satisfies all the conditions of the above version of Mountain Pass Theorem with
E = H 1(RN ); in fact, (F3) is not necessary for this purpose (see Lemmas 2.1 and 2.2).
Then Proposition 1.1 guarantees that there is a Cerami sequence {un} ⊂ H 1(RN ) which
has the properties (1.8). To get a positive solution of problem (1.1), it is sufficient to show
first that {un} is bounded in H 1(RN ) and then that it converges to a nonzero critical point
of I . Since the nonlinear term f (s) is asymptotically linear, not superlinear, at infinity,
it is known that to prove {un} is bounded in H 1(RN ) is usually not easy, although many
efforts having been made in recent years [29, 15, 30]. Roughly speaking, here are the
main ideas. Suppose that {un} is not bounded, that is, ‖un‖

n
→ ∞. Then wn = un/‖un‖
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is bounded in H 1(RN ) and there is w ∈ H 1(RN ) such that wn
n
⇀ w weakly in H 1(RN ).

Next, we try to use the properties (1.8) to get a contradiction viaw. Motivated by [15], we
seek a contradiction by applying the following variant of the concentration-compactness
lemma [35, Lemma 2.1], essentially based on [20]. This kind of idea was used in many
papers, for example, [16, 18, 14].

Lemma 1.1 ([35, Lemma 2.1]). For R > 0, set BR = {x ∈ RN : |x| ≤ R}. Let {ρn} be
a sequence in L1(RN ) satisfying

ρn ≥ 0 on RN , lim
n→∞

∫
RN
ρn dx = η for some η > 0.

Then there exists a subsequence of {ρn}, still denoted by {ρn}, satisfying one of the fol-
lowing two conditions:

(i) (Vanishing) lim
n→∞

sup
y∈RN

∫
BR(y)

ρn dx = 0 for all R > 0.

(ii) (Nonvanishing) There exist ν ∈ (0, η), R <∞ and {yn} ⊂ RN such that

lim
n→∞

∫
BR(yn)

ρn dx ≥ ν > 0. ut

To get a contradiction, the main idea is to apply Lemma 1.1 with ρn = w2
n and prove

that neither of the above cases can occur. To rule out Vanishing is somehow standard and
not difficult; it was done in [14] by an estimate for λ large (see Lemma 2.3 of [14]), but
in our cases λ may be small, so the condition (1.2) or (1.3) is assumed. However, to rule
out Nonvanishing does not seem easy and needs some more elaborate results on the linear
eigenvalue problem (1.5). In fact, if Nonvanishing occurs, then we can show that the weak
limit w of the sequence {wn} (or its translation) inH 1(RN ) is nonzero and satisfies either

(a) :−1w + (1+ λ)w = (1+ α)w, or (b): the equation (1.5).

It is clear that (a) is impossible since−1 has no nontrivial eigenvalue in L2(RN ). Thanks
to the results of [16] and [32], we are able to show that (b) is also impossible under the
assumptions of Theorem 1.1.

To get a solution for problem (1.1), the last step is to prove that the bounded sequence
{un} converges to a nontrivial critical point of I . It is known that {un} always converges
weakly to a critical point u of I , but usually it is not clear whether u 6≡ 0. In most cases
one can use the concentration-compactness principle [20] to prove that {un} is strongly
convergent, that is, I satisfies the (PS) condition (see e.g. [23], [8], [18]); then u 6≡ 0
by the mountain pass properties of I . However, it is not always easy to check the (PS)
condition, especially in some cases of our problem, for example, when λ = α. Motivated
by [16], instead of proving the (PS) condition by the concentration-compactness proce-
dure (although we may prove it in most cases of Theorem 1.1; see Proposition 4.1), in
Section 4 we prove Theorem 1.1 by showing that u 6≡ 0 in a simple way. Very recently,
Liu, Su and Weth in [23] established a compactness result for a similar problem to (1.1),
which is helpful for many kinds of problems, but their condition (A4) may not be satisfied
in all our cases.
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2. Preliminary results and properties of I

In this section, we first recall some properties of the Schrödinger operator −1 + V (x),
based on [24, 16, 32]; they will be used in the following sections. Then we prove some
lemmas on the energy functional I associated with problem (1.1), which are required
when applying the Mountain Pass Theorem.

Proposition 2.1. Suppose that V ∈ L∞(RN ,R+) and there is a constant V∞ ∈ (0,∞)
such that lim|x|→∞ V (x) = V∞. Define

µ∗ := inf σ(−1+ V ) = inf
0 6≡u∈H 1(RN )

∫
RN [|∇u|2 + V (x)u2] dx∫

RN u
2 dx

.

We have:

(i) If µ∗ < V∞, then there is φ∗ ∈ H 1(RN ) with φ∗ > 0 in RN such that

−1φ∗ + V (x)φ∗ = µ∗φ∗.

(ii) For any µ > µ∗, there is no nonnegative φ ∈ H 1(RN ), φ 6≡ 0, such that

−1φ + V (x)φ = µφ.

Proof. Part (i) was essentially proved in [24], but here we do not require that V (x) is
bounded below by a positive constant and we give a simple proof motivated by [34].

It is known that to prove (i) we need only show that the infimum µ∗ can be attained
by a positive function φ∗ ∈ H 1(RN ). For this purpose, let {un} ⊂ H 1(RN ) be such that∫

RN
[|∇un(x)|2 + V (x)u2

n] dx
n
→ µ∗ and

∫
RN
|un(x)|

2 dx = 1.

Clearly, {un} is bounded in H 1(RN ) since 0 ≤ V ∈ L∞(RN ). So, we may assume that,
for some u ∈ H 1(RN ),

un
n
⇀ u weakly in H 1(RN ), un

n
→ u strongly in L2

loc(R
N ). (2.1)

Let Ṽ (x) = V (x)− V∞, so that Ṽ (x)→ 0 as |x| → ∞. Then by (2.1) it is not difficult
to see that

lim
n→∞

∫
RN
Ṽ (x)|un(x)|

2 dx =

∫
RN
Ṽ (x)|u(x)|2 dx.

Define

J (v)
4
=

∫
RN

[|∇v(x)|2 + Ṽ (x)v2] dx.

Then
J (u) ≤ lim

n→∞
J (un) = µ

∗
− V∞ < 0.
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On the other hand, by the definition of µ∗ we see that

J (u) ≥ [µ∗ − V∞]
∫

RN
|u(x)|2 dx.

These inequalities imply that
∫
RN u

2(x) dx ≥ 1. Therefore,
∫
RN u

2(x) dx = 1 by (2.1).
So, J (u) = µ∗−V∞ and u ∈ H 1(RN ) attains µ∗. The strong maximum principle implies
that u > 0 in RN .

Part (ii) was proved in [16]. For the sake of completeness, we give a sketch of its
proof. Argue by contradiction. Suppose that u ≥ 0, 0 6≡ u ∈ H 1(RN ) solves

−1u+ V (x)u = µu. (2.2)

For R > 0, define

µR = inf
{∫

BR

[|∇u|2(x)+ V (x)u2(x)] dx :
∫
BR

u2(x) dx = 1, u ∈ H 1
0 (BR)

}
.

It is not difficult to see that there exists a wR ∈ H 1
0 (BR) \ {0}, with wR ≥ 0 and∫

BR
w2
R(x) dx = 1, such that

−1wR + V (x)wR = µRwR, x ∈ BR, (2.3)

and the strong maximum principle implies that

wR(x) > 0, ∀x ∈ BR,
∂wR(x)

∂ν
< 0, ∀|x| = R. (2.4)

It follows from (2.3) that

µR

∫
BR

wRu dx =

∫
BR

∇u∇wR +

∫
BR

V (x)uwR dx −

∫
∂BR

∂wR

∂ν
u dσ

=

∫
BR

µuwR dx −

∫
∂BR

∂wR

∂ν
u dσ by using (2.2)

≥ µ

∫
BR

uwR dx by (2.4).

This implies thatµR ≥ µ, since we can chooseR > 0 large enough such that
∫
BR
uwR dx

> 0 by noting that u ≥ ( 6≡) 0 and wR > 0.
On the other hand, as µ > µ∗, there is a constant ν such that µ∗ < ν < µ. The

definition of µ∗ implies there exists v ∈ H 1(RN ) such that
∫
RN
v2(x) dx = 1 and

µ∗ ≤

∫
RN

[|∇v|2 + V (x)v2] dx < ν.

Since C∞0 (R
N ) is dense in H 1(RN ), we may assume v ∈ C∞0 (R

N ) and choose R > 0
large enough such that supp v ⊂ BR . By the definition of µR , we have

µR ≤

∫
RN

[|∇v|2 + V (x)v2] dx < ν < µ.

This is a contradiction. ut
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Proposition 2.2 ([32, Theorem 1.5]). Suppose that condition (G1) holds.

(i) If α ≥ ξ1, then the eigenvalue problem

−1u+ λg(x)u = αu, u ∈ H 1(RN ),

has no eigenvalue λ ∈ [α,∞) with a nonnegative eigenfunction.
(ii) If 0 < α < ξ1, then there exists a unique eigenvalue λ = 3(α) of (1.5) having a

positive eigenfunction. All other eigenvalues of (1.5) are less than 3(α) and their
eigenfunctions change sign. ut

Remark 2.1. If α ≥ ξ1 and λ > α, we must have

α 6= inf
0 6≡u∈H 1(RN )

∫
RN [|∇u|2 + λg(x)u2] dx∫

RN u
2 dx

.

See the proof of Lemma 3.3(ii) in [32]. Otherwise, the conclusions of Proposition 2.1(i)
and Proposition 2.2(i) are contradictory.

Lemma 2.1. Assume that (F1), (F2), (G1) hold. Then for any α, λ ∈ (0,∞) there exist
ρ, β > 0 such that I (u) ≥ 0 for all u ∈ H 1(RN ) with 0 < ‖u‖ ≤ ρ, and

I (u) ≥ β > 0 for all u ∈ H 1(RN ) with ‖u‖ = ρ.

Proof. It follows from (F1) and (F2) that for any ε > 0, there exist p ∈
(
1, N+2

N−2

)
and

A = A(ε, p) > 0 such that for all s > 0,

F(s) ≤
1
2
εs2
+ Asp+1. (2.5)

For any α > 0 and 0 < λ <∞, by (G1) and Sobolev inequalities we have

I (u) ≥
1
2

∫
RN

[|∇u|2 + u2] dx − ε
∫

RN
u2 dx − A(ε)

∫
RN
|u|p+1 dx

≥
1
2
‖u‖2 − C1ε‖u‖

2
− C2(ε)‖u‖

p+1.

So, the lemma is proved by taking ε = 1/4C1 and ρ > 0 small enough. ut

Lemma 2.2. Assume that (F1), (F2), (G1) hold and α, λ > 0 satisfy one of the following
conditions:

(i) λ ∈ (0, α).
(ii) λ = α and α > 0.

(iii) α > ξ1 and λ ∈ (0,∞).
(iv) α = ξ1 and λ ∈ (α,∞).
(v) α < ξ1 and λ ∈ (α,3(α)).

Then, for ρ given by Lemma 2.1, there exists e ∈ H 1(RN ) with ‖e‖ > ρ such that
I (e) < 0.
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Proof. (i) Since 0 < λ < α and

inf
{∫

RN
|∇u|2 dx : u ∈ H 1(RN ) with

∫
RN
u2 dx = 1

}
= 0,

there exists φ1 ∈ H
1(RN ) \ {0} such that∫

RN
|∇φ1|

2 dx < (α − λ)

∫
RN
|φ1|

2 dx.

Clearly, we may assume that φ1 ≥ 0 on RN . Hence, by Fatou’s lemma we have

lim
t→∞

I (tφ1)

t2
=

1
2

∫
RN

[|∇φ1|
2
+ (1+ λg)φ2

1 ] dx − lim
t→∞

∫
RN

F(tφ1)

t2φ2
1
φ2

1 dx

≤
1
2

∫
RN

[|∇φ1|
2
+ (1+ λg)φ2

1 − (1+ α)φ
2
1 ] dx

≤
1
2

∫
RN

[|∇φ1|
2
+ (λ− α)φ2

1 ] dx < 0. (2.6)

So, in this case the conclusion is proved by choosing e = tφ1 for t large.
(ii) In this case, α > 0 and λ = α. By the definition of 0 in (1.6), there is φ2 ∈

H 1(RN ) \ {0} with φ2 ≥ 0 on RN such that∫
RN
|∇φ2|

2 dx < α

∫
RN
(1− g(x))|φ2|

2 dx.

Then, with this property we see that (2.6) still holds for φ2 and the conclusion can be
proved by taking e = tφ2 for t > 0 large.

(iii) Let ϕ1 ∈ H
1
0 (�) be an eigenfunction corresponding to ξ1 with

∫
�
ϕ2

1 dx = 1 (see
(1.4)). Let ϕ̃ ∈ H 1(RN ) be such that ϕ̃(x) ≡ ϕ1(x) for x ∈ � and ϕ̃(x) ≡ 0 for x ∈ �c.
Then it is easy to see that

g(x)ϕ̃(x) ≡ 0 for all x ∈ RN .

This and α > ξ1 imply that (2.6) still holds for ϕ̃, and the lemma is proved by taking
e = t ϕ̃ for t > 0 large.

(iv) Setting

µλ := inf σ(−1+ Vλ) = inf
0 6≡u∈H 1(RN )

∫
RN [|∇u|2 + Vλ(x)u2] dx∫

RN u
2 dx

.

Let ϕ̃ be given by the proof of (iii). Then for any λ > 0,

µλ ≤

∫
RN [|∇ϕ̃|2 + Vλ(x)ϕ̃2] dx∫

RN ϕ̃
2 dx

=

∫
RN [|∇ϕ̃|2 + ϕ̃2] dx∫

RN ϕ̃
2 dx

= 1+ ξ1.
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We claim that µλ < 1 + ξ1 for any λ > α. Indeed, if there exists λ0 > α such that
µλ0 = 1+ ξ1, then µλ0 < 1+ λ0 since α = ξ1 in this case. By Proposition 2.1(i) there is
a positive eigenfunction φ ∈ H 1(RN ) satisfying

−1φ + (1+ λ0g(x))φ = (1+ ξ1)φ.

But by Proposition 2.2(i) this is impossible. Thus for α = ξ1 and any λ ∈ (α,∞), we
have µλ < 1 + α. Then it follows from the definition of µλ that there is a nonnegative
function φ0 ∈ H

1(RN ) \ {0} satisfying∫
RN

[|∇φ0|
2
+ Vλ(x)φ

2
0 ] dx < (1+ α)

∫
RN
φ2

0 dx.

From Fatou’s lemma we get

lim
t→∞

I (tφ0)

t2
=

1
2

∫
RN

[|∇φ0|
2
+ (1+ λg)φ2

0 ] dx − lim
t→∞

∫
RN

F(tφ0)

t2φ2
0
φ2

0 dx

≤
1
2

∫
RN

[|∇φ0|
2
+ (1+ λg)φ2

0 − (1+ α)φ
2
0 ] dx < 0.

So, the conclusion can be proved by taking e = tφ0 with t > 0 large enough.
(v) By the results of [32] for problem (1.5), there is ϕ3 > 0 such that∫

RN
[|∇ϕ3|2 +3g(x)ϕ2

3] dx = α
∫

RN
ϕ2
3 dx.

Then replacing φ1 by ϕ3 in (2.6) we have

lim
t→∞

I (tϕ3)

t2
≤

1
2
(λ−3)

∫
RN
|ϕ3|

2 dx < 0,

since λ ∈ (α,3(α)). Hence, in this case the lemma is proved by taking e = tϕ3 for t > 0
large. ut

3. Existence of Cerami sequence and its boundedness

By Lemmas 2.1 and 2.2, we see that the functional I satisfies all the conditions of Propo-
sition 1.1 with E = H 1(RN ). Thus we have

Lemma 3.1. Under the assumptions of Theorem 1.1, there exists a Cerami sequence
{un} ⊂ H

1(RN ) such that

I (un)
n
→ c > 0 and ‖I ′(un)‖H−1(RN )(1+ ‖un‖)

n
→ 0, (3.1)

where c is defined as in Proposition 1.1. ut

Now, the main aim of this section is to show that {un} obtained in Lemma 3.1 is bounded.
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Lemma 3.2. Under the assumptions of Theorem 1.1, the sequence {un} obtained in Lem-
ma 3.1 is bounded in H 1(RN ).

Proof. For β > 0 (which will be determined below), let

wn =
βun

‖un‖
= βnun with βn =

β

‖un‖
. (3.2)

Clearly, {wn} is bounded in H 1(RN ). Passing to a subsequence and by Lemma 1.1, we
may assume that {wn} satisfies the following alternative:

• Vanishing: limn→∞ supy∈RN
∫
BR(y)

w2
n dx = 0 for all R > 0.

• Nonvanishing: There exist ν > 0, R <∞ and {yn} ⊂ RN such that

lim
n→∞

∫
BR(yn)

w2
n dx ≥ ν > 0.

In what follows, we show that if {un} is not bounded in H 1(RN ), say ‖un‖
n
→ ∞, then

{wn} satisfies neither Vanishing nor Nonvanishing, a contradiction. Thus the proof of this
lemma will be complete.

Claim 1. Vanishing cannot occur.

By (2.5), for any ε > 0, there exist s ∈
(
1, N−2

N+2

)
and Cε > 0 such that∣∣∣∣∫RN

F(wn) dx

∣∣∣∣ ≤ εβ2
|wn|

2
2 + Cε‖wn‖

s+1
s+1.

By the well-known vanishing lemma [20, Lemma I.1 of part 2], we see that∫
RN
F(wn) dx → 0 as n→∞.

Hence,

I (wn) = I

(
β

‖un‖
un

)
= I (βnun) ≥

1
2
β2
+ o(1); (3.3)

here, and in what follows, o(1) denotes a quantity which tends to zero as n→∞. Now,
we prove Claim 1 under condition (1.2) or (1.3).

If we assume (1.2), from (3.1) and wn = βnun, we see that

I (wn)+ o(1) = I (βnun)−
β2
n

2
〈I ′(un), un〉 =

∫
RN

[
β2
n

2
f (un)un − F(βnun)

]
dx

≤ D

∫
RN

[
1
2
f (un)un − F(un)

]
dx by (1.2), for some D ≥ 1

= D

(
I (un)−

1
2
〈I ′(un), un〉

)
n
→ Dc by (3.1).
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Taking β2 > 2Dc, we see that the above inequality contradicts (3.3) and Claim 1 is
proved.

Now assume (1.3). As in [16], since ‖un‖
n
→∞, we have βn = β/‖un‖ ∈ (0, 1) for

sufficiently large n and it follows from (3.3) that

max
t∈[0,1]

I (tun) ≥ I

(
β

‖un‖
un

)
≥

1
4
β2 for n large enough. (3.4)

By (3.1), I (un)
n
→ c > 0, so there is M > 0 such that I (un) ≤ M . Taking β > 0

so large that M < 1
4β

2, we see that the maximum in the above inequality cannot be
attained at t = 0 or 1. Thus, for each sufficiently large n, there exists tn ∈ (0, 1) such that
I (tnun) = maxt∈[0,1] I (tun) and it follows that 〈I ′(tnun), tnun〉 = 0. Hence, by (1.3) we
have

I (tnun) = I (tnun)−
1
2
〈I ′(tnun), tnun〉 =

∫
RN

[
1
2
f (tnun)tnun − F(tnun)

]
dx

≤ D

∫
RN

[
1
2
f (un)un − F(un)

]
dx = D

[
I (un)−

1
2
〈I ′(un), un〉

]
n
→ Dc.

This contradicts (3.4) if we choose further β2 > max{4M, 4Dc}. So, Vanishing cannot
occur.

Claim 2. If Nonvanishing occurs, then {yn} must be bounded.

If {yn} is unbounded, passing to a subsequence we may assume that |yn|
n
→ ∞. For any

ϕ ∈ C∞0 (R
N ), setting ϕn(x) = ϕ(x − yn), it follows from (3.1) that

|〈I ′(un), ϕn〉| ≤ ‖I
′(un)‖H−1(RN )‖ϕn‖ = ‖I

′(un)‖H−1(RN )‖ϕ‖
n
→ 0.

Let ũn(x) = un(x + yn) and w̃n(x) = wn(x + yn), where wn is defined by (3.2). Then∫
RN

[
∇w̃n∇ϕ + (1+ λg(x + yn))w̃nϕ −

f (ũn)

ũn
w̃nϕ

]
dx = o(1). (3.5)

Since ‖wn‖ = β and {wn} has the Nonvanishing property, it is not difficult to see that
there exists w̃ ∈ H 1(RN ) \ {0} such that

w̃n
n
⇀ w̃ weakly in H 1(RN ), w̃n

n
→ w̃ a.e. in RN .

As g ∈ L∞(RN ), g(x+ yn)w̃n is bounded in L2(RN ). Since g(x)→ 1 as |x| → ∞, and
|yn|

n
→∞, we have

g(x + yn)w̃n(x)
n
→ w̃(x) a.e. in RN .
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Hence, g(x + yn)w̃n
n
⇀ w̃ weakly in L2(RN ), that is,∫

RN
g(x + yn)w̃nϕ dx

n
→

∫
RN
w̃ϕ dx. (3.6)

Moreover, we claim that∫
RN

f (ũn)

ũn
w̃nϕ dx

n
→ (1+ α)

∫
RN
w̃ϕ dx. (3.7)

In fact, by (3.1) we see that

1
‖ũn‖
〈I ′(un), w̃

−
n 〉 = o(1),

where w̃−n (x) = max{−w̃n(x), 0}, that is,∫
RN

[
|∇w̃−n |

2
+ (1+ λg(x))|w̃−n |

2
−
f (ũn)

ũn
|w̃−n |

2
]
dx = o(1).

Noting that f (t) ≡ 0 for all t < 0 by (F1), this yields ‖w̃−n ‖
n
→ 0 and w̃ ≥ 0 a.e. in RN .

Set
�0 = {x ∈ RN : w̃(x) = 0}, �+ = {x ∈ RN : w̃(x) > 0}.

For x ∈ �0, by (F1), (F2) there exists C > 0 such that f (t)/t ≤ C for all t ∈ R. Then it
follows from w̃n(x)

a.e.
−→ w(x) ≡ 0 that

f (ũn(x))

ũn(x)
w̃n(x)

n
→ 0 ≡ (1+ α)w(x) a.e. in �0.

For x ∈ �+, since ‖ũn‖ = ‖un‖
n
→∞ and w̃n(x)

n
→ w(x) > 0 a.e. in �+, we see that

ũn(x)
n
→∞. Then (F2) yields

f (ũn(x))

ũn(x)

n
→ 1+ α a.e. in �2.

Hence,
f (ũn(x))

ũn(x)
w̃n(x)

n
→ (1+ α)w(x) a.e. in RN .

Since f (t)/t ≤ C for all t ∈ R, we see that
{f (ũn(x))

ũn(x)
w̃n(x)

}
is bounded in L2(RN ).

Therefore,
f (ũn(x))

ũn(x)
w̃n(x)

n
⇀ (1+ α)w(x) weakly in L2(RN ).

This implies (3.7).
Using (3.5)–(3.7), we see that w̃ satisfies

−1w̃ + (1+ λ)w̃ = (1+ α)w̃ in H 1(RN ).
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This is impossible since the above equation has only the zero solution inH 1(RN ) for any
α and λ by the Pohozaev identity [4], a contradiction.

Claim 3. Nonvanishing cannot occur.

By Claim 2, if {wn} has the nonvanishing property, then {yn} is bounded, and there exists
0 6≡ w ∈ H 1(RN ) such that

wn
n
⇀ w weakly in H 1(RN ).

By our assumption ‖un‖
n
→∞, so noting (3.1), we have ‖I ′(un)‖H−1(RN )‖un‖

n
→ 0, and

thus
1
‖un‖2

〈I ′(un), u
−
n 〉 = o(1),

where u−n (x) = max{−un(x), 0}, that is,∫
RN

[
|∇w−n |

2
+ (1+ λg(x))|w−n |

2
−
f (un)

un
|w−n |

2
]
dx = o(1).

This implies that ‖w−n ‖
n
→ 0 since f (t) ≡ 0 for all t < 0 by (F1). So w ≥ 0 a.e. on RN .

For any ϕ ∈ C∞0 (R
N ), we have 1

‖un‖
〈I ′(un), ϕ〉 = o(1), that is,∫

RN
[∇wn∇ϕ + Vλ(x)wnϕ] dx −

∫
RN

f (un)

un
wnϕ dx = o(1). (3.8)

Since wn
n
⇀ w weakly in H 1(RN ), we get∫

RN
[∇wn∇ϕ + Vλ(x)wnϕ] dx

n
→

∫
RN

[∇w∇ϕ + Vλ(x)wϕ] dx. (3.9)

Similar to (3.7), we have∫
RN

f (un)

un
wnϕ dx

n
→ (1+ α)

∫
RN
wϕ dx. (3.10)

From (3.8)–(3.10) we see that w ≥ 0 and satisfies

−1w + (1+ λg(x))w = (1+ α)w. (3.11)

Now, we show that for all λ and α in cases (i) to (v) of Theorem 1.1, there is always
a contradiction to (3.11). Hence, Claim 3 is proved.

Case (i). Since α > 0 and 0 < λ < α, we have

1+ α > 1+ λ ≥ inf σ(−1+ Vλ(x)),

and Proposition 2.1(ii) implies that (3.11) is impossible.



560 Zhengping Wang, Huan-Song Zhou

Case (ii). For α > 0 and λ = α, there exists v ∈ H 1(RN ) \ {0} such that∫
RN
|∇v|2 dx < α

∫
RN
(1− g(x))v2 dx,

that is,

1+ α >

∫
RN [|∇v|2 + (1+ αg(x))v2] dx∫

RN v
2 dx

,

which implies that
1+ α > inf σ(−1+ Vα(x)).

So, (3.11) is also impossible by Proposition 2.1(ii).

Case (iii). Since α > ξ1 > 0, if 0 < λ < α, this case has been discussed in Case (i). For
α > ξ1 with α ≤ λ <∞, it follows from Proposition 2.2(i) that (3.11) is impossible.

Case (iv). For α = ξ1 and λ > α, Proposition 2.2(i) also shows that (3.11) is impossible.

Case (v). In this case, (3.11) is impossible by Proposition 2.2(ii). ut

4. Proofs of the main results

The aim of this section is to prove Theorems 1.1 to 1.3. In order to show Theorem 1.1,
we introduce the following problem:{

−1u+ (1+ λ)u = f (u) in RN ,
u ∈ H 1(RN ), N ≥ 3,

(4.1)

which is usually called the limit problem associated to (1.1) at infinity. Its energy func-
tional is defined by

I∞(u) =
1
2

∫
RN

[|∇u|2 + (1+ λ)u2] dx −
∫

RN
F(u) dx, F (u) =

∫ u

0
f (s) ds. (4.2)

Under the conditions of Theorem 1.1, Lemma 3.2 implies that there exists a bounded Ce-
rami sequence {un} such that (3.1) holds. Then the usual way to prove Theorem 1.1 is
to show that the functional I satisfies the so called Cerami condition (or PS condition),
that is, {un} has a subsequence which converges strongly in H 1(RN ). However, this is
usually complicated or difficult. Motivated by [16], instead of verifying the Cerami con-
dition for I , we prove Theorem 1.1 by directly showing that {un} converges weakly to a
nontrivial solution of (1.1), although I does satisfy the Cerami condition except in case
(ii) of Theorem 1.1 (see our Proposition 4.1 below).

Lemma 4.1. Suppose that (F1), (F2), (G1) hold and

F(s) ≤
1
2
f (s)s for all s > 0. (4.3)

Moreover, let {un} ⊂ H 1(RN ) be a bounded Cerami sequence for I at level c > 0,
that is, (3.1) holds. Then there is a subsequence of {un}, still denoted by {un}, such that
un

n
⇀ u 6≡ 0 weakly in H 1(RN ) and I ′(u) = 0.
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Proof. Since {un} is bounded, there exists a subsequence, still denoted by {un}, such that
un

n
⇀ u weakly in H 1(RN ), but u may be identically equal to 0. Since ‖I ′(un)‖H−1(RN )

n
→ 0, it is easy to see that I ′(u) = 0 and

〈I ′(un)− I
′(u), ϕ〉

n
→ 0 for any ϕ ∈ C∞0 (R

N ).

The main point is to prove that u 6≡ 0. By contradiction, if u ≡ 0, we claim that
{un} is also a (PS) sequence for I∞ at level c. In fact, since g(x)→ 1 as |x| → ∞, and
un

n
→ 0 strongly in L2

loc(R
N ), we see that

I∞(un)− I (un) = λ

∫
RN
(1− g(x))u2

n dx
n
→ 0,

and

sup
‖ϕ‖≤1

|〈I∞
′
(un)− I

′(un), ϕ〉| = λ sup
‖ϕ‖≤1

∣∣∣∣∫RN
(1− g(x))unϕ dx

∣∣∣∣ n
→ 0.

Next, we claim that {un} does not vanish. Otherwise, by (F1), (F2) and the vanishing
lemma [20], we get ∫

RN
f (un)un dx

n
→ 0. (4.4)

Then 〈I ′(un), un〉
n
→ 0 and (4.4) imply that ‖un‖

n
→ 0. This is impossible since I (un)

n
→

c > 0.
So, {un} is nonvanishing. Let ũn(x) = un(x + yn). Similar to the proof of Claim 2

of Lemma 3.2, we find that, up to a subsequence, ũn
n
⇀ ũ 6≡ 0 weakly in H 1(RN ) with

I∞′(ũ) = 0 and ũn
n
→ ũ a.e. in RN .

By (F1) and (4.3) we have 1
2f (s)s −F(s) ≥ 0 for all s ∈ R. From Fatou’s lemma we

get

c = lim
n→∞

[
I∞(un)−

1
2
〈I∞

′
(un), un〉

]
= lim
n→∞

[
I∞(ũn)−

1
2
〈I∞

′
(ũn), ũn〉

]
= lim

n→∞

∫
RN

[
1
2
f (ũn)ũn − F(ũn)

]
dx ≥

∫
RN

[
1
2
f (ũ)ũ− F(ũ)

]
dx

= I∞(ũ)−
1
2
〈I∞

′
(ũ), ũ〉 = I∞(ũ).

Therefore, ũ is a nontrivial critical point of I∞ satisfying I∞(ũ) ≤ c, and the strong
maximum principle implies that ũ > 0 on RN . Furthermore, ũ satisfies the so called
Pohozaev-type identity [4],

2N
N − 2

∫
RN
|∇ũ|2 dx =

−1
2
(1+ λ)

∫
RN
ũ2 dx +

∫
RN
F(ũ) dx. (4.5)

Similar to [18] or [16], we set vt (x) = ũ(x/t) for t > k0. Then by direct calculation and
(4.5), we have

I∞(vt ) =

(
1
2
tN−2

−
N − 2

2N
tN
)
|∇ũ|22. (4.6)
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Since N ≥ 3, there exists t0 > 0 large enough such that I∞(vt ) < 0 for all t ≥ t0 and

sup
t≥0

I∞(vt ) = I
∞(v1) = I

∞(ũ), where v1 = vt (x)|t=1 = ũ. (4.7)

Let γ (t)(x) = ũ(x/tt0) for 0 < t ≤ 1 and γ (t)(x) ≡ 0 for t = 0. Then γ ∈
C([0, 1], H 1(RN )) and I∞(γ (1)) < 0. Hence by the definition of c and the continu-
ity of I , there is t∗ ∈ (0, 1] such that

c ≤ max
t∈[0,1]

I (γ (t)) = I (γ (t∗)) < I∞(γ (t∗)) ≤ sup
t>0

I∞(vt ) = I
∞(ũ) ≤ c; (4.8)

here (4.7) is used and I (γ (t∗)) < I∞(γ (t∗)) is obtained by (G1). This is a contradiction.
ut

Proof of Theorem 1.1. By Lemma 3.2, we see easily that Theorem 1.1 is a straightforward
consequence of Lemma 4.1. ut

Proof of Theorem 1.2. Since λ = 0, problem (1.1) or (4.1) becomes

−1u+ u = f (u), u ∈ H 1(RN ).

Similar to [16], define h(s) = −s + f (s) if s ≥ 0 and h(s) = −h(−s) for s < 0. Then,
by (F1), (F2) with α > 0, we see that h satisfies all the conditions of Lions [4], that is, h :
R→ R is continuous and odd, lims→0+ h(s)/s = −1 < 0, lims→∞ |h(s)|/s

(N+2)/(N−2)

= 0, and there exists s0 > 0 such that H(s0) > 0, where H(s) =
∫ s

0 h(t) dt . Hence, by
[4] there is a positive least energy solution w ∈ H 1(RN ) for

−1u = h(u), u ∈ H 1(RN ).

By the definition of h, we see that w is essentially a positive solution of problem (1.1)
with λ = 0. ut

Proof of Theorem 1.3. By (F1)–(F3), since α = 0,∫
RN
f (u)u dx ≤

∫
RN
u2 dx, ∀u ∈ H 1(RN ).

So, problem (1.1) has no positive solution for any λ ≥ 0. ut

Before ending this section, we mention that under the assumptions of Theorem 1.1, the
energy functional I does satisfy the Cerami condition except in case (ii). We have the
following proposition.

Proposition 4.1. Under the assumptions of Theorem 1.1, the Cerami sequence {un} ⊂
H 1(RN ) obtained in Lemma 3.1 contains a convergent subsequence for cases (i) and
(iii)–(v) of Theorem 1.1.

To prove this proposition, the following lemma is crucial.
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Lemma 4.2. Suppose that (F1), (G1) hold and

f (s) ≤ (1+ α)s for all s > 0. (4.9)

Let λ ∈ (α,∞) and {un} ⊂ H 1(RN ) be a bounded Cerami sequence for I at level c > 0.
Then for any ε > 0, there exist R(ε) and n(ε) > 0 such that∫

|x|≥R

[|∇un|2 + |un|2] dx ≤ ε for all R ≥ R(ε) and n ≥ n(ε). (4.10)

Proof. The proof is motivated by [9]. For any fixed R > 0, we take a cut-off function
ξR ∈ C

∞(RN ,R) such that

ξR(x) =

{
0, |x| ≤ R/2,
1, |x| ≥ R,

and there exists C0 > 0 (independent of R) such that |∇ξR(x)| ≤ C0/R for all x ∈ RN .
Then, for any u ∈ H 1(RN ) and all R ≥ 1, there exists C1 > 0 (independent of R) such
that ‖ξRu‖ ≤ C1‖u‖.

Since {un} ⊂ H 1(RN ) is a Cerami sequence, for n large we have

〈I ′(un), ξRun〉 ≤ ‖I
′(un)‖H−1(RN )‖ξRun‖ ≤ o(1), (4.11)

that is,∫
RN
(|∇un|

2
+ Vλ(x)u

2
n)ξR dx +

∫
RN
un∇un∇ξR dx

≤

∫
RN
f (un)unξR dx + o(1). (4.12)

Since λ > α, choosing δ = (λ − α)/2 > 0, by condition (G1) there exists R1 > 0 such
that Vλ(x) ≥ 1+α+ δ for |x| ≥ R1. From (F1) and (4.9) we have f (un)un ≤ (1+α)u2

n.
Then, for R ≥ 2R1, (4.12) yields∫

RN
(|∇un|

2
+ δu2

n)ξR dx ≤

∣∣∣∣∫RN
un∇un∇ξR dx

∣∣∣∣+ o(1) ≤ C0

R
‖un‖

2
+ o(1). (4.13)

Since {un} ⊂ H 1(RN ) is bounded, taking R and n large enough in (4.13) we see that
(4.10) holds. ut

Finally, we give the proof of Proposition 4.1:

Proof of Proposition 4.1. Case (i). Let {un} be given by Lemma 3.1, that is,

I (un)
n
→ c > 0 and ‖I ′(un)‖H−1(RN )

n
→ 0, (4.14)

where

c = inf
γ∈0

max
0≤t≤1

I (γ (t)), 0 = {γ ∈ C([0, 1], H 1(RN )) : γ (0) = 0, I (γ (1)) < 0}.
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From Lemma 3.2, we know that {un} is bounded in H 1(RN ). By the proof of Theorem
1.2 (see Steps 2 and 3) in [18], to prove this proposition we need only show that, passing
to a subsequence, {un} is tight, that is, for any ε > 0, there exists R > 0 such that∫

|x|≥R

|[∇un|2 + u2
n] dx < ε. (4.15)

Following [18], we rewrite (1.1) as

−1u+ u = fλ(x, u), u ∈ H 1(RN ), (4.16)

where fλ(x, u) = −λg(x)u + f (u), and set f̄λ(u) = −λu + f (u). Using (G1), we see
that

fλ(x, t) ≥ f̄λ(t) for any (x, t) ∈ RN × [0,∞),

fλ(x, t) > f̄λ(t) for any (x, t) ∈ �× (0,∞),
(4.17)

where � is given by (G1). If fλ(x, t) and f̄λ(t) satisfy all the conditions (C1) to (C6) in
[18], then the proof of (4.15) is exactly the same as Step 2 of the proof of Theorem 1.2
there. However, it is obvious that fλ(x, t) and f̄λ(t) do not satisfy all those conditions. So
we have to modify part of the proof of [18, Theorem 1.2]. Moreover, with the notations
fλ(x, t) and f̄λ(t), the functionals I and I∞ defined by (1.7) and (4.2) can be written as

I (u) =
1
2
‖u‖2 −

∫
RN
Fλ(x, u) dx with Fλ(x, t) =

∫ t

0
fλ(x, s) ds,

I∞(u) =
1
2
‖u‖2 −

∫
RN
F̄ (u) dx with F̄λ(t) =

∫ t

0
f̄λ(s) ds.

Clearly, I (u) < I∞(u) if u > 0, by (4.17).
By Step 2 of the proof of Theorem 1.2 in [18], we know that it is very important

to have c ∈ (0, J∞) while proving (4.15) by the classical concentration-compactness
principle, where

J∞ = inf{I∞(u) : u ∈ 3}, (4.18)

and 3 = {u ∈ H 1(RN ) \ {0} : 〈I∞′(u), u〉 = 0}.
We claim that J∞ > 0 and it is attained in 3. To prove these facts, some strong

restrictions are imposed on fλ(x, t) and ∂t f̄λ(t) in [18]. Here, we use a different approach
and require only our conditions (F1)–(F3), (G1) and λ ∈ (0, α). For this purpose, we
define

h(s) =

{
−(1+ λ)s + f (s) if s ≥ 0,
−h(−s) if s < 0.

As in the above proof of Theorem 1.2 (where λ = 0), by (F1), (F2) and λ ∈ (0, α) we
know that this h(s) also satisfies all the conditions in [4]. Note that λ ∈ (0, α) is required
to ensure that there exists s0 > 0 such that H(s0) > 0. So, by the result of [4], problem
(4.1) has a least energy solution w ∈ H 1(RN ) with w > 0 on RN and J∞ = I∞(w).
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Setting wt (x) = w(x/t) for t > 0, similar to the proof of (4.6) and (4.7), we see that
there exists t0 > 0 large enough such that

I∞(wt0) < 0 and sup
t≥0

I∞(wt ) = I
∞(w) = J∞.

Then, exactly as for (4.8), we see that c < J∞.
Since c ∈ (0, J∞), we can now follow almost exactly Step 2 of the proof of Theorem

1.2 in [18] to show that (4.15) holds. Here we just keep in mind that the functions f (x, t),
f̄ (t), F(x, t) and F̄ (t) appearing in [18] should be replaced, respectively, by fλ(x, t),
f̄λ(t), Fλ(x, t) and F̄λ(t). The details of the proof are given in the Appendix.

Case (iii). If α > ξ1 and 0 < λ < α, by Case (i) we see that the Cerami condition holds.
If α > ξ1 and α < λ <∞, it follows from Lemmas 3.2 and 4.2 that the Cerami condition
holds.

If α > ξ1 and λ = α, since ξ1 > 0, this falls under Case (ii). We have no idea how to
prove that the Cerami condition holds in this case.

Cases (iv) and (v). These are direct consequences of Lemmas 3.2 and 4.2.

5. The proof of Theorem 1.4

For fixed α > 0 and any 0 < λ < α, let uλ be the positive solution of (1.1) given by
Theorem 1.1. We study the asymptotic behavior of uλ as λ→ 0+.

Lemma 5.1. For fixed α > 0 and any λ0 ∈ (0, α), there exist b1 = b1(α, λ0) and
b2 = b2(α) > 0 such that

b2 ≤ Iλ(uλ) ≤ b1 for all λ ∈ (0, λ0].

Here Iλ denotes the energy functional defined in (1.7).

Proof. For λ ∈ (0, α), by Proposition 4.1 there is uλ ∈ H 1(RN ) such that

Iλ(uλ) = inf
γ∈0λ

max
t∈[0,1]

Iλ(γ (t)),

with 0λ = {γ ∈ C([0, 1], H 1(RN )) : γ (0) = 0 and Iλ(γ (1)) < 0}. By Lemma 2.1, there
exists b2 = b2(α) > 0 such that

Iλ(uλ) ≥ b2, ∀λ ∈ (0, λ0].

On the other hand, since λ0 < α, there exists φ ∈ H 1(RN ) with φ ≥ 0 such that∫
RN
|∇φ|2 dx < (α − λ0)

∫
RN
φ2 dx.
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Similar to the proof of Lemma 2.2(i) and by Fatou’s lemma we can prove that there exists
t0 = t0(α, λ0) > 0 such that Iλ0(t0φ) < 0. Thus, Iλ(t0φ) ≤ Iλ0(t0φ) < 0 for all λ ∈
(0, λ0] and

Iλ(uλ) ≤ max
t∈[0,1]

Iλ(tt0φ) ≤ max
t∈[0,1]

Iλ0(tt0φ) =: b1 for all λ ∈ (0, λ0]. ut

Proof of Theorem 1.4. We claim that for fixed α > 0 and any λ0 ∈ (0, α), there exist
C1, C2 > 0, depending on α and λ0, such that

C2 ≤ ‖uλ‖ ≤ C1 for all λ ∈ (0, λ0].

In fact, suppose that there exists a sequence {λn} ⊂ (0, λ0] such that ‖uλn‖
n
→ 0. Then

Iλn(uλn)
n
→ 0. By Lemma 5.1 this is impossible. Thus ‖uλ‖ ≥ C2 for all λ ∈ (0, λ0].

On the other hand, if there exists a sequence λn ∈ (0, λ0] such that ‖uλn‖ → ∞ as
n → ∞, then setting un = uλn and wn = un/‖un‖, by Lemma 5.1 and similarly to the
proof of Lemma 3.2, we get the desired contradiction when Vanishing or Nonvanishing
occurs. Hence ‖uλ‖ ≤ C1 for all λ ∈ (0, λ0].

If g(x) is radial, we may assume that uλ ∈ H 1
r (RN ). Since we get the uniform upper

and lower bound for uλ as λ→ 0+, there exists u0 ∈ H
1
r (RN ) such that

uλ
λ
→ u0 weakly in H 1

r (R
N ).

By the compactness of the Sobolev embedding H 1
r (RN ) ↪→ Lp(RN ) for 2 < p <

2N/(N − 2) (see [27]), and a standard procedure, we see that

uλ
λ
→ u0 6≡ 0 strongly in H 1

r (R
N ),

and u0 solves
−1u+ u = f (u), u ∈ H 1(RN ).

6. Appendix

For the sake of completeness, we give here the details of the proof of (4.15) by using the
classical concentration-compactness principle.

From Lemma 3.2, {un} is bounded in H 1(RN ). Passing to a subsequence, we may
assume that, for some ` ≥ 0, ∫

RN
|∇un|

2
+ u2

n dx
n
→ `.

We claim that ` > 0. Otherwise, if ` = 0, then I (un)
n
→ 0, which leads to a contradiction

by (4.14) and c > 0. Let

ρn(x) = |∇un|
2
+ u2

n, Qn(t) = sup
y∈RN

∫
Bt (y)

ρn(x) dx,

where Bt (y) = {x ∈ RN : |x − y| ≤ t}.
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By exactly the same discussion as in [20, Lemma I.1 of part 1], we know that

Qn(t)
n
→ Q(t) ≥ 0 for all t ≥ 0, Q(t) is nondecreasing, Q(t)

t→∞
−−−→ τ ∈ [0, `],

and then only one of the following three cases can occur:

(A) τ = 0 (vanishing); (B) τ ∈ (0, `) (dichotomy); (C) τ = ` (compactness).

Case (A) does not occur. In fact, if τ = 0, it follows from (F1), (F2) and the well-
known vanishing lemma of Lions [20, Lemma I.1 of part 2] that

lim
n→∞

∫
RN
f (un)un dx = lim

n→∞

∫
RN
F(un) dx = 0.

By (4.14), 〈I ′(un), un〉
n
→ 0, so

I (un) =
1
2
‖un‖

2
−

∫
RN
Fλ(x, un) dx =

∫
RN

[
1
2
fλ(x, un)− Fλ(x, un)

]
dx + o(1)

=

∫
RN

[
1
2
f (un)un − F(un)

]
dx

n
→ 0.

This is impossible by (4.14) and c > 0.
Next, we exclude Case (B) by using the fact that c ∈ (0, J∞).
If Case (B) occurs, that is, τ ∈ (0, `), from Q(t)→τ as t →∞, we see that, for any

ε > 0, there is t0 > 0 large enough such that Q(t0) ∈ (τ − ε/4, τ + ε/4). Therefore,
there exists n0 > 0 such that Qn(t0) ∈ (τ − ε/2, τ + ε/2) for all n ≥ n0. Passing to a
subsequence, we can find tn→∞ such that

Qn(tn) ≤ τ + ε/2. (6.1)

Moreover, there exists {yn} ⊂ RN such that∫
Bt0 (yn)

[|∇un|2 + u2
n] dx ∈ (τ − ε/2, τ + ε/2). (6.2)

Let ψ, ϕ ∈ C1(RN ) be cut-off functions such that 0 ≤ ψ, ϕ ≤ 1, ψ ≡ 0 if |x| ≥ 2,
ψ ≡ 1 if |x| ≤ 1, ϕ ≡ 1 if |x| ≥ 2, and ϕ ≡ 0 if |x| ≤ 1.

Define ψn(·) = ψ(
·−yn
R1
), where R1 ≥ t0 is a number to be determined later, and

ϕn(·) = ϕ(
·−yn
tn
). Then for n ≥ n0,∣∣∣∣∫RN

[ψ2
n |∇un|

2
− |∇(ψnun)|

2] dx
∣∣∣∣ = ∣∣∣∣∫RN

[
ψ2
n |∇un|

2
− |ψn∇un +

1
R1
un∇ψ |

2
]
dx

∣∣∣∣
≤
C

R1
,∣∣∣∣∫RN

[ψ2
n |∇un|

2
−∇un∇(ψ

2
nun)] dx

∣∣∣∣ = 2
R1

∣∣∣∣∫RN
unψn∇un∇ψn dx

∣∣∣∣ ≤ C

R1
.
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Choosing R1 ≥ t0 large enough such that C/R1 < ε, we have∣∣∣∣∫RN
[ψ2
n |∇un|

2
− |∇(ψnun)|

2] dx
∣∣∣∣ < ε, (6.3)∣∣∣∣∫RN

[ψ2
n |∇un|

2
−∇un∇(ψ

2
nun)] dx

∣∣∣∣ < ε. (6.4)

By (F1), (F2) and the definition of ψ , we get∣∣∣∣∫RN
[ψ2
nunfλ(x, un)− ψnunfλ(x, ψnun)] dx

∣∣∣∣
=

∣∣∣∣∫RN
[ψ2
nunf (un)− ψnunf (ψnun)] dx

∣∣∣∣
=

∣∣∣∣∫
R1≤|x−yn|≤2R1

[ψ2
nunf (un)− ψnunf (ψnun)] dx

∣∣∣∣
≤ C

∫
R1≤|x−yn|≤2R1

[|∇un|2 + u2
n] dx ≤ Cε by (6.1) and (6.2). (6.5)

Similarly, for n large enough, we also have,∣∣∣∣∫RN
[ϕ2
n|∇un|

2
− |∇(ϕnun)|

2] dx
∣∣∣∣ < µ(ε), (6.6)∣∣∣∣∫RN

[ϕ2
n|∇un|

2
−∇un∇(ϕ

2
nun)] dx

∣∣∣∣ < µ(ε), (6.7)∣∣∣∣∫RN
[ϕ2
nunfλ(x, un)− ϕnunfλ(x, ϕnun)] dx

∣∣∣∣ < µ(ε); (6.8)

here and in what follows, we denote by µ(ε) a quantity which tends to 0 as ε → 0+.
Let u1

n = ψnun, u
2
n = ϕnun (note that u2

n is not (un)2). Without loss of generality, we
assume tn > R1. Then by (6.1) and (6.2) we have

‖un − u
1
n − u

2
n‖ ≤ µ(ε), (6.9)∣∣∣∣∫RN

(|∇un|
2
− |∇u1

n|
2
− |∇u2

n|
2) dx

∣∣∣∣ ≤ µ(ε), (6.10)∣∣∣∣∫RN
(|un|

2
− |u1

n|
2
− |u2

n|
2) dx

∣∣∣∣ ≤ µ(ε). (6.11)

Noticing that ‖un‖2
n
→ `, by the definitions of u1

n and u2
n, using (6.2) and (6.9) we see

that

| ‖u1
n‖

2
− τ | ≤ µ(ε), | ‖u2

n‖
2
− (`− τ)| ≤ µ(ε). (6.12)

From (6.6)–(6.8), we get

|〈I ′(u2
n), u

2
n〉 − 〈I

′(un), ϕ
2
nun〉| ≤ µ(ε).
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Since ‖I ′(un)‖H−1(RN )
n
→ 0 and {un} is bounded in H 1(RN ), we have 〈I ′(un), ϕ2

nun〉
n
→ 0. Therefore, we get∫

RN
[|∇u2

n|
2
+ |u2

n|
2
− fλ(x, u

2
n)u

2
n] dx = µ(ε)+ o(1). (6.13)

Similarly, it follows from (6.3)–(6.5) that∫
RN

[|∇u1
n|

2
+ |u1

n|
2
− fλ(x, u

1
n)u

1
n] dx = µ(ε)+ o(1). (6.14)

As in the derivation of (6.5), we have∣∣∣∣∫RN
[ψnFλ(x, un)− Fλ(x, u1

n)] dx
∣∣∣∣ ≤ µ(ε),∣∣∣∣∫RN

[ϕnFλ(x, un)− Fλ(x, u2
n)] dx

∣∣∣∣ ≤ µ(ε).
Therefore, ∣∣∣∣∫RN

[Fλ(x, un)− Fλ(x, u1
n)− Fλ(x, u

2
n)] dx

∣∣∣∣ ≤ µ(ε). (6.15)

It follows from (6.10), (6.11) and (6.15) that

|I (un)− I (u
1
n)− I (u

2
n)| ≤ µ(ε).

Thus,

I (un) ≥ I (u
1
n)+ I (u

2
n)− µ(ε). (6.16)

Since dist(supp{u1
n}, supp{u2

n})
n
→ ∞, without loss of generality we may assume that

dist(supp{u2
n}, {0})

n
→ ∞. Hence for any given R > 0 and n large enough we have

supp{u2
n} ∩ BR(0) = ∅. Therefore, from g(x)→ 1 as |x| → ∞, we deduce that

|I (u2
n)− I

∞(u2
n)| =

∣∣∣∣∫RN
[fλ(x, u2

n)u
2
n − f̄λ(u

2
n)u

2
n] dx

∣∣∣∣
= λ

∣∣∣∣∫RN
(g(x)− 1)|u2

n|
2 dx

∣∣∣∣ n
→ 0. (6.17)

By (6.16) and (6.17),

I (un) ≥ I (u
1
n)+ I

∞(u2
n)− µ(ε)+ o(1). (6.18)

Let vn(x) = u2
n(σx), so that

〈I∞
′
(vn), vn〉 = σ

−n(σ 2
− 1)

∫
RN
|∇u2

n|
2 dx + σ−n + εn, (6.19)
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where εn =
∫
RN [|∇u2

n|
2
+ |u2

n|
2
− f̄λ(u

2
n)u

2
n] dx. Using (6.13) and (6.17), we have

εn = µ(ε)+ o(1). (6.20)

We claim that there is a sequence {σn} with σn
n
→ 1 such that

(σ 2
n − 1)

∫
RN
|∇u2

n|
2 dx + εn = 0.

To prove this, we need only show that there is a constant A > 0 such that∫
RN
|∇u2

n|
2 dx ≥ A > 0 for n large. (6.21)

By contradiction, we suppose that (6.21) is false. Then there exists a subsequence of {u2
n},

still denoted by {u2
n}, such that

lim
n→∞

∫
RN
|∇u2

n|
2 dx = 0. (6.22)

From (6.13), (F1) and (F2), we have

‖u2
n‖

2
= −λ

∫
RN
g(x)|u2

n|
2 dx +

∫
RN
f (u2

n)u
2
n dx + µ(ε)+ o(1)

≤
1
2

∫
RN
|u2
n|

2 dx + C

(∫
RN
|∇u2

n|
2 dx

)N/(N−2)

+ µ(ε)+ o(1). (6.23)

Then (6.22) and (6.23) imply that ‖u2
n‖

2
≤ µ(ε) + o(1), which contradicts the second

inequality of (6.12).
Therefore, we can find σn = 1+ µ(ε)+ o(1) such that vn ∈ 3 (see (4.18)) and

I∞(vn) = I
∞(u2

n)+ µ(ε)+ o(1).

This implies that

I∞(u2
n) = I

∞(vn)− µ(ε)+ o(1) ≥ J∞ − µ(ε)+ o(1). (6.24)

By (F1) and (F3),

I (u1
n) =

1
2

∫
RN

[|∇u1
n|

2
+ (1+ λg(x))|u1

n|
2] dx −

∫
RN
F(u1

n) dx

≥
1
2

∫
RN

[|∇u1
n|

2
+ |u1

n|
2
− fλ(x, u

1
n)u

1
n] dx

= µ(ε)+ o(1) by (6.14). (6.25)

Then from (6.18), (6.24) and (6.25), we get

I (un) ≥ J
∞
− µ(ε)+ o(1).
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This implies limn I (un) = c ≥ J∞, which contradicts c < J∞. So, Case (B) cannot
occur.

Finally, we know that only compactness can occur, that is, τ = `. So, by the second
inequality of (6.12) there exist {yn} ⊂ RN and a subsequence of {un} (still denoted by
{un}) such that for any ε > 0, there is R = R(ε) > 0 such that∫

|x−yn|≥R

[|∇un|2 + u2
n] dx < ε. (6.26)

If {yn} is bounded, then there exists R̃ > 0 such that∫
|x|≥R̃

[|∇un|2 + u2
n] dx ≤

∫
|x−yn|≥R

[|∇un|2 + u2
n] dx < ε,

and (4.15) is proved.
If |yn|

n
→∞, noticing that g(x)→ 1 as |x| → ∞, it follows from (6.26) that

I (un) = I
∞(un)− λ

∫
RN
(1− g(x))|un|2 dx

= I∞(un)− λ

(∫
|x−yn|≥R

+

∫
|x−yn|≤R

)
(1− g(x))|un|2 dx

≥ I∞(un)− Cε + o(1). (6.27)

Similar to the proof of (6.24), we can find σn with σn = 1 + µ(ε) + o(1) and vn(x) =
un(σnx) ∈ 3 such that

I∞(un) = I
∞(vn)− µ(ε)+ o(1) ≥ J∞ − µ(ε)+ o(1). (6.28)

Using (6.27) and (6.28), we have

I (un) ≥ J
∞
− µ(ε)+ o(1).

This implies c ≥ J∞, a contradiction again.

Acknowledgments. The authors express their sincere thanks to Professor C. A. Stuart for his helpful
comments. Thanks also to the referee for some valuable suggestions. This work was supported by
NSFC grants No.10571174 and 10631030, and CAS grant KJCX3-SYW-S03.

References

[1] Bartsch, T., Pankov, A., Wang, Z. Q.: Nonlinear Schrödinger equations with steep potential
well. Comm. Contemp. Math. 3, 549–569 (2001) Zbl 1076.35037 MR 1869104

[2] Bartsch, T., Wang, Z. Q.: Existence and multiplicity results for some superlinear elliptic prob-
lems on RN . Comm. Partial Differential Equations 20, 1725–1741 (1995) Zbl 0837.35043
MR 1349229

[3] Bartsch, T., Wang, Z. Q.: Multiple positive solutions for a nonlinear Schrödinger equation.
Z. Angew. Math. Phys. 51, 366–384 (2000) Zbl 0972.35145 MR 1762697

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1076.35037&format=complete
http://www.ams.org/mathscinet-getitem?mr=1869104
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0837.35043&format=complete
http://www.ams.org/mathscinet-getitem?mr=1349229
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0972.35145&format=complete
http://www.ams.org/mathscinet-getitem?mr=1762697


572 Zhengping Wang, Huan-Song Zhou

[4] Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations, I. Existence of a ground state.
Arch. Ration. Mech. Anal. 82, 313–346 (1983) Zbl 0533.35029 MR 0695535

[5] Byeon, J., Wang, Z. Q.: Spherical semiclassical states of a critical frequency for Schrödinger
equations with decaying potentials. J. Eur. Math. Soc. 8, 217–228 (2006) Zbl pre05053360
MR 2239273

[6] Chen, Z. H., Shen, Y. T., Yao, Y. X.: Some existence results of solutions for p-Laplacian. Acta
Math. Sci. Ser. B 23, 487–496 (2003) Zbl 1119.35320 MR 2032552

[7] Clapp, M., Ding, Y. H.: Minimal nodal solutions of a Schrödinger equation with critical
nonlinearity and symmetric potential. Differential Integral Equations 16, 981–992 (2003)
Zbl pre02004935 MR 1989597

[8] Costa, D., Tehrani, H.: On a class of asymptotically linear elliptic problems in RN . J. Differ-
ential Equations 173, 470–494 (2001) Zbl 1098.35526 MR 1834123

[9] Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded
domains. Calc. Var. Partial Differential Equations 4, 121–137 (1996) Zbl 0844.35032
MR 1379196

[10] Ding, Y. H., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation.
Manuscripta Math. 112, 109–135 (2003) Zbl 1038.35114 MR 2005933

[11] Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer (1990) Zbl 0707.70003
MR 1051888

[12] de Figueiredo, D. G., Ding, Y. H.: Solutions of a nonlinear Schrödinger equation. Discrete
Contin. Dynam. Systems 8, 563–584 (2002) Zbl 1004.35107 MR 1897867

[13] van Heerden, F. A.: Multiple solutions for a Schrödinger type equation with an asymptotically
linear term. Nonlinear Anal. 55, 739–758 (2003) Zbl pre02005480 MR 2060527

[14] van Heerden, F. A., Wang, Z. Q.: Schrödinger type equations with asymptotically lin-
ear nonlinearities. Differential Integral Equations 16, 257–280 (2003) Zbl 1030.35067
MR 1947953

[15] Jeanjean, L., On the existence of bounded Palais–Smale sequences and applications to a
Landesman–Lazer type problem set on RN . Proc. Roy. Soc. Edinburgh Sect. A 129, 787–
809 (1999) Zbl 0935.35044 MR 1718530

[16] Jeanjean, L., Tanaka, K.: A positive solution for an asymptotically linear elliptic prob-
lem on RN autonomous at infinity. ESAIM Control Optim. Calc. Var. 7, 597–614 (2002)
Zbl pre01966590 MR 1925042

[17] Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymp-
totically linear nonlinearities. Calc. Var. Partial Differential Equations 21, 287–318 (2004)
Zbl 1060.35012 MR 2094325

[18] Li, G. B., Zhou, H. S.: The existence of a positive solution to asymptotically linear scalar
field equations. Proc. Roy. Soc. Edinburgh Sect. A 130, 81–105 (2000) Zbl 0942.35075
MR 1742582

[19] Li, Y. Q., Wang, Z. Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with po-
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