
J. Eur. Math. Soc. 11, 575–596 c© European Mathematical Society 2009

Wei Wang

Stability of closed characteristics on
compact convex hypersurfaces in R6

Received April 9, 2007 and in revised form August 3, 2007

Abstract. Let 6 ⊂ R6 be a compact convex hypersurface. We prove that if 6 carries only finitely
many geometrically distinct closed characteristics, then at least two of them must have irrational
mean indices. Moreover, if6 carries exactly three geometrically distinct closed characteristics, then
at least two of them must be elliptic.
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1. Introduction and main results

Let 6 be a fixed C3 compact convex hypersurface in R2n, i.e., 6 is the boundary of a
compact and strictly convex region U in R2n. We denote the set of all such hypersurfaces
by H(2n). Without loss of generality, we suppose U contains the origin. We consider
closed characteristics (τ, y) on 6, which are solutions of the problem{

ẏ = JN6(y),

y(τ ) = y(0),
where J =

(
0 −In
In 0

)
, (1.1)

In is the identity matrix in Rn, τ > 0, y : R → R2n with y(R) ⊂ 6, and N6(y) is
the outward normal vector of 6 at y normalized by the condition N6(y) · y = 1. Here
a · b denotes the standard inner product of a, b ∈ R2n. A closed characteristic (τ, y) is
prime if τ is the minimal period of y. Two closed characteristics (τ, y) and (σ, z) are
geometrically distinct if y(R) 6= z(R). We denote by J (6) and J̃ (6) the set of all
closed characteristics (τ, y) on 6 with τ being the minimal period of y and the set of all
geometrically distinct ones respectively. Note that J (6) = {θ · y | θ ∈ S1, y is prime},
while J̃ (6) = J (6)/S1, where the natural S1-action is defined by θ · y(t) = y(t + τθ)
for θ ∈ S1 and t ∈ R.

Let j : R2n
→ R be the gauge function of 6, i.e., j (λx) = λ for x ∈ 6 and λ ≥ 0,

j ∈ C3(R2n
\{0},R)∩C0(R2n,R) and6 = j−1(1). Fix a constant α ∈ (1, 2) and define
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the Hamiltonian function Hα : R2n
→ [0,∞) by

Hα(x) = j (x)
α, ∀x ∈ R2n. (1.2)

Then Hα ∈ C3(R2n
\ {0},R) ∩ C1(R2n,R) is convex and 6 = H−1

α (1). It is well
known that the problem (1.1) is equivalent to the following given energy problem for
the Hamiltonian system:{

ẏ(t) = JH ′α(y(t)), Hα(y(t)) = 1, ∀t ∈ R,
y(τ ) = y(0).

(1.3)

Denote by J (6, α) the set of all solutions (τ, y) of (1.3) where τ is the minimal period
of y and by J̃ (6, α) the set of all geometrically distinct solutions of (1.3). As above,
J̃ (6, α) is obtained from J (6, α) by dividing by the natural S1-action. Note that ele-
ments in J (6) and J (6, α) are in one-to-one correspondence, and similarly for J̃ (6)
and J̃ (6, α).

Let (τ, y) ∈ J (6, α). The fundamental solution γy : [0, τ ]→ Sp(2n) with γy(0) =
I2n of the linearized Hamiltonian system

ẇ(t) = JH ′′α (y(t))w(t), ∀t ∈ R, (1.4)

is called the associate symplectic path of (τ, y). The eigenvalues of γy(τ ) are called the
Floquet multipliers of (τ, y). By Proposition 1.6.13 of [Eke3], the Floquet multipliers of
(τ, y) ∈ J (6) together with their multiplicities do not depend on the particular choice
of the Hamiltonian function in (1.3). For any M ∈ Sp(2n), we define the elliptic height
e(M) of M to be the total algebraic multiplicity of all eigenvalues of M on the unit circle
U = {z ∈ C | |z| = 1} in the complex plane C. Since M is symplectic, e(M) is even and
0 ≤ e(M) ≤ 2n. As usual, (τ, y) ∈ J (6) is elliptic if e(γy(τ )) = 2n. It is nondegenerate
if 1 is a double Floquet multiplier of it, and hyperbolic if 1 is a double Floquet multiplier
of it and e(γy(τ )) = 2. It is well known that these concepts are independent of the choice
of α > 1.

For the existence and multiplicity of geometrically distinct closed characteristics on
convex compact hypersurfaces in R2n we refer to [Rab], [Wei], [EkL], [EkH], [Szu],
[HWZ], [LoZ], [LLZ], and the references therein. Note that recently in [WHL], Wang,
Hu and Long proved #J̃ (6) ≥ 3 for every 6 ∈ H(6).

Concerning the stability problem, Ekeland [Eke2] in 1986 and Long [Lon2] in 1998
proved, for any 6 ∈ H(2n), the existence of at least one non-hyperbolic closed char-
acteristic on 6 provided #J̃ (6) < ∞. Ekeland [Eke2] also proved the existence of at
least one elliptic closed characteristic on6 provided6 ∈ H(2n) is

√
2-pinched. In 1992,

Dell’Antonio, D’Onofrio and Ekeland [DDE] proved the existence of at least one elliptic
closed characteristic on6 provided6 ∈ H(2n) satisfies6 = −6. In 2000, Long [Lon3]
proved that 6 ∈ H(4) and #J̃ (6) = 2 imply that both the closed characteristics must
be elliptic. In 2002, Long [LoZ] and Zhu further proved that when #J̃ (6) < ∞, there
exists at least one elliptic closed characteristic and there are at least [n/2] geometrically
distinct closed characteristics on 6 possessing irrational mean indices, which are then
nonhyperbolic. In the recent paper [LoW], Long and Wang proved that there exist at least
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two nonhyperbolic closed characteristics on 6 ∈ H(6) when #J̃ (6) <∞. Motivated by
these results, we prove the following results:

Theorem 1.1. On every 6 ∈ H(6) satisfying #J̃ (6) < ∞, there exist at least two
geometrically distinct closed characteristics with irrational mean indices.

Theorem 1.2. Suppose #J̃ (6) = 3 for some 6 ∈ H(6). Then there exist at least two
elliptic closed characteristics in J̃ (6).

The proofs of Theorems 1.1 and 1.2 are given in Section 3. The main ingredients in the
proofs are: the mean index identity for closed characteristics established in [WHL], the
Morse inequality and the index iteration theory developed by Long and his coworkers,
specially the common index jump theorem of Long and Zhu ([LoZ, Theorem 4.3], cf.
[Lon4, Theorem 11.2.1]). In Section 2, we briefly review the equivariant Morse theory
and the mean index identity for closed characteristics on compact convex hypersurfaces
in R2n developed in [WHL].

In this paper, N, N0, Z, Q, R, and R+ denote the sets of natural integers, non-negative
integers, integers, rational numbers, real numbers, and positive real numbers respectively.
Denote by a · b and |a| the standard inner product and norm in R2n. Denote by 〈·, ·〉 and
‖ · ‖ the standard L2-inner product and L2-norm. For an S1-space X, we denote by XS1

the homotopy quotient of X modulo the S1-action, i.e., XS1 = S∞ ×S1 X. We define the
functions

[a] = max{k ∈ Z | k ≤ a}, E(a) = min{k ∈ Z | k ≥ a}, ϕ(a) = E(a)− [a]. (1.5)

Specifically, ϕ(a) = 0 if a ∈ Z , and ϕ(a) = 1 if a /∈ Z . In this paper we use only Q-
coefficients for all homology modules. For a Zm-space pair (A,B), let H∗(A,B)±Zm =
{σ ∈ H∗(A,B) | L∗σ = ±σ }, where L is a generator of the Zm-action.

2. Equivariant Morse theory for closed characteristics

In the rest of this paper, we fix a 6 ∈ H(2n) and assume the following condition on 6:

(F) There exist only finitely many geometrically distinct closed characteristics
{(τj , yj )}1≤j≤k on 6.

In this section, we briefly review the equivariant Morse theory for closed characteristics
on 6 developed in [WHL] which will be needed in Section 3. All the details of proofs
can be found in [WHL].

Let τ̂ = inf{τj | 1≤j ≤k}. Note that here τj ’s are prime periods of yj ’s for 1≤j ≤k.
Then by §2 of [WHL], for any a > τ̂ , we can construct a function ϕa ∈ C∞(R,R+) such
that 0 is the unique critical point in [0,∞) and ϕa is strictly convex for t ≥ 0. Moreover,
ϕ′a(t)/t is strictly decreasing for t > 0 with limt→0+ ϕ

′
a(t)/t = 1 and ϕa(0) = 0 =

ϕ′a(0). More precisely, we define ϕa via Propositions 2.2 and 2.4 of [WHL]. The precise
dependence of ϕa on a is explained in Remark 2.3 of [WHL].
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Define the Hamiltonian function Ha(x) = aϕa(j (x)) and consider the fixed period
problem {

ẋ(t) = JH ′a(x(t)),

x(1) = x(0).
(2.1)

ThenHa ∈ C3(R2n
\ {0},R)∩C1(R2n,R) is strictly convex. Solutions of (2.1) are x ≡ 0

and x = ρy(τ t) with ϕ′a(ρ)/ρ = τ/a, where (τ, y) is a solution of (1.1). In particular,
nonzero solutions of (2.1) are in one-to-one correspondence with solutions of (1.1) with
period τ < a.

In the following, we use the Clarke–Ekeland dual action principle. As usual, let Ga
be the Fenchel transform of Ha defined by Ga(y) = sup{x · y −Ha(x) | x ∈ R2n

}. Then
Ga ∈ C

2(R2n
\ {0},R) ∩ C1(R2n,R) is strictly convex. Let

L2
0(S

1,R2n) =

{
u ∈ L2([0, 1],R2n)

∣∣∣∣ ∫ 1

0
u(t) dt = 0

}
. (2.2)

Define a linear operator M : L2
0(S

1,R2n) → L2
0(S

1,R2n) by d
dt
Mu(t) = u(t) and∫ 1

0 Mu(t) dt = 0. The dual action functional on L2
0(S

1,R2n) is defined by

9a(u) =

∫ 1

0

(
1
2
Ju ·Mu+Ga(−Ju)

)
dt. (2.3)

Then the functional 9a ∈ C1,1(L2
0(S

1,R2n),R) is bounded below and satisfies the
Palais–Smale condition. Suppose x is a solution of (2.1). Then u = ẋ is a critical point
of 9a . Conversely, suppose u is a critical point of 9a . Then there exists a unique ξ ∈ R2n

such that Mu− ξ is a solution of (2.1). In particular, solutions of (2.1) are in one-to-one
correspondence with critical points of 9a . Moreover, 9a(u) < 0 for every critical point
u 6= 0 of 9a .

Suppose u is a nonzero critical point of9a . Then following [Eke3] the formal Hessian
of 9a at u is defined by

Qa(v, v) =

∫ 1

0
(J v ·Mv +G′′a(−Ju)Jv · Jv) dt,

which defines an orthogonal splitting L2
0 = E− ⊕ E0 ⊕ E+ of L2

0(S
1,R2n) into the

negative, zero and positive subspaces. The index of u is defined by i(u) = dimE−, and
the nullity of u is ν(u) = dimE0. Let u = ẋ be the critical point of 9a such that x
corresponds to the closed characteristic (τ, y) on 6. Then the index i(u) and the nullity
ν(u) defined above coincide with the Ekeland indices defined in [Eke1] and [Eke3]. In
paticular, 1 ≤ ν(u) ≤ 2n− 1 always holds.

We have a natural S1-action on L2
0(S

1,R2n) defined by θ · u(t) = u(θ + t) for all
θ ∈ S1 and t ∈ R. Clearly 9a is S1-invariant. For any κ ∈ R, we define

3κa = {u ∈ L
2
0(S

1,R2n) | 9a(u) ≤ κ}. (2.4)
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For a critical point u of 9a , we set

3a(u) = 3
9a(u)
a = {w ∈ L2

0(S
1,R2n) | 9a(w) ≤ 9a(u)}. (2.5)

Clearly, both sets are S1-invariant. Since the S1-action preserves9a , if u is a critical point
of 9a , then the whole orbit S1

· u is formed by critical points of 9a . Denote by crit(9a)
the set of critical points of9a . Note that by the condition (F), the number of critical orbits
of 9a is finite. Hence as usual we can make the following definition.

Definition 2.1. Suppose u is a nonzero critical point of9a andN is an S1-invariant open
neighborhood of S1

· u such that crit(9a) ∩ (3a(u) ∩N ) = S1
· u. Then the S1-critical

modules of S1
· u are defined by

CS1,q(9a, S
1
· u) = Hq((3a(u) ∩N )S1 , ((3a(u) \ S

1
· u) ∩N )S1).

We have the following proposition for critical modules.

Proposition 2.2 (Proposition 3.2 of [WHL]). The critical module CS1,q(9a, S
1
· u) is

independent of a in the sense that if xi are solutions of (2.1) with Hamiltonian functions
Hai (x) ≡ aiϕai (j (x)) for i = 1, 2 respectively such that both x1 and x2 correspond to
the same closed characteristic (τ, y) on 6, then

CS1,q(9a1 , S
1
· ẋ1) ∼= CS1,q(9a2 , S

1
· ẋ2), ∀q ∈ Z.

Now let u 6= 0 be a critical point of 9a with multiplicity mul(u) = m, i.e., u corresponds
to a closed characteristic (mτ, y) ⊂ 6 with (τ, y) being prime. Hence u(t+1/m) = u(t)
for all t ∈ R and S1

· u ∼= S1/Zm ∼= S1. Let f : N(S1
· u)→ S1

· u be the normal bundle
of S1
·u in L2

0(S
1,R2n) and let f−1(θ ·u) = N(θ ·u) be the fiber over θ ·u, where θ ∈ S1.

Let DN(S1
· u) be the %-disk bundle of N(S1

· u) for some % > 0 sufficiently small, i.e.,
DN(S1

· u) = {ξ ∈ N(S1
· u) | ‖ξ‖ < %}, and let DN(θ · u) = f−1(θ · u)∩DN(S1

· u)

be the disk over θ · u. Clearly, DN(θ · u) is Zm-invariant and we have DN(S1
· u) =

DN(u)×Zm S
1, where the Zm-action is given by

(θ, v, t) ∈ Zm ×DN(u)× S1
7→ (θ · v, θ−1t) ∈ DN(u)× S1.

Hence for an S1-invariant subset 0 of DN(S1
· u), we have 0/S1

= (0u ×Zm S
1)/S1

=

0u/Zm, where 0u = 0 ∩ DN(u). Since 9a is not C2 on L2
0(S

1,R2n), we need to use a
finite-dimensional approximation introduced by Ekeland in order to apply Morse theory.
More precisely, we can construct a finite-dimensional submanifold 0(ι) of L2

0(S
1,R2n)

which admits a Zι-action with m | ι. Moreover, 9a and 9a|0(ι) have the same critical
points. 9a|0(ι) is C2 in a small tubular neighborhood of the critical orbit S1

· u, and the
Morse index and nullity of its critical points coincide with those of the corresponding
critical points of 9a . Let

DιN(S
1
· u) = DN(S1

· u) ∩ 0(ι), DιN(θ · u) = DN(θ · u) ∩ 0(ι). (2.6)

Then we have

CS1,∗(9a, S
1
· u) ∼= H∗(3a(u) ∩DιN(u), (3a(u) \ {u}) ∩DιN(u))

Zm . (2.7)
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Now we can apply the results of Gromoll and Meyer [GrM] to the manifold DpιN(up)
with unique critical point up, where p ∈ N. Then mul(up) = pm is the multiplicity of
up and the isotropy group Zpm ⊆ S1 of up acts on DpιN(up) by isometries. According
to Lemma 1 of [GrM], we have a Zpm-invariant decomposition

Tup (DpιN(u
p)) = V + ⊕ V − ⊕ V 0

= {(x+, x−, x0)}

with dimV − = i(up), dimV 0
= ν(up) − 1 and a Zpm-invariant neighborhood B =

B+×B−×B0 of 0 in Tup (DpιN(up)) together with two Zpm-invariant diffeomorphisms

8 : B = B+ × B− × B0 → 8(B+ × B− × B0) ⊂ DpιN(u
p)

and
η : B0 → W(up) ≡ η(B0) ⊂ DpιN(u

p)

such that 8(0) = η(0) = up and

9a ◦8(x+, x−, x0) = |x+|
2
− |x−|

2
+9a ◦ η(x0), (2.8)

with d(9a ◦ η)(0) = d2(9a ◦ η)(0) = 0. Following [GrM], we call W(up) a local
characteristic manifold and U(up) = B− a local negative disk at up. By the proof of
Lemma 1 of [GrM], W(up) and U(up) are Zpm-invariant. Then we have

H∗(3a(u
p) ∩DpιN(u

p), (3a(u
p) \ {up}) ∩DpιN(u

p))

= H∗(U(u
p), U(up) \ {up})⊗H∗(W(u

p)∩3a(u
p), (W(up) \ {up})∩3a(u

p)), (2.9)

where

Hq(U(u
p), U(up) \ {up}) =

{
Q if q = i(up),
0 otherwise.

(2.10)

Now we have the following proposition.

Proposition 2.3 (Proposition 3.10 of [WHL]). Let u 6= 0 be a critical point of 9a with
mul(u) = 1. Then for all p ∈ N and q ∈ Z, we have

CS1,q(9a, S
1
· up) ∼= Hq−i(up)(W(u

p) ∩3a(u
p), (W(up) \ {up}) ∩3a(u

p))β(u
p)Zp ,
(2.11)

where β(up) = (−1)i(u
p)−i(u). Thus

CS1,q(9a, S
1
· up) = 0 if q < i(up) or q > i(up)+ ν(up)− 1. (2.12)

In particular, if up is nondegenerate, i.e., ν(up) = 1, then

CS1,q(9a, S
1
· up) =

{
Q if q = i(up) and β(up) = 1,
0 otherwise.

(2.13)

We make the following definition:



Stability of closed characteristics 581

Definition 2.4. Let u 6= 0 be a critical point of 9a with mul(u) = 1. Then for all p ∈ N
and l ∈ Z, let

kl,±1(u
p) = dimHl(W(u

p) ∩3a(u
p), (W(up) \ {up}) ∩3a(u

p))±Zp ,

kl(u
p) = dimHl(W(u

p) ∩3a(u
p), (W(up) \ {up}) ∩3a(u

p))β(u
p)Zp .

The kl(up)’s are called the critical type numbers of up.

We have the following properties for critical type numbers:

Proposition 2.5 (Proposition 3.13 of [WHL]). Let u 6= 0 be a critical point of 9a with
mul(u) = 1. Then there exists a minimal K(u) ∈ N such that

ν(up+K(u)) = ν(up), i(up+K(u))− i(up) ∈ 2Z,

and kl(up+K(u)) = kl(up) for all p ∈ N and l ∈ Z. We call K(u) the minimal period of
critical modules of iterations of the functional 9a at u.

For a closed characteristic (τ, y) on6, we denote by ym ≡ (mτ, y) them-th iteration of y
form ∈ N. Let a > τ and choose ϕa as above. Determine ρ uniquely by ϕ′a(ρ)/ρ = τ/a.
Let x = ρy(τ t) and u = ẋ. Then we define the index i(ym) and nullity ν(ym) of (mτ, y)
for m ∈ N by

i(ym) = i(um), ν(ym) = ν(um).

These indices are independent of a when a tends to infinity. Now the mean index of (τ, y)
is defined by

î(y) = lim
m→∞

i(ym)

m
.

Note that always î(y) > 2, which was proved by Ekeland and Hofer [EkH] in 1987 (cf.
Corollary 8.3.2 and Lemma 15.3.2 of [Lon4] for a different proof).

By Proposition 2.2, we can define the critical type numbers kl(ym) of ym to be kl(um),
where um is the critical point of 9a corresponding to ym. We also define K(y) = K(u).
Then we have

Proposition 2.6. We have kl(ym) = 0 for l /∈ [0, ν(ym)− 1] and it can take only values
0 or 1 when l = 0 or l = ν(ym)− 1. Moreover, the following properties hold (cf. Lemma
3.10 of [BaL], [Cha] and [MaW]):

(i) k0(y
m) = 1 implies kl(ym) = 0 for 1 ≤ l ≤ ν(ym)− 1.

(ii) kν(ym)−1(y
m) = 1 implies kl(ym) = 0 for 0 ≤ l ≤ ν(ym)− 2.

(iii) kl(ym) ≥ 1 for some 1 ≤ l ≤ ν(ym)− 2 implies k0(y
m) = kν(ym)−1(y

m) = 0.
(iv) If ν(ym) ≤ 3, then at most one of the kl(ym)’s for 0 ≤ l ≤ ν(ym) − 1 can be

non-zero.
(v) If i(ym)− i(y) ∈ 2Z+ 1 for some m ∈ N, then k0(y

m) = 0.
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Proof. By Definition 2.4 we have

kl(y
m) ≤ dimHl(W(u

m) ∩3a(u
m), (W(um) \ {um}) ∩3a(u

m)) ≡ ηl(y
m).

Then from Corollary 1.5.1 of [Cha] or Corollary 8.4 of [MaW], (i)–(iv) hold.
If η0(y

m) = 0, then (v) follows directly from Definition 2.4.
By Corollary 8.4 of [MaW], η0(y

m) = 1 if and only if um is a local minimum in
the local characteristic manifold W(um). Hence (W(um) ∩ 3a(um), (W(um) \ {um}) ∩
3a(u

m)) = ({um},∅). By Definition 2.4, we have

k0,+1(u
m) = dimH0(W(u

m) ∩3a(u
m), (W(um) \ {um}) ∩3a(u

m))+Zm

= dimH0({u
m
})+Zm = 1.

This implies k0(u
m) = k0,−1(u

m) = 0. ut

For a closed characteristic (τ, y) on 6, we define, as in [WHL],

χ̂(y) =
1

K(y)

∑
1≤m≤K(y)
0≤l≤2n−2

(−1)i(y
m)+lkl(y

m). (2.14)

In particular, if all ym’s are nondegenerate, then by Proposition 2.3 we have

χ̂(y) =

{
(−1)i(y) if i(y2)− i(y) ∈ 2Z,
(−1)i(y)/2 otherwise.

(2.15)

We have the following mean index identity for closed characteristics.

Theorem 2.7 (Theorem 1.2 of [WHL]). Suppose 6 ∈ H(2n) satisfies #J̃ (6) <∞. Let
{(τj , yj )}1≤j≤k be all the geometrically distinct closed characteristics. Then

∑
1≤j≤k

χ̂(yj )

î(yj )
=

1
2
.

Let 9a be the functional defined by (2.3) for some a ∈ R large enough and let ε > 0 be
small enough such that [−ε,∞) \ {0} contains no critical values of 9a . Denote by Ia the
greatest integer in N0 such that Ia < i(τ, y) for all closed characteristics (τ, y) on6 with
τ ≥ a. Then by Section 5 of [WHL], we have

HS1,q(3
−ε
a )
∼= HS1,q(3

∞
a )
∼= Hq(CP∞), ∀q < Ia . (2.16)

For any q ∈ Z, let

Mq(3
−ε
a ) =

∑
1≤j≤k,1≤mj<a/τj

dimCS1,q(9a, S
1
· u
mj
j ). (2.17)
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Then the equivariant Morse inequalities for the space 3−εa yield

Mq(3
−ε
a ) ≥ bq(3

−ε
a ), (2.18)

Mq(3
−ε
a )−Mq−1(3

−ε
a )+ · · · + (−1)qM0(3

−ε
a ) (2.19)

≥ bq(3
−ε
a )− bq−1(3

−ε
a )+ · · · + (−1)qb0(3

−ε
a ), (2.20)

where bq(3−εa ) = dimHS1,q(3
−ε
a ). Now we have the following Morse inequalities for

closed characteristics:

Theorem 2.8. Let 6 ∈ H(2n) satisfy #J̃ (6) < ∞. Let {(τj , yj )}1≤j≤k be all the geo-
metrically distinct closed characteristics. Let

Mq = lim
a→∞

Mq(3
−ε
a ), ∀q ∈ Z, (2.21)

bq = lim
a→∞

bq(3
−ε
a ) =

{
1 if q ∈ 2N0,

0 otherwise.
(2.22)

Then

Mq ≥ bq , (2.23)
Mq −Mq−1 + · · · + (−1)qM0 ≥ bq − bq−1 + · · · + (−1)qb0, ∀q ∈ Z. (2.24)

Proof. As mentioned before, î(yj ) > 2 for 1 ≤ j ≤ k. Hence the Ekeland index satisfies
i(ymj ) = i(u

m
j ) → ∞ as m → ∞ for 1 ≤ j ≤ k. Note that Ia → ∞ as a → ∞. Now

fix a q ∈ Z and a sufficiently large a > 0. By Propositions 2.2, 2.3 and (2.17), Mi(3
−ε
a )

is invariant for all a > Aq and 0 ≤ i ≤ q, where Aq > 0 is some constant. Hence (2.21)
is meaningful. Now for any a such that Ia > q, (2.16)–(2.20) imply that (2.22)–(2.24)
hold. ut

3. Proofs of the main theorems

In this section, we give proofs of Theorems 1.1 and 1.2 by using the mean index identity
of [WHL], Morse inequality and the index iteration theory developed by Long and his
coworkers.

Following Definition 1.1 of [LoZ], we introduce

Definition 3.1. For α ∈ (1, 2), we define a map %n : H(2n)→ N ∪ {∞} by

%n(6) =


∞ if #V(6, α) = ∞,

min
{[
i(x, 1)+ 2S+(x)− ν(x, 1)+ n

2

] ∣∣∣∣ (τ, x) ∈ V∞(6, α)}
if #V(6, α) <∞,

(3.1)

where V(6, α) and V∞(6, α) are the variationally visible and infinite variationally visi-
ble sets respectively given by Definition 1.4 of [LoZ] (cf. Definition 15.3.3 of [Lon4]).
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Theorem 3.2 (cf. Theorem 15.1.1 of [Lon4]). Suppose (τ, y) ∈ J (6). Then

i(ym) ≡ i(mτ, y) = i(y,m)− n, ν(ym) ≡ ν(mτ, y) = ν(y,m), ∀m ∈ N, (3.2)

where i(y,m) and ν(y,m) are the Maslov-type index and nullity of (mτ, y) defined by
Conley, Zehnder and Long (cf. §5.4 of [Lon4]).

Recall that for a principal U(1)-bundle E → B, the Fadell–Rabinowitz index (cf. [FaR])
ofE is defined to be sup{k | c1(E)

k−1
6= 0}, where c1(E) ∈ H

2(B,Q) is the first rational
Chern class. For a U(1)-space, i.e., a topological space X with a U(1)-action, the Fadell–
Rabinowitz index is defined to be the index of the bundleX×S∞→ X×U(1) S

∞, where
S∞→ CP∞ is the universal U(1)-bundle.

As on p. 199 of [Eke3], choose some α ∈ (1, 2) and associate with U a convex
function H such that H(λx) = λαH(x) for λ ≥ 0. Consider the fixed period problem{

ẋ(t) = JH ′(x(t)),

x(1) = x(0).
(3.3)

Define

L
α/(α−1)
0 (S1,R2n) =

{
u ∈ Lα/(α−1)(S1,R2n)

∣∣∣∣ ∫ 1

0
u dt = 0

}
. (3.4)

The corresponding Clarke–Ekeland dual action functional is defined by

8(u) =

∫ 1

0

(
1
2
Ju ·Mu+H ∗(−Ju)

)
dt, ∀u ∈ L

α/(α−1)
0 (S1,R2n), (3.5)

where Mu is defined by d
dt
Mu(t) = u(t) and

∫ 1
0 Mu(t) dt = 0, and H ∗ is the Fenchel

transform of H defined in §2.
For any κ ∈ R, we set

8κ− = {u ∈ L
α/(α−1)
0 (S1,R2n) | 8(u) < κ}. (3.6)

Then as on p. 218 of [Eke3], we define

ci = inf{δ ∈ R | Î (8δ−) ≥ i}, (3.7)

where Î is the Fadell–Rabinowitz index given above. Then by Proposition 3 on p. 218 of
[Eke3], we have

Proposition 3.3. Every ci is a critical value of 8. If ci = cj for some i < j , then there
are infinitely many geometrically distinct closed characteristics on 6.

As in Definition 2.1, we introduce

Definition 3.4. Suppose u is a nonzero critical point of8, andN is an S1-invariant open
neighborhood of S1

· u such that crit(8) ∩ (3(u) ∩ N ) = S1
· u. Then the S1-critical

module of S1
· u is defined by

CS1,q(8, S
1
· u) = Hq((3(u) ∩N )S1 , ((3(u) \ S

1
· u) ∩N )S1), (3.8)

where 3(u) = {w ∈ Lα/(α−1)
0 (S1,R2n) | 8(w) ≤ 8(u)}.
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Comparing with Theorem 4 on p. 219 of [Eke3], we have the following

Proposition 3.5. For every i ∈ N, there exists a point u ∈ Lα/(α−1)
0 (S1,R2n) such that

8′(u) = 0, 8(u) = ci, (3.9)
CS1,2(i−1)(8, S

1
· u) 6= 0. (3.10)

Proof. By Lemma 8 on p. 206 of [Eke3], we can use Theorem 1.4.2 of [Cha] in the
equivariant form to obtain

HS1,∗(8
ci+ε,8ci−ε) =

⊕
8(u)=ci

CS1,∗(8, S
1
· u), (3.11)

for ε small enough such that the interval (ci − ε, ci + ε) contains no critical values of 8
except ci .

Similar to p. 431 of [EkH], we have the exact sequence

H 2(i−1)((8ci+ε)S1 , (8
ci−ε)S1)

q∗

−→ H 2(i−1)((8ci+ε)S1)
p∗

−→ H 2(i−1)((8ci−ε)S1),

(3.12)
where p and q are natural inclusions. Denote by f : (8ci+ε)S1 → CP∞ a classifying
map and let f± = f |(8ci±ε)

S1
. Then clearly each f± : (8ci±ε)S1 → CP∞ is a classify-

ing map on (8ci±ε)S1 . Let η ∈ H 2(CP∞) be the first universal Chern class.
By definition of ci , we have Î (8ci−ε) < i, hence (f−)∗(ηi−1) = 0. Note

that p∗(f+)∗(ηi−1) = (f−)∗(ηi−1). Hence the exactness of (3.12) yields a σ ∈
H 2(i−1)((8ci+ε)S1 , (8ci−ε)S1) such that q∗(σ ) = (f+)∗(ηi−1). Since Î (8ci+ε) ≥ i,
we have (f+)∗(ηi−1) 6= 0. Hence σ 6= 0, and so

H
2(i−1)
S1 (8ci+ε,8ci−ε) = H 2(i−1)((8ci+ε)S1 , (8

ci−ε)S1) 6= 0.

Now the proposition follows from (3.11) and the universal coefficient theorem. ut

Proposition 3.6. Suppose u is the critical point of 8 found in Proposition 3.5. Then

CS1,2(i−1)(9a, S
1
· ua) 6= 0, (3.13)

where 9a is given by (2.3) and ua ∈ L2
0(S

1,R2n) is its critical point corresponding to u
in the natural sense.

Proof. Fixing u, we modify the function H only in a small neighborhood � of 0 as in
[Eke1] so that the corresponding orbit of u does not enter � and the resulting function H̃
has properties similar to those in Definition 1 on p. 26 of [Eke1] with 3/2 there replaced
by α. Define the dual action functional 8̃ : Lα/(α−1)

0 (S1,R2n)→ R by

8̃(v) =

∫ 1

0

(
1
2
Jv ·Mv + H̃ ∗(−Jv)

)
dt; (3.14)
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clearly8 and 8̃ are C1-close to each other. By the continuity of critical modules (cf. The-
orem 8.8 of [MaW] or Theorem 1.5.6 on p. 53 of [Cha], which can be easily generalized
to the equivariant case) for the u in the proposition, we have

CS1,∗(8, S
1
· u) ∼= CS1,∗(8̃, S

1
· u). (3.15)

Using a finite-dimensional approximation as in Lemma 3.9 of [Eke1], we have

CS1,∗(8̃, S
1
· u) ∼= H∗(3̃(u) ∩DιN(u), (3̃(u) \ {u}) ∩DιN(u))

Zm , (3.16)

where 3̃(u) = {w ∈ Lα/(α−1)
0 (S1,R2n) | 8̃(w) ≤ 8̃(u)} and DιN(u) is a Zm-invariant

finite-dimensional disk transversal to S1
· u at u (cf. Lemma 3.9 of [WHL]), m being the

multiplicity of u.
By Lemma 3.9 of [WHL], we have

CS1,∗(9a, S
1
· ua) ∼= H∗(3a(ua) ∩DιN(ua), (3a(ua) \ {ua}) ∩DιN(ua))

Zm . (3.17)

By the construction of Ha in [WHL], Ha = H̃ in an L∞-neighborhood of S1
· u. We

remark here that multiplying H by a constant will not affect the corresponding critical
modules, i.e., the corresponding critical orbits have isomorphic critical modules. Hence
we can assume Ha = H in an L∞-neighborhood of S1

· u. Then 9a and 8̃ coincide in
an L∞-neighborhood of S1

· u. Note also that by Lemma 3.9 of [Eke1], the two finite-
dimensional approximations are actually the same. Hence we have

H∗(3̃(u) ∩DιN(u), (3̃(u) \ {u}) ∩DιN(u))
Zm

∼= H∗(3a(ua) ∩DιN(ua), (3a(ua) \ {ua}) ∩DιN(ua))
Zm . (3.18)

Now the proposition follows from Proposition 3.5 and (3.16)–(3.18). ut

Now we can give:

Proof of Theorem 1.1. By the assumption (F) at the beginning of Section 2, we let
{(τj , yj )}1≤j≤k be all the geometrically distinct closed characteristics on 6, and denote
by γj ≡ γyj the associated symplectic path of (τj , yj ) on 6 for 1 ≤ j ≤ k. Then by
Lemma 15.2.4 of [Lon4], there exist Pj ∈ Sp(6) and Mj ∈ Sp(4) such that

γj (τj ) = P
−1
j (N1(1, 1) �Mj )Pj , ∀1 ≤ j ≤ k, (3.19)

where N1(1, b) =
(

1 b
0 1

)
for b ∈ R.

Without loss of generality, by Theorem 1.3 of [LoZ] (cf. Theorem 15.5.2 of [Lon4]),
we may assume that (τ1, y1) has irrational mean index. Hence by Theorem 8.3.1 and
Corollary 8.3.2 of [Lon4], M1 ∈ Sp(4) in (3.19) can be connected to R(θ1) �Q1 within
�0(M1) for some θ1/π /∈ Q and Q1 ∈ Sp(2), where R(θ) =

( cos θ − sin θ
sin θ cos θ

)
for θ ∈ R.

Here we use the notations from Definition 1.8.5 and Theorem 1.8.10 of [Lon4]. By The-
orem 2.7, the following identity holds:

χ̂(y1)

î(y1)
+

∑
2≤j≤k

χ̂(yj )

î(yj )
=

1
2
. (3.20)
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Now we have the following four cases according to the classification of basic norm forms
(cf. Definition 1.8.9 of [Lon4]).

Case 1. Q1 = R(θ2) with θ2/π /∈ Q or Q1 = D(±2) ≡
(
±2 0
0 ±1/2

)
.

In this case, by Theorems 8.1.6 and 8.1.7 of [Lon4], we have ν(ym1 ) ≡ 1, i.e., ym1 is
nondegenerate for all m ∈ N. Hence it follows from (2.15) that χ̂(y1) 6= 0. Now (3.20)
implies that at least one of the yj ’s for 2 ≤ j ≤ k must have irrational mean index. Hence
the conclusion of the theorem holds.

Case 2. Q1 = N1(1, b) with b = ±1, 0.

We have two subcases according to the value of χ̂(y1).

Subcase 2.1. χ̂(y1) 6= 0.

In this case, (3.20) implies that at least one of the yj ’s for 2 ≤ j ≤ k must have irrational
mean index. Hence the desired conclusion holds.

Subcase 2.2. χ̂(y1) = 0.

Note that by Theorems 8.1.4 and 8.1.7 of [Lon4] and our Proposition 2.5, we have
K(y1) = 1. Since ν(y1) ≤ 3, it follows from Proposition 2.6 and (2.14) that

0 = χ̂(y1) = (−1)i(y1)(k0(y1)− k1(y1)+ k2(y1)). (3.21)

By Proposition 2.6(iv), at most one of kl(y1) for l = 0, 1, 2 can be nonzero. Then (3.21)
yields kl(y1) = 0 for l = 0, 1, 2. Hence it follows from Proposition 2.3 and Definition
2.4 that

CS1,q(9a, S
1
· u
p

1 ) = 0, ∀p ∈ N, q ∈ Z, (3.22)

where we denote by u1 the critical point of 9a corresponding to (τ1, y1). In other words,
um1 is homologically invisible for all m ∈ N.

By Propositions 3.5 and 3.6, we can replace the phrase infinite variationally visible
in Definition 1.4 of [LoZ] (cf. Definition 15.3.3 of [Lon4]) by homologically visible, and
it is easy to check that all the results in [LoZ] remain true under this change. Hence
by Theorem 1.3 of [LoZ] (cf. Theorem 15.5.2 of [Lon4]), at least one of the yj ’s for
2 ≤ j ≤ k must have irrational mean index, i.e., we can forget y1 and consider only yj ’s
for 2 ≤ j ≤ k, and then apply that theorem. This proves the desired conclusion.

Case 3. Q1 = N1(−1, 1).

In this case, by Theorems 8.1.4, 8.1.5 and 8.1.7 of [Lon4], we have

i(y1, m) = mi(y1, 1)+ 2E
(
mθ1

2π

)
− 2, ν(y1, m) = 1+

1+ (−1)m

2
, ∀m ∈ N,

with i(y1, 1) ∈ 2Z+ 1. Hence K(y1) = 2 by Proposition 2.5. Because y1 is nondegener-
ate, we have kl(y1) = δ

l
0 for all l ∈ Z by (2.11), (2.13) and Definition 2.4. By Theorem

3.2, we have i(y1) = i(y1, 1)− 3 ∈ 2Z and i(y2
1)− i(y1) = i(y1, 2)− i(y1, 1) ∈ 2Z+ 1.
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Hence k0(y
2
1) = 0 by Proposition 2.6(v). Because ν(y2

1) = 2, we have kl(y2
1) = 0 for

l ≥ 2. Then (2.14) implies

χ̂(y1) =
1+ k1(y

2
1)

2
6= 0.

Now (3.20) implies that at least one of the yj ’s for 2 ≤ j ≤ k must have irrational mean
index. Hence the conclusion of the theorem holds.

Case 4. Q1 = N1(−1, b) with b = 0,−1 or Q1 = R(θ2) with θ2/2π = L/N ∈

Q ∩ (0, 1) with N > 1 and (L,N) = 1.

Note first that if Q1 = N1(−1, b) with b = 0,−1, then Theorems 8.1.5 and 8.1.7 of
[Lon4] imply that their index iteration formulae coincide with that of a rotational matrix
R(θ) with θ = π . Hence in the following we shall only consider the case Q1 = R(θ2)

with θ2/π ∈ (0, 2)∩Q. The same argument also shows that the conclusion of the theorem
is true for Q1 = N1(−1,−1).

By Theorems 8.1.4 and 8.1.7 of [Lon4], we have

i(y1, m) = m(i(y1, 1)− 1)+ 2E
(
mθ1

2π

)
+ 2E

(
mθ2

2π

)
− 3, (3.23)

ν(y1, m) = 3− 2ϕ
(
mθ2

2π

)
, (3.24)

with i(y1, 1) ∈ 2Z + 1 and all m ∈ N. By Proposition 2.5, we have K(y1) = N . Note
that because ym1 is nondegenerate for 1 ≤ m ≤ N − 1, it follows that kl(ym1 ) = δl0
for 1 ≤ m ≤ N − 1 by (2.11), (2.13) and Definition 2.4. By Theorem 3.2, we have
i(y1) = i(y1, 1)− 3 ∈ 2Z. Then (2.14) implies

χ̂(y1) =
N − 1+ k0(y

N
1 )− k1(y

N
1 )+ k2(y

N
1 )

N
. (3.25)

This follows from ν(ym1 ) ≤ 3 for all m ∈ N.
We have two subcases according to the value of χ̂(y1).

Subcase 4.1. χ̂(y1) 6= 0.

In this subcase, (3.20) implies that at least one of the yj ’s for 2 ≤ j ≤ k must have
irrational mean index. Hence the conclusion holds.

Subcase 4.2. χ̂(y1) = 0.

In this subcase, it follows from (3.25) and Proposition 2.6(iv) that

k1(y
N
1 ) = N − 1 > 0. (3.26)

Using the common index jump theorem (Theorems 4.3 and 4.4 of [LoZ], Theorems 11.2.1
and 11.2.2 of [Lon4]), we obtain some (T ,m1, . . . , mk) ∈ Nk+1 such that m1θ2/π ∈ Z
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(cf. (11.2.18) of [Lon4]) and the following hold by (11.2.6), (11.2.7) and (11.2.26) of
[Lon4]:

i(yj , 2mj ) ≥ 2T − e(γj (τj ))/2, (3.27)
i(yj , 2mj )+ ν(yj , 2mj ) ≤ 2T + e(γj (τj ))/2− 1, (3.28)

i(yj , 2mj + 1) = 2T + i(yj , 1), (3.29)
i(yj , 2mj − 1)+ ν(yj , 2mj − 1) = 2T − (i(yj , 1)+ 2S+γj (τj )(1)− ν(yj , 1)). (3.30)

By p. 340 of [Lon4], we have

2S+γj (τj )(1)− ν(yj , 1) = 2S+N1(1,1)
(1)− ν1(N1(1, 1))+ 2S+Mj (1)− ν1(Mj )

= 1+ 2S+Mj (1)− ν1(Mj )

≥ −1, 1 ≤ j ≤ k. (3.31)

In the last inequality, we have used the fact that the worst case for 2S+Mj (1) − ν1(Mj )

happens when Mj = N1(1,−1)�2, which gives the lower bound −2.
By Corollary 15.1.4 of [Lon4], we have i(yj , 1) ≥ 3 for 1 ≤ j ≤ k. Note that

e(γj (τj )) ≤ 6 for 1 ≤ j ≤ k. Hence Theorem 10.2.4 of [Lon4] yields

i(yj , m)+ ν(yj , m) ≤ i(yj , m+ 1)− i(yj , 1)+ e(γj (τj ))/2− 1
≤ i(yj , m+ 1)− 1, ∀m ∈ N, 1 ≤ j ≤ k. (3.32)

In particular, we have

i(yj , m) < i(yj , m+ 1), ∀m ∈ N, 1 ≤ j ≤ k.

Now (3.27)–(3.30) become

i(yj , 2mj ) ≥ 2T − 3, (3.33)
i(yj , 2mj )+ ν(yj , 2mj )− 1 ≤ 2T + 1, (3.34)

i(yj , 2mj +m) ≥ 2T + 3, ∀m ≥ 1, (3.35)
i(yj , 2mj −m)+ ν(yj , 2mj −m)− 1 ≤ 2T − 3, ∀m ≥ 1, (3.36)

where 1 ≤ j ≤ k. By Proposition 2.3, we have

CS1,q(9a, S
1
· u

2m1
1 ) = δ

q

i(u
2m1
1 )+1

Qk1(y
N
1 ) = δ

q

i(u
2m1
1 )+1

QN−1. (3.37)

Note that by Theorem 3.2,

i(ymj ) = i(yj , m)− 3, ∀m ∈ N, 1 ≤ j ≤ k. (3.38)
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Hence (3.23) implies that i(ym1 ) is even for all m ∈ N. This together with (3.35)–(3.38)
and Proposition 2.3 yield

CS1,2T−2(9a, S
1
· um1 ) = 0, ∀m ∈ N, (3.39)

CS1,2T−4(9a, S
1
· um1 ) = 0, ∀m ∈ N, (3.40)

CS1,2T−2(9a, S
1
· umj ) = 0, ∀m 6= 2mj , 2 ≤ j ≤ k, (3.41)

CS1,2T−4(9a, S
1
· umj ) = 0, ∀m 6= 2mj , 2 ≤ j ≤ k. (3.42)

In fact, by (3.35), (3.36) and (3.38) for 1 ≤ j ≤ k, we have i(umj ) = i(y
m
j ) ≥ 2T for all

m > 2mj and i(umj ) + ν(u
m
j ) − 1 = i(ymj ) + ν(y

m
j ) − 1 ≤ 2T − 6 for all m < 2mj .

Thus (3.41)–(3.42) hold and (3.39)–(3.40) hold for m 6= 2m1 by Proposition 2.3. Since
i(y

2m1
1 ) is even, by (3.37), (3.39)–(3.40) also hold for m = 2m1.
Thus by Propositions 3.5 and 3.6 we can find p, q ∈ {2, . . . , k} such that

8′(u
2mp
p ) = 0, 8(u

2mp
p ) = cT−1, CS1,2T−4(9a, S

1
· u

2mp
p ) 6= 0, (3.43)

8′(u
2mq
q ) = 0, 8(u

2mq
q ) = cT , CS1,2T−2(9a, S

1
· u

2mq
q ) 6= 0, (3.44)

where we also denote by u
2mp
p and u

2mq
q the corresponding critical points of 8; this will

not lead to confusion.
Note that by assumption (F) and Proposition 3.3, we have cT−1 < cT . Hence p 6= q

by (3.43) and (3.44). Then the proof of Lemma 3.1 in [LoZ] (cf. Lemma 15.3.5 of [Lon4])
yields

î(yp, 2mp) < î(yq , 2mq). (3.45)

Now if both î(yp) ∈ Q and î(yq) ∈ Q, then the proof of Theorem 5.3 in [LoZ] (cf.
Theorem 15.5.2 of [Lon4]) yields

î(yp, 2mp) = î(yq , 2mq).

Note that we may first choose T such that T/Mî(yj ) ∈ N for all î(yj ) ∈ Q and then
use the proof of Theorem 5.3 in [LoZ]. Here M is the least integer in N that satisfies
Mθ/π ∈ Z whenever e

√
−1θ
∈ σ(γj (τj )) and θ/π ∈ Q for some 1 ≤ j ≤ k. Hence

either î(yp) /∈ Q or î(yq) /∈ Q. This together with î(y1) /∈ Q and p, q 6= 1 proves the
theorem. ut

Proof of Theorem 1.2. We denote by {(τj , yj )}1≤j≤3 the three geometrically distinct
closed characteristics on 6, and by γj ≡ γyj the associated symplectic path of (τj , yj )
on 6 for 1 ≤ j ≤ 3. Then as in the proof of Theorem 1.1, there exist Pj ∈ Sp(6) and
Mj ∈ Sp(4) such that

γj (τj ) = P
−1
j (N1(1, 1) �Mj )Pj , ∀1 ≤ j ≤ 3. (3.46)

As on p. 356 of [LoZ], if there is no (τj , yj ) withMj = N1(1,−1)�2 and i(yj , 1) = 3
in V∞(6, α), then %n(6) = 3. Hence we can use Theorem 1.4 of [LoZ] (Theorem 15.5.2
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of [Lon4]) to obtain the existence of at least two elliptic closed characteristics. This proves
the assertion of the theorem.

It remains to show that if there exists a (τj , yj )withMj =N1(1,−1)�2 and i(yj , 1)=3
in V∞(6, α), then we have at least two elliptic closed characteristics. We may assume
M1 = N1(1,−1)�2 and i(y1, 1) = 3 without loss of generality. Note that (τ1, y1) has
rational mean index by Theorem 8.3.1 of [Lon4] and Theorem 3.2.

By Theorem 1.3 of [LoZ], we may assume that (τ2, y2) has irrational mean index.
Hence by Theorem 8.3.1 and Corollary 8.3.2 of [Lon4], M2 ∈ Sp(4) in (3.46) can be
connected to R(θ2) �Q2 within �0(M2) for some θ2/π ∈ R \Q and Q2 ∈ Sp(2), where
R(θ) =

( cos θ − sin θ
sin θ cos θ

)
for θ ∈ R. Here we use the notations from Definition 1.8.5 and

Theorem 1.8.10 of [Lon4]. By Theorem 2.7,

χ̂(y1)

î(y1)
+
χ̂(y2)

î(y2)
+
χ̂(y3)

î(y3)
=

1
2
. (3.47)

Now if Q2 is not hyperbolic, then both (τ1, y1) and (τ2, y2) are elliptic, so the con-
clusion of the theorem holds.

Hence it remains to consider the case where Q2 is hyperbolic. Clearly (τ2, y2) is
nondegenerate, so it follows from (2.15) that χ̂(y2) 6= 0. Hence (3.47) implies that î(y3) ∈

R \ Q. Now by Theorem 8.3.1 and Corollary 8.3.2 of [Lon4], M3 ∈ Sp(4) in (3.46) can
be connected to R(θ3) �Q3 within �0(M3) for some θ3/π ∈ R \Q and Q3 ∈ Sp(2). By
the same reason as above, it suffices to consider the case where Q3 is hyperbolic.

Combining all the above, the only case we need to kick off is that

M1 = N1(1,−1)�2, i(y1, 1) = 3, M2 = R(θ2)�Q2, M3 = R(θ3)�Q3, (3.48)

where both Q2 and Q3 are hyperbolic. Then by Theorem 8.3.1 of [Lon4] and Theorem
3.2, we have

i(ym1 ) = m(i(y1, 1)+ 1)− 4 = 4m− 4, ν(ym1 ) = 3, ∀m ∈ N, (3.49)

i(ymj ) = m(i(yj )+ 3)+ 2E
(
mθj

2π

)
− 5, ν(ymj ) = 1, ∀m ∈ N, j = 2, 3. (3.50)

By Proposition 2.5, we have K(y1) = 1. Note that i(y1) = i(y1, 1)− 3 = 0 by Theorem
3.2. Hence Proposition 2.6, (2.14) and (2.15) imply

χ̂(y1) ≤ 1, χ̂(y1) ∈ Z, (3.51)

χ̂(yj ) =

{
−1 if i(yj ) ∈ 2N0 + 1,
1/2 if i(yj ) ∈ 2N0,

j = 1, 2. (3.52)

By (3.49) and (3.50), we have

î(y1) = 4, (3.53)
î(yj ) = i(yj )+ 3+ θj/π > 3, j = 2, 3. (3.54)
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By (3.51)–(3.54), in order to make (3.47) hold, we must have

χ̂(y1) = 1, (3.55)
i(yj ) ∈ 2N0, j = 2, 3. (3.56)

In fact, by (3.52) and (3.54), we have

χ̂(y2)

î(y2)
+
χ̂(y3)

î(y3)
<

1
6
+

1
6
<

1
2
.

Thus to make (3.47) hold, we must have χ̂(y1)/î(y1) > 0. Hence (3.55) follows from
(3.51). Now if i(y2) ∈ 2N0 + 1 or i(y3) ∈ 2N0 + 1, then by (3.52), we have

χ̂(y1)

î(y1)
+
χ̂(y2)

î(y2)
+
χ̂(y3)

î(y3)
<

1
4
+

1
6
<

1
2
.

Hence (3.56) must hold.
By (2.14), (3.49) and (3.55), we have 1 = χ̂(y1) = k0(y1) − k1(y1) + k2(y1). Since

ν(y1) = 3, by Proposition 2.6, only one of k0(y1), k1(y1), k2(y1) can be nonzero. Hence
we obtain

k1(y1) = 0, k0(y1)+ k2(y1) = 1. (3.57)

By Proposition 2.3, we have

CS1,q(9a, S
1
· u
p
j ) = 0, ∀p ∈ N, q ∈ 2Z+ 1, 1 ≤ j ≤ 3. (3.58)

In fact, by (3.49), we have i(ym1 ) ∈ 2N for all m ∈ N. Thus (3.58) holds for j = 1 by
(2.11), (3.57) and Definition 2.4. By (3.50), and (3.56), for j = 2, 3, we have i(ymj ) ∈ 2N
when m ∈ 2N0 + 1 and i(ymj ) ∈ 2N0 + 1 when m ∈ 2N. In particular, all ymj are
nondegenerate for m ∈ N and j = 2, 3. Thus (3.58) holds for j = 2, 3 by (2.13).

Note that (3.58) implies

Mq = 0, ∀q ∈ 2Z+ 1. (3.59)

Together with the Morse inequality of Theorem 2.8, this yields

−M2k − · · · −M2 −M0 ≥ −b2k − · · · − b2 − b0.

Thus by the Morse inequality again,

b2k + · · · + b2 + b0 ≥ M2k + · · · +M2 +M0 ≥ b2k + · · · + b2 + b0

for all k ≥ 0. Therefore we obtain

Mq = bq , ∀q ∈ Z. (3.60)

By (3.57), we have two cases according to the values of kl(y1)s.

Case 1. k0(y1) = 1 and k2(y1) = 0.
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In this case, by Propositions 2.3, 2.5 and Definition 2.4, we have

dimCS1,q(9a, S
1
· um1 ) = δ

q

4m−4, ∀m ∈ N, q ∈ Z. (3.61)

Then by (3.60) and (2.22), we must have

CS1,4m−4(9a, S
1
· u
p
j ) = 0, ∀p,m ∈ N, j = 2, 3. (3.62)

By (3.60) and (2.22) again, M2 = b2 = 1 implies

C ≡ CS1,2(9a, S
1
· u
p
j ) = Q, (3.63)

for some p ∈ N and j = 2 or 3. If p ≥ 2, by (3.50), we have

i(y
p
j ) ≥ 3p + 2E

(
pθj

2π

)
− 5 ≥ 3. (3.64)

Thus C = 0 by Proposition 2.3. Hence p = 1. Without loss of generality, we assume
j = 2. Then by Proposition 2.3 and (3.63), we have

i(y2) = 2. (3.65)

Then by (3.50), we have
i(ym2 ) ≥ 7, ∀m ≥ 2. (3.66)

By (3.60) and (2.22), M6 = b6 = 1 implies

CS1,6(9a, S
1
· u
p
j ) = Q (3.67)

for some p ∈ N and j = 2 or 3. By (3.65) and (3.66), we have j 6= 2, i.e., j = 3. We
must have p = 1. In fact, by (3.61) and (3.63), ym1 and yn2 already contribute a 1 to Mq

for q = 0, 2, 4. Hence by (2.22), (3.60) and (3.56), we have i(y3) ≥ 6, and so i(ym3 ) ≥ 15
by (3.50) for m ≥ 2. Thus p = 1 follows from Proposition 2.3. Now we have

i(y3) = 6. (3.68)

Hence by (3.53) and (3.55) for y1, and (3.50), (3.52), (3.65) and (3.68) for y2 and y3, we
have

χ̂(y1)

î(y1)
+
χ̂(y2)

î(y2)
+
χ̂(y3)

î(y3)
=

1
4
+

1
2(5+ θ2/π)

+
1

2(9+ θ3/π)
<

1
2
.

This contradicts (3.47) and proves Case 1.

Case 2. k0(y1) = 0 and k2(y1) = 1.

The study of this case is similar to that of Case 1. Thus we are rather sketchy here.
In this case, by Proposition 2.3 and Definition 2.4, we have

dimCS1,q(9a, S
1
· um1 ) = δ

q

4m−2, ∀m ∈ N, q ∈ Z. (3.69)
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Hence by (3.60) and (2.22), we must have

CS1,4m−2(9a, S
1
· u
p
j ) = 0, ∀p,m ∈ N, j = 2, 3. (3.70)

By (3.69), (3.60) and (2.22), M0 = b0 = 1 implies

CS1,0(9a, S
1
· u
p
j ) = Q (3.71)

for some p ∈ N and j = 2 or 3. By (3.64), we have p = 1. Without loss of generality,
we assume j = 2. Then by Proposition 2.3 and (3.50), we have

i(y2) = 0, i(ym2 ) ≥ 6, ∀m ≥ 3. (3.72)

By (3.60) and (2.22), M4 = b4 = 1 implies

CS1,4(9a, S
1
· u
p
j ) = Q (3.73)

for some p ∈ N and j = 2 or 3. By (3.69) and (3.72), as in the verification of (3.68), we
have j = 3 and p = 1. Then by Proposition 2.3, we have

i(y3) = 4. (3.74)

Hence by (3.53) and (3.55) for y1, and (3.50), (3.52), (3.72) and (3.74) for y2 and y3, we
have

χ̂(y1)

î(y1)
+
χ̂(y2)

î(y2)
+
χ̂(y3)

î(y3)
=

1
4
+

1
2(3+ θ2/π)

+
1

2(7+ θ3/π)
<

1
2
.

This contradicts (3.47) and proves Case 2 and therefore the whole theorem. ut
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