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Abstract. It is well-known that 0-convergence of functionals provides a tool for studying global
and local minimizers. Here we present a general result establishing the existence of critical points of
a 0-converging sequence of functionals provided the associated 0-limit possesses a nondegenerate
critical point, subject to certain mild additional hypotheses. We then go on to prove a theorem that
describes suitable nondegenerate critical points for functionals, involving the arclength of a limiting
singular set, that arise as 0-limits in a number of problems. Finally, we apply the general theory
to prove some new results, and give new proofs of some known results, establishing the existence
of critical points of the 2d Modica–Mortola (Allen–Cahn) energy and 3d Ginzburg–Landau energy
with and without magnetic field, and various generalizations, all in a unified framework.
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1. Introduction

From the time of its inception by De Giorgi in the 1970’s, the notion of 0-convergence
of a family of functionals {Eε}ε∈(0,1] to a limiting functional E has proven to be a very
powerful tool in studying the relationship between the minimizers of the sequence and
those of the limit. Here we argue that somewhat surprisingly, it can provide a vehicle for
connecting certain unstable critical points of E to critical points of Eε as well.

Let us recall that 0-convergence, in its simplest form, can be characterized through
two requirements: Given a Banach space U , we say a sequence of functionals Eε :
U → R 0-converges to a limiting functional E : U → R as ε → 0 if for every u ∈ U
one has

(i) whenever {uε} ⊂ U converges to u, then lim infε→0 E
ε(uε) ≥ E(u),

(ii) there exists a sequence {ũε} ⊂ U such that ũε converges to u and limε→0 E
ε(ũε)

= E(u).

A primary motivation for introducing this topology on functionals was to characterize
the weakest notion of convergence that would guarantee minimizers of Eε converge to a

R. L. Jerrard: Department of Mathematics, University of Toronto, Toronto, Canada M5S 2E4;
e-mail: rjerrard@math.toronto.edu
P. Sternberg: Department of Mathematics, Indiana University, Bloomington, IN 47405, USA;
e-mail: sternber@indiana.edu

Mathematics Subject Classification (2000): Primary 49J35, 49J45; Secondary 49Q20



706 Robert L. Jerrard, Peter Sternberg

minimizer of E. In [15] it was shown that when the 0-limit E possesses an isolated local
minimizer, then Eε will also have a local minimizer. More recently, Sandier and Serfaty
[29] have introduced a stronger notion that can be thought of as C1 0-convergence, and
they have shown that the gradient flows of C1 0-convergent sequences converge to the
gradient flow of the limit. In related work [30], Serfaty shows that information from the
second variation of Eε may be passed to the 0-limit. The present article then represents
an additional contribution to the expanding list of implications of this convergence.

Many of the most interesting examples of 0-convergence concern the situation where
a sequence of functionals, say EεU , maps one Banach space, U , into R while the limit
EV : V → (−∞,∞] is more naturally defined on another Banach space V , which is typ-
ically weaker in its topology. This leads us to broaden our description of 0-convergence
to essentially incorporate the two properties (i) and (ii) above when composed with ap-
propriate maps, say P εVU : U → V and Qε

UV : V → U , that mediate between the two
Banach spaces. For example, (ii) is replaced by the requirement that for every v ∈ V one
has

P εVUQ
ε
UV (v)→ v in V, and EεU (Q

ε
UV (v))→ EV (v) as ε→ 0.

Here, in particular, one should think of {Qε
UV (v)}ε∈(0,1] as taking on the role of the “re-

covery sequence” {ũε}. Generalizations of 0-convergence along these lines are by now a
fairly common practice; see Section 3 for a complete description.

Our main abstract result, Theorem 4.4, says roughly speaking, that ifEεU is a family of
functionals 0-converging to a limiting functionalEV , and ifEV has a saddle point vs with
corresponding critical value c∗ = EV (vs), then under certain mild additional hypotheses,
EεU has a critical point for every sufficiently small ε, and the associated critical values
converge to c∗ as ε → 0. The additional hypotheses include a Palais–Smale condition,
and a requirement that EεU is in a certain sense uniformly close to EV on a specific finite-
dimensional set that corresponds roughly speaking to the unstable manifold ofEV near vs .
We do not claim that the critical points of EεU converge to vs ; in the level of generality of
our theorem, this is not necessarily true (see Remark 4.5).

One subtlety that must be addressed is that the functionals EV that arise as 0-limits
are typically merely lower semicontinuous, and indeed are typically infinite on a dense
subset of V . This forces us to introduce a definition of a saddle point that can be for-
mulated without appealing to any differentiability properties of EV (see Definition 4.1).
This is the notion we use in Theorem 4.4 as described above. The second main result
of this paper proves the existence of saddle points, in this sense, for an energy EV that
arises as a 0-limit in a number of problems, and that corresponds roughly to the func-
tional that associates to a Lipschitz curve its arclength. In various stronger topologies,
a nondegenerate critical point of the arclength functional (with natural boundary con-
ditions in a smooth domain � ⊂ Rn+1) is a line segment contained in � and joining
two points X0, Y0 ∈ ∂�, where (X0, Y0) is a nondegenerate critical point of the smooth
function (X, Y ) ∈ ∂� × ∂� 7→ |X − Y |. We prove in Theorem 5.1 that to any such
line segment there corresponds a saddle point of the generalized arclength functional EV
in weak topologies useful for 0-convergence. As applications of the general theory, we
present in Section 6 existence results for critical points of the 2d Modica–Mortola energy
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(3.9); the 3d Ginzburg–Landau energy, both without magnetic field (3.11) and with the
field (6.7); and a generalized Ginzburg–Landau type energy (3.16) in higher dimensions.
In all cases, no boundary conditions are specified, so critical points satisfy “natural” ho-
mogeneous Neumann boundary conditions. We emphasize that there are numerous other
examples of families of functionals that are known to 0-converge to the functional EV
considered in Section 5, and for most of these examples, one should be able to deduce the
existence of critical points from Theorems 4.4 and 5.1 by arguments very similar to those
given in the examples that we discuss here.

There is a large literature that uses 0-convergence to study connections between
Allen–Cahn and Ginzburg–Landau type problems and geometric problems involving min-
imal surfaces and minimal connections. Basic 0-convergence results for the Modica–
Mortola functional are established in [23, 22], and for the Ginzburg–Landau and related
functionals in [2], [14]. These automatically yield some results describing asymptotic be-
havior of minimizing sequences. Existence of local minimizers for these functionals is
proved using 0-convergence arguments in [15, 24, 13].

As far as we know, the present paper is the first to use 0-convergence to prove exis-
tence of critical points of Modica–Mortola and Ginzburg–Landau type functionals asso-
ciated with unstable critical points of a limiting functional. Prior results of this sort have,
however, been established via techniques that employ precise control over the spectrum
of linearized operators associated with explicitly constructed approximate solutions, to-
gether with Lyapunov–Schmidt reduction or arguments in a similar spirit. An early result
in this direction, due to Matano [21], establishes existence of stable critical points for the
Modica–Mortola functional. More recently, existence of more general critical points for
the Modica–Mortola functional, associated with nondegenerate critical points of the ar-
clength functional has been proved by Kowalczyk [16] in two dimensions, and by Pacard
and Ritoré [25] in dimensions n ≥ 2, with critical points of arclength replaced by min-
imal hypersurfaces. Similar general existence results for the magnetic Ginzburg–Landau
functional (6.7) in a specific (formally self-dual) scaling in dimensions n ≥ 3 have been
established in a preprint of Brendle [6]. These techniques give very precise descriptions of
the solutions that are proved to exist, much more precise in fact than can be established via
0-convergence arguments. (In particular, our results on the Modica–Mortola functional
are strictly weaker than those of [16], [25].) The main drawback of these linearization
techniques is that the required spectral control can be very difficult to obtain. This has
limited the range of applicability of these methods. In particular, they have not yet been
extended to cover critical points of the model Ginzburg–Landau functional (3.11), which
has worse spectral properties than its magnetic counterpart (6.7). Thus, our results on
(3.11) are the first existence results for higher-energy critical points for this functional in
three dimensions; this is also true for our results on a generalized Ginzburg–Landau func-
tional in arbitrary higher dimensions. Our results on (6.7) are new in that they consider a
different scaling than that of [6], and they also incorporate some new lower-order terms
involving an applied magnetic field.

For the Ginzburg–Landau functional (3.11) in two dimensions existence of both stable
and unstable critical points has been established by proofs that, as in this paper, com-
bine variational methods with arguments about convergence of energy functionals, in the
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spirit of 0-convergence (see for example [17, 8, 19, 3]); by PDE techniques [26]; and by
variational reduction, which combines elements of both approaches [9]. This last paper
considers homogeneous Neumann boundary conditions, whereas the others cited above
treat Dirichlet data. The first paper to identify a limiting “renormalized energy” for (3.11)
in two dimensions was [4]. Both global and local minimizers for the problem (6.7) in two
dimensions in the presence of an applied field are investigated in depth in [28, 30]. We do
not consider any of these problems in this paper. It should be noted that here the limiting
energy depends on only finitely many degrees of freedom, making asymptotic variational
arguments easier in some respects than the problems that we focus on.

A different family of related papers characterizes the asymptotic behavior of se-
quences of critical points of functionals (3.9), (3.11), (6.7). Particularly relevant to our
concerns is work of Hutchinson and Tonegawa [12] for Allen–Cahn, and of various au-
thors, including among others [27, 20, 5, 7], for Ginzburg–Landau. In [12] it is shown
that the sequence of varifolds associated with critical points of Allen–Cahn (3.9) of uni-
formly bounded energy converge to a stationary varifold, i.e. a minimal surface in a suit-
ably defined weak sense. The same sort of result is proved in [27, 20] for minimizers of
the functionals (3.11), (6.7), and in [5, 7] for general sequences of critical points with
uniformly bounded energy. In particular, Chiron [7] studies Ginzburg–Landau equations
with Neumann conditions, and obtains natural boundary conditions for the corresponding
limiting stationary varifolds.

Our Theorem 6.1 and Theorem 6.5 can be seen as a sort of partial converse of re-
sults from [7], proving that for certain possible limiting configurations as identified by
Chiron—those consisting of a single line segment, and satisfying a nondegeneracy condi-
tion—there indeed exists an associated sequence of critical points of (3.11), (6.7). Among
other possible limiting configurations from [7], our results could be extended without
much difficulty to unions of nonintersecting nondegenerate critical line segments, but
probably not, for example, to unions of nondegenerate critical line segments that inter-
sect. If the segments intersect at isolated points, it is not clear how to prove that they can
be identified with saddle points of the arclength functional in the sense of Definition 4.1.
And a configuration consisting of two or more segments that coincide (corresponding to
a vortex of multiplicity 2 or higher) can probably be shown to be a saddle point in the
sense of Definition 4.1, but we do not think that other hypotheses of our abstract minmax
theorem, such as the uniformity condition (4.8), can be verified near such a (conjectured)
saddle point.

We have attempted to present a largely self-contained discussion by first reviewing
elements of geometric measure theory and degree theory in Section 2 that are required
later in the paper. Section 3 contains a description of the more general characterization
of 0-convergence we work with, and also places the by now well-known 0-convergence
and compactness results for Modica–Mortola [22, 23] and Ginzburg–Landau [2, 14] in
this framework. We also recall in this section the fact that the energies we consider satisfy
the Palais–Smale condition.

In Section 4 we give the definition of saddle point for a 0-limit that we employ and
then we present the statement and proof of the abstract existence theorem for critical
points of a 0-converging sequence of functionals. We emphasize that this material does
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not in any way rely on the geometric measure theory machinery introduced in Section 2;
it uses only some standard facts about degree theory, recalled in Section 2.3, and our
definition of a 0-limit from Section 3.1.

In Section 5 we assume a domain contains a line segment with endpoints on its bound-
ary that is a nondegenerate critical point of arclength among competing line segments
that similarly span the domain. Under this assumption we show that the 0-limits of the
2d Modica–Mortola energy and 3d Ginzburg–Landau energy, both arclength in the weak
sense of mass of rectifiable 1-currents, possess a saddle point in the flat norm topology—
the sense required for our abstract framework. This is the only place where the full ma-
chinery from Section 2 is really used.

Finally, in Section 6 we verify that for 2d Modica–Mortola and 3d Ginzburg–Landau,
with and without field, all of the remaining conditions of the abstract theorem are met,
thus providing the existence of critical points for these energies.

2. Preliminaries

Throughout this article � will denote a bounded, open set in Rn+1. Elements of Rn will
be denoted by x or y, and elements of Rn+1 will generally be denoted by either X or
(x, xn+1). We denote the k-dimensional Hausdorff measure of a set S byHk(S).

2.1. Currents

We review here some notions from geometric measure theory. We refer to [10, 31] for
more detail. For integers 0 ≤ k ≤ n+ 1, the space of Grassmann k-covectors is denoted
by
∧k
(Rn+1) endowed with the usual Euclidean norm | · |. A differential k-form φ on �

is a mapping φ : �→
∧k
(Rn+1). The space of C∞ k-forms compactly supported within

� is denoted by Dk(�).
A k-current in � is a continuous linear functional on the space Dk(�) and the space

of such k-currents is denoted by Dk(�). We recall that the boundary of a k-current T ,
denoted by ∂T , is the (k − 1)-current defined by the relation

∂T (φ) = T (dφ) for all φ ∈ Dk−1(�),

where dφ represents the k-form obtained by exterior differentiation of φ. In particular,
we note that a k-current T has zero boundary relative to the set � if T (dφ) = 0 for all
φ ∈ Dk−1(�). We will denote by D′k(�) the elements of Dk(�) that are boundaries, i.e.

D′k(�) := {T ∈ Dk(�) : T = ∂S for some S ∈ Dk+1(�)}. (2.1)

For T ∈ Dk(�), we denote the mass of T in � by

M(T ) ≡ sup
{φ∈Dk(�) : ‖φ‖L∞(�)≤1}

|T (φ)|. (2.2)

If T is a 0-current with finite mass, then there exists a finite Radon measure µ such
that T (φ) =

∫
φ dµ for all smooth, compactly supported functions (= 0-forms). When

this holds we will often abuse notation and write simply T = µ.
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If T ∈ Dk(�) is a k-current with locally finite mass, then there exists a nonnegative
measure ‖T ‖ and a ‖T ‖-measurable map ET : �→

∧
k(Rn+1) such that

T (φ) =

∫
�

〈φ, ET 〉 d‖T ‖, φ ∈ Dk(�).

If B ⊂ � is a Borel set, the restriction of T to B, denoted T xB, is defined by

(T xB)(φ) =
∫
B

〈φ, ET 〉 d‖T ‖, φ ∈ Dk(�). (2.3)

Most prominent in our approach will be the class R1(�) of rectifiable, integer mul-
tiplicity 1-currents. These are geometric measure theoretic generalizations of Lipschitz
curves. Indeed, if I ⊂ R is an interval and γ : I → � ⊂ Rn+1 is a Lipschitz curve, we
can define a 1-current T corresponding to integration over γ by

T
(n+1∑
i=1

φidXi
)
=

∫
I

n+1∑
i=1

φi(γ (t))
d

dt
γ i(t) dt. (2.4)

We define an element of R1(�) to be a current with finite mass in � that can be written
in the form

T =
∑
j

Tj (2.5)

where the sum is finite or countable, and each Tj corresponds to integration over a Lips-
chitz curve γj . Normally a different definition is given, and the above characterization is
established as a theorem. It can also be shown (see [10, 4.1.25]) that the sum in (2.5) can
be written in such a way that

M(T ) =
∑
j

M(Tj ) =
∑
j

H1(γj ), M(∂T ) =
∑
j

M(∂Tj ). (2.6)

In particular, if ∂T = 0 in � then ∂Tj = 0 in � for every j .
We introduce the notation R′1(�) to denote the finite-mass elements of R1(�) that

are boundaries, i.e.

R′1(�) := {T ∈ R1(�) : M(T ) <∞, T = ∂S for some S ∈ D2(�)}. (2.7)

In this article, we will denote the flat norm of a k-current S by

F(S) = inf{M(R) : R ∈ Dk+1, ∂R = S in �}. (2.8)

We set F(S) = +∞ if there does not exist any current R with finite mass such that
∂R = S in �. This is a variant of the standard flat norm of geometric measure theory. We
write

F ′k(�) := {T ∈ D′k(�) : F(T ) <∞}. (2.9)
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Remark 2.1. Note that F ′k(�) is a Banach space when endowed with the norm F. This
follows from two facts. First, the space of (k+1)-currents on� with finite mass, denoted
Mk+1(�), is a Banach space when endowed with the norm M; in fact, this space can
be identified with the Banach space of Radon measures on � with values in the space∧
k+1(Rn) of (k+ 1)-vectors. And second, F ′k(�) with the norm F can be identified with

the quotient space Mk+1(�)/{T ∈Mk+1(�) : ∂T = 0}; this follows directly from the
definitions. Since {T ∈Mk+1 : ∂T = 0} is closed in Mk+1, this quotient space is itself
a Banach space.

If T is a k-current in � ⊂ Rn such that M(T ) +M(∂T ) < ∞, and if f : � → R
is a Lipschitz continuous function, then for a.e. s ∈ R there is a (k − 1)-current denoted
〈T , f, s〉, supported in f−1(s), and characterized by the property that

T ((ω ◦ f )φ ∧ df ) =

∫
R
〈T , f, s〉(φ)ω(s) ds

for every compactly supported (k − 1)-form φ and every smooth function ω on R. The
currents 〈T , f, s〉 are called slices of T by level sets of f . In some cases there are simple
explicit formulas for these slices. In particular, suppose that T is a 1-current correspond-
ing to integration over a Lipschitz curve γ : I → �, where I is an interval. Then for any
Lipschitz function f : �→ R,

〈T , f, s〉 =
∑

t∈I : γ (t)∈f−1(s)

sign(γ ′(t) · ∇f (γ (t)))δγ (t) (2.10)

for a.e. s ∈ R, where we use the convention that sign(0) = 0. This is a special case of a
general result proved in [10, 4.3.8]; the proof there implies in particular that the sum on
the right contains finitely many nonzero terms for a.e. s ∈ R.

A useful inequality related to slices is the following (cf. [31, p. 158]):∫
∞

−∞

M(〈T , f, s〉)ds ≤ sup
x∈γ
|∇
γ f (x)|M(T ). (2.11)

We will need the following lemma which is a sort of isoperimetric inequality:

Lemma 2.2. Suppose that � ⊂ Rn+1 is a smooth bounded domain. Let d� = +∞ if
∂� is connected, and if not, let d� be the smallest distance between any two distinct
components of ∂�. Then there exists a constant C� such that if T ∈ R′1(�) satisfies
M(T ) < d�, then T ∈ F ′1(�) and

F(T ) ≤ C�M(T )2.

Proof. Given T ∈ R′1(�) with M(T ) < d�, we must find a 2-current S such that ∂S =
T in �, with M(S) ≤ CM(T )2. For use in this proof only, we introduce the notation
MRn+1(·) to denote the mass of a current in all of Rn+1 as opposed to M(·) which refers
to mass in �.
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We first claim that there exists a current T̃ on Rn+1 such that ∂T̃ = 0 in Rn+1,
MRn+1(T̃ ) ≤ C1M(T ), and T̃ (φ) = T (φ) for all smooth 1-forms φ with support in �.

To see this, write T =
∑
Tj as in (2.5), so that Tj is a current in � that corresponds

to either a closed Lipschitz loop or a Lipschitz curve that connects two points on ∂�. We
will define T̃ =

∑
T̃j , where each T̃j is a suitable extension of Tj to a current on Rn+1. It

suffices to show that this can be done so that

∂T̃j = 0 in Rn+1, and M(T̃j ) ≤ C1M(Tj ). (2.12)

If Tj is compactly supported in � (i.e., if the corresponding Lipschitz curve γj is a closed
loop), we define T̃j to be the current on Rn+1 corresponding to the same loop γj , so that
(2.12) clearly holds.

Now consider the other case, and suppose that γj : [0, 1]→ �̄ is the Lipschitz curve
corresponding to Tj . The length of γj is bounded by M(T ), which is less than d� by
hypothesis, so both endpoints of γj must belong to the same component of ∂�. Thus we
can find a curve γ̃j : [1, 2] → Rn+1

\ � such that γ̃j (1) = γj (1), γ̃j (2) = γj (0), and∫ 2
1 |γ̃

′

j | ≤ C1
∫ 1

0 |γ
′

j | for a constant C1 depending on the geometry of the domain. (For
example, γ̃j can be taken to be a length-minimizing geodesic in ∂� connecting the given
endpoints.) Now let

0j (t) =

{
γj (t) if t ∈ [0, 1],
γ̃j (t) if t ∈ [1, 2].

and let T̃j be the corresponding integral current in Rn+1. Then the construction implies
that (2.12) holds.

Now the isoperimetric inequality (see [10, 4.2.10 for example]) implies that there
exists some 2-current on Rn+1, say S̃, such that ∂S̃ = T̃ and MRn+1(S̃) ≤ C2MRn+1(T̃ )2.
If we now let S be given by the restriction S̃ x�, then it is clear that ∂S = ∂S̃ = T̃ = T
in �, and that M(S) ≤ MRn+1(S̃) ≤ C2MRn+1(T̃ )2 ≤ C2

1C2M(T )2. This completes the
proof of the lemma. ut

We will also need the following simple result:

Lemma 2.3. Suppose that Q is a 1-dimensional current in an open set � ⊂ Rn+1, and
that there is an open set �1 ⊂ � and a point p ∈ �1 such that ∂Q x�1 = δp. Then
M(Q) ≥ dist(p, ∂�1).

Proof. Let d = dist(p, ∂�1). Then for any ε > 0, there exists a smooth function f such
that f (p) > d − ε, ‖df ‖∞ ≤ 1, and with support in �1. For example, such a function
can be constructed by mollifying the function g(x) = max{d − ε/2− |x − p|, 0}. Then

d − ε ≤ f (p) = ∂Q(f ) = Q(df ) ≤M(Q)‖df ‖∞ ≤M(Q).

Since this holds for all ε > 0, we find that M(Q) ≥ d. ut
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2.2. Identification of L1 functions and Jacobians with 1-currents

We would next like to single out two particular types of 1-currents that are boundaries of
2-currents with finite mass, that is, particular examples of elements of F ′1(�).

First consider the situation where � ⊂ Rn+1 and a function v lies in L1(�). Then we
can associate to v an n-current, denoted ?dv, via the formula

?dv(φ) =

∫
�

vdφ (2.13)

for all φ ∈ Dn(�). Note that the (n + 1)-current Sv(φ) :=
∫
�
vφ for all φ ∈ Dn+1(�)

satisfies ∂Sv = ?dv so that ?dv ∈ F ′n(�) and one sees that1

F(?dv) ≤M(Sv) = ‖v‖L1(�). (2.14)

As a special case of this association that will be relevant to the Modica–Mortola set-
ting later in the paper, consider the case n = 1 with v ∈ BV (�; {±1}). Then

v(X) =

{
1 if X ∈ A,
−1 if X ∈ � \ A, (2.15)

for some set A ⊂ � of finite perimeter. If we denote by 0 the rectifiable set comprised
of the reduced boundary of A in � one finds through an application of the Divergence
Theorem that ?dv ∈ R′1(�) since

?dv(φ) = 2
∫
0

〈φ(X), τ (X)〉dH1(X) (2.16)

for any 1-form φ, where τ is the (approximate) unit tangent vector orienting 0. From
(2.16) it is clear that for v ∈ BV (�; {±1}), one has

M(?dv) = total variation of v = 2H1(0). (2.17)

Next, consider the situation where� ⊂ R3, and where a function u lies in the Sobolev
space W 1,2(�;C). This will be the setting of a second main application: 3d Ginzburg–
Landau theory. We write J (u) to denote the 2-form

J (u) = u#(dy) = du1 ∧ du2

where u = u1 + iu2, dy denotes the standard area form on the target C and # denotes the
pullback. This object is simply the 2-form naturally associated with the Jacobian vector
of 2× 2 minors,

(det(uX2 , uX3), det(uX3 , uX1), det(uX1 , uX2)).

1 In fact, if S is any (n + 1)-current such that ∂S = ?dv, and if � is connected, then the
definitions imply that there exists some c ∈ R such that S = Sv+c. It follows that F(?dv) =
infc∈R M(Sv+c) = infc∈R ‖v+ c‖L1(�). This is a special case of the representation of F ′n(�) as a
quotient space ofMn+1(�) (see Remark 2.1).
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It is often convenient to identify J (u)with a 1-current, which we denote ?J (u), and which
is defined through its action on 1-forms φ by

?J (u)(φ) =

∫
φ ∧ J (u). (2.18)

The current ?J (u) can still be defined for u in certain Sobolev spaces below W 1,p for
p < 2. To this end, we define the 1-form j (u) via the formula

j (u) =
1
2i

3∑
k=1

(uuXk − uuXk )dXk =
1
2i
(ūdu− udū) (2.19)

where · denotes complex conjugation. We also define an associated 2-current ?j (u) that
acts on 2-forms φ via ?j (u)(φ) =

∫
φ ∧ j (u). Note that |j (u)| ∈ L1(�) for u ∈

W 1,2(�;C) or W 1,1(�; S1). Then we define ?J (u) ∈ F ′1(�) through

?J (u) =
1
2
∂(?j (u)), so that ?J (u)(φ) =

1
2

∫
�

dφ ∧ j (u) (2.20)

for any φ ∈ D1(�). One can check through integration by parts that this agrees with
the previous definition (2.18) of ?J (u) when u ∈ W 1,2(�). This is a consequence of the
identity J (u) = 1

2dj (u). It follows that

F(?J (u)) ≤
1
2

M(?j (u)) =
1
2
‖j (u)‖L1(�). (2.21)

2.3. Background on degree

Some of our arguments will involve topological degree. The facts we will need are sum-
marized in the following (cf., for example, [33]):

Lemma 2.4. For any open subset O ⊂ R` and any continuous f : Ō → R` such that
f 6= 0 on ∂O, there exists an integer called the degree of f inO, and denoted deg(f,O),
with the following properties: First, if f ∈ C1(O;R`) and 0 is a regular value of f , then

deg(f,O) =
∑

{x∈O : f (x)=0}

sign(det∇f (x)). (2.22)

Next,
if deg(f,O) 6= 0 then ∃x ∈ O such that f (x) = 0. (2.23)

Also,

if O′ is open, O′ ⊂ O, then deg(f,O) = deg(f,O \ Ō′)+ deg(f,O′) (2.24)

whenever the right-hand side makes sense (i.e., whenever f 6= 0 on ∂O′). Finally, if
h : Ō × [a, b]→ R` is continuous and h(x, t) 6= 0 for x ∈ ∂O and t ∈ [a, b], then

deg(h(·, a),O) = deg(h(·, b),O). (2.25)
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3. Background on 0-limits

3.1. Definition of 0-limit

We consider here the 0-convergence as ε→ 0 of a family of functionals always denoted

EεU : U → (−∞,∞], where U is a Banach space and ε ∈ (0, 1], (3.1)

to a limiting functional

EV : V → (−∞,∞], where V is a Banach space. (3.2)

We will always write
V0 := {v ∈ V : EV (v) <∞}. (3.3)

In the situations we consider, EV is always lower semicontinuous (see below), and so V0
is always closed.

We say that EεU 0-converges to EV as ε → 0 if for all ε ∈ (0, 1] there exists a
continuous map P εVU : U → V and a map Qε

UV : V0 → U (not necessarily continuous)
such that

• Lower bound: If v ∈ V0 and {uε} ⊂ U is a sequence such that ‖P εVU (uε)− v‖V → 0
as ε→ 0, then

lim infEεU (uε) ≥ EV (v). (3.4)

• Upper bound: For every v ∈ V0,

EεU (Q
ε
UV (v))→ EV (v) and ‖P εVUQ

ε
UV (v)− v‖V → 0 as ε→ 0. (3.5)

When the above holds, we will sometimes write that EεU 0-converges to EV via maps
P εVU ,Q

ε
UV ; this is more accurate than simply speaking about 0-convergence, since the

relationship between EεU and EV is not determined until P εVU is specified.
For fixed v ∈ V0, the sequence {Qε

UV (v)}ε∈(0,1] ⊂ U is what is sometimes called
a recovery sequence for v. Our later results will actually require that (3.5) hold only for
v in certain finite-dimensional subsets of V0; we will also need Qε

UV to be continuous
on these subsets. In most applications, including those presented in this article, the maps
P εVU are independent of ε ∈ (0, 1].

We will only be interested in 0-limits for which the following compactness condition
is satisfied:

• Compactness: If supε∈(0,1] E
ε
U (uε) <∞ then

{P εVU (uε)}ε∈(0,1] is precompact in V. (3.6)

The definitions imply that

EV : V → R is lower semicontinuous (3.7)

and also that for every K ∈ R,

{v ∈ V0 : EV (v) ≤ K} is compact in V . (3.8)

These facts are standard and are quite easy to check.
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3.2. Example 1: the 2d Modica–Mortola functional

For this family of problems, � is a bounded domain in R2, and

EεU (u) :=
3

2
√

2

∫
�

(
ε

2
|∇u|2 +

1
4ε
(u2
− 1)2

)
dX (3.9)

is a family of functionals onU := H 1(�) (= H 1(�;R)). We note that depending on con-
text, this energy is also referred to as the Allen–Cahn energy or, in the presence of a mass
constraint, the Cahn–Hilliard energy. The factor of 3

2
√

2
is a convenient normalization that

has the effect of setting a constant in the 0-limit functional to 1.
In order to emphasize parallels and give a unified treatment of various problems we

consider, we describe the 0-limit in a slightly unusual way:

Theorem 3.1 (cf. [23]). Let � be a bounded, open subset of R2. Let U = H 1(�) as
above, and let V = F ′1(�), endowed as usual with the flat norm. Define PVU (u) = ?du/2
(cf. Section 2.2), and define

EV (T ) =

{
M(T ) if T ∈ V0 = {?dv/2 : v ∈ BV (�; {±1})},
+∞ otherwise.

(3.10)

Then there exists a family of maps Qε
UV : V0 → U such that the family EεU given by

(3.9) 0-converges to EV given by (3.10) in the sense of (3.4) and (3.5). Furthermore, the
compactness property (3.6) holds.

Proof. This follows from the standard Modica–Mortola 0-limit result, which we will
describe by a functional E

Ṽ
defined on a space Ṽ . In this standard result, Ṽ = L1(�),

P
Ṽ U
(u) = u, and

E
Ṽ
(v) =

{
1
2

∫
�
|Dv| if v ∈ Ṽ0 = BV (�; {±1}),

+∞ if not,

where
∫
�
|Dv| denotes the total variation of the gradient measure.

It follows from (2.14) that if {vk} is precompact in L1(�), then {?dvk/2} is precom-
pact in F ′1(�), so the compactness property (3.6) in V = F ′1(�) follows from the corre-
sponding property in Ṽ , which is established in [22] or [32]. Note also that v ∈ Ṽ0 if and
only if ?dv/2 ∈ V0, and E

Ṽ
(v) = 2EV (?dv/2).

To check (3.4), we may assume lim infEεU (uε) < ∞. Hence, invoking the precom-
pactness in L1(�), we can assert that ‖P

εj

Ṽ U
Q
εj

UṼ
(v) − v‖

Ṽ
→ 0 along a subsequence

{εj } → 0 for some v ∈ L1(�). Then (3.4) for EV : V → (−∞,∞] follows from the
lower semicontinuity established for E

Ṽ
under L1 convergence in [23]. Condition (3.5)

also follows from the analogous construction in [23]. ut

The topology we have specified for the 0-limit is slightly weaker than the more usual L1

topology. This does not have any effect on our later applications.
In Section 6, the mappings Qε

UV satisfying (3.5) in this setting will be recalled ex-
plicitly for the case of a straight interface. The theorem above holds for � ⊂ Rn+1 with
n arbitrary, as long as F ′1(�) is replaced by F ′n(�).
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3.3. Example 2: the Ginzburg–Landau functional

For this family of problems, � is a bounded domain in R3, and

EεU (u) :=
1

π |ln ε|

∫
�

(
|∇u|2

2
+
(|u|2 − 1)2

4ε2

)
dX (3.11)

is a family of functionals defined on U := H 1(�;C) ∼= U := H 1(�;R2). The result on
0-convergence in this setting is then:

Theorem 3.2 (cf. [2, 14]). Let � be a bounded, open subset of R3. Let U = H 1(�;C),
and let V = F ′1(�), endowed with the flat norm (2.8). Define

PVU (u) =
?Ju

π
(3.12)

(cf. (2.18) or (2.20)) and

EV (T ) =

{
M(T ) if T ∈ V0 := R′1(�),
+∞ otherwise,

(3.13)

(cf. (2.7)). Then there exists a family of maps Qε
UV : V0 → U such that EεU given by

(3.11) 0-converges to EV given by (3.13) in the sense of (3.4) and (3.5). Furthermore,
the compactness property (3.6) holds.

In Section 6, the mappingsQε
UV satisfying (3.5) will be recalled explicitly for the case of

a straight vortex line, that is, for the case where T ∈ R′1(�) consists of an oriented line
segment with endpoints lying on ∂�. Proofs of (3.4) and (3.6) can be found in [14] while
the general recovery sequence construction (3.5) is established in [2].

In Section 6 we will also consider the case of the Ginzburg–Landau energy with mag-
netic field (cf. (6.7)).

We point out that the 0-limits in the two examples above involve the mass of integral
1-currents—that is, arclength. The only differences are in the dimension of the ambient
space, and the fact that V0 in (3.10) is smaller than its counterpart in (3.13); see the proof
of Corollary 5.2 at the end of Section 5 for a full discussion.

Finally, we record here the simple fact that both the Modica–Mortola functional and
the Ginzburg–Landau functional satisfy the Palais–Smale condition (cf. [33]). We recall
that given a C1 functional F : U → R, a sequence {uk}∞k=1 is said to be a Palais–Smale
sequence if

‖∇F(uk)‖U∗ → 0 as k→∞ and {F(uk)}
∞

k=1 is bounded. (3.14)

The functional F is said to satisfy the Palais–Smale condition if

every Palais–Smale sequence is precompact in U. (3.15)

Proposition 3.3. The functionals EεU given by (3.9) or (3.11) satisfy the Palais–Smale
condition in the H 1 topology.
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We recall the standard proof:

Proof. Consider the 2d Modica–Mortola energy; the argument for 3d Ginzburg–Landau
is almost identical. Since the argument is unrelated to the (fixed) value of ε, we set ε = 1
here. Suppose {uk} ⊂ H 1(�) is a sequence satisfying the conditions

sup
k

EεU (uk) <∞, ‖δE
ε
U (uk)‖ → 0 as k→∞.

The energy bound immediately yields a uniformH 1 bound. Hence there is a subsequence
{kj } → ∞ such that

ukj ⇀ u in H 1(�) and ukj → u in Lp(�), 1 ≤ p <∞,

for some u ∈ H 1(�). Noting that the first variation is given by

δEεU (uk)(v) =

∫
�

(∇uk · ∇v + (u
3
k − uk)v) dX,

we then use the conditions δEεU (uk)(uk)→ 0 and δEεU (uk)(u)→ 0 to see that

lim
j→∞

∫
�

|∇ukj |
2 dX = lim

j→∞

∫
�

(u4
kj
− u2

kj
) dX =

∫
�

(u4
− u2) dX =

∫
�

|∇u|2 dX,

and so the convergence is strong. ut

3.4. Example 3: some generalizations

It is worth noting that Example 2 is a special case of the following more general fact, due
to Alberti, Baldo, and Orlandi [2]:

Theorem 3.4 (cf. [2]). Let � be a bounded, open subset of Rn+1. Let U = H 1(�;Rn),
and let

EεU (u) :=
1

ωn|ln ε|

∫
�

(
1
n
|∇u|n +

1
4ε2 (|u|

2
− 1)2

)
dX, (3.16)

where ωn denotes the volume of the unit ball in Rn. Let V = F ′1(�), V0 = R′1(�) and let
PVU : U → V be given by

PVU (u) =
?Ju

ωn
(3.17)

where J (u) = u#(dy) = du1 ∧ · · · ∧ dun and ?J (u) denotes the 1-current associated
with the n-form J (u) defined exactly as in (2.18).

Then there exists a family of maps Qε
UV : V0 → U such that EεU given by (3.11)

0-converges to EV given by (3.13) in the sense of (3.4) and (3.5). Furthermore, the
compactness property (3.6) holds.

Note also that the proof of (3.3) is easily modified to prove that the functional defined in
(3.16) satisfies the Palais–Smale condition.
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4. General asymptotic saddle point theorem

In this section we define saddle points, and we prove our main result, an abstract theorem
stating that if a 0-limiting functional EV has a saddle point at some vs ∈ V0, then for
sufficiently small ε the approximating functional EεU has a critical point whose associated
critical value approaches the number EV (vs).

Throughout this work, all saddle points are taken to have finitely many unstable di-
rections.

4.1. Definition of saddle point

Throughout this section we assume that V is a Banach space, and that EV : V → R is
a lower semicontinuous functional such that sublevel sets of EV are compact in V . We
continue to write V0 as in (3.3).

Definition 4.1. We say that EV has a saddle point at vs ∈ V0 if there exists a nonnegative
integer `, a number δ0 > 0, a neighborhood W ⊂ R` of 0, a continuous map PWV :
V → R` such that PWV (vs) = 0, and a continuous map QVW : W → V0 satisfying the
conditions

EV (vs) < EV (v) for v ∈ V with 0 < ‖v − vs‖V ≤ δ0, PWV (v) = 0, (4.1)
QVW (0) = vs, (4.2)
PWV ◦QVW (w) = w for all w ∈ W, (4.3)

sup
{w∈W : |w|≥r}

EV (QVW (w)) < EV (vs) for every r > 0. (4.4)

We note that the value 0 in the condition PWV (vs) = 0 is chosen simply for convenience.
Also, if we write EW (w) := inf{EV (v) : ‖v − vs‖V ≤ δ0, PWV (v) = w} for w ∈ W ,
then these conditions imply that EW has a strict local maximum at w = 0.

Remark 4.2. The integer ` can be thought of as the number of unstable directions at vs . A
local minimum can be seen as a degenerate saddle point for which there are no unstable
directions. Indeed, if we adopt the convention that R0

= {0}, then a local minimum
vs ∈ V0 ofEV satisfies (4.1) with ` = 0 and PWV (v) = 0, and the conditions of Definition
4.1 hold trivially.

We will need the following

Lemma 4.3. Suppose that vs ∈ V0 is a saddle point in the sense of Definition 4.1. Then
for every γ > 0, there exists r(γ ) > 0 such that

‖v − vs‖V ≤ γ

whenever v ∈ V0 satisfies

‖v − vs‖V ≤ δ0, EV (v) ≤ EV (vs)+ r(γ ) and |PWV (v)| ≤ r(γ ).
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Proof. We suppose toward a contradiction that the conclusion of the lemma is false, so
that there exists some γ > 0 and a sequence {vn} ⊂ V0 such that

‖vn − vs‖V ≤ δ0, EV (vn) ≤ EV (vs)+ 1/n, |PWV (vn)| ≤ 1/n

and
‖vn − vs‖V > γ.

In view of (3.7) and (3.8) and the continuity of PWV , we may assume after passing to a
subsequence (still labeled vn) that vn→ v̄ ∈ V0 with

γ ≤ ‖v̄ − vs‖V ≤ δ0, EV (v̄) ≤ EV (vs), PWV (v̄) = 0.

However, (4.1) implies that this is impossible. ut

4.2. The asymptotic minmax theorem

In this section we prove a general theorem asserting that if a 0-limiting functional EV
has a saddle point vs at which EV (vs) = c, and if some other uniformity conditions are
satisfied, then for every sufficiently small ε > 0, the approximating functional EεU has
a Palais–Smale sequence “near the energy level c” for every sufficiently small ε. In all
the examples later in this paper in which we prove existence of critical points of concrete
functionals, we will do so by verifying that the hypotheses of this abstract theorem are
satisfied and then checking that the specific functional satisfies the Palais–Smale condi-
tion.

Theorem 4.4. Suppose that U,V are Banach spaces and that {EεU }ε∈(0,1] is a family of
C1 functionals mappingU to R that 0-converge to a limiting functionalEV : V0 → R via
maps P εVU : U → V and Qε

UV : V0 → U . Assume also that the compactness condition
(3.6) holds.

Let vs ∈ V be a saddle point in the sense of Definition 4.1. Assume also (using
notation from the definition of a saddle point) that

PWV is uniformly continuous in {v ∈ V : ‖v − vs‖V ≤ 2δ0}, (4.5)
Qε
UW := Qε

UV ◦QVW : W → U is continuous for all ε, (4.6)
‖P εVU ◦Q

ε
UW (w)−QVW (w)‖V → 0 uniformly in w ∈ W as ε→ 0, (4.7)

EεU (Q
ε
UW (w))→ EV (QVW (w)) uniformly in w ∈ W as ε→ 0. (4.8)

Then given δ1 > 0, there exists ε0 > 0 such that for every 0 < ε ≤ ε0 there exists a
Palais–Smale sequence {uεk}

∞

k=1 satisfying

sup
k

|EεU (u
ε
k)− EV (vs)| ≤ δ1. (4.9)

In particular, if EεU satisfies the Palais–Smale condition (3.15) for every ε, then for every
small ε there exists a critical point uε of EεU such that limε→0 E

ε
U (u

ε) = EV (vs).
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Recall that P εVU and QVW are assumed to be continuous as parts of the definition of
0-limit and saddle point respectively.

Remark 4.5. In this level of generality, it need not be true that the critical points of EεU
converge in any sense to the limiting point vs as ε→ 0. This is illustrated by the following
elementary example:

Fix λ > 0 and define a family of functions f ε : R2
→ R by

f ε(x) = x1[tanh(x2)− λ sech(x1/ε)].

Note that f ε → f = x1 tanh(x2) uniformly as ε→ 0. In fact, f (x)− f ε(x) = εg(x/ε)
for g(x) = λx1 sech x1. It is clear that {εg(·/ε)} are uniformly Lipschitz and converge
uniformly to 0, so an interpolation inequality implies that f ε → f in C0,α as ε → 0 for
every α ∈ (0, 1).

It is easy to check that
• f has exactly one critical point, at x = (0, 0). This critical point is nondegenerate in

the sense that the Hessian is nonsingular.
• f ε has no critical points if λ ≥ 1; in this case the Palais–Smale condition is not satisfied

by f ε, ε > 0.
• For 0 < λ < 1, f ε has a unique critical point (independent of ε) at x = (0, tanh−1(λ)).

Note that this point can be arbitrarily far from the critical point (0, 0) of f , since
tanh−1(λ)↗∞ as λ↗ 1.

Remark 4.6. An inspection of the proof shows that we do not need the full 0-limit to
hold. In particular, we do not need to construct the mapsQε

UV for every v ∈ V0. It suffices
that Qε

UV (v) be defined for every v of the form v = QVW (w), w ∈ W . In particular,
note that the hypotheses (4.6), (4.7) and (4.8) of Theorem 4.4 only involve Qε

UW (w) :=
Qε
UV ◦ QVW (w). For our later applications to Modica–Mortola and Ginzburg–Landau,

this will mean we only need recovery sequences where the limiting singular set is a line
segment.

Remark 4.7. If δ0 = +∞ in (4.1) then one can give a simpler proof of Theorem 4.4 by
a direct appeal to a general minmax principle. Indeed, in this case (4.14) and (4.15) imply
that EεU satisfies the hypotheses of Theorem 2.8 of [33], and our theorem then follows
from this. When δ0 is finite, however, we do not know of any result in the literature from
which Theorem 4.4 can be deduced. One issue is that for δ0 <∞, Theorem 4.4 is a local
result, unlike say the theorem from [33] cited above, which requires global knowledge of
the behavior of EεU . Here the only information we have about EεU involves its behavior at
points u such that PVU (u) is close to the given saddle point of EV .

For the proof we need the following quantitative deformation lemma:

Lemma 4.8 (cf. [33, Lemma 2.3]). Let U be a Banach space, EU ∈ C1(U ;R), S ⊂ U ,
c ∈ R, δ, ρ > 0 such that

‖∇EU (u)‖U∗ ≥ 8δ/ρ for all u ∈ S2ρ such that EU (u) ∈ [c − 2δ, c + 2δ],

where S2ρ = {u ∈ U : dist(u, S) ≤ 2ρ}. Then there exists φ ∈ C([0, 1] × U,U) such
that
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(i) φ(t, u) = u if t = 0 or u 6∈ {u ∈ S2ρ : EU (u) ∈ [c − 2δ, c + 2δ]},
(ii) if u ∈ S and EU (u) ≤ c + δ then EU (φ(1, u)) ≤ c − δ,

(iii) φ(t, ·) is a homeomorphism of U for all t ∈ [0, 1],
(iv) ‖φ(t, u)− u‖U ≤ ρ for all u ∈ U, t ∈ [0, 1],
(v) t 7→ EU (φ(t, u)) is nonincreasing for all u.

Using the lemma we present the proof of Theorem 4.4.

Proof of Theorem 4.4.

Step 1. The proof will use degree theory at various points. Facts about degree that we
will need are summarized in Lemma 2.4.

Let r > 0 be small enough that W contains the closed ball of radius r centered at the
origin in R`. We will write

M := {w ∈ W : |w| ≤ r} = B(r, 0) ⊂ R`.

By taking r smaller if necessary, we may also assume that

r ≤ r(δ0/4) as defined in Lemma 4.3, (4.10)

and, since QVW is continuous, that

‖QVW (w)− vs‖V ≤ δ0/2 for all w ∈ M. (4.11)

We will write P εWU := PWV ◦ P εVU .

Step 2. We first claim that

if φ ∈ C(M;U) and φ(w) = Qε
UW (w) for all w ∈ ∂M then deg(P εWU ◦ φ,M) = 1

(4.12)

for all sufficiently small ε. We write f ε(w) = P εWU ◦ φ(w). Note that assumptions (4.5)
and (4.7) imply that

|P εWU ◦Q
ε
UW (w)− w| → 0 uniformly in W as ε→ 0, (4.13)

since

|P εWU ◦Q
ε
UW (w)− w| = |PWV ◦ P

ε
VU ◦Q

ε
UW (w)− PWV ◦QVW (w)|.

It follows that there exists ε0 > 0 such that

|f ε(w)− w| = |P εWU ◦Q
ε
UW (w)− w| ≤ r/2

for all w ∈ ∂M , whenever ε < ε0. We will show that (4.12) holds for such ε. Indeed,
define

F ε(s, w) = sf ε(w)+ (1− s)w = w − s(f ε(w)− w).
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Then |F ε(s, w)| ≥ |w|− s|f ε(w)−w| ≥ r − r/2 = r/2 for all s ∈ [0, 1] when w ∈ ∂M
and ε < ε0. In particular, F ε(s, w) 6= 0. It follows from the homotopy invariance of
degree (2.25) that

deg(f ε,M) = deg(F ε(1, ·),M) = deg(F ε(0, ·),M).

Since F ε(0, ·) : M → M is just the identity map and therefore has degree 1 by the
explicit formula (2.22), this establishes (4.12).

Step 3. Next we define

aε := sup
w∈∂M

EεU (Q
ε
UW (w)), cε := inf{EεU (u) : P εWU (u) = 0, ‖P εVU (u)−vs‖V ≤ δ0}.

We claim that as ε→ 0,

aε → a := sup
w∈∂M

EV (QVW (w)), (4.14)

cε → c := EV (vs) > a. (4.15)

In fact, (4.14) is an immediate consequence of (4.8). The fact that c > a follows from
condition (4.4) in the definition of a saddle point. It follows from (4.12) and property
(2.23) of degree that if ε < ε0, then there exists w̄ ∈ M such that P εWU (Q

ε
UW (w̄)) = 0.

In addition, if ε0 is small enough then

‖P εVU ◦Q
ε
UW (w)− vs‖V ≤ ‖P

ε
VU ◦Q

ε
UW (w)−QVW (w)‖V + ‖QVW (w)− vs‖V

≤
2
3
δ0 (4.16)

for all w ∈ M , on account of (4.7) and the constraint (4.11) on the choice of the parame-
ter r . Since (4.16) holds in particular for w̄, it follows that

cε ≤ E
ε
U (Q

ε
UW (w̄)) ≤ sup

w∈M

EεU (Q
ε
UW (w))

when 0 < ε < ε0. Together with (4.8) this yields

lim sup
ε→0

cε ≤ lim
ε→0

sup
w∈M

EεU (Q
ε
UW (w)) = sup

w∈M

EV (QVW (w)) = c.

To finish the proof of (4.15) we must show that

lim inf
ε→0

cε ≥ c. (4.17)

To prove this, let εn, un be sequences such that εn → 0, P εnWU (un) = 0 and
limn→∞ E

εn
U (un) = lim infε→0 cε. Since {EεnU (un)} is bounded, the compactness assump-

tion (3.6) implies that {P εnVU (un)} is precompact in V . Writing vn := P εnVU (un), after pass-
ing to a subsequence and relabeling if necessary, we may assume that vn → v̄ in V as
n→∞, and then the 0-limit lower bound (3.4) implies that

lim inf cε = limE
εn
U (un) ≥ EV (v̄).
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However, since PWV is continuous and P εnWU (un) = PWV (vn) = 0 for all n, it is clear
that PWV (v̄) = 0, and then (4.1) implies that EV (v̄) ≥ EV (vs). This proves (4.17) and
hence (4.15).

Step 4. We now conclude the proof of the theorem, modulo a final claim that will be
established below. Recall that we are given δ1 > 0, and we must find (for every suffi-
ciently small ε) a Palais–Smale sequence satisfying (4.9). We claim that there exists a
value δ2 > 0 such that, taking ε0 smaller if necessary, we have

cε ≤ sup
w∈M

{EεU (Q
ε
UW (w))} < cε + δ2 (4.18)

and
max{aε, c − δ1} < cε − 2δ2 < cε + 2δ2 < min{c + δ1, c + r} (4.19)

for all ε ∈ (0, ε0). To see this, just take δ2 <
1
4 min{δ1, c− a, r}. Then (4.18), (4.19) hold

for sufficiently small ε due to (4.14), (4.15), and hypothesis (4.8). We write

S = {u ∈ U : ‖P εVU (u)− vs‖V ≤ δ0}.

Temporarily fix some ρ > 0, and assume toward a contradiction that

‖∇EεU (u)‖U∗ ≥ 8δ2/ρ for all u ∈ S2ρ such that EU (u) ∈ [cε − 2δ2, cε + 2δ2], (4.20)

where S2ρ = {u ∈ U : dist(u, S) ≤ 2ρ}. Then the hypotheses of Lemma 4.8 are satisfied
(with c replaced by cε and δ replaced by δ2). Let φ be a function satisfying (i)–(v) from
that lemma. Let us write uε1(w) := φ(1,Qε

UW (w)). We will prove below that

∃w ∈ M such that P εWU ◦ uε1(w) = 0 and ‖P εVU ◦ uε1(w)− vs‖V ≤ δ0. (4.21)

It follows from this and the definition of cε that supw∈M E
ε
U (u

ε
1(w)) ≥ cε for all ε suffi-

ciently small.
On the other hand, from (4.18) and property (ii) of φ, we deduce that

supw∈M E
ε
U (u

ε
1(w)) ≤ cε − δ2. This is a contradiction, which proves that there exists

some uερ ∈ S2ρ such that

‖∇EεU (u
ε
ρ)‖U∗ < 8δ2/ρ and EεU (u

ε
ρ) ∈ [cε − 2δ2, cε + 2δ2] ⊂ [c − δ1, c + δ1]. (4.22)

If now we consider a sequence ρn tending to∞, then {uερn}
∞

n=1 gives us a sequence satis-
fying the conclusions of Theorem 4.4.

It remains to prove (4.21), which is the most technical part of the proof. In fact we
will prove

Step 5. If φ ∈ C([0, 1]× U ;U) is any map with properties (i), (iii), (iv), (v) of Lemma
4.8, and if we write uεt (w) := φ(t,Qε

UW (w)), then for every t ∈ [0, 1],

∃w̄ ∈ M such that P εWU ◦ uεt (w̄) = 0 and ‖P εVU ◦ uεt (w̄)− vs‖V ≤
1
2δ0. (4.23)

Note that (4.23) immediately implies (4.21).
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We henceforth suppress the superscript ε and write simply ut . We will also use the
notation

vt = P
ε
VU ◦ uεt : M → V and wt = P

ε
WU ◦ uεt : M → R`

for w ∈ W and t ∈ [0, 1].
First, if w ∈ ∂M , then EεU (φ(w)) = E

ε
U (Q

ε
UW (w)) ≤ aε < cε − 2δ2 by (4.19), so

property (i) of φ implies that

ut (w) = φ(t,Q
ε
UW (w)) = Q

ε
UW (w) for all w ∈ ∂M and t ∈ [0, 1]. (4.24)

Hence (4.12) implies that

deg(wt ,M) = 1 for all t ∈ [0, 1]. (4.25)

Step 6. We next argue that

wt (w) 6= 0 for all w such that 1
2δ0 < ‖vt (w)− vs‖V ≤

3
4δ0 and all t ∈ [0, 1]. (4.26)

Assume that t, w are such that ‖vt (w) − vs‖V ≤ 3
4δ0 and wt (w) = 0; we must show

that ‖vt (w) − vs‖V ≤ 1
2δ0. Let γ0 denote a small positive number that will be fixed in

a moment. It will turn out that γ0 depends only on δ0 and r . Then Lemma 4.9, which is
proved after this theorem, implies that if ε0 is sufficiently small, there exists v′t (w) ∈ V
such that

EV (v
′
t (w)) ≤ E

ε
U (ut (w))+ δ2, ‖v′t (w)− vt (w)‖V < γ0. (4.27)

We will require that γ0 ≤ δ0/4; then ‖v′t (w) − vs‖V ≤ δ0. We also require that γ0 be so
small that

|PWV (v
′)− PWV (v)| ≤ r

for all v, v′ ∈ V such that ‖v − vs‖V ≤ 1
2δ0 and ‖v − v′‖V ≤ γ0. This is possible due to

(4.5). In particular, it follows that

|PWV (v
′
t (w))| = |PWV (v

′
t (w))−wt (w)| = |PWV (v

′
t (w))− PWV (vt (w))| ≤ r. (4.28)

Next, note that

EV (v
′
t (w)) ≤ E

ε
U (u0(w))+ δ2 by (4.27) and property (v) of φ

≤ cε + 2δ2 by (4.18)
≤ EV (vs)+ r by (4.19). (4.29)

Then (4.29), (4.28) are precisely the hypotheses of Lemma 4.3, which implies (recalling
our condition (4.10) on r) that ‖v′t (w) − vs‖V ≤ δ0/4. Then the triangle inequality and
(4.27) yield ‖vt (w)− vs‖V ≤ δ0/2, which is exactly (4.26).

Step 7. We proceed by defining

At (σ ) := {w ∈ M : ‖vt (w)− vs‖V > σ }
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for σ ∈ R and t ∈ [0, 1]. It is an immmediate consequence of (4.26) that for σ ∈
[ 1

2δ0,
3
4δ0], wt does not vanish on ∂At (σ ) and hence that deg(wt , At (σ )) is well-defined

for such σ . Property (2.23) of degree further implies that for every t ∈ [0, 1], there exists
a number d(t) such that

d(t) = deg(wt , At (σ )) for all σ ∈ [ 1
2δ0,

3
4δ0]. (4.30)

We will prove that
d(t) = 0 for all t ∈ [0, 1]. (4.31)

Note that A0(
3
4δ0) is empty, by (4.16), so d(0) = 0. Since d(t) is an integer for every t , it

now suffices to prove that d(·) is continuous on the interval [0, 1].
To see this, fix some t0 ∈ [0, 1]. Since (w, t) 7→ ‖vt (w) − vs‖V is continuous, and

hence uniformly continuous on M × [0, 1], we infer that

At (
3
4δ0) ⊂ At0(

2
3δ0) ⊂ At (

1
2δ0) (4.32)

for t ∈ [0, 1] sufficiently close to t0. (Note that the subscript in the middle term of (4.32) is
t0 rather than t .) Thus (4.26) implies that for this range of t , wt has no zeros on ∂At0(

2
3δ0),

and hence (by the homotopy invariance (2.25) of degree) that

deg(wt , At0(
2
3δ0)) = deg(wt0 , At0(

2
3δ0)) = d(t0).

Moreover, deg(wt , At0(
2
3δ0) \ At (

3
4δ0)) = 0; this is a consequence of (4.26), (4.32) and

property (2.23) of degree. Thus for such t ,

d(t) = deg(wt , At (
3
4δ0)) = deg(wt , At0(

2
3δ0))− deg

(
wt , At0(

2
3δ0) \ At (

3
4δ0)

)
= deg(wt , At0(

2
3δ0)) = d(t0).

Thus the proof of (4.31) is completed.

Step 8. It follows from (4.25) and (4.31) and the additivity property (2.24) of degree that

deg(wt ,M \ At (
1
2δ0)) = deg(wt ,M)− deg(wt , At (

1
2δ0)) = 1 for all t ∈ [0, 1]

and hence via the property (2.23) of degree that, for every t ∈ [0, 1], wt has a zero in
M \ At (

1
2δ0). After undoing the notation, this is exactly equivalent to (4.23) and hence

completes the proof of the theorem. ut

This lemma was used above:

Lemma 4.9. Given K, γ0, δ > 0, there exists ε0 = ε0(K, γ0, δ) > 0 such that for all
ε ∈ (0, ε0) the condition

EεU (u) < K for some u ∈ U (4.33)

implies the existence of v′ ∈ V such that

‖P εVU (u)− v
′
‖V < γ0 and EεU (u) > EV (v

′)− δ. (4.34)
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Proof. Suppose toward a contradiction that no such ε0 exists, so that there exist sequences
εn→ 0 and un ∈ U satisfying (4.33) and such that

E
εn
U (un)+ δ ≤ inf{EV (v) : v ∈ V, ‖P εnVU (un)− v‖V < γ0}. (4.35)

Let us write vn := P εnVU (un) and wn := P εnWU (un) = PWV (vn). The energy bound (4.33)
and compactness assumption (3.6) imply that there exists some v̄ ∈ V0 such that after
passing to a subsequence (still labeled {vn}) if necessary, vn → v̄ in V . We then deduce
from (3.4) that

lim inf
n→∞

E
εn
U (un) ≥ EV (v̄).

On the other hand, since ‖vn − v̄‖V → 0, for sufficiently large n it must be the case that

inf{EV (v) : ‖v − vn‖V < γ0} ≤ EV (v̄).

Recalling (4.35), we deduce that

lim sup
n→∞

E
εn
U (un)+ δ ≤ EV (v̄) ≤ lim inf

n→∞
E
εn
U (un),

which is a contradiction. This proves (4.34). ut

5. Critical points of arclength

We wish to illustrate the use of Theorem 4.4 by applying it to produce critical points
of the 2d Modica–Mortola energy (3.9) and 3d Ginzburg–Landau energy (3.11), as well
as some other examples. As was discussed in Section 3, these functionals 0-converge
to the mass of 1-currents; that is, roughly speaking, they converge to the arclength of a
Lipschitz continuous curve. Throughout this section, we will assume that � ⊂ Rn+1,
n ≥ 1, is a bounded domain with smooth boundary. We will prove that given an oriented
line segment joining two points on ∂� that is a nondegenerate saddle point of arclength
in a naive sense, the associated current T∗ is a saddle point in the sense of Definition 4.1
of the 0-limit of the functional

EV (T ) =

{
M(T ) if T ∈ V0 := R′1(�),
+∞ if not, (5.1)

where V = F ′1(�).
To formulate these results, we introduce some notation. As usual, we will write points

in Rn+1 either in the form (x, xn+1) with x ∈ Rn, or simply as X ∈ Rn+1. Throughout
this section, Br denotes the n-dimensional ball {x ∈ Rn : |x| < r}. We will write

Cr := Br × R ⊂ Rn+1.

We assume that for some fixed R > 0, there are two C3 functions h−, h+ : BR → R and
a connected component �R of � ∩ CR such that

�R = {(x, xn+1) : |x| < R, h−(x) < xn+1 < h+(x)} (5.2)

with
h−(0) = 0 and L := h+(0) > 0.
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We will write ∂�−, ∂�+ for the lower and upper portions of ∂�R respectively and we
will write

ψ±(x) := (x, h±(x)).

We will also write
�r = �R ∩ Cr for r ≤ R.

A crucial role in describing saddle points of length will be played by the distance function
d0 : Rn × Rn→ R given by

d0(x, y) := |ψ−(x)− ψ+(y)| =
√
|x − y|2 + (h−(x)− h+(y))2. (5.3)

The main result of this section is

Theorem 5.1. Let � be an open, bounded set in Rn+1, n ≥ 1. Assume that (5.2) holds
and that d0 has a nondegenerate critical point at (0, 0) in the sense that

∇d0(0, 0) = (−∇h−(0),∇h+(0)) = 0 and detD2d0(0, 0) 6= 0, (5.4)

where D2d0 denotes the Hessian matrix of second partials. Let T∗ denote the multiplicity
1-current corresponding to the oriented line segment in � starting at ψ−(0) and ending
at ψ+(0), and assume that T∗ ∈ R′1(�). Let EV be given by (5.1) with V = F ′1(�). Then
T∗ is a saddle point of EV : V → R in the sense of Definition 4.1.

For applications to the Modica–Mortola problem, we will also need

Corollary 5.2. Suppose that n = 1, and that all assumptions of Theorem 5.1 hold. Then
T∗ is a saddle point of EV : V → R as defined in (3.10).

The proof of the corollary appears at the end of this section.
The nondegeneracy condition states in geometric language that there are no nontrivial

Jacobi fields associated with the segment connecting ψ−(0) and ψ+(0) and with natural
boundary conditions; this condition appears also in [16, 25, 6].

Since T∗ is by definition integer multiplicity rectifiable, the point of the assumption
T∗ ∈ R′1(�) is that we require T∗ to be a boundary. This holds if and only if ψ−(0) and
ψ+(0) belong to the same component of ∂�.

Recall that Definition 4.1 involves maps PWV : V → W and QVW : W → V ,
where W is a subset of some Euclidean space R`. Here ` will turn out to be the number
of negative eigenvalues of D2d0(0, 0).

5.1. Construction of PWV

Invoking the nondegeneracy assumption, let us denote the 2n not necessarily distinct
eigenvalues of the symmetric matrix D2d0(0, 0) by

λ1 ≤ · · · ≤ λ` < 0 < λ`+1 ≤ · · · ≤ λ2n. (5.5)
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Here we assume ` ∈ {0, . . . , 2n}. The case ` = 0 corresponds to a local minimum of
arclength. In this case, our arguments will show that the associated current T∗ is a local
minimizer of mass. This has been proved elsewhere when l = 0, under the assumption
that h− is concave and h+ convex near x = 0 [15, 24]. Below we adopt the convention
that when l = 0, R` = {0}.

We let A denote the 2n × 2n matrix having as column vectors an orthonormal basis
of eigenvectors for D2d0(0, 0) ordered as in (5.5). Then we introduce w = (w1, . . . , w`)

and ζ = (ζ1, . . . , ζ2n−`) through the relation

A

(
x

y

)
=

(
w

ζ

)
. (5.6)

We also define a linear mapping p : R2n
→ R` by

p(x, y) = w. (5.7)

Note from the construction that AAT = ATA = I . Also, from Taylor’s Theorem, we
have

d0(x, y) = d0

(
AT

(
w

ζ

))
= L+ λ1w

2
1 + · · · + λ`w

2
` + λ`+1ζ

2
1 + · · · + λ2nζ

2
2n−` + o(|w|

2, |ζ |2). (5.8)

The idea of the construction of PWV is as follows: Note that p : R2n
→ R` is a

projection onto the “unstable directions” of d0 near (0, 0), that is, onto directions associ-
ated with negative eigenvalues of D2d0. Given a current T near T∗, we would similarly
like to construct a projection onto an `-dimensional space of unstable directions for the
functional EV given by (5.1), which is a sort of extension of d0 to a much larger space.
Heuristically, we would like to define

PWV (T ) = p(x(T ), y(T )), (5.9)

where x(T ) is the “lower endpoint of T ” (in the coordinates we have been using for
∂�−), and y(T ) is the “upper endpoint.” Then for example, to verify condition (4.1) in
the definition of a saddle point, we would have to check that if T corresponds to a curve
near T∗ whose endpoints x(T ), y(T ) satisfy the constraint p(x(T ), y(T )) = 0, then this
curve is longer than L. This is immediate from (5.5), (5.7), (5.8).

However, (5.9) does not in general make sense for an arbitrary rectifiable 1-current
T , and even in cases when we can define what we mean by an upper and lower endpoint
of T , the map

T 7→ lower endpoint of T (5.10)

for example, is certainly not continuous in the V (flat) norm. To get around this, we
define Rn-valued 1-forms 8−,8+ such that, for example, T 7→ T (8−) is a smoothing
of (5.10), constructed by averaging the “x-coordinates” of T over level sets of the function
s−(X) = dist(X, ∂�−) for X ∈ � near ∂�−. Then we replace x(T ), y(T ) in (5.9) by
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T (8−), T (8+) to obtain a map PWV that is formally similar to (5.9) but well-defined
and continuous in suitable weak topologies.

To set up the definitions of these 1-forms, we will need a bit more notation. In partic-
ular, we will write ν±(x) := ±(−∇h±(x), 1)/(1+ |∇h±|2)1/2 for the outer unit normal
to ∂� at ψ±(x), and

9±(x, s) := ψ±(x)− sν±(x). (5.11)

For concreteness we assume that

h−(x) ≤ |x| ≤ L− |x| ≤ h+(x) in BR, (5.12)

and note that d0(0, 0) =M(T∗) = L. It is convenient to assume that R ≤ L/3. Appealing
to (5.8), we also assume, taking R smaller if necessary, that

d0(x, y) ≥ L− λ−|w|
2
+ λ+|ζ |2 for all (x, y) ∈ BR × BR (5.13)

for λ− = 2|λ1| and λ+ = 1
2λ`+1.

Next, after further shrinking R if need be, we fix s0 > 0 such that

9−, 9+ are diffeomorphisms of BR × (0, s0) onto their images, (5.14)

{X ∈ �R/2 : dist(X, ∂�±) < s0} ⊂ 9
±(B2R/3 × (0, s0)) (5.15)

and
|(∇x9

±)v| ≥
1
2
|v| in BR × (0, s0) for all v ∈ Rn. (5.16)

The last conditions are possible since ∇h±(0) = 0. (Here (∇x9±) v denotes matrix-
vector multiplication.)

At this point R and s0 are fixed once and for all.
We remark that it is easy to check that

∂xi9
±
· ∂s9

±
≡ 0 for i = 1, . . . , n and |∂s9

±
| ≡ 1 (5.17)

in BR × (0, s0).
Let X 7→ (x±(X), s±(X)) denote the inverse maps of 9±, so that

x−(9−(x, s)) = x, s−(9−(x, s)) = s, x+(9+(x, s)) = x, s+(9+(x, s)) = s

(5.18)

in BR × (0, s0). We set s± = 0, x± = 0 away from the set 9±
(
BR × (0, s0)

)
. Note that

on the image of 9±, s± is just the distance from ∂�±, and also that x±(X) = x if and
only 9±(x) is the unique closest point to X on ∂�.

Let η ∈ C∞c (BR) be a function such that η(x) = 1 if |x| < 2R/3 and 0 ≤ η ≤ 1 for
all x, and define ξ± : �→ BR ⊂ Rn by

ξ±(X) :=
{
η(x±(X))x±(X) if X ∈ 9±(BR × (0, s0)),
0 if not. (5.19)

Observe that the definitions and (5.15) imply that

ξ± = x± in {X ∈ �R/2 : dist(X, ∂�±) < s0}. (5.20)
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We next introduce a new positive parameter s1 < 1
2 s0, to be further specified later, and

we fix a smooth nonnegative function ω : R→ [0,∞) satisfying

supp(ω) ⊂⊂ (0, s1),
∫ s1

0
ω(s) ds = 1, ω ≤ 2/s1, (5.21)

and we define vector-valued 1-forms 8± = (φ±1 , . . . , φ
±
n ) by

8±(X) = ∓ξ±(X)ω(s±(X)) ds±. (5.22)

Note that 8± are smooth; the discontinuities of ξ± and s± occur away from the support
of 8±. Finally, we define

PWV (T ) := p(T (8−), T (8+)) for T ∈ F ′1(�). (5.23)

This should be viewed as a well-defined if more complicated realization of the heuristic
definition given in (5.9).

Note that if T is a current corresponding to a Lipschitz curve γ : I → �, then from
(2.4) we find that

T (8±) = ∓

∫
I

ξ±(γ (t))ω(s±(γ (t)))
d

dt
s±(γ (t)) dt. (5.24)

The interpretation of T (8−), for example, as an average of the “x-coordinate” of T over
level sets of s− can be extracted from (5.24) as follows: suppose for simplicity that γ
can be reparametrized near ∂�− in such a way that γ (s) = 9−(x(s), s) for some path
x(s) ∈ BR/2, s ∈ (0, s0). (This can be done if the original parametrization γ (t) moves
monotonically away from ∂�− with increasing t , and remains close to T∗.) When this
holds, it follows from (5.24) and the definitions that

T (8−) =

∫
ξ−(γ (s))ω(s) ds =

∫
x(s)ω(s) ds

which is an average of the x-coordinates, as asserted.
We point out that for T = T∗, one has T∗(8±) = 0 since x±(X) = 0 for X on the

line segment joining ψ−(0) to ψ+(0). Hence,

PWV (T∗) = 0. (5.25)

This represents the first requirement of Definition 4.1.
We turn next to checking the continuity of the map PWV . In fact, we will establish

that PWV : V → W is Lipschitz continuous since this will imply the extra requirement
(4.5) of Theorem 4.4, to be needed later.

Lemma 5.3. There exists a constant C (depending on R, s0, ∂� but independent of s1)
such that for all T , T ′ ∈ F ′1(�) one has

|PWV (T )− PWV (T
′)| ≤

C

s1
F(T − T ′). (5.26)
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One can check that (5.26) holds with C = 3 max{‖∇ξ−‖∞, ‖∇ξ+‖∞}.

Proof. Given T and T ′ in F ′1(�), we can find S such that ∂S = T − T ′ and M(S) ≤

2F(T − T ′). Then

|T (8−)− T ′(8−)| = |(T − T ′)(8−)| = |∂S(8−)| = |S(d8−)| ≤ ‖d8−‖∞M(S).

Recalling (5.19), (5.21) and (5.22), one finds that

d8−(X) = ω(s−(X))
∂ξ−(X)

∂Xi

∂s−(X)

∂Xj
dXi ∧ dXj ,

so that ‖d8−‖∞ ≤ C/s1, with C independent of s1. Hence,

|T (8−)− T ′(8−)| ≤
C

s1
F(T − T ′).

The same argument applies also to8+. Finally, it is clear from the definitions (5.6), (5.7)
and (5.23) that

|PWV (T )− PWV (T
′)| ≤ C(|T (8−)− T ′(8−)| + |T (8+)− T ′(8+)|),

so (5.26) follows from the above estimates. ut

5.2. Verification of (4.1)

The main part of the proof of Theorem 5.1 consists in verifying that T∗ is a strict local
minimizer of mass in the flat norm topology among competitors in the set {T ∈ R′1(�) :
PWV (T ) = PWV (T∗) = 0} with PWV given by (5.23); this is condition (4.1) in our
definition of a saddle point.

This is the content of the following proposition.

Proposition 5.4. There exists a positive number δ0 such that if T ∈ R′1(�) satisfies the
conditions

F(T − T∗) < δ0 PWV (T ) = PWV (T∗) = 0 and M(T ) ≤M(T∗) (5.27)

for PWV given by (5.23), then
T = T∗. (5.28)

Given a current T satisfying (5.27), we begin the proof of Proposition 5.4 by arguing
that we can modify it in order to be able to assume certain good properties. Our first
lemma allows us to replace T by a current corresponding to a single Lipschitz curve that
is uniformly close to T∗:
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Lemma 5.5. There exists a constant c such that, for any r ∈ (0, R), if δ0 < cr2 and
T ∈ R′1(�) satisfies (5.27), then there exists a 1-current T ′ ∈ R′1(�) that consists of a
single Lipschitz curve starting in Cr ∩ ∂�−, ending in Cr ∩ ∂�+, and satisfying

suppT ′ ⊂ �̄r , (5.29)
M(T − T ′) =M(T )−M(T ′). (5.30)

Proof. We will show that the conclusions of the lemma hold with c = 1/400. Thus, we
fix any r ∈ (0, R), and we assume that

δ0 <
1

400
r2. (5.31)

Then we will prove the existence of a current T ′ satisfying (5.29) and (5.30). We should
mention that the proof never uses the property PWV (T ) = PWV (T∗) = 0 of (5.27).

Step 1. First, in view of (5.27), there exists a 2-current S such that

∂S = T − T∗ in �, M(S) < δ0.

For X = (x, xn+1) ∈ �, let pn+1(X) = xn+1. Writing 〈S, pn+1, s〉 as usual to denote a
slice of S by a level set of pn+1, note that

∂〈S, pn+1, s〉 = 〈∂S, pn+1, s〉 = 〈T , pn+1, s〉 − 〈T∗, pn+1, s〉 = 〈T , pn+1, s〉 − δ(0,s)
(5.32)

for a.e. s ∈ (0, L), since it is clear from (2.10) and our geometric assumptions (see in
particular (5.12)) that 〈T∗, pn+1, s〉 = δ(0,s) for such s. Then (2.11) implies that∫

M(〈S, pn+1, s〉) ds ≤M(S) < δ0, (5.33)

so that in particular, M(〈S, pn+1, s〉) <∞ for a.e. s.

Step 2. We define the sets

60 := {s ∈ (0, L) : M(〈T , pn+1, s〉 x�r/2) = 0},
61 := {s ∈ (0, L) : M(〈T , pn+1, s〉) =M(〈T , pn+1, s〉 x�r/2) = 1},
62 := {s ∈ (0, L) : M(〈T , pn+1, s〉) ≥ 2}.

Recall that if T is a current and B a Borel set, then T xB denotes the restriction of T
to B, defined in (2.3). For a.e. s ∈ 61, T intersects the level set p−1

n+1(s) exactly once, at
a point within distance r/2 of T∗. This is a good property, and our goal for now is to show
that 61 is large.

Note that for any s ∈ (0, L) such that 〈T , pn+1, s〉 is well-defined, one has s 6∈ 61 if
and only if s ∈ 60 ∪62, though 60 and 62 are not necessarily disjoint. Thus

|60| + |61| + |62| ≥ L =M(T∗) ≥M(T ). (5.34)

So to prove that |61| is large, it suffices to show that |60| and |62| are small.
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We first consider 60. For a.e. s ∈ 60, it follows from (5.32) and the definition of 60
that ∂〈S, pn+1, s〉 x�r/2 = −δ(0,s). Then, by applying Lemma 2.3 to Q = 〈S, pn+1, s〉

we find that
M(〈S, pn+1, s〉) ≥ dist((0, s), ∂�r/2).

Assumptions (5.2) and (5.12) imply that

dist((0, s), ∂�r/2) ≥
1
2

min{r, s, L− s}

for s ∈ (0, L). Thus

M(〈S, pn+1, s〉) ≥
1
2

min{r, s, L− s} for a.e. s ∈ 60.

Comparing this with (5.33), we find that δ0 ≥
1
2

∫
60

min{s, r, L − s} ds. To estimate the
right-hand side from below, note that the integral decreases if we replace 60 with the
set (0, |60|/2) ∪ (L − |60|/2, L) of the same measure but concentrated near the ends
of the interval (0, L), where the integrand min{s, r, L − s} is smallest. This leads to the
inequality

δ0 ≥
1
2

∫
60

min{s, r, L− s} ds ≥
∫
|60|/2

0
min{s, r, L− s} ds

=

∫
|60|/2

0
min{s, r} ds ≥

1
8

min{|60|
2, r2
}.

Since we have assumed that δ0 < r2/400, it must be the case that the right-hand side
above is smaller than r2/8, hence that

|60| = min{|60|, r} ≤ 3
√
δ0. (5.35)

Step 3. Next, note that

M(T ) ≥

∫ L

0
M(〈T , pn+1, s〉) ds ≥ |61| + 2|62|.

Combining this with (5.34), we see that |62| ≤ |60| ≤ 3
√
δ0, and hence that

|61| ≥ L− 9
√
δ0. (5.36)

Also, from the definition of 61,

M(T x�r/2) ≥
∫
61

M(〈T , pn+1, s〉 x�r/2) ds = |61| ≥ L− 9
√
δ0.

Thus, since M(T ) ≤ L, we have

M(T x (� \�r/2)) ≤ 9
√
δ0. (5.37)
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Step 4. Now write T as a sum T =
∑
Ti of indecomposable currents (so that each is the

current associated with integration over a Lipschitz curve) and∑
M(Ti) =M(T ) ≤ L,

∑
M(∂Ti) =M(∂T ) = 0. (5.38)

Now if for some i one has supp(Ti) ∩ �r/2 6= ∅, then we claim that our choice of δ0
guarantees this Ti satisfies

supp(Ti) ⊂ �r . (5.39)

To see this, note that any indecomposable Ti whose support intersects both �r/2 and
� \ �r must correspond to a curve that stretches between these two sets, and therefore
has arclength at least r/2 outside �r/2. It would follow that

M(Ti x (� \�r/2)) ≥ r/2,

which contradicts (5.37) in light of our assumption (5.31) that δ0 < r2/400.

Step 5. Let γi denote the Lipschitz curves associated with the currents Ti in the decom-
position T =

∑
Ti . Then for any positive integer j , let

61,j :=
{
s ∈ 61 :

∑
i

H0(γi ∩ p
−1
n+1(s)) = j

}
.

We claim that
|61,1| ≥ L− 18

√
δ0. (5.40)

(In fact |61,1| = |61|, but this is a bit harder to prove.) The explicit formula (2.10) for
the slice of an indecomposable 1-current implies for a.e. s that

M(〈T , pn+1, s〉) ≤
∑
i

M(〈Ti, pn+1, s〉) =
∑
i

H0(γi ∩ p
−1
n+1(s)).

It follows that
∑
i H0(γi ∩ p

−1
n+1(s)) ≥ 1 for a.e. s ∈ 61, and hence that

∞∑
j=1

|61,j | = |61| ≥ L− 9
√
δ0. (5.41)

Now we essentially repeat arguments from Step 3: we compute

L ≥M(T ) =
∑
i

M(Ti) =
∑
i

H1(γi) ≥

∫
61

∑
i

H0(γi ∩ p
−1
n+1(s)) ds

=

∞∑
j=1

j |61,j | ≥ |61,1| + 2
∞∑
j=2

|61,j |.

Together with (5.41), this implies (5.40).

Step 6. Our assumptions (5.12) about the geometry of �R imply that if s ∈ (R, 2R) ⊂
(R,L−R), then p−1

n+1(s) separates the two components ∂�− and ∂�+ of �̄R∩∂�. Using
the Lebesgue differentiation theorem, we may pick a value s to be a point of density of
the set 61,1 ∩ (R, 2R); this is possible since |(0, L) \ 61,1| ≤ 18

√
δ0 < r ≤ R, from
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Step 5 and our choice of δ0. Let γi be the Lipschitz curve that intersects p−1
n+1(s); there

is a unique such curve due to the definition of 61,1. Since s ∈ 61, the point at which γi
intersects p−1

n+1(s) must be in �r/2. Therefore, by (5.39), γi is entirely contained in �r .
Since ∂Ti = 0, γi must either be a closed loop, or start and end in ∂�. The former is
impossible unless γi meets the hyperplane p−1

n+1(s) tangentially in view of the fact that
γi intersects p−1

n+1(s) exactly once. But this too is impossible since 61,1 has nonempty
intersection with every neighborhood of s, forcing such a loop γi to intersect some nearby
hyperplane p−1

n+1(s
′) at least twice. Thus, it follows from the choice of s that γi must run

from ∂�− through �r to ∂�+.

Step 7. We finally define T ′ to be the indecomposable current Ti associated with the
Lipschitz curve γi from the previous step. Then we have proved (5.29), and (5.30) follows
from (5.38). ut

Having proved Lemma 5.5, we now turn to the proof of Proposition 5.4, which is the
central part of the proof of Theorem 5.1.

Proof of Proposition 5.4.

Step 1. Recall that s0 is a number, depending on the geometry of ∂�, that was fixed in
(5.14), (5.15), (5.16), and that the definition of PWV involves a small parameter s1 ≤ 1

2 s0.
This parameter will be required to satisfy conditions (5.45), (5.58), (5.60), appearing in
the proof below.2

We next select a small parameter r as follows: Note that since the map
(
x
y

)
7→

(
w
ζ

)
is

an isometry, it follows from (5.13) that d0(x, y) ≥ L − 2λ−r2 for all (x, y) ∈ Br × Br .
We fix r such that r ≤

√
s1/2λ−, so that

dist(Cr ∩ ∂�−, Cr ∩ ∂�+) ≥ L− s1. (5.42)

We also insist that r ≤ R/2, so that the maps x±, s± are defined for points in �r that are
within distance s0 of ∂�, using (5.15).

Having fixed r , we take δ0 < cr2 for the small number c from Lemma 5.5 (in fact we
have shown that c = 1/400 is small enough). We will prove that the conclusions of the
proposition hold for this δ0.

Now let T be a current satisfying the hypotheses (5.27). Applying Lemma 5.5 for
the above choice of δ0, we obtain a current T ′ corresponding to a single Lipschitz curve
supported in �r and satisfying (5.30). Let γ : [0, L′] → �̄r denote the corresponding
Lipschitz curve, parametrized by arclength.

Step 2. We will write δ1 := M(T∗) − M(T ′), with δ1 ≥ 0 by assumption. (We will
eventually show that δ1 = 0.) Note from (5.30) and (5.42) that

L′ =M(T ′) = length(γ ) ≥ dist(Cr ∩ ∂�−, Cr ∩ ∂�+) ≥ L− s1 (5.43)

by (5.42). In particular, it follows that δ1 ≤ s1.

2 One can check that s1 =
1
2 min{s0, d�, 1/(10λ−(‖∇ξ±‖∞C�)2), 1/(104λ−)} satisfies the

stated conditions, where d� and C� are defined in Lemma 2.2, ξ± are defined in (5.19), and
‖∇ξ±‖∞ denotes max{‖∇ξ−‖∞, ‖∇ξ+‖∞}.
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Then by (5.27) and (5.30),

M(T − T ′) =M(T )−M(T ′) ≤M(T∗)−M(T ′) = δ1 ≤ s1. (5.44)

We additionally impose the condition

s1 < d� (defined in the statement of Lemma 2.2), (5.45)

and then it follows from Lemma 2.2 that F(T − T ′) ≤ C�M(T − T ′)2. Recalling that
PWV (T ) = PWV (T∗) = 0, we see from Lemma 5.3 and (5.44) that

|PWV (T
′)| = |PWV (T

′
− T )| ≤

C

s1
F(T − T ′)

≤
C

s1
M(T − T ′)2 ≤

C

s1
δ2

1 ≤ C
√
δ1
√
s1. (5.46)

Here the constant depends on ∂�,R and s0 but is independent of s1.

Step 3. Recall that γ (0) ∈ ∂�− and γ (L′) ∈ ∂�+. Define

τ− := max{t > 0 : dist(γ (t), ∂�−) ≤ s1}

τ+ := max{t > 0 : dist(γ (L′ − t), ∂�+) ≤ s1}.

Using (5.42) we see that

L− s1 ≤ dist(Cr ∩ ∂�−, Cr ∩ ∂�+)

≤ dist(Cr ∩ ∂�−, γ (τ−))+ |γ (τ−)− γ (L′ − τ+)|

+ dist(γ (L′ − τ+), Cr ∩ ∂�+)

= |γ (τ−)− γ (L′ − τ+)| + 2s1.

Also, since γ is parametrized by arclength,

L ≥ L′ ≥ τ− + |γ (τ−)− γ (L′ − τ+)| + τ+.

By combining these we find that τ− + τ+ ≤ 3s1. Again, because of the arclength
parametrization, τ−, τ+ ≥ s1, so we conclude that

τ+, τ− ≤ 2s1. (5.47)

Step 4. In particular, dist(γ (t), ∂�) ≤ 2s1 ≤ s0 for t ∈ (0, τ−) ∪ (L′ − τ+, L′). This
together with the fact that γ (t) ∈ �r for all t , our assumption r ≤ R/2, and (5.15),
implies for example that γ (t) ∈ 9−(BR×(0, s0)) for t ∈ (0, τ−). We will abuse notation
somewhat and write

x−(t) = x−(γ (t)) ∈ Br , s−(t) = s−(γ (t)) ∈ [0, 2s1],

for t ∈ [0, τ−], and similarly

x+(t) = x+(γ (L′ − t)), s+(t) = s+(γ (L′ − t))
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for t ∈ [0, τ+]. These are Lipschitz functions, since x± and s± are smooth and γ is
Lipschitz. We differentiate the relation γ (t) = 9−(x−(t), s−(t)) to find that

γ ′(t) = ∇x9
−
dx−

dt
+
∂9−

∂s

ds−

dt
= ∇x9

−
dx−

dt
− ν−(x−)

ds−

dt
.

Squaring both sides and using (5.15), (5.17), we find that

1 = |γ ′|2 =
∣∣∣∣∇x9− dxdt −

∣∣∣∣2 + (dsdt −
)2

≥
1
4

∣∣∣∣dxdt −
∣∣∣∣2 + (dsdt −

)2

. (5.48)

Step 5. Next, note that for any t− ∈ [0, τ−] and t+ ∈ [0, τ+], since γ is parametrized
by arclength,

M(T ′) = L′ ≥ t− + t+ + |γ (t−)− γ (L′ − t+))|. (5.49)

Also, note from the definitions that for example

|9(x−(t−), 0)− γ (t−)| = |9(x−(t−), 0)−9(x−(t−), s−(t−))| = s−(t−),

so the triangle inequality implies that

d0(x
−(t−), x+(t+)) = |9(x−(t−), 0)−9(x+(t+), 0)|

≤ s−(t−)+ |γ (t−)− γ (L′ − t+))| + s+(t+). (5.50)

Combining this with (5.49) and recalling the notation δ1 =M(T∗)−M(T ′), we find that

−δ1 ≥ [t− − s−(t−)]+ [t+ − s+(t+)]+ [d0(x
−(t−), x+(t+))− L].

For (t−, t+) ∈ [0, τ−]× [0, τ+], we define w(t−, t+), ζ(t−, t+) by(
w(t−, t+)

ζ(t−, t+)

)
= A

(
x−(t−)

x+(t+)

)
, (5.51)

for A from (5.6). Then we deduce from (5.13) that

[t− − s−(t−)]+ [t+ − s+(t+)]+ δ1 ≤ λ−|w(t
−, t+)|2 − λ+|ζ(t

−, t+)|2. (5.52)

Step 6. Now we claim that

s−(t−)2 +
1
4
|x−(0)− x−(t−)|2 ≤ (t−)2 (5.53)

and similarly (s+)2 + 1
4 |x
+(0) − x+|2 ≤ (t+)2. This follows from (5.48), which can be

rewritten ∣∣∣∣ ddt
(

1
2
x−, s−

)∣∣∣∣ ≤ 1
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for all t− ∈ (0, τ−]. Thus∣∣∣∣(1
2
x−(t−), s−(t−)

)
−

(
1
2
x−(0), 0

)∣∣∣∣ = ∣∣∣∣∫ t−

0

d

dt

(
1
2
x−, s−

)
dt

∣∣∣∣
≤

∫ t−

0

∣∣∣∣(1
2
dx−

dt
,
ds−

dt

)∣∣∣∣ dt ≤ t−.
This is (5.53).

Step 7. Since the map
(
x
y

)
7→

(
w
ζ

)
is a linear isometry,

|w(0, 0)− w(t−, t+)|2 ≤ |x−(0)− x−(t−)|2 + |x+(0)− x+(t+)|2.

Thus, by adding (5.53) and its counterpart for t+, s+ etc., we obtain

1
4
|w(0, 0)− w(t−, t+)|2 ≤ [(t−)2 − (s−)2]+ [(t+)2 − (s+)2]. (5.54)

Step 8. Next we will use the constraint (5.46) to show that we can find some (t−, t+)
such that

|w(t−, t+)| ≤ C|w(0, 0)− w(t−, t+)| (5.55)

for some absolute constant C. This is the key point in the proof.3 We use (5.20) to rewrite
T ′(8−) (see (5.24)) in the form

T ′(8−) =

∫ τ−

0
x−(t)f−(t)dt, f−(t) = ω(s−(t))

d

dt
s−(t).

We define f+ in a similar way. A change of variables and the definition (5.21) of ω show
that ∫ τ−

0
f−(t−) dt− = 1,

and (5.47), (5.48) and (5.21) imply that∫ τ−

0
|f−(t−)| dt− ≤ τ−‖f−‖∞ ≤ τ

−
‖ω‖∞ ≤ 4.

The same estimates hold for f+. Now, since p : R2n
→ R` is linear,

PWV (T
′) = p(T ′(8−), T ′(8+))

=

∫ τ+

0

∫ τ−

0
p(x−(t−), x+(t+))f−(t−)f+(t+) dt− dt+

=

∫ τ+

0

∫ τ−

0
w(t−, t+)f−(t−) f+(t+) dt− dt+. (5.56)

3 To understand the idea, suppose for simplicity that δ1 = 0 and that f+, f− are nonnegative.
The constraint then forces certain averages ofw(·, ·) to vanish, as follows from (5.56). In particular,
this implies that w(·, ·) must leave the halfspace {w′ ∈ R` : w′ · w(0, 0) > 0}, and (5.55), with
C = 1 say, can be deduced from this.
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We assume that w(0, 0) 6= 0—otherwise (5.55) is obvious—and we write η :=
w(0, 0)/|w(0, 0)|. By taking t− = t+ = 0 in (5.52) we find that

|w(0, 0)| ≥ (δ1/λ−)
1/2.

We combine the above inequality with (5.46), to see that

|η · PWV (T
′)| ≤ C

√
δ1
√
s1 ≤ C

√
s1
√
λ−|w(0, 0)| (5.57)

where C is independent of s1. We now require that

s1 ≤
1

4C2λ−
, for the same C as in (5.57). (5.58)

Then |η · PWV (T ′)| ≤ 1
2 |w(0, 0)|, and so

1
2
|w(0, 0)| ≤ |w(0, 0)| − η · PWV (T ′) = η · [w(0, 0)− PWV (T ′)]

≤ η ·

∫ τ+

0

∫ τ−

0
[w(0, 0)− w(t−, t+)]f−(t−) f+(t+) dt− dt+

≤

∫ τ+

0

∫ τ−

0
|w(0, 0)− w(t−, t+)||f−(t−)| |f+(t+)| dt− dt+

≤ 16 max{|w(0, 0)− w(t−, t+)| : t− ∈ [0, τ−], t+ ∈ [0, τ+]}.

In other words,
|w(0, 0)| ≤ 32|w(0, 0)− w(t−, t+)|

for some (t−, t+). It follows that

|w(t−, t+)| ≤ |w(t−, t+)− w(0, 0)| + |w(0, 0)| ≤ 33|w(0, 0)− w(t−, t+)|

at the same point (t+, t−), proving (5.55).

Step 9. Now by combining (5.52), (5.55), and (5.54), we find that

(t− − s−)+ (t+ − s+) ≤ Cλ−[((t−)2 − (s−)2)+ ((t+)2 − (s+)2)]

for some numerical constantC. From (5.47) we have ((t−)2−(s−)2) = (t−−s−)(t−+s−)
≤ 4s1(t− − s−) for example, so the above reduces to

(t− − s−)+ (t+ − s+) ≤ Cλ−s1[(t− − s−)+ (t+ − s+)]. (5.59)

We now require that

s1 ≤
1

2Cλ−
for the same C as in (5.59). (5.60)

Then
t− = s−(t−), t+ = s+(t+).
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Step 10. Now (5.54) implies that w(0, 0) = w(t−, t+) for the point (t−, t+) consid-
ered above. Since this same point also satisfies (5.55), we conclude that w(0, 0) =
w(t−, t+) = 0. Then (5.52) (evaluated at (t−, t+) = (0, 0)) implies that δ1 = 0 and
that ζ(0, 0) = 0.

Then (5.51) implies that x−(0) = 0 and x+(0) = 0.
Undoing the notation, this means that the curve γ starts at the point (0, 0) and ends at

the point (0, L). Since the length of the curve is at most L, it must consist of the straight
segment joining these two points.

Since T∗ is exactly the current corresponding to integration over this segment, it fol-
lows that T ′ = T∗.

Finally, recall that at the first step of this proof, we used Lemma 5.5 to replace a given
current T by a current T ′ with better properties; all of our arguments since then have dealt
with T ′. So to finish the proof we must show that T = T ′. This is easy, however, since
from (5.30),

M(T − T ′) =M(T )−M(T ′).

By hypothesis, M(T ) ≤ M(T∗) = M(T ′), so we conclude that M(T − T ′) ≤ 0, and
hence that T = T ′. ut

5.3. Construction of QVW . Verification of (4.2)–(4.4)

To complete the proof of Theorem 5.1, it remains to construct a continuous map QVW

satisfying the conditions (4.2)–(4.4) of Definition 4.1. For this purpose, we introduce
the notation Txy to denote the element of R′1(�) corresponding to the multiplicity one,
oriented line segment joining ψ−(x) to ψ+(y). Note that with this notation, one has
T∗ = T00.

For given w ∈ R` with |w| small, we would like to find values x(w) and y(w) in Rn
such that the 1-current Tx(w)y(w) can be used as a definition of QVW (w). For this to be
successful, we will in particular need to fulfill requirement (4.3), which reads

A

(
Tx(w)y(w)(8

−)

Tx(w)y(w)(8
+)

)
=

(
w

0

)
, (5.61)

in light of the definition (5.23) of PWV .

Lemma 5.6. There exists a positive number a and C1 functions x(w) and y(w) defined
for w ∈ Ba ⊂ R` such that (5.61) holds.

Proof. We define

F(x, y) =

(
Txy(8

−)

Txy(8
+)

)
.

Note that F(0, 0) = (0, 0) ∈ Rn × Rn. If we can show that F is invertible near (0, 0),
then (since A is nonsingular) we can define (x(w), y(w)) by

(x(w), y(w)) = F−1
(
A−1

(
w

0

))
. (5.62)
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Then (5.61) follows immediately. We check the local invertibility of F at (0, 0) using the
Inverse Function Theorem. Since it is clear that F is C2, it suffices to check that

DxyF =

(
DxTxy(8

−) DyTxy(8
−)

DxTxy(8
+) DyTxy(8

+)

)
is nonsingular (5.63)

when evaulated at x = y = 0. A rather lengthy calculation shows that(
DxTxy(8

−) DyTxy(8
−)

DxTxy(8
+) DyTxy(8

+)

)
=

(∫ s1
0 B−(t)(1− t/L)ω(t)dt

∫ s1
0 B−(t)(t/L)ω(t)dt∫ s1

0 B+(t)(t/L)ω(t)dt
∫ s1

0 B+(t)(1− t/L)ω(t)dt

)
, (5.64)

where B±(t) = [I − tD2h±(0)]−1.
From the definition of B− and B+ one sees that B± = I +O(t) with a bound on the

error depending on D2h±(0). Recalling that ω is supported in the interval [0, s1], with∫ s1
0 ω(t)dt = 1, we infer that

DxyF =

(
I 0
0 I

)
+O(s1) (5.65)

where O(s1) denotes a matrix whose entries are all bounded above and below by Cs1,
with the constant C depending on D2h±(0) and L. Thus it is clear that the nullspace of
DxyF(0, 0) is trivial if s1 is taken to be small enough. Consequently, we have condition
(5.63) satisfied so we conclude that for some a > 0, there do indeed exist C1 functions
x = x(w) and y = y(w) defined on Ba ⊂ R` and taking values in Rn such that (5.61) is
satisfied. ut

We are now prepared to define QVW : W → V = F ′1 by

QVW (w) := Tx(w)y(w). (5.66)

Taken in conjunction with Lemma 5.3 and Proposition 5.4, the following proposition
establishes Theorem 5.1.

Proposition 5.7. There exists a number a1 > 0 such that for W = Ba1 ⊂ R` and
V = F ′1(�), the map QVW given by (5.66) is continuous. Furthermore, with PWV given
by (5.23) and saddle point vs = T∗ (= T00 in the notation of (5.66)), the conditions
(4.2)–(4.4) are satisfied.

Proof. We first verify the assertion of continuity. To this end, given w1 and w2 in Ba ⊂
R` (with a provided by Lemma 5.6), let 0−w1w2

be the 1-current corresponding to the
shortest (oriented) curve along ∂�− joining the point ψ−(x(w2)) to ψ−(x(w1)) and let
0+w1w2

be the 1-current corresponding to the shortest curve along ∂�+ joining the point
ψ+(y(w1)) to ψ+(y(w2)). Then let Sw1w2 be the oriented, multiplicity one 2-current
corresponding to the surface of least area such that in �̄ one has ∂Sw1w2 = Tx(w1)y(w1) +
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0+ − Tx(w2)y(w2) + 0
−. Since w → x(w) and w → y(w) are continuous it is clear that

M(Sw1w2)→ 0 as w2 → w1. Hence, F(QVW (w2)−QVW (w1))→ 0 as well.
Next we note that conditions (4.2) and (4.3) follow immediately in light of (5.61),

along with (5.25).
To check the last condition (4.4), we fix any w ∈ Ba1 \ {0} and first note that for

EV given by (5.1) one has EV (QVW (w)) = d0(x(w), y(w)) (cf. (5.3)). Let us write(w̃
ζ̃

)
= A

(
x(w)
y(w)

)
. Then (5.8) implies that

EV (QVW (w))− EV (T00) = d0(x(w), y(w))− L ≤ −3−|w̃|
2
+3+|ζ̃ |

2 (5.67)

for 3− = 1
2 |λ`| > 0 and 3+ = 2|λ2n| > 0. Since F is C2, (5.65) implies that DF−1

=(
1 0
0 1

)
+O(s1) is a neighborhood of

(0
0

)
. Recall also that F−1((0

0

))
=
(0

0

)
. Thus the Mean

Value Theorem implies that
∣∣F−1((x

y

))
−
(
x
y

)∣∣ ≤ Cs1∣∣(xy)∣∣ for x, y in a neighborhood of
(0, 0). It follows from this and (5.62) that(

w̃

ζ̃

)
= A

(
x(w)

y(w)

)
= AF−1

(
A−1

(
w

0

))
=

(
w

0

)
+O(s1|w|).

Choosing s1 small enough, it follows that the right-hand side of (5.67) is negative, which
is what we needed to check. ut

Finally, we prove Corollary 5.2, stated earlier, which adapts the above results to the func-
tional arising as the 0-limit of the Modica–Mortola functional.

Proof of Corollary 5.2. For the duration of this proof only, let us write EV,MM to denote
the functional defined in (3.10), arising as the 0-limit of the Modica–Mortola functional,
and EV,GL for the 2-dimensonal case of the functional defined in (5.1). The only differ-
ence between these two functionals is that

V0,MM := {T : EV (T ) <∞} ⊂ V0,GL := {T : EV,GL(T ) <∞}.

To see this, recall that every T ∈ V0,MM has the form T = ?dv/2 for some v ∈
BV (�; {±1}). Then it follows from basic facts recalled in Section 2.2 (see for example
(2.17), (2.14)) and the definition (2.7) of R′1(�) that T ∈ R′1(�) = V0,GL. Although we
do not need it here, note also that the inclusion is strict, since for example every element
of V0,MM is a current with constant multiplicity 1, whereas R′1(�) = V0,GL contains
currents of arbitrary integer multiplicity.

In particular, EV,MM(T ) = EV,GL(T ) for T ∈ V0,MM , and EV,GL(T ) ≤ EV,MM(T )
for all T . By inspection of the definition of saddle point, we then find that to deduce
the corollary from the theorem, it suffices to check that QVW (w) ∈ V0,MM for all suffi-
ciently small w (and in particular for T∗). This is clear however from the definition (5.66)
of QVW . ut
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6. Some applications

In principle, it should be possible to combine the general asymptotic minmax result, The-
orem 4.4, with the description in Theorem 5.1 of critical points of the functional EV
as defined in (5.1), to prove existence results for a very large number of examples of
functionals that 0-converge to an energy of the form of EV , that is, an energy involving
the arclength of an asymptotic singular set. In this section we carry this out for several
examples, as described in the introduction.

Throughout this section, we assume that � ⊂ Rn+1 is bounded, and ∂� is C3. In
order to bypass some technicalities we also assume that there exists some R > 0 such
that

{(x, xn+1) ∈ � : |x| < R} consists of a single connected component. (6.1)

This component agrees with �R as defined in the last section. We continue to use other
notation introduced in the previous section, and we also assume throughout this section
that (5.4) holds, so that (0, 0) is a nondegenerate critical point of the function d0 as defined
in (5.3).

We give more or less exactly the same proof in every case. (The Ginzburg–Landau
functional with magnetic field requires a bit of extra work, since we must also adapt 0-
convergence results from the literature.) We begin with the 3d Ginzburg–Landau energy:

Theorem 6.1. Assume that � is a bounded domain in R3 with C3 boundary and that
(6.1) holds. Assume that the distance function d0 given by (5.3) has a nondegenerate
critical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′1(�) correspond to the oriented
line segment joining ψ−(0) to ψ+(0). Then there exists a value ε0 > 0 such that for all
ε < ε0, the Ginzburg–Landau energy EεU as defined in (3.11) possesses a critical point
uε and EεU (uε)→ EV (T∗) as ε→ 0 for EV given by (3.13).

Remark 6.2. As noted earlier in Remark 4.5, the abstract existence result Theorem 4.4
that we are invoking cannot predict, in general, the closeness of the sequence of critical
points to the saddle point of the 0-limit. One might hope that in the particular case of the
Ginzburg–Landau energy, this closeness could be established, but we do not see an easy
path to such a conclusion. One can invoke Theorem 1 of [7] to assert that the sequence
of varifolds associated with the critical points uε converges to a stationary 1-rectifiable
varifold, but it does not seem to be easy to relate this limiting varifold to the given current
corresponding to a saddle point of arclength. One problem is the difficulty of controlling
the multiplicity of the limiting varifold, and the related issue of possible cancellations in
the passage to the limit in the sense of currents.

Proof. We recall that for the Ginzburg–Landau example, U = H 1(�;C), V = F1(�)

and again W = Ba1 ⊂ R` for l ∈ {0, 1, 2, 3, 4}. The fact that EεU 0-converges to EV is
the content of Theorem 3.2. Recall that the map P εVU : H 1(�;C)→ F ′1(�) in this case
is again independent of ε and is given by PVU (u) = ?Ju/π (cf. (3.12)). The mapping
Qε
UW corresponding to the recovery sequence construction will be described below. The

Palais–Smale condition is verified in Proposition 3.3.
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We recall that for the case l = 0, we have adopted the convention that R0 denotes {0}
so that in particular, PWV is trivial in this case. For l ∈ {1, 2, 3, 4}, we define the map
PWV via (5.23) and we define QVW via the formula QVW (w) = Tx(w)y(w), where we
recall that Tx(w)y(w) is the element of R′1(�) corresponding to the directed line segment
joining ψ−(x(w)) to ψ+(y(w)) and x(w) and y(w) are defined through the condition
(5.61). We observe that T∗ (= T00) is a saddle point of EV in light of Theorem 5.1. We
can also appeal to Lemma 5.3 to see that the uniform continuity condition (4.5) is met.

We now verify (4.6)–(4.8). In light of Remark 4.6, we will only need to construct the
mapping Qε

UW := Qε
UV ◦ QVW defined for w ∈ W . In other words, we only require a

recovery sequence for the case of a straight interface. To define the mapping Qε
UW , we

first introduce some auxiliary functions. For w ∈ Ba1 ⊂ R`, letOw : R3
→ R3 be a rigid

motion of R3 (that is, a combination of a translation and a rotation) that maps the line
passing through ψ−(x(w)) and ψ+(y(w)) onto the x3 coordinate axis {(0, x3) : x3 ∈ R}.
We always assume that (X,w) 7→ Ow(X) is C1; this is clearly possible, since w 7→
(x(w), y(w)) is C1. We take uεw to have the form

uεw(X) = v
ε(Ow(X)) with vε(X) = vε(x, x3) = q

ε(x) (6.2)

where

qε(x) =

{
x/ε if |x| ≤ ε,
x/|x| if not.

(6.3)

We also write u0
w(X) = v

0(Ow(X)), where v0(X) = q0(x) := x/|x|.
The smoothness of w 7→ Ow implies that (4.6) holds, in other words that w 7→ uεw is

continuous for every ε.
The verification of (4.7) follows by noting first that the 1-current Tx(w)y(w) satisfies

the relation
?J (u0

w) = πTx(w)y(w)

(cf. (2.20)). Then through an appeal to (2.21) we have

‖P εVU ◦Q
ε
UW (w)−QVW (w)‖V =

1
π

F(?J (uεw)−?J (u
0
w)) ≤

1
2π
‖j (uεw)−j (u

0
w)‖L1(�).

By a change of variables, since Ow is a rigid motion,

‖j (uεw)− j (u
0
w)‖L1(�) = ‖j (v

ε)− j (v0)‖L1(Ow(�))
. (6.4)

Recalling the definition of (2.19) of j (·), we compute

j (vε)(X)− j (v0)(X) ≤ C/|x|.

Since vε = v0 when |x| > ε, it is also clear that the set {X ∈ Ow(�) : j (vε)(X) −
j (v0)(X) 6= 0} is contained in a cylinder of radius ε and length at most diam(�), so
it is easy to see that the right-hand side of (6.4) is bounded by Cε diam(�). Thus (4.7)
follows.

It remains to verify (4.8). This follows from inspection of the argument on pages 110–
111 of [24]. We give a slightly different argument here, which can and will be repeated
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with very few changes for every example we consider in this section. Changing variables
as in (6.4), we find that

EεU (u
ε
w) =

1
π |ln ε|

∫
Ow(�)∩{(x,x3) : |x|≤|ln ε|−1}

(
|∇vε|2

2
+
(|vε|2 − 1)2

4ε2

)
dX

+
1

π |ln ε|

∫
Ow(�)∩{(x,x3) : |x|>|ln ε|−1}

(
|∇vε|2

2
+
(|vε|2 − 1)2

4ε2

)
dX

= E1 + E2. (6.5)

A short calculation shows that

1
π |ln ε|

∫
{x∈R2 : |ln ε|−1≤|x|≤diam(�)}

(
|∇qε|2

2
+
(|qε|2 − 1)2

4ε2

)
dx ≤ C

ln(|ln ε|)
|ln ε|

for a constant depending on diam(�). This implies E2 ≤ C diam(�) ln(|ln ε|)
|ln ε| . This bound

is independent of w.
To estimate the other term E1 from (6.5), we use the notation

Aεw := {x3 : (x, x3) ∈ Ow(�) for all x such that |x| ≤ |ln ε|−1
},

Bεw := {x3 : (x, x3) ∈ Ow(�) for some x such that |x| ≤ |ln ε|−1
}.

Note that

1
π |ln ε|

∫
{x∈R2 : |x|≤|ln ε|−1}

(
|∇qε|2

2
+
(|qε|2 − 1)2

4ε2

)
dx = 1+O

(
ln(|ln ε|)
|ln ε|

)
.

Since vε(x, x3) = q
ε(x), the definition of Aεw implies that

E1 ≥

∫
Aεw

(
1

π |ln ε|

∫
{x∈R2:|x|≤|ln ε|−1}

(
|∇qε|2

2
+
(|qε|2 − 1)2

4ε2

)
dx

)
dx3

= H1(Aεw)

(
1+O

(
ln(|ln ε|)
|ln ε|

))
.

Similar considerations imply that E1 ≤ H1(Bεw)(1 + O(
ln(|ln ε|)
|ln ε| )). Finally, elementary

geometric arguments show that

H1(Aεw),H1(Bεw)→ H1({x3 : (0, x3) ∈ Ow(�)}) as ε→ 0,

with the convergence uniform for w in a small neighborhood of the origin. Also, the
definition of Ow implies that

H1({x3 : (0, x3) ∈ Ow(�)}) = |ψ
−(x(w))− ψ+(y(w))| = EV (Tx(w)y(w)).

Thus Eεw(u
ε
w)→ EV (Tx(w)y(w)) uniformly for w in a neighborhood of the origin, which

is (4.8). ut

In fact Theorem 6.1 above is a special case of a more general result:
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Theorem 6.3. Assume that � is a bounded domain in Rn+1, n ≥ 2, with C3 boundary,
and that (6.1) holds. Assume that the distance function d0 given by (5.3) has a nonde-
generate critical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′1(�) be defined as in
Theorem 6.4. Then there exists a value ε0 > 0 such that for all ε < ε0, the general-
ized Ginzburg–Landau energy EεU as defined in (3.16) possesses a critical point uε and
EεU (uε)→ EV (T∗) as ε→ 0 for EV given by (3.13).

Proof. The proof is exactly like that of Theorem 6.1, with (x, x3) ∈ R3 replaced by
(x, xn+1) ∈ Rn+1 throughout. So for example, uεw = Qε

UW (w) is defined by formulas
(6.2), where now qε is a map Rn→ Rn defined exactly as in (6.3), andOw is a rigid mo-
tion of Rn+1 that maps the line passing through x(w) and y(w) onto the xn+1 coordinate
axis {(0, xn+1) : xn+1 ∈ R}. Then the continuity (4.6) of w 7→ uεw follows as before, and
the estimate of EεU (u

ε
w) is also precisely the same as that of Theorem 6.1, once we note

that for n ≥ 3 one has

1
ωn|ln ε|

∫
{x∈Rn : |ln ε|−1≤|x|≤diam(�)}

(
|∇qε|n

n
+
(|qε|2 − 1)2

4ε2

)
dx ≤ C|ln ε|−1,

1
ωn|ln ε|

∫
{x∈Rn : |x|≤|ln ε|−1}

(
|∇qε|n

n
+
(|qε|2 − 1)2

4ε2

)
dx = 1+O(|ln ε|−1).

Finally, the verification of (4.7) goes precisely as in the proof of Theorem 6.1, after we
recall that for a map u = (u1, . . . , un) ∈ W 1,n(� ⊂ Rn+1

;Rn),

J (u) =
1
n
d(u1
∧ du2

∧ . . . ∧ dun),

and also that ?J (u0
w) = ωnTx(w)y(w) (see for example [2]). ut

Next, we recover some known results about the 2d Modica–Mortola functional.

Theorem 6.4. Assume that � is a bounded domain in R2 with C3 boundary and that
(6.1) holds. Assume that the distance function d0 given by (5.3) has a nondegenerate
critical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′1(�) be as defined in Theorem
6.1. Then there exists a value ε0 > 0 such that for all ε < ε0, the Modica–Mortola energy
(3.9) possesses a critical point uε and EεU (uε) → EV (v∗) as ε → 0 for EV given by
(3.10).

As remarked in the introduction, stronger and more general results in the same vein are
established by very different techniques in [16, 25]. Also, one may apply Theorem 1 of
[12] to assert that the sequence of varifolds associated with the energy density of {uε}
converges to a stationary varifold.

Proof. The proof again follows very closely the argument of the proof of Theorem 6.1.
Recall that we have recast the usual Modica–Mortola 0-limit so that U = H 1(�;R),
V = F ′1(�) and W = Ba1 ⊂ R`, ` ∈ {0, 1, 2}. The fact that EεU 0-converges to EV
is the content of Theorem 3.1. The map P eVU is again independent of ε and is given
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by PVU (u) = ?du/2 (cf. (2.13)). The mapping Qε
UV corresponding to the recovery se-

quence construction will be described below in the case needed for the present theorem.
Proposition 3.3 establishes the fact that EεU satisfies the Palais–Smale condition.

We again define PWV and QVW via (5.23) and (5.66). With an eye towards verifying
the hypotheses of Theorem 4.4, we first note that T∗ is a saddle point of EV in light of
Corollary 5.2. It remains to verify (4.6)–(4.8) To this end, we now describe in detail the
mapping Qε

UV . We define uεw = Q
ε
UW (w) for X = (x, x2) by

uεw(X) = v
ε(Ow(X)) where vε(X) = vε(x, x2) = q

ε(x).

Now Ow : R2
→ R2 is a rigid motion of R2 depending smoothly on w and mapping the

line through ψ−(x(w)) and ψ+(y(w)) onto the x2 coordinate axis, and qε(x) = q(x/ε),
where q : R→ R denotes the (heteroclinic) solution to the differential equation

q ′′ = q3
− q on R, q(±∞) = ±1, q(0) = 0. (6.6)

(In fact one can solve this explicitly to find q(t) = tanh(t/
√

2).) The continuity (4.6)
follows exactly as before from the smoothness of w 7→ Ow.

As before we write u0
w(X) = v

0(Ow(x)) where v0(X) = q0(x) = x/|x|. Regarding
condition (4.7) we use (2.14) to verify that

‖PVU ◦Q
ε
UW (w)−QVW (w)‖F ′1(�) ≤ ‖u

ε
w − u

0
w‖L1(�) = ‖v

ε
w − v

0
w‖L1(Ow(�))

≤ diam(�)‖qε − q0
‖L1(R).

A change of variables shows that ‖qε − q0
‖L1(R) = ε‖q

1
− q0
‖L1(R), proving (4.7).

Finally, (4.8) follows almost exactly as in the proof of Theorem 6.1, once we use (6.6)
to see that

1
2

(
q ′(t)

)2
=

1
4
(q(t)2 − 1)2.

This implies through equipartition of energy (i.e. A2
+ B2

= 2AB) that

3

2
√

2

∫
{x∈R : |ln ε|−1≤|x|}

(
ε(qε ′)2

2
+
(|qε|2 − 1)2

4ε

)
dx ≤ Ce−1/

√
ε

and
3

2
√

2

∫
{x∈R : |x|≤|ln ε|−1}

(
ε(qε ′)2

2
+
(|qε|2 − 1)2

4ε

)
dx = 1+O(e−1/

√
ε).

Changing x3 to x2 in the definitions of the sets Aεw and Bεw, the remainder of the verifica-
tion follows as in Theorem 6.1. ut

We conclude this section on applications with a result on critical points for the full 3d
Ginzburg–Landau energy modeling superconductivity, namely,

EεU (u,A)

:=
1
|ln ε|

{∫
�

(
1
2
|(∇− iA)u|2+

1
4ε2 (|u|

2
−1)2

)
dX+

1
2

∫
R3
|∇ × A−H ε

ap|
2 dX

}
.

(6.7)
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Here, as before, u ∈ H 1(�;C) for � ⊂ R3, while one typically takes the vector field
A : R3

→ R3 to lie in the space H0 consisting of the completion of C∞0 (R
3
;R3),

zero-divergence vector fields A with respect to the norm ‖∇A‖L2(R3). Physically, A cor-
responds to the effective magnetic potential. The vector field H ε

ap : R3
→ R3 denotes a

given external magnetic field and for the result below we must assume

lim sup
ε→0

1
|ln ε|2

∫
�

|H ε
ap|

2 dX = 0. (6.8)

It is under the assumption (6.8) that, roughly speaking, the 0-limit is again given by arc-
length. (We refer e.g. to [1] for a discussion of the asymptotic behavior of the Ginzburg–
Landau energy in the presence of larger magnetic fields.) Using techniques very similar
to those just invoked for the energy (3.11), we have

Theorem 6.5. Assume that � is a bounded, simply connected domain in R3 with C3

boundary. Assume that the distance function d0 given by (5.3) has a nondegenerate crit-
ical point at (0, 0) in the sense of (5.4). Let T∗ ∈ R′1(�) be defined as in Theorem 6.4.
Then under assumption (6.8), there exists a value ε0 > 0 such that for all ε < ε0, the full
Ginzburg–Landau energy (6.7) possesses a critical point (uε, Aε) and EεU (uε, Aε) →
EV (T∗) as ε→ 0 for EV again given by (3.13).

Proof. We will only sketch the proof. Following the general approach of [13], it is con-
venient to introduce the decomposition of any vector field A ∈ H 1(�;R3) in the form

A = ∇ × B +∇φ

where φ ∈ H 1(�;R) is unique up to a constant and B ∈ H 2(�;R3) is uniquely deter-
mined by the decomposition and the requirements

divB = 0 in �, B × ν = 0 on ∂�, ‖B‖H 2(�;R3) ≤ C‖∇ × A‖L2(�;R3). (6.9)

We then write
P(A) := ∇ × B = A−∇φ. (6.10)

It is then easy to argue that to find critical points of (6.7) it is sufficient to find critical
points of the functional GεU (u,A) given by

GεU (u,A) := EεU (ue
i(φ+φεap), A+ Aεap)

= EεU (u)+

∫
�
( 1

2 |u|
2
|P(A+ Aεap)|

2
− 〈P(A+ Aεap), j (u)〉) dX +

1
2

∫
R3 |∇ × A|

2 dX

|ln ε|
.

(6.11)

Here and throughout this proof, EεU (u) (as distinguished from EεU (u,A)) denotes the
Ginzburg–Landau energy without field (3.11) and we have introduced Aεap to denote the
applied magnetic potential satisfying

∇ × Aεap = H
ε
ap in R3, divAεap = 0 in �, Aεap · ν = 0 on ∂�.

In (6.11), A and φ and Aεap and φεap respectively are related via (6.10).
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One can then apply the machinery of our Theorem 4.4 with U = H 1(�;C) × H0,
V = F ′1(�), G

ε
U playing the role of EεU , and EV still given by (3.13). As in the case with

no field, we define PVU (u,A) := ?J (u)/π and we define Qε
UW (w) = (u

ε
w, 0) where as

before, the definition of uεw is given in (6.2), (6.3). The mappings PWV and QVW are the
same as in the 3d Ginzburg–Landau setting without field.

Verification of (4.5)–(4.7) follows as before. As regards the verification of 0-conver-
gence in the sense of (3.4), (3.5) and (4.8), along with the compactness requirement (3.6),
it turns out that the key term to control in the expression (6.11) is the only indefinite one:∫

�
〈P(A+ Aεap), j (u)〉 dX

|ln ε|
.

Here we appeal to (6.10) to write∫
�

〈P(A+ Aεap), j (u)〉 dX = ?J (u)(B
ε)

where P(A+ Aεap) = ∇ × B
ε defines Bε. A technical issue that is more fully developed

in [13] is the fact that in viewing Bε as a 1-form to be acted upon by the 1-current ?J (u),
we must extend various estimates on weak Jacobians beyond their action on compactly
supported 1-forms to the setting where they act instead upon 1-forms such as Bε that are
purely normal at the boundary (cf. (6.9)). Particularly crucial is the estimate that for any
α ∈ (0, 1] there exist positive constants γ and C(α,�) such that for any u ∈ H 1(�;C)
one has

‖?J (u)‖
C

0,α
T (�)∗

≤ C(α,�)

(
εγ +

EεU (u)

|ln ε|

)
. (6.12)

Here C0,α
T (�) denotes the space of Hölder continuous 1-forms having zero tangential

component, and C0,α
T (�)∗ denotes its dual.

Using (6.12) with α ∈ (0, 1/2), and invoking (6.8), (6.9) and the Sobolev embedding
ofH 2 in C0,α , one easily checks that whenever a sequence {(uε, Aε)} ⊂ H 1(�;C)×H0
obeys the uniform bound GεU (u

e, Aε) < C, one has

|
∫
�
〈P(Aε + Aεap), j (u

ε)〉 dX|

|ln ε|
= o(1)EεU (u

ε)+ o(1).

In light of (6.11), this allows us to infer the desired lower semicontinuity and compact-
ness properties of such a sequence {(uε, Aε)} from the corresponding properties, already
discussed, enjoyed by sequences {uε} satisfying a uniform bound EεU (u

ε) < C. Prop-
erty (3.5) and its strengthened version (4.8) also easily follow from the corresponding
conditions already verified for EεU since we then see that GεU (u

ε
w, 0) = EεU (u

ε
w)+ o(1).

When combined with the verification of the Palais–Smale condition below, this proves
all the requirements of Theorem 4.4. ut

Lemma 6.6. For each ε > 0, every Palais–Smale sequence {(uk, Ak)} ⊂ H 1(�) ×H0
for the functional GεU given by (6.11) has a strongly convergent subsequence.
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Proof. We pursue an argument similar to that found in the appendix to [3], where the
Palais–Smale condition for the 2d Ginzburg–Landau energy with field is verified. Since
ε is fixed and plays no role in the proof, we will ignore the factor of 1/|ln ε| appearing in
the definition of GεU .

Assume {(uk, Ak)} ⊂ H 1(�) × H0 is a Palais–Smale sequence (cf. (3.14)). The
uniform energy bound

GεU (uk, Ak) < C (6.13)
immediately yields

‖∇ × Ak‖L2(R3;R3) < C (6.14)
and it then follows from (6.9) that ‖P(Ak)‖H 1(�;R3) < C. Hence, there exists A0 ∈

H0 such that after passing to a subsequence (with subsequential notation here and later
suppressed), ∇Ak ⇀ ∇A0 in L2(R3

;R3) while Ak → A0 and P(Ak)→ P(A0) strongly
in Lp(�;R3) as k→∞ for all 1 ≤ p < 6.

The energy bound also immediately yields a uniform bound on the L4(�) norm of
{uk}. Then applying Hölder’s inequality twice, we find∣∣∣∣∫
�

〈P(Ak + Aεap), j (uk)〉 dX

∣∣∣∣
≤ 2

(∫
�

|P(Ak + Aεap)|
2
|uk|

2 dX

)1/2(∫
�

|∇uk|
2 dX

)1/2

≤ C

(∫
�

|P(Ak + Aεap)|
4 dX

)1/2(∫
�

|uk|
4 dX

)1/2

+
1
4

∫
�

|∇uk|
2 dX.

Once again appealing to the uniform energy bound, we can absorb this last term into the
left-hand side of (6.13) to conclude that

‖uk‖H 1(�) < C.

Consequently, the sequence {uk} is also uniformly bounded in L6(�) and for a subse-
quence, one has ∇uk ⇀ ∇u0 in L2(�;R3), and uk → u0 in Lp(�), 1 ≤ p < 6, for
some u0 ∈ H

1(�).

Considering variations only in the first argument of GεU , the hypothesis that

‖∇GεU (uk, Ak)‖(H 1(�)×H0)
∗ → 0 (6.15)

implies that
|Lk(v)| ≤ Ck‖v‖H 1(�) with Ck → 0 (6.16)

where Lk is the linear functional on H 1(�) given by

Lk(v) :=
1
2

∫
�

{〈∇uk,∇v
∗
〉 + 〈∇u∗k,∇v〉 + (|uk|

2
− 1)(ukv∗ + u∗kv)} dX

−
1
2i

∫
�

〈(u∗k∇v − uk∇v
∗
+ v∗∇uk − v∇u

∗

k),P(Ak + A
ε
ap)〉 dX

+
1
2

∫
�

(ukv
∗
+ vu∗k)|P(Ak + A

ε
ap)|

2 dX.
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Choosing v = uk − u0 in (6.16), we note that all terms from the second line above of
Lk(uk − u0) will approach zero in that they involve integrals pairing strongly convergent
sequences with weakly convergent ones. The last line also approaches zero in the limit.
Then we can rearrange the terms coming from the first line to obtain from (6.16) an
inequality of the form

‖∇uk −∇u0‖
2
L2(�)

≤

∫
�

(|∇u0|
2
− |∇uk|

2) dX

+ Ck(‖∇uk −∇u0‖L2(�) + ‖uk − u0‖L2(�))+ o(1).

Since lim infk→∞
∫
�
|∇uk|

2 dX ≥
∫
�
|∇u0|

2 dX, we conclude that uk → u0 strongly in
H 1(�).

A similar manipulation of the condition coming from the application of (6.15) to
variations of the second argument of GεU allows us to improve the convergence of Ak to
A0 from weak to strong as well. ut
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Zbl pre05024486 MR 2201153

[2] Alberti, G., Baldo, S., Orlandi, G.: Variational convergence for functionals of Ginzburg–
Landau type. Indiana Univ. Math. J. 54, 1411–1472 (2005) Zbl pre02246719 MR 2177107

[3] Almeida, L., Bethuel, F.: Topological methods for the Ginzburg–Landau equations. J. Math.
Pures Appl. 77, 1–49 (1998) Zbl 0904.35023 MR 1617594

[4] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Birkhäuser, Basel (1994)
Zbl 0802.35142 MR 1269538

[5] Bethuel, F., Brezis, H., Orlandi, G.: Asymptotics for the Ginzburg–Landau equation in arbi-
trary dimensions. J. Funct. Anal. 186, 432–520 (2001) Zbl 1077.35047 MR 1864830

[6] Brendle, S.: On solutions to the Ginzburg–Landau equations in higher dimensions.
arXiv:math.DG/0302070 (2003)

[7] Chiron, D.: Boundary problems for the Ginzburg–Landau equation. Comm. Contemp. Math.
7, 597–648 (2005) Zbl 1124.35081 MR 2175092

[8] del Pino, M., Felmer, P.: Local minimizers the Ginzburg–Landau energy. Math. Z. 225, 671–
684 (1997) Zbl 0943.35086 MR 1466408

[9] del Pino, M., Kowalczyk, M., Musso, M.: Variational reduction for Ginzburg–Landau vortices.
J. Funct. Anal. 239, 497–541 (2006) Zbl pre05083435 MR 2261336

[10] Federer, H.: Geometric Measure Theory. Springer, New York (1969) Zbl 0176.00801
MR 0257325

[11] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984)
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