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Abstract. We study the behavior of families of Ricci-flat Kähler metrics on a projective Calabi–
Yau manifold when the Kähler classes degenerate to the boundary of the ample cone. We prove that
if the limit class is big and nef the Ricci-flat metrics converge smoothly on compact sets outside a
subvariety to a limit incomplete Ricci-flat metric. The limit can also be understood from algebraic
geometry.
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1. Introduction

Einstein metrics, namely metrics with constant Ricci curvature, have been an important
subject of study in the field of differential geometry since the early days. The solution
of the Calabi Conjecture given by Yau [Y1] in 1976 provided a very powerful existence
theorem for Kähler–Einstein metrics with negative or zero Ricci curvature (the negative
case was also done independently by Aubin [Au]). This produced a number of nonho-
mogeneous examples of Ricci-flat manifolds. These spaces have been named Calabi–Yau
manifolds by the physicists in the eighties, and have been thoroughly studied in several
different areas of mathematics and physics. Prompted by the physical intuition of mirror
symmetry, mathematicians have studied the ways in which Calabi–Yau manifolds can de-
generate when they are moving in families. In general both the complex and symplectic
(Kähler) structures are changing, and the behavior is not well understood. In this paper
we will consider the case when the complex structure is fixed, and so we will be looking
at a single compact projective Calabi–Yau manifold. The Kähler class is then allowed to
vary inside the ample cone. As long as the class stays inside the cone, the corresponding
Ricci-flat metrics vary smoothly, but they will degenerate when the class approaches the
boundary of the cone. We will try to understand this degeneration process and see what
the limiting space looks like.

To introduce our results, let us fix some notation first. Let X be a compact projective
Calabi–Yau manifold, of complex dimension n. This is by definition a projective manifold
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such that c1(X) = 0 in H 2(X,R). The real Néron–Severi space is by definition

N1(X)R = (H
2(X,Z)free ∩H

1,1(X))⊗ R = N1(X)Z ⊗ R,

and we assume that
dimN1(X)R = ρ(X) > 1.

This cohomology space contains KNS , the ample cone, which is open. Its closure KNS is
the nef cone. Fix a nonzero class α ∈ KNS\KNS , which exists precisely when ρ(X) > 1,
and a smooth path αt : [0, 1] → KNS such that αt ∈ KNS for t < 1 and α1 = α. For
any t < 1 Yau’s Theorem [Y2] gives us a unique Ricci-flat Kähler metric ωt ∈ αt . Fixing
a smooth path of reference metrics in αt , it can be verified that the Ricci-flat metrics ωt
vary smoothly, as long as t < 1. We have the following very natural

Question 1. What is the behavior of the metrics ωt as t → 1?

This question has a long history: it is a special case of a problem posed by Yau [Y3],
[Y4], where the complex structure is also allowed to vary; it has been stated explicitly
in this form by McMullen [McM] and Wilson [W2]. Physicists have also looked at this
question, roughly predicting the behavior that we will describe in Theorem 1.1 (see e.g.
[HW]). One of the reasons that makes this question interesting is that the Ricci-flat metrics
are not known explicitly, except in very few cases.

A nef class α ∈ N1(X)R is called big if αn > 0. Classical results of Anderson [An],
Bando–Kasue–Nakajima [BKN], Tian [Ti] and more recent results of Cheeger–Colding–
Tian [CCT] give a partial answer to this question when α is big (we will explain this in
Section 3). Our main theorem, which does not rely on the previous results just quoted,
gives a satisfactory answer to Question 1 in this case (see Section 2 for definitions).

Theorem 1.1. LetX be a compact projective Calabi–Yau manifold, and let α ∈ N1(X)R
be a big and nef class that is not ample. Then there exist a proper analytic subvariety
E ⊂ X and a smooth incomplete Ricci-flat Kähler metric ω1 on X\E, both depending
only on α, such that for any smooth path αt ∈ KNS with α1 = α, the Ricci-flat metrics
ωt ∈ αt converge toω1 in theC∞ topology on compact sets ofX\E. Moreover,ω1 extends
to a closed positive current with continuous potentials on the whole of X, which lies in α,
and which is the pullback of a singular Ricci-flat Kähler metric on a Calabi–Yau model
of X obtained from the contraction map of α. If α ∈ N1(X)Z, that is, if α = c1(L) for
some line bundle L, then E is the null locus of L.

There are many interesting concrete examples of our theorem, and we will examine a few
of them in Section 5. Roughly speaking, the case when α is nef and big corresponds to a
“noncollapsing” sequence of metrics, meaning that the Gromov–Hausdorff limit has the
same dimension. The “collapsing” case, when α is nef but not big, is much harder and
we will briefly discuss it at the end of the paper. We state and prove our results for a path
of classes αt , but it is immediate to see that the same results hold if instead we look at
a sequence of classes αi that converge to α. On the other hand, our result does not say
anything about the case when the classes αt approach the boundary of the ample cone
without converging to a limiting class, but moving out to infinity in N1(X)R. This case
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is relevant for mirror symmetry, as it should sometimes be the mirror of a large complex
structure limit. Finally, let us remark that the projectivity assumptions are only technical,
and that we expect that a similar result holds when X is just assumed to be Kähler, and
the ample cone is replaced by the Kähler cone (see Section 6).

The paper is organized as follows. In Section 2 we recall some definitions and results
from algebraic geometry. In Section 3 we prove a uniform diameter bound and we com-
pare our results with previous literature. In Section 4 we prove our main Theorem 1.1.
We use a new Moser iteration argument to get uniform bounds, using the diameter bound
from Section 3. In Section 5 we give some examples where our results apply, and recover
in particular a result of Kobayashi and Todorov [KT]. Finally in Section 6 we discuss
some further directions for research.

2. Some facts from algebraic geometry

In this section we will review some definitions and results from algebraic geometry,
mainly from Mori’s Program, that will be used in the proof.

Let X be a compact Calabi–Yau n-fold, that is, a compact Kähler manifold of dimen-
sion n such that c1(X) = 0 in H 2(X,R). We do not insist that X be simply connected.
Notice that it follows that aKX ∼= OX for some integer a > 0: in fact by Theorem 1 in
[Be] a finite unramified a : 1 cover of X, p : X̃ → X, has trivial canonical bundle. But
p∗KX ∼= KX̃

∼= OX̃ and so Lemma 16.2 in [BHPV] implies that aKX ∼= OX. This can
be rewritten asKX ∼Q 0 where∼Q indicates Q-linear equivalence of Cartier Q-divisors.
For the rest of this section we will assume that X is projective.

Definition 2.1. A projective variety X has canonical singularities if it is normal, rKX is
Cartier for some r ≥ 1 and there exists a resolution f : Y → X such that

rKY = f
∗(rKX)+

∑
i

aiEi,

where Ei ranges over all exceptional prime divisors of f , and ai ≥ 0.

Definition 2.2 (Wilson [W1]). A Calabi–Yau model Y is a normal projective variety
with canonical singularities such that KY ∼Q 0.

Let L be a nef line bundle on X, and let κ(X,L) be its Iitaka dimension, that is,

κ(X,L) = m ⇔ h0(X, kL) ∼ km for all k large enough

and κ(X,L) = −∞ if kL has no sections for all k ≥ 0. We denote by ν(X,L) its
numerical dimension, that is, the largest nonnegative integer m such that there exists an
m-cycle V such that (Lm · V ) > 0. It is always true that

κ(X,L) ≤ ν(X,L) ≤ n.

Definition 2.3. If κ(X,L) = ν(X,L) we say that L is good (or abundant). If the com-
plete linear system |kL| is base-point-free for some k ≥ 1 we say L is semiample.
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When |kL| is base-point-free, we get a morphism 8|kL| : X → PH 0(X, kL)∗ that satis-
fies kL = 8∗

|kL|O(1). Notice that if L is big, that is, κ(X,L) = n, then it is automatically
good. The following is an immediate consequence of the base-point-free theorem (Theo-
rem 6.1.11 in [KMM]).

Theorem 2.1 (Kawamata). Assume X is a projective Calabi–Yau. If L is good then it is
semiample.

The next theorem is classical (see Theorem 2.1.27 in [L]).

Theorem 2.2 (Iitaka). Let L be semiample. Then there exists a surjective morphism f :
X → Y where Y is a normal irreducible variety, f∗OX = OY , and L = f ∗A for some
ample line bundle A on Y . In fact, f = 8|kL| for all k sufficiently divisible.

We will call f the contraction map of L. There is a version of the base-point-free theorem
for Cartier R-divisors, essentially due to Shokurov [Sh]. If D is a Cartier R-divisor on X
we say that D is semiample if there exist a normal irreducible projective variety Y , a
surjective morphism f : X → Y with f∗OX = OY , and an ample R-divisor A on Y
such thatD ∼R f ∗A. Again we will call f the contraction map ofD. Then the following
holds (Theorem 7.1 in [HM]):

Theorem 2.3. Assume X is a projective Calabi–Yau. IfD is a Cartier R-divisor which is
nef and big, then it is semiample.

The contraction map ofD is in fact also the contraction map of a suitable nef and big line
bundle L (see the proof of Proposition 4.1 below). We also have the following theorem
(Theorem 5.7 in [Ka1] or Theorem 1.9 in [Ka2]).

Theorem 2.4 (Kawamata). Assume X is a projective Calabi–Yau. Then the subcone of
KNS given by nef and big classes is locally rational polyhedral.

If L is a line bundle, its stable base locus is the intersection of the base loci of |mL|
for all m ≥ 1. It is equal to the base locus of |mL| for some m (see Prop. 2.1.21 in
[L]). If L is now nef and big, we define the augmented base locus of L, B+(L), to be
the stable base locus of L − εH for any ample divisor H and any small enough rational
number ε > 0. This definition is well-posed (see Lemma 10.3.1 in [L]) and a theorem of
Nakamaye ([N], [L]) says that B+(L) is equal to the null locus of L, that is, the union of
all positive-dimensional subvarieties V ⊂ X such that (LdimV

· V ) = 0.
Finally, let us state a well-known conjecture (see 10.3 of Peternell’s lectures in [MP]).

Conjecture 2.1. Assume X is a projective Calabi–Yau. If L is a nef line bundle, then L
is semiample.

If L is effective, this conjecture follows from the log abundance conjecture. Indeed, for
any small rational ε > 0, the pair (X, εL) is klt, and the log abundance conjecture would
imply that KX + εL ∼Q εL is semiample.
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Notice that whenX is a surface, Conjecture 2.1 holds: in fact, ifL is nef and nontrivial,
then H 2(X,L) = H 0(X,KX − L) = 0 and by Riemann–Roch

dimH 0(X,L) ≥ 2+
1
2
L · L ≥ 2,

thus L is effective. Then we can apply the log abundance theorem for surfaces (see e.g.
[FM]) to get the result.

3. Preliminary remarks

In this section we will prove a uniform diameter bound and use this to compare our results
to the existing literature. The diameter bound is valid in general, without any projectivity
or bigness assumptions.

Let the setting be as in the Introduction, namely let X be a projective Calabi–Yau
n-fold and α ∈ N1(X)R a big and nef class that is not ample. Given a smooth path
αt : [0, 1]→ KNS such that αt ∈ KNS for t < 1 and α1 = α, Yau’s Theorem [Y2] gives
us a unique Ricci-flat Kähler metric ωt ∈ αt for any t < 1. Then

√
−1 ∂∂ log

ωnt

ωn0
= Ric(ω0)− Ric(ωt ) = 0

implies that ωnt = Btω
n
0 for some constant Bt , which is easily computed from

αnt =

∫
X

ωnt = Bt

∫
X

ωn0 = Btα
n
0 . (3.1)

In particular, Bt > 0 and 0 < limt→1 Bt < ∞, which means that the volume form of ωt
is uniformly equivalent to the volume form of ω0. The main theorem of this section is the
following

Theorem 3.1. Let (X, ω0) be a compact n-dimensional Ricci-flat Kähler manifold and
let ω be another Ricci-flat Kähler metric such that∫

X

ωn−1
0 ∧ ω ≤ c1 (3.2)

for some constant c1. Then the diameter of (X, ω) is bounded above by a constant that
depends only on n, c1, ω0.

Applying this to ω = ωt we see that the diameter of (X, ωt ) is uniformly bounded as t
approaches 1. To prove Theorem 3.1 we need a lemma which appears as Lemma 1.3 in
[DPS1]. For the reader’s convenience, we include a proof here.

Lemma 3.1. In the above situation there exists a constant C1 that depends only on
n, c1, ω0, such that given any δ > 0 there exists an open set Uδ ⊂ X such that its di-
ameter with respect to ω is less than C1δ

−1/2 and its volume with respect to ω0 is at least∫
X
ωn0 − δ.
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Proof. First notice that (3.2) gives a uniform L1 bound on ω. Up to coveringX by finitely
many charts, we may assume that X = K is a compact convex set in Cn, and we will
denote by gE the Euclidean metric onK . If x1, x2 ∈ K , we denote by [x1, x2] the segment
joining them in K , and we compute the average of the length square of [x1, x2] with
respect to ω, when the endpoints vary. Using Fubini’s Theorem and the Cauchy–Schwarz
inequality we get∫

K×K

(∫ 1

0

√
ω((1− s)x1 + sx2)(x2 − x1) ds

)2

dx1 dx2

≤ ‖x2 − x1‖
2
gE

∫ 1

0

∫
K×K

|ω((1− s)x1 + sx2)| dx1 dx2 ds

≤ diam2
gE
(K)22n

(∫ 1/2

0

∫
K×K

|ω(y + sx2)| dy dx2 ds

+

∫ 1

1/2

∫
K×K

|ω((1− s)x1 + y)| dy dx1 ds

)
≤ diam2

gE
(K)22n VolgE (K)‖ω‖L1(K) ≤ C1, (3.3)

where C1 is a uniform constant; we have changed variable y = (1 − s)x1 if s ≤ 1/2
and y = sx2 when s ≥ 1/2 and integrated first with respect to y. Then the set S of pairs
(x1, x2) ∈ K×K such that the length of [x1, x2] with respect to ω is more than (C1/δ)

1/2

has Euclidean measure less than or equal to δ: otherwise∫
K×K

(∫ 1

0

√
ω((1− s)x1 + sx2)(x2 − x1) ds

)2

dx1 dx2

≥

∫
S

(∫ 1

0

√
ω((1− s)x1 + sx2)(x2 − x1) ds

)2

dx1 dx2 ≥
C1

δ
VolgE (S),

which is more than C1, and this contradicts (3.3). If x1 ∈ K we let S(x1) be the set of
all x2 ∈ K such that (x1, x2) ∈ S; moreover, we let Q be the set of x1 ∈ K such that
VolgE (S(x1)) ≥

1
2 VolgE (K) and R be the set of (x1, x2) ∈ S such that x1 ∈ Q. Then by

Fubini’s Theorem,

δ ≥ VolgE (R) =
∫
R

dx2 dx1 =

∫
Q

(∫
S(x1)

dx2

)
dx1 ≥

1
2

VolgE (K)VolgE (Q),

and so VolgE (Q) ≤ 2δ/VolgE (K).We letUδ = K\Q. ThenUδ is open and if x1, x2 ∈ Uδ

then VolgE (S(xi)) <
1
2 VolgE (K) for i = 1, 2. Hence VolgE ((K\S(x1))∩(K\S(x2))) > 0

and so this set is nonempty. If y belongs to it, then (x1, y) and (x2, y) are not in S, which
means that the lengths with respect to ω of the segments [x1, y] and [y, x2] are both less
than (C1/δ)

1/2. Concatenating these two segments we get a path from x1 to x2 with length
less than 2(C1/δ)

1/2. We also have

Volω0(Q) ≤ C2 VolgE (Q) ≤
2C2δ

VolgE (K)
.

Up to adjusting the constants, this is what we want. ut
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Proof of Theorem 3.1. Choose δ ≤ min(C2
1 ,

1
2

∫
X
ωn0), and pick any p ∈ Uδ . If we denote

the metric ball of ω centered at p and with radius r by B(p, r), then Uδ ⊂ B(p,C2),
where C2 = C1δ

−1/2
≥ 1. Hence∫

B(p,C2)
ωn0 ≥

∫
Uδ

ωn0 ≥
1
2

∫
X

ωn0 .

Proceeding as in (3.1) we see that ωn = Bωn0 , where

B =

∫
X
ωn∫

X
ωn0
. (3.4)

So we get ∫
B(p,C2)

ωn ≥ BC3 (3.5)

for some constant C3 > 0 independent of ω. Since Ric(ω) = 0, the Bishop volume
comparison theorem and (3.5) give∫

B(p,1)
ωn ≥

∫
B(p,C2)

ωn

C2n
2

≥ BC4 > 0. (3.6)

The following lemma is due to Yau (see e.g. Theorem I.4.1 in [SY]), but we provide a
proof for completeness.

Lemma 3.2. Let (M2n, g) be a closed Riemannian manifold with Ric(g) ≥ 0, let p ∈ M
and 1 < R < diam(X, g). Then

R − 1
4n
≤

Vol(B(p, 2(R + 1)))
Vol(B(p, 1))

.

Proof. Choose x0 ∈ ∂B(p,R), so that d(x0, p) = R, and define ρ(x) = d(x, x0).
The Laplacian comparison theorem gives 1ρ2

≤ 4n in the sense of distributions. Let
ϕ(x) = ψ(ρ(x)) where

ψ(t) =


1 if 0 ≤ t ≤ R − 1,
1
2 (R + 1− t) if R − 1 < t < R + 1,
0 if t ≥ R + 1.

Then ϕ is a nonnegative Lipschitz function supported in B(x0, R + 1), and we have∫
M

ϕ1ρ2 dVg = −

∫
B(x0,R+1)

∇ϕ · ∇ρ2 dVg = −2
∫
B(x0,R+1)

ρ|∇ρ|2ψ ′(ρ(x)) dVg

=

∫
B(x0,R+1)\B(x0,R−1)

ρ dVg

≥ (R − 1)Vol(B(x0, R + 1)\B(x0, R − 1)),
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and also ∫
M

ϕ1ρ2 dVg ≤ 4n
∫
B(x0,R+1)

ϕ dVg ≤ 4nVol(B(x0, R + 1)).

Notice that B(p, 1) ⊂ B(x0, R+ 1)\B(x0, R− 1) and so the previous two estimates give

(R − 1)Vol(B(p, 1)) ≤ 4nVol(B(x0, R + 1)).

The conclusion follows from the fact that B(x0, R + 1) ⊂ B(p, 2(R + 1)). ut

Lemma 3.2 shows that for any 1 < R < diam(X, ω) we have

R − 1
4n
≤

∫
B(p,2(R+1)) ω

n∫
B(p,1) ω

n
. (3.7)

Choosing R = diam(X, ω)− 1 and using (3.6), (3.4) we get

diam(X, ω) ≤ 2+
4n
BC4

∫
X

ωn = 2+
4n
C4

∫
X

ωn0 ,

which is bounded independently of ω. This completes the proof of Theorem 3.1 (a some-
what similar argument can be found in [P1]). ut

Once we have the diameter bound, we can apply the Bishop volume comparison theorem
again to deduce that for any point p ∈ X and any r > 0, t < 1,∫

Bt (p,r)

ωnt ≥ r
2n

∫
X
ωnt

diam(X, ωt )2n
≥ cr2n, (3.8)

where c > 0 is a uniform constant. A well-known computation in Chern–Weil theory
gives

1
n(n− 1)

∫
X

‖Rmt‖
2
t ω

n
t =

∫
X

c2(X, ωt ) ∧ ω
n−2
t = c2(X) · α

n−2
t ≤ C,

where Rmt is the Riemann curvature tensor of ωt and c2(X, ωt ) is the second Chern
form of ωt . If n = 2 we can thus apply Theorem C of [An], Theorem 5.5 of [BKN] or
Proposition 3.2 of [Ti] to infer that a subsequence of (X, ωt ) converges to an Einstein
orbifold with isolated singularities in the Gromov–Hausdorff topology, and also in the
C∞ topology on compact sets outside the orbifold points. If n > 2 these theorems require
a uniform bound on ∫

X

‖Rmt‖
n
t ω

n
t ,

which in general cannot be expressed in terms of topological data as above. Instead when
n > 2 we apply a general theorem of Gromov [Gr] that says that any sequence of compact
Riemannian manifolds of dimension 2nwith diameter bounded above and Ricci curvature
bounded below, has a subsequence that converges in the Gromov–Hausdorff topology to
a compact length space. Thus a subsequence of (X, ωt ) converges to a compact metric
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space Y , and Theorem 1.15 in [CCT] says that Y is a complex manifold outside a recti-
fiable set R ⊂ Y of real Hausdorff codimension at least 4. Moreover, their Theorem 9.1
gives supporting evidence that R should in fact be a complex subvariety of Y .

On the other hand, our Theorem 1.1 gives the convergence of the whole sequence of
metrics, and not just of a subsequence, and the limit metric is uniquely determined by the
class α. When n > 2 the convergence we get is stronger than Gromov–Hausdorff conver-
gence, but it only holds outside the singular set E. Also we see precisely what the limit
space Y is, namely the Calabi–Yau model of X obtained from the contraction map of α.
It has canonical singularities, so its singular set is a subvariety of complex codimension
at least 2, and when n = 2 canonical singularities are precisely rational double points,
which are of orbifold type. We will discuss the case n = 2 in more detail in Section 5.
Let us also mention the results of Ruan [Ru]. He studies the Gromov–Hausdorff limits
of sequences of Kähler metrics on a fixed compact manifold X, with uniformly bounded
sectional curvature. Roughly speaking, he proves that there exists an analytic subvari-
ety E ⊂ X such that a subsequence of the metrics converges in the Gromov–Hausdorff
topology on X\E to a smooth Hermitian form ω, which is either Kähler (noncollapsing)
or pointwise nonnegative with determinant zero (collapsing). Moreover, in the collapsing
case, the kernel of ω gives a holomorphic foliation with singularities on X. Unfortunately
in our setting the curvature is not bounded in general, so Ruan’s results do not apply, but
our Theorem 1.1 gives in particular Ruan’s conclusion in the noncollapsing case. We will
discuss the collapsing case in Section 6.

Of course, the above-mentioned results apply in more general situations than ours.
Also, all the results in this section work in the case when X is not projective, and the
ample cone is replaced by the (bigger) Kähler cone. Then the above theorems still apply,
but for technical reasons our Theorem 1.1 does not (see Section 6 for more discussions).

4. Limits of Ricci-flat metrics

In this section we will prove Theorem 1.1. The idea is to carefully set up a family of
complex Monge–Ampère equations that degenerate in the limit, and prove estimates for
the solutions that are uniform outside a subvariety.

We begin with

Proposition 4.1. Let X be a projective Calabi–Yau n-fold, and α ∈ N1(X)R a big and
nef class that is not ample. Then there exists a smooth real (1, 1) form ω ∈ α that is
pointwise nonnegative and which is Kähler outside a proper analytic subvariety of X.
Moreover, if αt : [0, 1] → KNS is a smooth path such that αt ∈ KNS for t < 1 and
α1 = α, then we can find a continuous family of Kähler forms βt ∈ αt , t < 1, such that
βt → ω in the C∞ topology as t approaches 1.

Proof. Let us assume first that that α = c1(L) for some line bundle L, which is equivalent
to requiring that α ∈ N1(X)Z. Now L is nef and big and so Theorem 2.1 implies that L
is semiample, so there exists some k ≥ 1 such that kL is globally generated. This gives
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a morphism f : X → PN such that f ∗O(1) = kL. If we let ωFS be the Fubini–Study
metric on PN , then ω = f ∗ωFS/k is a pointwise nonnegative smooth real (1, 1) form
in the class α. Moreover, ω is Kähler outside the exceptional set of f , which is a proper
subvariety of X. If α ∈ N1(X)Q, then kα ∈ N1(X)Z for some integer k ≥ 1, and we can
proceed as above. If finally α ∈ N1(X)R then by Theorem 2.4 we know that the subcone
of nef and big classes is locally rational polyhedral. Hence α lies on a face of this cone
which is cut out by linear equations with rational coefficients. It follows that rational
points on this face are dense, and it is then possible to write α as a linear combination of
classes in N1(X)Q which are nef and big, with nonnegative coefficients. It is now clear
that we can represent α by a smooth nonnegative form ω. Notice that all of these classes
give the same contraction map f : X → Y , because they lie on the same face. This map
is then also the contraction map of α, and ω is again Kähler outside the exceptional set
of f .

Now fix a ball U in N1(X)R centered at α such that KNS ∩ U is defined by the
inequalities {8β > 0}1≤β≤k where the 8β are linear forms with rational coefficients.
Since the big cone is open, up to shrinking U we may also assume that all the classes in
∂KNS ∩ U are big. We may add some more linear forms to the 8β , until they define a
strongly convex rational polyhedral cone C which is contained in KNS ∩ U . We can then
write

C =
{∑̀
i=1

aiγi

∣∣∣ ai ≥ 0
}
,

where the γi are nef and big classes in U . We claim that, when t is greater than some
t0 < 1, it is possible to write the path αt as

∑
i ai(t)γi where the functions ai(t) are

continuous and nonnegative. Assume first that the cone C is simplicial, which means that
the γi are linearly independent. Then the path αt enters and eventually stays in C, and so
it can be expressed uniquely as

αt =
∑̀
i=1

ai(t)γi, (4.1)

where the ai(t) are smooth and nonnegative, t0 ≤ t ≤ 1. If on the other hand C is not
simplicial, it can be written as a finite union of simplicial subcones that intersect only
along faces, and are spanned by some linearly independent subsets of the γi . On any
time interval when αt belongs to the interior of a simplicial cone, the coefficients ai(t) in
(4.1) vary smoothly, and on a common face of two simplicial cones the coefficients agree,
hence the ai(t) vary continuously when t0 ≤ t < 1. Moreover, since we only have finitely
many simplicial subcones, we see that as t → 1 the ai(t) converge to the coefficients of
α1 in any of the simplicial cones that contain it, and so the ai(t) are continuous on the
whole interval t0 ≤ t ≤ 1.

By the first part of the proof we know that we can choose a smooth nonnegative
representative δi ∈ γi , for all i. Choose a smooth function ε : [t0, 1]→ R that is positive
on [t0, 1) and ε(1) = 0, and that is small enough so that the classes α̃t = αt − ε(t)αt0 are
ample for all t0 ≤ t < 1. Then the new path α̃t is also converging to α as t → 1, and by
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the previous claim we can write

α̃t =
∑̀
i=1

ãi(t)γi,

where ãi(t) is a continuous nonnegative function for all i. Then the smooth (1, 1) forms

β̃t :=
∑̀
i=1

ãi(t)δi

are nonnegative representatives of α̃t that vary continuously in t . When t approaches 1, the
forms β̃t converge in the C∞ topology to a smooth nonnegative form ω̃ representing α. If
χ is a Kähler form in αt0 , then the forms βt = β̃t + ε(t)χ defined on [t0, 1) are Kähler,
represent αt and converge to ω̃ as t → 1. Up to replacing ω by ω̃, this gives the desired
family of forms on [t0, 1). It is very easy to extend the family βt on the whole [0, 1), and
since we are not going to use this, we leave the proof to the reader. ut

Of course, a similar statement holds if we are given a sequence of ample classes αi con-
verging to α, instead of a path.

Let us now recall some notation and facts from analytic geometry. IfX is any complex
manifold and ω is a Hermitian form onX, we will denote by PSH(X,ω) the set of all up-
per semicontinuous (usc) functions ϕ : X→ [−∞,+∞) such thatω+

√
−1 ∂∂ϕ is a pos-

itive current. If (X, ω) is Kähler, then all Kähler potentials for ω belong to PSH(X,ω).
A fundamental result by Bedford–Taylor [BT] says that the Monge–Ampère operator
(ω +

√
−1 ∂∂ϕ)n is well defined whenever ϕ ∈ PSH(X,ω) is locally bounded. Let us

also recall the definition of a singular Kähler metric [EGZ] on a (possibly singular) alge-
braic variety X. This is given by specifying its Kähler potentials on an open cover (Ui)
of X, which are usc functions ϕi : Ui → [−∞,+∞) with the following property: ϕi
extends to a plurisubharmonic function on an open set Vi ⊂ Cm where Ui ⊂ Vi is a
local embedding. We refer the reader to Section 7 of [EGZ] for the definition of a singu-
lar Ricci-flat Kähler metric and for a proof that they always exist on Calabi–Yau models.
With these facts in mind, we can now give the

Proof of Theorem 1.1. Proposition 4.1 gives us a smooth nonnegative representative
ω ∈ α, and continuously varying Kähler forms βt ∈ αt , for t < 1, such that βt → ω as
t → 1. As in the proof of Proposition 4.1, there is a contraction map f : X→ Y such that
Y is a normal irreducible projective variety, f is birational and f∗OX = OY . Moreover, ω
is the pullback of a (singular) Kähler metric on Y , and it is Kähler outside the exceptional
set of f . Then setting D0 = 0 as Cartier divisors on Y , we have aKX = f ∗D0 for some
integer a > 0, so

f∗(aKX) = D0 = 0

holds as Weil divisors, but since f is birational we also have f∗(aKX) = aKY (as Weil
divisors), hence aKY is Cartier and is equal to zero. So we have f ∗KY = KX as Q-
divisors, which implies that Y has at most canonical singularities and is a Calabi–Yau
model (see also Corollary 1.5 of [Ka1]).
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Denote by � the smooth volume form on X given by

� =
ωn0∫
X
ωn0
,

which satisfies
∫
X
� = 1. We can write � = Fωn, where F ∈ L1(ωn), F > 0. The

following argument to show that actually F ∈ Lp(ωn) for some p > 1 is similar to
Lemma 3.2 in [EGZ]. First of all, 1/F is smooth, nonnegative, and vanishes precisely on
the exceptional set of f . Fixing local coordinates (zi) on a polydisc D ⊂ X and a local
embedding G : f (D)→ Cm, we see that 1/F is comparable to∣∣∣∣ ∂G∂z1 ∧ · · · ∧

∂G

∂zn

∣∣∣∣2
on D. But this is in turn comparable to

r∑
i=1

|gi |
2,

where the gi are holomorphic functions on D, and so F ε ∈ L1(D,�) for some small
ε > 0 that depends on the vanishing orders of the gi . Then∫

D

F 1+εωn =

∫
D

F ε� <∞. (4.2)

The compactness of X gives F ∈ L1+ε(ωn), and so we can apply Theorem 2.1 and
Proposition 3.1 of [EGZ] (which rely on the seminal work of Kołodziej [Koł]) to get a
unique bounded ϕ ∈ PSH(X,ω) such that

(ω +
√
−1 ∂∂ϕ)n = αn�, (4.3)

and supX ϕ = 0. We then embed Y into projective space and extend ω to a Kähler form
in a neighborhood of Y as in Proposition 3.3 of [DP]. Composing the embedding with f
we get a morphism which is birational with the image, with connected fibers, and we can
then apply Theorem 1.1 in [Z1] (see also [Z2] and Remark 5.2 in [DZ]) to conclude that
ϕ is continuous. Moreover, we can see that ϕ descends to a function on Y : if V is a fiber
of f , the restriction of ϕ to V is a plurisubharmonic function, because ω|V = 0. Desingu-
larizing V and applying the maximum principle we see that ϕ|V has to be constant, and
so ϕ descends to Y . Since ω by construction is the pullback of a (singular) Kähler form
on Y , we see that ω +

√
−1 ∂∂ϕ is a singular Ricci-flat metric on Y , in the terminology

of [EGZ]. On X, the closed positive current ω1 = ω +
√
−1 ∂∂ϕ clearly lies in the class

α and has continuous potentials.
Intuitively, our goal is to get estimates in the open set where ω is positive. This can

be done rigorously in the following way, which was first used by H. Tsuji [Ts] (see also
[TZ], [CL] for a recent revisiting of his approach). Since α is nef and big, by Kodaira’s
lemma (Example 2.2.23 in [L]) there exists an effective Cartier R-divisor E such that for
all ε > 0 small enough, α − εE = κε is Kähler.
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We will show that ϕ is smooth on X\E, and so ω1 is a smooth Ricci-flat metric there,
and that the Ricci-flat metrics ωt converge to ω1 in the C∞ topology on compact sets of
X\E. Notice that the metric ω1 on X\E cannot be complete, since its diameter is finite
by Theorem 3.1. Once this is proved, we can repeat the argument for any other E given
by Kodaira’s lemma, and by uniqueness we see that ω1 is smooth off E′, the intersec-
tion of the supports of all such E. We claim that if α = c1(L) for some line bundle L,
then E′ is equal to the null locus of L. By Nakamaye’s Theorem all we need to show is
that it is equal to the augmented base locus of L. If x ∈ X is a point outside the aug-
mented base locus, then there exist an ample divisor H and k,m large enough so that
x is not in the base locus of mL − (m/k)H . But this means that mL − (m/k)H ∼ N

where N is an effective divisor that does not pass through x, and moreover the coho-
mology class of L − (1/m)N is Kähler. So we can take ε = 1/m and E = N , and
we see that E′ is contained in the null locus of L. Conversely, if x belongs to the null
locus, then there exists a subvariety V through x with dimV = k and (Lk · V ) = 0.
Since the potentials for the current ω1 are continuous, the self-intersection ωk1 is a well-
defined closed positive current [BT], which restricts to a nonnegative Borel measure on V .
The integral

∫
V
ωk1 is then equal to the cohomological intersection number (Lk · V ) (see

e.g. Corollary 9.3 in [D]), which is zero. But if x is not in E′ then ω1 is smooth and
Kähler near x and the volume of V with respect to ω1 would be positive, which is a
contradiction.

Fix once and for all an ε > 0 small enough so that the conclusion of Kodaira’s lemma
holds. First of all notice that the classes αt − εE = κ tε are all Kähler when t is close to 1.
Choose a Kähler form χε ∈ κε, let σ ∈ H 0(X,OX(E)) be the canonical section, and fix
a Hermitian metric | · | on E such that the following Poincaré–Lelong equation holds:

ω − ε[E] = χε − ε
√
−1 ∂∂ log |σ |, (4.4)

where [E] denotes the current of integration on E. Then we have

βt − ε[E] = χε + (βt − ω)− ε
√
−1 ∂∂ log |σ |,

and χ tε = χε + (βt −ω) is Kähler for t close to 1. There are smooth functions ϕt solving

ωnt = (βt +
√
−1 ∂∂ϕt )n = αnt �, (4.5)

where the positive constants αnt approach αn as t goes to 1, and supX ϕt = 0. We now
derive a uniform L∞ estimate for ϕt . Since the Ricci-flat metrics ωt have a uniform upper
bound on the diameter by Theorem 3.1 and a uniform positive lower bound for the volume∫
X
ωnt , classical results of Croke [Cr], Li [Li] and Li–Yau [LY] give uniform upper bounds

for the Sobolev and Poincaré constants of ωt . We temporarily modify the normalization
of ϕt by requiring that

∫
X
ϕtω

n
t = 0 and we are going to show that |ϕt | ≤ C. This

will then hold for the original ϕt as well, with perhaps a bigger constant. We employ
a Moser iteration argument in the following way, inspired by [Y2]. For any p > 1 we
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compute∫
X

|∇(ϕt |ϕt |
(p−2)/2)|2ωtω

n
t =

p2

4

∫
X

|ϕt |
p−2
|∇ϕt |

2
ωt
ωnt

=
np2

4

∫
X

|ϕt |
p−2∂ϕt ∧ ∂ϕt ∧ ω

n−1
t

≤
np2

4

∫
X

|ϕt |
p−2∂ϕt ∧ ∂ϕt ∧

(n−1∑
i=0

ωn−1−i
t ∧ βit

)
= −

np2

4(p − 1)

∫
X

ϕt |ϕt |
p−2∂∂ϕt ∧

(n−1∑
i=0

ωn−1−i
t ∧ βit

)
=

np2

4(p − 1)

∫
X

ϕt |ϕt |
p−2(βt − ωt ) ∧

(n−1∑
i=0

ωn−1−i
t ∧ βit

)
=

np2

4(p − 1)

∫
X

ϕt |ϕt |
p−2(βnt − ω

n
t )

≤ Cp

∫
X

|ϕt |
p−1ωnt , (4.6)

where we used (4.5) in the last inequality. Using (4.6) and the uniform Sobolev inequality
for ωt and iterating in a standard way (see e.g. [Si2]) we get

‖ϕt‖L∞ ≤ C

(∫
X

|ϕt |
2ωnt

)1/2

. (4.7)

We then use the uniform Poincaré inequality for ωt together with (4.6) with p = 2
and with the Hölder inequality and the fact that the volume

∫
X
ωnt is bounded above

to get ∫
X

|ϕt |
2ωnt ≤ C

∫
X

|∇ϕt |
2
ωt
ωnt ≤ C

∫
X

|ϕt |ω
n
t ≤ C

(∫
X

|ϕt |
2ωnt

)1/2

,

which gives
∫
X
|ϕt |

2ωnt ≤ C, and so with (4.7) this completes the proof of the L∞ bound
|ϕt | ≤ C. Notice that such a bound also follows from [EGZ], but our proof is more
elementary.

Outside E we have
βt = χ

t
ε − ε
√
−1 ∂∂ log |σ |,

so that the functions ψt = ϕt − ε log |σ | solve

(χ tε +
√
−1 ∂∂ψt )n = αnt � = e

F tε (χ tε)
n (4.8)

there, for some appropriate smooth functions F tε , defined on the whole of X. As t ap-
proaches 1, the Kähler forms χ tε are uniformly bounded in the smooth topology (with
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eigenvalues bounded away from 0 uniformly), and so are the functions F tε . Yau’s second
order estimates [Y2] for the Monge–Ampère equation (4.8) give

4
′
t (e
−Aψt (n+4tψt )) ≥ e

−Aψt (−C1 − C2(n+4tψt )+ (n+4tψt )
n/(n−1)), (4.9)

where A,C1 and C2 are uniform positive constants, 4t is the Laplacian of χ tε , and 4′t is
the Laplacian of χ tε +

√
−1 ∂∂ψt . Now notice that on X\E we have

e−Aψt (n+4tψt ) = |σ |
Aεe−Aϕt (n+4tϕt − ε4t log |σ |),

and
|4t log |σ | | ≤ C,

for some uniform constant C. Hence the function e−Aψt (n + 4tψt ) goes to zero when
we approach E, and so its maximum will be attained. The maximum principle applied to
(4.9) then gives

n+4tψt ≤ Ce
A(ψt−infX\E ψt )

on the whole ofX\E. But noticing that infX\E ψt ≥ infX ϕt−C for a uniform constantC,
and recalling that |ϕt | ≤ C0, we get

n+4tϕt ≤ C + n+4tψt ≤ C(1+ |σ |−Aε).

This gives uniform interior C2 estimates of ϕt and ψt on compact subsets of X\E.
Then the Harnack estimate of Evans–Krylov gives uniform C2,γ estimates, for some
0 < γ < 1, and a standard bootstrapping argument gives uniform Ck,γ estimates for
all k ≥ 2, on compact sets of X\E. Thus the family (ϕt ) is precompact Ck,γ

′

(X\E) for
any 0 < γ ′ < γ , and any limit point ψ belongs to PSH(X\E,ω), satisfies

(ω +
√
−1 ∂∂ψ)n = αn�

on X\E, and is bounded near E. It follows that ψ extends to a bounded function in
PSH(X,ω) and the above Monge–Ampère equation holds on X because the Borel mea-
sure (ω +

√
−1 ∂∂ψ)n does not charge the analytic set E. Then by the uniqueness part

of Theorem 2.1 of [EGZ], we must have ψ = ϕ. This implies that ϕt → ϕ in C∞ on
compact subsets of X\E, and that ϕ is smooth there. ut

5. Examples

In this section we will give some examples where Theorem 1.1 applies. The constructions
are well-known and come from algebraic geometry.

Let us look at the case n = 2 first, the case n = 1 being trivial. The only projective
Calabi–Yau surfaces are tori, bi-elliptic, Enriques and K3 surfaces (recall that the Calabi
Conjecture has been successfully applied to the study of K3 surfaces by Todorov [To]
and Siu [Si1]). If X is a torus and L is a nef and big line bundle on X, then L is ample,
and so Theorem 1.1 is vacuous in this case. Similarly if X is bi-elliptic, then X is a finite
unramified quotient of a torus, so a nef and big line bundle on X pulls back to a nef and
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big line bundle on a torus. But this must be ample, and so the original line bundle is ample
too (Corollary 1.2.28 in [L]) and Theorem 1.1 is again empty. IfX is an Enriques surface,
then X is an unramified 2 : 1 quotient of a K3 surface, so the study of Ricci-flat metrics
on X is reduced to the case of a K3 surface. Finally, let us see that there exist projective
K3s that admit a nef and big line bundle that is not ample, to which Theorem 1.1 applies.
For example, let Y be the quotient surface T/i where T is the standard torus C2/Z4 and
i is induced by the involution i(z, w) = (−z,−w) of C2. The surface Y has 16 singular
points, which are rational double points, and is a Calabi–Yau model. Blowing up these
16 points gives a smooth projectiveK3 surface X (called a Kummer surface), and we can
take L to be the pullback of any ample divisor on Y . The set E, being equal to the null
locus of L, is readily seen to be the union of the 16 exceptional divisors, which are (−2)-
curves. Then Theorem 1.1 applies, and the limit of smooth Ricci-flat metrics on X with
classes approaching c1(L) is the pullback of the unique Ricci-flat (actually flat) orbifold
Kähler metric on Y in the given class. This originally appeared as Theorem 8 in [KT].

Now we show that conversely all examples of Theorem 1.1 on K3 surfaces with
α = c1(L) are of the form f : X → Y where Y is an orbifold K3 surface, kL = f ∗A,
for some k ≥ 1 and some ample divisor A on Y . Let X be a projective K3 surface and L
a nef and big line bundle on X. By Theorem 2.1 we know that some power kL is globally
generated, and we might as well assume that k = 1. Then the contraction map f of L
contracts an irreducible curve C to a point if and only if C · L = 0. But since L · L > 0,
the Hodge index theorem implies that C ·C < 0. The long exact sequence in cohomology
associated to the sequence

0→ OX(−C)→ OX → OC → 0

implies that H 1(X,O(−C)) = 0. Serre duality on the other hand gives H 2(X,O(C)) =
H 0(X,O(−C)) = 0, and H 1(X,O(C)) = H 1(X,O(−C)) = 0. Riemann–Roch then
yields

dimH 0(X,O(C)) = 2+
1
2
C · C,

which implies that C ·C must be even. But since π(C) = (C ·C)/2+1, the virtual genus
of C, is nonnegative, we see that C · C = −2. This implies that π(C) = 0 and so C is a
smooth rational curve with self-intersection −2. Then the point f (C) is a rational double
point, and so Y = f (X) is an orbifold K3 surface. Notice that Ricci-flat orbifold metrics
on Y exist by [Y2], [Kob].

Now we turn to examples in dimension 3. The first one is known as conifold in the
physics literature [GMS], and is described in detail in Section 1.2 of [Ro], for example.
Roughly speaking, it is a 3-dimensional Calabi–Yau model Y that sits in P4 as a nodal
quintic. It has 16 singular points, which are nodes and not of orbifold type. Moreover,
there exists a small resolution f : X → Y , which is a birational morphism with X a
smooth Calabi–Yau threefold, that is an isomorphism outside the preimages of the nodes,
which are 16 rational curves. If L is the pullback of any ample divisor on Y , then L is nef
and big on X, and the limit of smooth Ricci-flat metrics on X with classes approaching
c1(L) is the pullback of the unique singular Ricci-flat metric on Y , which exists by [EGZ].
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The convergence is smooth on compact sets outside the union of the 16 exceptional curves
(which is clearly equal to the null locus of L). There are also other 3-dimensional ex-
amples where the singularities of Y are not isolated: one of these is described in Example
4.6 in [W1], and Y has a curve C of singularities. Blowing up C gives a Calabi–Yau
threefold X; if L is the pullback of any ample divisor on Y , then the null locus of L is
the exceptional divisor S which is a smooth surface ruled over C. Again our Theorem 1.1
applies, and the convergence is smooth off S.

6. Further directions

First let us mention an interesting question that arises from Theorem 1.1. We know that on
X\E the Ricci-flat metrics converge smoothly on compact sets to an incomplete Ricci-
flat metric ω1. Its metric completion is a metric space (X∞, d∞). Do the original met-
rics (X, ωt ) actually converge to (X∞, d∞) in the Gromov–Hausdorff topology? We can
prove this in the case when X is a K3 surface and α = c1(L). In fact, from Section 5
we know that E is a union of (−2)-curves and the contraction map f : X → Y maps
them to orbifold points. The results of [An], [BKN], [Ti] imply that a subsequence of
(X, ωt ) converges to Y with its orbifold Ricci-flat metric d∞ in the Gromov–Hausdorff
topology. But on the smooth part of Y the metrics ω1 and d∞ coincide, because they are
both singular Ricci-flat metrics on the whole of Y . Hence the metric completion of ω1
is d∞.

Also, whenX admits a birational Calabi–Yau model Y , which has a singular Ricci-flat
metric by [EGZ], what is the relation between Y and X∞?

There are two possible directions where it would be desirable to extend Theorem 1.1.
The first case is when we look at the whole Kähler cone, instead of just the ample cone,
and possibly drop the projectiveness assumption. Suppose X is a compact Calabi–Yau
n-fold and fix a Ricci-flat metric ω0 on X. The Néron–Severi space N1(X)R embeds into

H
1,1
R (X) = H 2(X,R) ∩H 1,1(X),

but in general it is a proper subspace (for example a generic projective K3 has ρ(X) =
1 < 20 = dimH

1,1
R (X)). Inside H 1,1

R (X) we have K, the Kähler cone, and its closure K,
the nef cone. We have

KNS = K ∩N1(X)R,

and similarly for the nef cone. Given a nonzero class α ∈ K \ K, and a smooth path
αt : [0, 1]→ K that ends at α, Yau’s Theorem gives a path ωt of Ricci-flat metrics in αt
and we can analyze their behavior as t approaches 1. Let us assume that α is big, which
again means that αn > 0.We would like to repeat the construction we did in the algebraic
case. There are two main points where we used the assumption that X was projective and
that α belonged to the Néron–Severi space: Proposition 4.1 and Kodaira’s lemma. We
conjecture that the analogue of Proposition 4.1 still holds, namely we propose
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Conjecture 6.1. Let X be a compact Kähler Calabi–Yau manifold, and α ∈ H 1,1
R (X) be

a class which is nef and big, but not Kähler. Then α can be represented by a smooth (1, 1)
form ω which is pointwise nonnegative and which is Kähler outside a proper analytic
subvariety E ⊂ X.

Notice that the proof of this conjecture would have to use the fact the X is Calabi–Yau,
since in general a nef and big class cannot be represented by a smooth nonnegative form
(see Example 3.15 in [BB] which is based on [DPS2]). If this conjecture were proved,
we could then write ω as the smooth limit of Kähler forms in αt , as in Proposition 4.1.
The correct substitute for Kodaira’s lemma would then be given by the theory of closed
positive currents: following [P2], which relies on the fundamental [DP], we know that
there would exist a modification π : X̃→ X such that

π∗ω = ω̃ + [E]−
√
−1 ∂∂η,

where ω̃ is a Kähler form on X̃, E is an effective Q-divisor on X̃ and η is quasi-psh,
smooth off E and has only log poles along E. Then we could just work on X̃, and get the
same estimates as above, outside E, thus proving the Kähler analogue of Theorem 1.1.

The second direction is to look at the case when the class α is nef but not necessarily
big. Notice that Theorem 3.1 gives a uniform diameter bound in this case. A guiding
example is the following: letX be an elliptically fiberedK3 surface, soX comes equipped
with a morphism f : X → P1 with fibers elliptic curves. Then the pullback of an ample
line bundle on P1 gives a nef line bundleL onX with Iitaka dimension 1. In the case when
all the singular fibers of f are of Kodaira type I1, Gross–Wilson have shown in [GW] that
sequences of Ricci-flat metrics on X whose class approaches c1(L) converge in C∞ on
compact sets of the complement of the singular fibers to the pullback of a Kähler metric
on P1. This metric on P1 was first studied by McLean [McL]. In a recent paper, Song–Tian
[ST] gave a more direct proof of the result of Gross–Wilson. Moreover, they noticed that
McLean’s metric satisfies an elliptic equation outside the images of the singular fibers,
namely its Ricci curvature equals the pullback of the Weil–Petersson metric from the
moduli space of elliptic curves, which comes from the variation of the complex structure
of the fibers of f .

We believe that in higher dimensions a similar picture should be true, when α =
c1(L). In this case Conjecture 2.1 would imply the existence of a morphism f : X → Y

with connected fibers, where dimY = κ(X,L) < n. Then we expect that outside a
proper subvariety E ⊂ X, a sequence of Ricci-flat metrics with class approaching α
should converge in C∞ on compact sets of X\E to the pullback of a metric on Y . It
is readily verified that, up to a subsequence, the Ricci-flat metrics converge weakly as
currents to the pullback of a metric on Y . The fibers of f are again Calabi–Yau’s, and a
computation as in [ST] shows that the limit metric on Y will satisfy the same equation
as McLean’s metric (in this case the potentials of the Ricci-flat metrics have a uniform
C0 bound [ST]). It might be possible to construct higher-dimensional examples of this
behavior using the results of Section 8 in [Fi], where the equation of McLean’s metric
appears in his condition (C).
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The situation is different when α is not c1(L), and X possibly not projective. Then an
example of McMullen [McM] shows that the Ricci-flat metrics can converge smoothly
to zero on an open set of X. Also easy examples on tori show that the fibration structure
as above cannot be expected when the limiting class α is not rational. Instead we still
expect the Ricci-flat metrics to converge smoothly on compact sets outside a subvariety
E to a limit nonnegative form ω, whose determinant vanishes identically. The kernel of ω
would then define a complex foliation with singularities on X\E, whose leaves might be
dense in X. The leaves of the foliation are always complex submanifolds, but they might
not vary holomorphically and the rank of the foliation might change on different open
sets (as in McMullen’s example). Notice that if the curvature is uniformly bounded, then
Ruan’s result [Ru] implies that this picture is basically true and moreover that the foliation
is holomorphic, so that its rank is constant on a Zariski open set. In McMullen’s example
the curvature blows up, and the resulting foliation is not holomorphic, thus showing that
Ruan’s result does not hold if the curvature is unbounded.

Let us mention that the results of [BKN], [Ba] also give a description of the behavior
of the Ricci-flat metrics near the singularities, where some bubbling occurs. Unfortunately
our methods do not seem to give results of this kind and it would be very interesting to
study this in higher dimensions when the limit Calabi–Yau model does not have orbifold
singularities.

Finally, let us notice that some of the results here generalize to the following setting:
X is a compact Kähler manifold, and we fix a smooth volume form �. If αt is a path of
Kähler classes as at the beginning of this section, then for each t < 1 Yau’s theorem [Y2]
gives a unique Kähler form ωt in αt such that

ωnt =
αnt∫
X
�
�.

We can then study the behavior of the metrics ωt as t approaches 1. If the image of αt lies
inN1(X)R and the limit class α is nef, big and semiample, then the argument of Theorem
1.1 goes through, and we get smooth convergence on compact sets outside a subvariety.
Again if α = c1(L) then this subvariety is the null locus of L.
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[P1] Păun, M.: On the Albanese map of compact Kähler manifolds with numerically effective
Ricci curvature. Comm. Anal. Geom. 9, 35–60 (2001) Zbl 0980.53091 MR 1807951
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