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Abstract. Let L be a non-negative self-adjoint N ×N matrix-valued operator of order a ≤ Q on a
Carnot group G. HereQ is the homogeneous dimension of G. The aim of this paper is to investigate
the relationship between hypoellipticity and maximal hypoellipticity (i.e. sharp L2 estimates in
appropriate Sobolev spaces), Lp-maximal hypoellipticity (i.e. sharp Lp estimates in appropriate
Sobolev spaces for 1 < p <∞), and what we call maximal subellipticity of L (which is basically
a sharp higher order energy estimate).
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1. Introduction

Let G be a Carnot group of homogeneous dimension Q (i.e. a connected and simply
connected nilpotent stratified Lie group; see below for precise definitions) identified with
Rn through the exponential map, and let L be a homogeneous left invariant differential
operator on G of order a = 2r , r ∈ N, with tL = L ≥ 0. Denote by W1, . . . ,Wm a
basis of the first layer (the horizontal layer) of the Lie algebra g of G. The following
equivalence is known ([9, Theorem 2.1 and following remark], and also [16, Proposition
1.4.7], for vector bundles over Heisenberg groups).

Theorem 1.1. The following statements are equivalent:

(i) L is hypoelliptic.
(ii) If � ⊂ G is a bounded open set, then there exists C = C� such that for any homo-

geneous polynomial P in W1, . . . ,Wm of degree a we have

‖Pα‖L2(G) ≤ C(‖Lα‖L2(G) + ‖α‖L2(G)) for any α ∈ D(�),

i.e. L is maximal hypoelliptic in the sense of [9].
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More generally, consider now an N × N matrix-valued operator L = tL ≥ 0 of order
a ≤ Q. The aim of this paper is to investigate the relationship between hypoelliptic-
ity of L, maximal hypoellipticity, Lp-maximal hypoellipticity (i.e. sharp Lp estimates in
appropriate Sobolev spaces for 1 < p < ∞), and what we call maximal subellipticity
(which is basically a sharp high order energy estimate). The equivalence of hypoellip-
ticity, maximal hypoellipticity (and Rockland’s condition) can be obtained by repeating
verbatim the arguments for scalar operators of Theorem 2.1 in [9]. On the other hand, the
proof that hypoellipticity implies Lp-maximal hypoellipticity requires an argument based
on the existence of a both left and right inverse K for L (see [6]), as well as precise Lp

estimates for K.
Indeed, once it is proved that there exists a (matrix-valued) fundamental solution 0

for L, and that 0, by convolution, defines an operator K that is both a left and a right
inverse of L, the proof of the Lp-maximal hypoellipticity of L can be carried out by quite
standard arguments.

As in [18], in this paper we prove first the existence of a global fundamental solution 0
by adapting the arguments of Folland’s proof given for the scalar case when a < Q. To
cover also the case a = Q (which is crucial for instance when dealing with the fourth
order contact Laplacian on intrinsic 1-forms—see e.g. [19], [1]—in the first Heisenberg
group where Q = 4), we need to slightly modify the argument to take into account the
logarithmic behavior of 0.

Arguing as in [6], it is easy to see that 0 yields by convolution a right inverse for L.
On the contrary, our proof that the convolution with 0 provides a left inverse is car-

ried out in a different way: if α is a compactly supported (say) smooth vector field, then
we show that β := KLα − α is L-harmonic (i.e. Lβ = 0) and it vanishes at infinity
when a < Q, and is bounded when a = Q. Then we reach our desired conclusion by
relying on a Liouville type theorem for general matrix-valued left invariant homogeneous
hypoelliptic operators (inspired by [14]). In other words, unlike [6], we do not use any
symmetry property of the fundamental solution. Remember we are dealing with higher
order differential operators for which neither an explicit form of K is known, nor can we
easily prove any symmetry property of the fundamental solution with respect to the map
p 7→ p−1. In fact, Folland’s proof (Corollary 2.8 of [6]) seems to rely heavily on the
assumption that 0(p−1) ≡ 0(p). On the other hand, this symmetry property appears in
our proof (when a < Q) as a consequence of the existence of a left inverse.

In a sense, this approach is akin to that given in [17] and [3, Chapter V, Section 3],
when L is a sum-of-squares operator, where the proof uses a maximum principle. How-
ever, clearly, the maximum principle fails to hold for vector-valued functions. We can
overcome this difficulty precisely by means of our Liouville type theorem for vector-
valued functions on homogeneous groups (see Proposition 3.2).

In addition, in Theorem 4.1, by an interpolation argument, we prove that the maximal
hypoellipticity ofL implies its maximal subellipticity, i.e. if� ⊂ G is a bounded open set,
then there exists C = C� such that for any homogeneous polynomial P in W1, . . . ,Wm

of degree r we have

‖Pα‖L2(G) ≤ C(〈Lα, α〉L2(G) + ‖α‖L2(G)) for any α ∈ D(�)

(see also [9, Chapter III, 7]).
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Finally, we complete this circle of statements by showing that maximal subelliptic-
ity implies hypoellipticity. This implication for sum-of-squares operators (of order 2)
goes back to [10] and [13]. Our proof is carried out in the spirit of the pseudodifferen-
tial arguments given in [15], and consists in a careful representation of the commutator
[W I , p(x,D)] of a homogeneous polynomial W I of degree |I | in the horizontal vector
fields W1, . . . ,Wm (more precisely, see (11) for this notation), and of a pseudodifferen-
tial operator p(x,D) belonging to the usual Hörmander classes (see Lemmata 5.1 and
5.2). In fact, the proof in [10] and [13] for operators of order 2 cannot be repeated here
since 2 is a privileged number: indeed, if Wi is a horizontal vector field and p(x,D) is a
pseudodifferential operator of order 0, then [W 2

i , p(x,D)]α = q(x,D)Wiα + r(x,D)α,
with both q and r of order 0. Thus, basically, the commutator can be controlled by all
the horizontal derivatives of α, which in turn can be controlled by 〈Lα, α〉, by subel-
lipticity (1), i.e. by horizontal derivatives of order half the order of L. In other words,
it is crucial that 2 − 1 = 1

2 2. Clearly, this argument fails to work when a, the order
of L, exceeds 2. Assuming maximal hypoellipticity instead of maximal subellipticity, i.e.
assuming that ‖Lu‖ controls all the derivatives up to the order of L, this problem is by-
passed in [15] thanks to Lemma 5.1, expressing [W I , p(x,D)] as a sum of terms of the
form q(x,D)W J , with |J | ≤ |I | − 1. To overcome the problem in our situation, we need
a more sophisticated result (Lemma 5.2), where, integrating repeatedly by parts, we can
successively distribute in an appropriate way the horizontal derivatives on both sides of
the scalar product, so that only horizontal derivatives of order not exceeding 1

2a appear.
In this paper, we focus on matrix-valued differential operators, since, typically, this

situation arises from a (global) trivialization of a vector fiber bundle (G,F , π) that is
invariant with respect to group translations and dilations. A remarkable example of this
situation is provided by the intrinsic Laplacian of the contact complex of Heisenberg
groups ([19], [20]). In this context, Theorem 4.1 improves in particular Theorem 4.7 of
[1] and the results of [2].

2. Notations and preliminary results

A Carnot group G of step κ is a connected, simply connected Lie group whose Lie algebra
g admits a step κ stratification, i.e. there exist linear subspaces V1, . . . , Vκ such that

g = V1 ⊕ · · · ⊕ Vκ , [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ, (1)

where [V1, Vi] is the subspace of g generated by the commutators [X, Y ] with X ∈ V1
and Y ∈ Vi . Let mi = dim(Vi) for i = 1, . . . , κ and hi = m1 + · · · + mi with h0 = 0
and, clearly, hκ = n. Choose a basis e1, . . . , en of g adapted to the stratification, that is,
such that

ehj−1+1, . . . , ehj is a base of Vj for each j = 1, . . . , k.

Let W = W1, . . . ,Wn be the family of left invariant vector fields such that Wi(0) = ei .
Given (1), the subsetW1, . . . ,Wm1 generates by commutations all the other vector fields;
we will refer to W1, . . . ,Wm1 as generating vector fields of the group. The exponential
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map is a one-to-one map from g onto G, i.e. any p ∈ G can be written in a unique way
as p = exp(p1W1 + · · · + pnWn). Using these exponential coordinates, we identify p
with the n-tuple (p1, . . . , pn) ∈ Rn and we identify G with (Rn, ·) where the explicit
expression of the group operation · is determined by the Campbell–Hausdorff formula
(see [6]); some of its features are described in Proposition 2.1 below. If p ∈ G and
i = 1, . . . , κ , we put pi = (phi−1+1, . . . , phi ) ∈ Rmi , so that we can also identify p with
[p1, . . . , pκ ] ∈ Rm1 × · · · × Rmκ = Rn.

The subbundle of the tangent bundle TG that is spanned by the vector fields W1, . . . ,

Wm1 plays a particularly important role in the theory, it is called the horizontal bundle
HG; the fibers of HG are

HGx = span{W1(x), . . . ,Wm1(x)}, x ∈ G.

From now on, for simplicity, we sometimes set m := m1.
A subriemannian structure is defined on G, endowing each fiber of HG with a scalar

product 〈·, ·〉x and a norm | · |x that make W1(x), . . . ,Wm(x) an orthonormal basis. That
is, if v =

∑m
i=1 viWi(x) = (v1, . . . , vm) and w =

∑m
i=1wiWi(x) = (w1, . . . , wm) are

in HGx , then 〈v,w〉x :=
∑m
j=1 vjwj and |v|2x := 〈v, v〉x . The sections of HG are called

horizontal sections, and each vector of HGx is a horizontal vector.
Two important families of automorphisms of G are the group translations and the

group dilations of G. For any x ∈ G, the (left) translation τx : G→ G is defined as

z 7→ τxz := x · z.

For any λ > 0, the dilation δλ : G→ G is defined as

δλ(x1, . . . , xn) = (λ
d1x1, . . . , λ

dnxn), (2)

where di ∈ N is called the homogeneity of the variable xi in G (see [7, Chapter 1]) and is
defined as

dj = i whenever hi−1 + 1 ≤ j ≤ hi, (3)
hence 1 = d1 = · · · = dm1 < dm1+1 = 2 ≤ · · · ≤ dn = κ.

In the following propositions we collect some more or less elementary properties
of the group operation and of the canonical vector fields (see e.g. [8, Propositions 2.1
and 2.2]).

Proposition 2.1. The group product has the form

x · y = x + y +Q(x, y), ∀x, y ∈ Rn. (4)

where Q = (Q1, . . . ,Qn) : Rn × Rn → Rn and each Qi is a homogeneous polynomial
of degree di with respect to the intrinsic dilations of G defined in (2), that is,

Qi(δλx, δλy) = λdiQi(x, y), ∀x, y ∈ G.

Moreover, again for all x, y ∈ G,

Q1(x, y) = · · · = Qm1(x, y) = 0,
Qj (x, 0) = Qj (0, y) = 0 and Qj (x, x) = Qj (x,−x) = 0, for m1 < j ≤ n,

(5)

Qj (x, y) = Qj (x1, . . . , xhi−1 , y1, . . . , yhi−1) if 1 < i ≤ κ and j ≤ hi . (6)
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Note that from Proposition 2.1 it follows that

δλx · δλy = δλ(x · y)

and that the inverse x−1 of an element x = (x1, . . . , xn) ∈ (Rn, ·) has the form

x−1
= (−x1, . . . ,−xn)

(see [7, Proposition 2.1] and also [12]).

Proposition 2.2. The vector fields Wj have polynomial coefficients and have the form

Wj = ∂j +

n∑
i>hl

qi,j (x)∂i for j = 1, . . . , n and j ≤ hl, (7)

where qi,j (x) =
∂Qi

∂yj
(x, y)|y=0 so that if j ≤ hl then qi,j (x) = qi,j (x1, . . . , xhl−1) and

qi,j (0) = 0.

In particular, the generating vector fields are homogeneous of degree 1 with respect to
group dilations.

In this paper we denote by ρ a homogeneous norm, smooth outside the origin, that
induces a genuine distance on G as in [21, p. 638]. Later on, we shall use the following
gauge distance:

d(x, y) := ρ(y−1
· x).

We shall denote by U(p, r) and B(p, r) respectively the open and closed balls associated
with d .

The metric d is well behaved with respect to left translations and dilations, that is,

d(z · x, z · y) = d(x, y), d(δλ(x), δλ(y)) = λd(x, y)

for x, y, z ∈ G and λ > 0.
The integer

Q =

n∑
j=1

dj =

κ∑
i=1

i dimVi (8)

is the homogeneous dimension of G. It is also the Hausdorff dimension of Rn with respect
to d.

The n-dimensional Lebesgue measure Ln is the Haar measure of the group G. Hence
if E ⊂ Rn is measurable, then Ln(x ·E) = Ln(E) for all x ∈ G. Moreover, if λ > 0 then
Ln(δλ(E)) = λQLn(E). We explicitly observe that

Ln(U(p, r)) = rQLn(U(p, 1)) = rQLn(U(0, 1)). (9)

All the spaces Lp(G) that appear throughout this paper are defined with respect to the
Ln Lebesgue measure.
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Following e.g. [7], we can define a group convolution in G: if, for instance, f ∈ D(G)
and g ∈ L1

loc(G), we set

f ∗ g(p) :=
∫
f (q)g(q−1p) dq for p ∈ G. (10)

We recall that, if (say) g is a smooth function and L is a left invariant differential operator,
then L(f ∗ g) = f ∗ Lg. We also recall that the convolution is again well defined when
f, g ∈ D′(G), provided at least one of them has compact support (as is customary, we
denote by E ′(G) the class of compactly supported distributions in G identified with Rn,
the dual of E(G), the space of smooth functions). We recall now the notion of kernel of
order α. Following [6], a kernel of order α is a homogeneous distribution of degree α−Q
(with respect to group dilations δr as in (2), see [7]) that is smooth outside the origin.

Following [7], we also adopt the following multi-index notation for higher order
derivatives. If I = (i1, . . . , in) is a multi-index, we set

W I
= W

i1
1 · · ·W

in
n . (11)

By the Poincaré–Birkhoff–Witt theorem (see, e.g. [4, I.2.7]), the differential operatorsW I

form a basis for the algebra of left invariant differential operators in G. Furthermore, we
set |I | := i1 + · · · + in, the order of the differential operator W I , and d(I ) := d1i1 +

· · ·+ dnin, its degree of homogeneity with respect to group dilations. From the Poincaré–
Birkhoff–Witt theorem it follows in particular that any homogeneous linear differential
operator in the horizontal derivatives can be expressed as a linear combination of the
operators W I of the special form above. Thus, often we can restrict ourselves to consider
only operators of the special form W I . Let k be a positive integer, 1 ≤ p <∞, and � be
an open set in G. The Folland–Stein Sobolev space W k,p

G (�) associated with the vector
fields W1, . . . ,Wn is defined to consist of all functions f ∈ Lp(�) with distributional
derivativesW If ∈ Lp(�) for anyW I as above with d(I ) ≤ k, endowed with the natural
norm. We keep the subscript G to avoid misunderstanding with the usual Sobolev spaces
W k,p(�). Moreover, we denote by W̊ k,p

G (�) the completion of D(�) in W k,p

G (�).
Let N ∈ N be given. From now on, we are dealing with N -vector-valued func-

tions α = (α1, . . . , αN ). If � ⊂ G is an open set, k ∈ N and 1 ≤ p ≤ ∞, we
still denote by W k,p

G (�) (resp. W̊ k,p

G (�)) the vector-valued function spaces (W s,p

G (�))N

(resp. (W̊ k,p

G (�))N ). Analogously, we shall write Lp(�) for (Lp(�))N and W k,p(�) for
(W k,p(�))N .

Moreover, if T = (T1, . . . , TN ) ∈ D′(�)N , then T can be identified with an element
of the dual of D(�,RN ) acting as

〈T |φ〉 :=
∑
j

〈Tj |φj 〉

for φ = (φ1, . . . , φN ) ∈ D(�,RN ). The same convention holds for T = (T1, . . . , TN ) ∈

S ′(�)N .



Differential operators on Carnot groups 783

We recall that, if T = (T1, . . . , TN ) ∈ S ′(G)N , then there exist k, h ∈ N ∪ {0} and
C(T ) > 0 such that

|〈Tj |φ〉| ≤ C(T )‖φ‖k,h for all φ ∈ S(G,RN ) and j = 1, . . . , N, (12)

where, with the standard notation for multi-indices,

‖φ‖k,h = max
|α|≤k, |β|≤h

sup
p∈G
|pα∂βφ(p)|. (13)

Hence
|〈T |φ〉| ≤ C(T )‖φ‖k,h for all φ ∈ S(G,RN ). (14)

Remark 2.3. It is easy to see that the polynomials qi,j of Proposition 2.2 have degree at
most κ − 1. Moreover, by (7), ∂j can be written as a sum of the form

∂j =
∑
i

ri,j (x)Wi,

where the ri,j ’s are polynomials of degree at most κ − 1, for j = 1, . . . , n. Hence, if
α = (α1, . . . , αn) and β = (β1, . . . , βn) are multi-indices, then xα∂β can be written as a
sum of the form

xα∂β =
∑

|γ |≤(κ−1)|β|+|α|, |I |≤|β|

cγ,Ix
γW I , (15)

with cγ,I suitable real constants.

3. Liouville type theorems and fundamental solution

Let L := (Lji)j,i=1,...,N be a differential operator on E(G,RN ) defined by

L(α1, . . . , αN ) =
(∑

i

Li1αi, . . . ,
∑
i

LiNαi
)
, (16)

where theLij ’s are constant coefficient homogeneous polynomials of degree a inW1, . . . ,

Wm. Due to the left invariance and the homogeneity (with respect to group dilations) of the
vector fields W1, . . . ,Wm, we say that the operator L is left invariant and homogeneous
of degree a. We notice that the formal adjoint tL of L is given by

tL(α1, . . . , αN ) =
(∑

i

tL1iαi, . . . ,
∑
i

tLNiαi
)
. (17)

In this section we proove a Liouville type theorem and study the (matrix-valued) fun-
damental solution for L. In particular, these results improve Theorem 4.7 and Proposition
4.10 of [1], and will be used later to derive sharp Lp estimates for the operator L in The-
orem 4.1. The role of the Liouville theorem as well as the relationship with Folland’s
construction of the fundamental solution have already been extensively discussed in the
Introduction.
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Theorem 3.1. Suppose L is a left invariant hypoelliptic differential operator such that
tL = L. Suppose also that L is homogeneous of degree a ≤ Q. Then there exist

Kj = (K1j , . . . , KNj ), j = 1, . . . , N, (18)

with Kij ∈ D′(G) ∩ E(G \ {0}), i, j = 1, . . . , N , such that:

(i) We have ∑
i

Li`Kij =
{
δ if ` = j,
0 if ` 6= j.

(ii) If a < Q, then theKij ’s are kernels of type a in the sense of [6], for i, j = 1, . . . , N
(i.e. they are smooth functions outside of the origin, homogeneous of degree a −Q,
and hence belonging to L1

loc(G), by Corollary 1.7 of [6]). If a = Q, then the Kij ’s
satisfy the logarithmic estimate |Kij (p)| ≤ C(1 + |ln ρ(p)|) and hence belong to
L1

loc(G). Moreover, their horizontal derivatives (i.e. W`Kij for ` = 1, . . . , m) are
kernels of type Q− 1 in the sense of [6].

(iii) When α ∈ D(G,RN ), if we set

Kα :=
(∑
j

αj ∗K1j , . . . ,
∑
j

αj ∗KNj

)
, (19)

then LKα = α. Moreover, if a < Q, also KLα = α.
(iv) If a = Q, then for any α ∈ D(G,RN ) there exists βα := (β1, . . . , βN ) ∈ RN such

that
KLα − α = βα.

Proof. The content of the theorem is similar to that of Theorem 4.7 and Proposition 4.10
of [1] (stated there in terms of forms and currents on the contact complex of Heisenberg
groups), except for the (non-trivial) fact that here we are assuming L is merely hypoellip-
tic and not maximal hypoelliptic as in [1]. We stress that maximal hypoellipticity is used
in the proofs of Theorem 4.7 and Proposition 4.10 of [1] only to show that a smooth in-
trinsic form ω in the contact complex (which can be identified in the context of the present
note with a vector-valued smooth function ω = (ω1, . . . , ωN ) for a suitable N ∈ N) that
satisfies

(a) if a < Q and R is a homogeneous differential operator in the horizontal vector fields
of degree ` < a, then

Rω(p) = O(ρ(p)a−`−Q) as p→∞,

(b) if a = Q and R is a homogeneous differential operator in the horizontal vector fields
of degree ` < a, then

Rω(p) = O(ρ(p)−`) as p→∞ if ` > 0,
Rω(p) = O(ln ρ(p)) as p→∞ if ` = 0,

(c) Lω = 0
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has necessarily polynomial coefficients and hence vanishes identically if a < Q or has
constant coefficients if a = Q. Inspired by [14], we are able to prove the same statement
as a consequence of a Liouville type theorem (see Proposition 3.2 below), under the only
assumption that L is homogeneous, left invariant and hypoelliptic. ut

Thus, the proof of Theorem 3.1 will be completed by proving the following result.

Proposition 3.2. If T = (T1, . . . , TN ) ∈ S ′(G)N satisfies LT = 0, then T is a (vector-
valued) polynomial.

In order to prove Proposition 3.2, let us start with the following lemma.

Lemma 3.3 (cf. [14, Lemma 4]). Let L be as in Theorem 3.1. If T = (T1, . . . , TN ) ∈

S ′(G)N and LT = 0, then there exists a constant M = M(a, T ) such that W ITj (0) = 0
when |I | > M (remember we can assume the Tj ’s are smooth functions, by hypoelliptic-
ity). More precisely, the constant M depends on the homogeneity degree a of L and on
the indices k, h of the seminorm ‖ · ‖k,h associated with T as in (12).

Proof. By (12), there exist k, h ∈ N ∪ {0} such that

〈Tj |φ〉 ≤ C(T )‖φ‖k,h for all φ ∈ S(G) and j = 1, . . . , N. (20)

If φ ∈ S(G), then, with our notations, if r ≥ 1, we have φ ◦ δ1/r ∈ S(G) and

‖φ ◦ δ1/r‖k,h ≤ r
Qk
‖φ‖k,h. (21)

Let now I := (i1, . . . , iN ) be a multi-index. If M = (k − 1)Q the integral

〈FI |φ〉 :=
∫
∞

1
r−Q−d(I )−1

〈T |φ ◦ δ1/r 〉 dr (22)

is well defined for any φ ∈ S(G,RN ) when |I | > M . Indeed, since d(I ) ≥ |I |, and by
(20) and (21), we have

|〈FI |φ〉| ≤ C(T )‖φ‖k,h

∫
∞

1
r−Q−d(I )−1+kQ dr

≤ C(T )‖φ‖k,h

∫
∞

1
r−Q−|I |−1+kQ dr =

1
|I | −M

C(T )‖φ‖k,h.

In particular, we notice that FI ∈ S ′(G)N whenever |I | > M . Next, we prove that
LFI = 0 when |I | > M . Clearly,

〈LFI |φ〉 = 〈FI |tLφ〉 = 〈FI |Lφ〉 =
∫
∞

1
r−Q−d(I )−1

〈T |(Lφ) ◦ δ1/r 〉 dr

=

∫
∞

1
r−Q−d(I )−1+a

〈T |L(φ ◦ δ1/r)〉 dr

=

∫
∞

1
r−Q−d(I )−1+a

〈LT |φ ◦ δ1/r 〉 dr = 0
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for any φ ∈ S(G,RN ). Hence LFI = 0 and thus FI =: (FI,1, . . . , FI,N ) is smooth,
by hypoellipticity, provided |I | > M . Choose now a scalar mollifier ψ ∈ D(G) such
that ψ ≥ 0 and

∫
ψ(p) dp = 1. We set ψε := ε−Qψ ◦ δ1/ε, φε = φj,ε = ψε ej with

1 ≤ j ≤ N , where ej is the j -th vector of the canonical orthonormal basis of RN . Thus

W IFI,j (0) = lim
ε→0
〈W IFI |φε〉 (23)

for j = 1, . . . , N , provided |I | > M . On the other hand, always when |I | > M ,

〈W IFI |φε〉 = (−1)|I |〈FI |W Iφε〉 = (−1)|I |
∫
∞

1
r−Q−d(I )−1

〈T |(W Iφε) ◦ δ1/r 〉 dr

= (−1)|I |
∫
∞

1
r−Q−1

〈T |W I (φε ◦ δ1/r)〉 dr

=

∫
∞

1
r−Q−1

〈W IT |φε ◦ δ1/r 〉 dr =

∫
∞

1
r−Q−1

〈W ITj |ψε ◦ δ1/r 〉 dr

= ε−Q
∫
∞

1
r−Q−1

〈W ITj |ψ ◦ δ1/(εr)〉 dr

=

∫
∞

ε

λ−Q−1
〈W ITj |ψ ◦ δ1/λ〉dλ =

∫
∞

ε

λ−1
〈W ITj |ψλ〉dλ.

Then, using also (23), we get

W IFI,j (0) =
∫
∞

0
λ−1
〈W ITj |ψλ〉 dλ (24)

for j = 1, . . . , N , provided |I | > M . Since T is smooth as remarked above, 〈W ITj |ψλ〉

→ W ITj (0) as λ→ 0. Now, since the integral in (24) is convergent because the left-hand
side of (24) is finite, W ITj (0) must be equal to zero for any I such that |I | > M; this
holds for any j = 1, . . . , N . Therefore, W IT = 0 for any I such that |I | > M , and the
proof is complete. ut

Proof of Proposition 3.2. By hypoellipticity, T is smooth. Let now q ∈ G be fixed. We
want to apply Lemma 3.3 to T ◦ τq . In fact, suppose we have shown that, if

|〈T |φ〉| ≤ C(T )‖φ‖k,h for all φ ∈ S(G,RN ), (25)

for given k, h ∈ N, then also

|〈T ◦ τq |φ〉| ≤ C(q, T )‖φ‖k′,h′ for all φ ∈ S(G,RN ), (26)

with h′, k′ depending only on the structure constants of G appearing in Propositions 2.1
and 2.2 and on h, k of (25), but not on q. Since L is invariant under group translations, we
have L(T ◦ τq) = 0, and eventually, by Lemma 3.3, W I (T ◦ τq)(0) = 0 when |I | > M ,
with M independent of q ∈ G. But, by the left invariance of W I ,

W I (T ◦ τq)j (0) = W I (Tj ◦ τq)(0) = ((W ITj ) ◦ τq)(0) = W ITj (q),
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so that W ITj ≡ 0 for j = 1, . . . , N when |I | > M . Then all derivatives of T of suffi-
ciently high order vanish identically, and the assertion follows.

Thus, we are left with the proof of (26). We note first |〈T ◦ τq |φ〉| = |〈T |φ ◦ τq−1〉|,
and so we only have to show that

‖φ ◦ τq−1‖k,h ≤ C(q)‖φ‖k′,h′ for all φ ∈ S(G,RN ) (27)

with h′, k′ depending only on the structure constants of G appearing in Propositions 2.1
and 2.2 and on h, k of (25), but not on q.

Without loss of generality, we may restrict ourselves to the case N = 1. By (15), if
|α| ≤ k and |β| ≤ h, |pα∂β(φ ◦ τq−1)(p)| can be estimated by a sum of terms of the form

|pγW I (φ(q−1
· p))| = |pγ (W Iφ)(q−1

· p)| = |(q · q−1
· p)γ (W Iφ)(q−1

· p)|,

with |γ | ≤ (κ − 1)|β| + |α| ≤ (κ − 1)h+ k and |I | ≤ |β| ≤ h. Therefore, by Proposition
2.2 and Remark 2.3, and then by Proposition 2.1,

sup
p∈G,

|α|≤k, |β|≤h

‖pα∂β(φ ◦ τq−1)(p)| ≤ sup
z∈G, |I |≤h
|γ |≤(κ−1)h+k

|(q · z)γ (W Iφ)(z)|

≤ sup
z∈G, |I |≤h
|γ |≤2(κ−1)h+k

|(q · z)γ (∂Iz φ)(z)|

≤ C(q) sup
z∈G, |I |≤h

|γ |≤κ(2(κ−1)h+k)

|zγ ∂Iz φ(z)|

= C(q)‖φ‖κ(2(κ−1)h+k),h =: C(q)‖φ‖k′,h′ . ut

4. Main result

Theorem 4.1. Let
L : E(G,RN )→ E(G,RN )

be a self-adjoint non-negative left invariant differential operator that is homogeneous
(with respect to group dilations) of degree a := 2r ≤ Q, where r ∈ N and Q is the
homogeneous dimension of G. The following statements are equivalent:

(i) L is hypoelliptic.
(ii) L is maximal subelliptic, i.e., if � ⊂ G is a bounded open set, then there exists

C = C� such that for any multi-index I with |I | = r ,

‖W Iα‖L2(G) ≤ C(〈Lα, α〉L2(G) + ‖α‖
2
L2(G))

1/2 for any α ∈ D(�,RN ). (28)

(iii) L is maximal hypoelliptic in the sense of [9], i.e., if � ⊂ G is a bounded open set,
then there exists C = C� such that for any multi-index I with |I | = 2r we have

‖W Iα‖L2(G) ≤ C(‖Lα‖L2(G) + ‖α‖L2(G)) for any α ∈ D(�,RN ). (29)
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(iv) If 1 < p < ∞ is fixed, and � ⊂ G is a bounded open set, then there exists
C = C�,p such that for any multi-index I with |I | = 2r we have

‖W Iα‖Lp(G) ≤ C(‖Lα‖Lp(G) + ‖α‖Lp(G)) for any α ∈ D(�,RN ). (30)

By the Poincaré inequality [12], in (30), (29) (and in (28)), we can replace |I | = 2r by
|I | ≤ 2r (|I | = r by |I | ≤ r , respectively).

Proof. Clearly, (iv) implies (iii). To show that (iii) yields (ii) we argue as in [5, Theo-
rem 1]. Indeed, by dilation, it is easy to see that the constant C in (29) can be chosen
independent of �. Hence (29) says that the domain of L in L2(G) with the graph norm is
continuously imbedded in W 2r,2

G (G). By interpolation, the domain of L1/2 with the norm
graph is continuously imbedded in W r,2

G (G) (remember that the interpolation space of
order 1

2 between W 2r,2
G (G) and L2(G) is W r,2

G (G), by [6, Theorem 4.10 and Proposition
4.1]). But this is precisely (28).

Let us prove that (ii) implies (i). For notations concerning pseudodifferential opera-
tors, see Section 5.

Step 1. If � ⊂ G is a bounded open set, then there exists C > 0 such that, denoting by
‖ · ‖s the norm in W s,2

G (G),

∑
|I |≤r

‖W Iα‖2δ(r−|I |) ≤ C(〈Lα, α〉 + ‖α‖
2
0) for any α ∈ D(�,RN ). (31)

We can restrict ourselves to the case |I | < r , since, when |I | = r , then W Iα is
already estimated by the right hand side of (31) by (28). Moreover, we shall carry out our
computations in the case |I | > 0. The case |I | = 0 requires only minor modifications.
Set

Sh :=
∑
|J |≤h

‖W Jα‖δ(r−|J |).

Notice Sh ≤ Sh+1.
For s ∈ R, denote by 3s the pseudodifferential operator of symbol (1 + |ξ |2)s/2.

We still denote by 3s the diagonal operator induced on D′(�,RN ) as follows: if T =
(T1, . . . , TN ) ∈ D(�,RN ), we write

3sT := (3sT1, . . . , 3
sTN ).

By Lemma 5.1 and the usual interpolation inequality for Sobolev spaces, if ε > 0 is given,
we have
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‖W Iα‖δ(r−|I |) = ‖3
δ(r−|I |−1)W Iα‖δ

≤ ‖W I3δ(r−|I |−1)α‖δ + ‖[3δ(r−|I |−1),W I ]α‖δ

≤ ‖W I3δ(r−|I |−1)α‖δ +
∑
|J |<|I |

‖bJ (x,D)W
Jα‖δ

≤ ‖W I3δ(r−|I |−1)α‖δ + C
∑
|J |<|I |

‖W Jα‖δ(r−|I |)

≤ ‖W I3δ(r−|I |−1)α‖δ + Cε
∑
|J |<|I |

‖W Jα‖δ(r−|J |) + Cε
∑
|J |<|I |

‖W Jα‖0

≤ ‖W I3δ(r−|I |−1)α‖δ + CεS|I | + Cε
∑
|J |<|I |

‖W Jα‖0. (32)

By the (iterated) Poincaré inequality ([12]), and by (29),

Cε
∑
|J |<|I |

‖W Jα‖0 ≤ Cε
∑
|J |=r

‖W Jα‖0 ≤ Cε(〈Lα, α〉 + ‖α‖20)
1/2,

so that

‖W Iα‖δ(r−|I |) ≤ ‖W
I3δ(r−|I |−1)α‖δ + CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)

1/2. (33)

Let now η ∈ D(G) be such that η ≡ 1 on �. We can write

‖W I3δ(r−|I |−1)α‖δ = ‖W
I3δ(r−|I |−1)ηα‖δ

≤ ‖W Iη3δ(r−|I |−1)α‖δ + ‖W
I [3δ(r−|I |−1), η]α‖δ

≤ ‖W Iη3δ(r−|I |−1)α‖δ + ‖[3δ(r−|I |−1), η]W Iα‖δ + ‖[W I , [3δ(r−|I |−1), η]]α‖δ

=: ‖W Iη3δ(r−|I |−1)α‖δ +N1 +N2. (34)

Keeping in mind that the operator [3δ(r−|I |−1), η] has order δ(r − |I | − 1)− 1, again by
interpolation and by the Poincaré inequality,

N1 ≤ ‖W
Iα‖δ(r−|I |)−1 ≤ Cε‖W

Iα‖δ(r−|I |) + Cε‖W
Iα‖0

≤ CεS|I | + Cε
∑
|J |=r

‖W Jα‖0 ≤ CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)
1/2. (35)

By Lemma 5.1, taking into account that [3δ(r−|I |−1), η] has order δ(r−|I |−1)−1, there
exist pseudodifferential operators cJ (x,D) of order δ(r − |I | − 1)− 1 such that

N2 ≤
∑
|J |<|I |

‖cJ (x,D)W
Jα‖δ ≤ C

∑
|J |<|I |

‖W Jα‖δ(r−|I |)−1

≤ C
∑
|J |<|I |

‖W Jα‖δ(r−|J |)−1 ≤ Cε
∑
|J |<|I |

‖W Jα‖δ(r−|J |) + Cε
∑
|J |<|I |

‖W Jα‖0

≤ CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)
1/2, (36)
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as above. Thus, combining (34), (35) and (36), we get

‖W I3δ(r−|I |−1)α‖δ ≤ ‖W
Iη3δ(r−|I |−1)α‖δ + CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)

1/2. (37)

Hence, by (33) and (37),

‖W Iα‖δ(r−|I |) ≤ ‖W
Iη3δ(r−|I |−1)α‖δ + CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)

1/2. (38)

Remember now that, by a classical estimate ([10]), there exists δ ∈ (0, 1) such that,
if �0 is a bounded open set (which we choose such that supp η ⊂ �0), and u ∈ D(�0),
then

‖u‖δ ≤ C
( m∑
j=1

‖Wju‖0 + ‖u‖0

)
, (39)

where C = C(�0) is independent of u ∈ D(�0).
Going back to (37) and applying (39) to the components of W Iη3δ(r−|I |−1)α (which

belongs to D(�0)), we get

‖W Iη3δ(r−|I |−1)α‖δ

≤

∑
|J |=|I |+1

‖W J η3δ(r−|I |−1)α‖0 + ‖W
Iη3δ(r−|I |−1)α‖0

≤

∑
|J |=|I |+1

‖η3δ(r−|I |−1)W Jα‖0 +
∑

|J |=|I |+1

‖[W J , η3δ(r−|I |−1)]α‖0

+ ‖W Iη3δ(r−|I |−1)α‖0

≤ C
∑

|J |=|I |+1

‖W Jα‖δ(r−|J |) +
∑

|J |=|I |+1

‖[W J , η3δ(r−|I |−1)]α‖0

+ ‖W Iη3δ(r−|I |−1)α‖0

=: C
∑

|J |=|I |+1

‖W Jα‖δ(r−|J |) +
∑

|J |=|I |+1

N3,J +N4. (40)

By Lemma 5.1, keeping in mind that the operator η3δ(r−|I |−1) has order δ(r − |I | − 1),
there exist pseudodifferential operators cL(x,D) of the same order such that

N4 ≤ ‖η3
δ(r−|I |−1)W Iα‖0 + ‖[W I , η3δ(r−|I |−1)]α‖0

≤ ‖η3δ(r−|I |−1)W Iα‖0 +
∑
|L|<|I |

‖cL(x,D)W
Lα‖0

≤ ‖η3δ(r−|I |−1)W Iα‖0 +
∑
|L|<|I |

‖WLα‖δ(r−|I |−1) ≤ C
∑
|L|≤|I |

‖WLα‖δ(r−|L|−1)

≤ Cε
∑
|L|≤|I |

‖WLα‖δ(r−|L|) + Cε
∑
|L|≤|I |

‖WLα‖0

≤ CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)
1/2, (41)
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as above. Analogously, to estimate N3,J , by Lemma 5.1, there exist pseudodifferential
operators dL(x,D) of order δ(r − |I | − 1) such that

N3,J ≤
∑
|L|≤|I |

‖dL(x,D)W
Lα‖0 ≤ C

∑
|L|≤|I |

‖WLα‖δ(r−|I |−1)

≤ C
∑
|L|≤|I |

‖WLα‖δ(r−|L|−1) ≤ Cε
∑
|L|≤|I |

‖WLα‖δ(r−|L|) + Cε
∑
|L|≤|I |

‖WLα‖0

≤ CεS|I | + Cε(〈Lα, α〉 + ‖α‖20)
1/2, (42)

as above. Combining (38), (40), (41) and (42) we get eventually

‖W Iα‖δ(r−|I |) ≤ CεS|I | + Cε(‖Lα‖0 + ‖α‖0)
≤ CεSr−1 + Cε(〈Lα, α〉 + ‖α‖20)

1/2. (43)

Summing up for 0 ≤ |I | ≤ r − 1 we obtain

Sr−1 ≤ CεSr−1 + Cε(〈Lα, α〉 + ‖α‖20)
1/2, (44)

and hence (31) for a suitable choice of ε > 0.

Step 2. If α ∈ D′(�,RN ), there exists t ∈ R such that

W Iα ∈ W
t+δ(r−|I |),2
loc (�) for |I | ≤ r. (45)

In fact, α ∈ W−N,2loc (�) for a suitable N ≥ 0. Set now t := −N − r . Since W Iα ∈

W
−N−|I |,2
loc (�), the assertion follows since W−N−|I |,2loc (�) ⊂ W

t+δ(r−|I |),2
loc (�). Indeed,

−N − |I | − t − δ(r − |I |) = r − |I | − δ(r − |I |) = (r − |I |)(1− δ) ≥ 0.
Suppose now Lα is smooth in �. We want to show that

W Iα ∈ W
t+δ+δ(r−|I |),2
loc (�) for |I | ≤ r. (46)

We note first that, if ψ ∈ D(�), then

W I (ψα) ∈ W t+δ(r−|I |),2(G) (47)

for |I | ≤ r . Indeed,

W I (ψα) =
∑

|J1|+|J2|≤|I |

cJ1,J2W
J1ψW J2α ∈ W t+δ(r−|I |),2(G),

since W J2α ∈ W
t+δ(r−|J2|),2
loc (�) ⊂ W

t+δ(r−|I |),2
loc (�) for |J2| ≤ |I |. Let now η,ψ ∈

D(�) be such that η ≡ 1 on suppψ . We have ψW Iα = ψW I (ηα), so that (46) follows
once we show that

ψW I (ηα) ∈ W t+δ+δ(r−|I |),2(G) for |I | ≤ r,

i.e.
3t+δ+δ(r−|I |)ψW I (ηα) ∈ L2(G) for |I | ≤ r.
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Let now I be fixed. For simplicity, we set s := t + δ + δ(r − |I |). We write

3sψW I (ηα) = ψ3sW I (ηα)+ [3s, ψ]W I (ηα). (48)

By (47),

[3s, ψ]W I (ηα) ∈ W t+δ(r−|I |)−s+1,2(G) = W 1−δ,2(G) ⊂ L2(G). (49)

Hence we are left with the proof that

ψ3sW I (ηα) ∈ L2(G). (50)

Let ω ∈ D(G) be supported in the Euclidean unit ball at the origin, and assume
∫
ω(p) dp

= 1. If ε > 0, we denote by ωε the Friedrichs mollifier ωε(p) := ε−nω(ε−1p). Denote
by ∗e the convolution with respect to the usual Euclidean commutative group structure
in G ≡ Rn. It is easy to see that the convolution operator u 7→ Tεu := u ∗e ωε is a
pseudodifferential operator Tε(D)u with Tε(ξ) = ω̂(εξ) ∈ S0. Moreover, {Tε(ξ) : ε ∈
(0, 1)} is bounded in S0.

More generally, we set Tε(α1, . . . , αN ) := (Tεα1, . . . , TεαN ).
By a standard argument, (50) follows by showing that

‖Tεψ3
sW I (ηα)‖0 ≤ C for ε ∈ (0, 1). (51)

Now
Tεψ3

sW I (ηα) = W ITεψ3
s(ηα)+ [Tεψ3s,W I ](ηα). (52)

By Lemma 5.1,

[Tεψ3s,W I ](ηα) =
∑
|J |<|I |

cJ,ε(x,D)W
J (ηα). (53)

Since cJ,ε(x, ξ) are equibounded in Ss , by (47), cJ,ε(x,D)W J (ηα) are equibounded in
W t+δ(r−|J |)−s,2(G) ⊂ L2(G), since t+δ(r−|J |)−s = δ(|I |−|J |−1) ≥ 0 for |J | < |I |.
Hence, the claim is proved by proving the L2-equiboundedness of W ITεψ3

s(ηα). Take
ψ1 ∈ D(�) with ψ1 ≡ 1 on an ε-neighborhood of suppψ . We have

‖W ITεψ3
s(ηα)‖0 = ‖3

δ(r−|I |)3−δ(r−|I |)ψ1W
ITεψ3

s(ηα)‖0

≤ ‖3δ(r−|I |)ψ13
−δ(r−|I |)W ITεψ3

s(ηα)‖0

+ ‖3δ(r−|I |)[3−δ(r−|I |), ψ1]W ITεψ3
s(ηα)‖0

≤ ‖3δ(r−|I |)W Iψ13
−δ(r−|I |)Tεψ3

s(ηα)‖0

+ ‖3δ(r−|I |)[ψ13
−δ(r−|I |),W I ]Tεψ3s(ηα)‖0

+ ‖3δ(r−|I |)[3−δ(r−|I |), ψ1]W ITεψ3
s(ηα)‖0

≤ ‖3δ(r−|I |)W Iψ13
−δ(r−|I |)Tεψ3

s(ηα)‖0

+ ‖3δ(r−|I |)[ψ13
−δ(r−|I |),W I ]Tεψ3s(ηα)‖0

+ ‖3δ(r−|I |)[3−δ(r−|I |), ψ1]Tεψ3sW I (ηα)‖0

+ ‖3δ(r−|I |)[3−δ(r−|I |), ψ1][W I , Tεψ3
s](ηα)‖0

=: S1 + S2 + S3 + S4. (54)
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Now
S3 ≤ C‖W

I (ηα)‖s−1 <∞,

by (47), since s − 1 ≤ t + δ(r − |I |). As for S4, by Lemma 5.1, we can reduce ourselves
to a sum of terms such as

‖3δ(r−|I |)[3−δ(r−|I |), ψ1]cJ,ε(x,D)W J (ηα)‖0

with |J | < |I |, where the symbols cJ,ε(x, ξ) are equibounded in Ss . Hence

S4 ≤ C
∑
|J |<|I |

‖W J (ηα)‖s−1 <∞,

by (47), since s − 1 ≤ t + δ(r − |J |).
Moreover, by Lemma 5.1, S2 can be estimated by a sum of L2-norms of terms of the

form
3δ(r−|I |)cJ (x,D)W

JTεψ3
s(ηα),

where the cJ (x, ξ) belong to S−δ(r−|I |) and |J | < |I |. In turn, by commutation and by
Lemma 5.1, each of these terms can be estimated by the L2-norm of

3δ(r−|I |)cJ (x,D)Tεψ3
sW J (ηα)

plus a sum of L2-norms of terms of the form

3δ(r−|I |)cJ (x,D)bL,ε(x,D)W
L(ηα),

where |L| < |J | and bL,ε(x, ξ) are equibounded in Ss . All these terms can be estimated
as S3 and S4. Indeed, for instance,

‖3δ(r−|I |)cJ (x,D)Tεψ3
sW J (ηα)‖0 ≤ ‖W

J (ηα)‖s <∞,

since s ≤ t + δ(r − |J |), for t + δ + δ(r − |I |)− t − δ(r − |J |) = δ(|J | + 1− |I |) ≤ 0.
Thus we are left with the estimate of

S1 = ‖W
Iψ13

−δ(r−|I |)Tεψ3
s(ηα)‖δ(r−|I |).

We stress that ψ13
−δ(r−|I |)Tεψ3

s(ηα) ∈ D(G,RN ), so that, by (31),

S2
1 ≤ 〈Lψ13

−δ(r−|I |)Tεψ3
s(ηα), ψ13

−δ(r−|I |)Tεψ3
s(ηα)〉

+ ‖ψ13
−δ(r−|I |)Tεψ3

s(ηα)‖20 =: A1 + A2. (55)

Since the symbols of ψ13
−δ(r−|I |)Tεψ3

s are equibounded in S t+δ , and t + δ ≤ t + δr ,

A2 ≤ C‖ηα‖
2
t+δr <∞.

Let now η1 ∈ D(�) be such that η1 ≡ 1 on supp η. We can write

Lψ13
−δ(r−|I |)Tεψ3

s(ηα) = ψ13
−δ(r−|I |)Tεψ3

sηLα
+ [L, ψ13

−δ(r−|I |)Tεψ3
sη]η1α =: B1 + B2. (56)
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As above

〈B1, ψ13
−δ(r−|I |)Tεψ3

s(ηα)〉 ≤ C‖ηLα‖t+δ‖ηα‖t+δr <∞. (57)

By Lemma 5.2, 〈B2, ψ13
−δ(r−|I |)Tεψ3

s(ηα)〉 can be written as a sum of terms of the
form

〈bJ,ε(x,D)W
J (η1α)|cL(x,D)W

LTεψ3
s(ηα)〉, (58)

with |J | < r , |L| ≤ r , the symbols bJ,ε(x, ξ) and cL(x, ξ) being bounded in S t+δ and
S−δ(r−|I |), respectively. As above

〈B2, ψ13
−δ(r−|I |)Tεψ3

s(ηα)〉

≤ C
∑

|J |<r, |L|≤r

‖W J (η1α)‖t+δ‖W
LTεψ3

s(ηα)‖−δ(r−|I |)

≤ C
∑

|J |<r, |L|≤r

‖W J (η1α)‖t+δ(r−|J |)‖W
LTεψ3

s(ηα)‖0

≤ ε
∑
|L|≤r

‖WLTεψ3
s(ηα)‖0 + Cε

∑
|J |<r

‖W J (η1α)‖t+δ(r−|J |).

Going back to (54), and taking into account the successive estimates, we get eventually

‖W ITεψ3
s(ηα)‖0 ≤ ε

∑
|L|≤r

‖WLTεψ3
s(ηα)‖0

+ (sum of equibounded terms).

Summing up for |I | ≤ r and taking ε suitably small, we completee the proof of (51), and
hence that of (46). Now, by iteration, this shows that α is smooth and therefore that L is
hypoelliptic.

Finally, let us prove that (i) implies (iv). To this end, we repeat the arguments of [1,
Proposition 4.14]. For instance, if a < Q, by Theorem 3.1, for α ∈ D(G,RN ) and W I

again a homogeneous polynomial of degree a in the horizontal derivatives, by (19), we
can write

W Iα = W IKLα =
(∑
j

(Lα)j ∗W IK1j , . . . ,
∑
j

(Lα)j ∗W IKNj

)
. (59)

Since the W IKij ’s are kernels of type 0, the assertion follows by Proposition 1.9 of [6].
This completes the proof of the theorem. ut

5. Appendix: 9do’s operators and commutation lemmata

Following, e.g., [11, Ch. 18], if s ∈ R, we denote by Ss the class of all symbols of order s,
i.e. the class of all smooth functions a = a(x, ξ) such that

|∂βx ∂
α
ξ a(x, ξ)| ≤ Cα,β(1+ |ξ |)

s−|α|
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for all x, ξ ∈ R2n+1 and for all nonnegative integral multi-indices α and β. The space Ss
is a Fréchet space with respect to the seminorms

‖a‖α,β = sup
x,ξ

|∂βx ∂
α
ξ a(x, ξ)|(1+ |ξ |)

|α|−s .

As is customary, we denote by a(x,D) the pseudodifferential operator associated with
the symbol a(x, ξ).

A pseudodifferential operator P = P ∗ is said to be properly supported when for each
compact K there is a compact K ′ such that distributions supported in K are mapped to
distributions supported in K ′.

Lemma 5.1 ([15]). Let I := (i1, . . . , ih) be a multi-index with 1 ≤ ij ≤ 2n. Let W I :=
Wi1 · · ·Wih be a homogeneous polynomial in the horizontal vector fields W1, . . . ,Wm,
and let 3 = 3(x,D) be a properly supported pseudodifferential operator with a symbol
3(x, ξ) ∈ Sk . Then

[W I ,3] =
∑

|J |≤|I |−1

bJ (x,D)W
J , (60)

where the bJ (x,D)’s are properly supported pseudodifferential operators with symbols
bJ (x, ξ) ∈ Sk . Moreover, if 3(x, ξ) lies in a bounded set of Sk , then all the bJ ’s lie in a
bounded set of Sk .

Proof. We prove the assertion by induction on h. If h = 1, then the statement follows
since [Wj ,3] is a properly supported pseudodifferential operator of order k. Suppose
(60) holds for |I | = h, and let us prove it for |I | = h + 1. If W I := Wi1 · · ·WihWih+1 ,
then (setting, for simplicity, Wih+1 := W and I0 := (i1, . . . , ih))

[W I ,3] = W I0W3−3W I0W = W I03W +W I0 [W,3]−3W I0W

= [W I0 ,3]W +W I0 [W,3] =
∑
|J |≤h−1

bJ (x,D)W
JW +W I0c(x,D)

=

∑
|J |≤h−1

bJ (x,D)W
JW + c(x,D)W I0 + [W I0 , c(x,D)]

=

∑
|J |≤h−1

bJ (x,D)W
JW + c(x,D)W I0 +

∑
|L|≤h−1

cL(x,D)W
L,

where the order of bJ (x,D) is k, the order of c(x,D) is k, and hence also the order of
cL(x,D) is k. Finally, the last assertion follows again from the above identity if we keep
in mind that the map from Ss1 × Ss2 to Ss1+s2 associating with a ∈ Ss1 and b ∈ Ss2 the
symbol of a(x,D) ◦ b(x,D) is continuous ([11, Theorem 18.1.8]). ut

Lemma 5.2. Let I1 := (i11 , . . . , i
1
h) and I2 := (i21 , . . . , i

2
k ) be multi-indices with 1 ≤

i`j ≤ 2n and |I1| + |I2| ≤ 2r . Let W I1 := Wi11
· · ·Wi1h

and W I2 := Wi21
· · ·Wi2k

be homo-
geneous monomials in the horizontal vector fields W1, . . . ,Wm, and let 31 = 31(x,D)

and 32 = 32(x,D) be properly supported pseudodifferential operators with symbols
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31(x, ξ) ∈ Sk and 32(x, ξ) ∈ Sh, respectively. Let now j0 and `0 be non-negative
integers such that j0 + `0 = |I1| + |I2| − 1. Then we can write

〈[W I1 ,31]u)|W I232φ〉D′(G),D(G)

=

∑
|J |≤j0, |L|≤`0

〈bJ (x,D)W
Ju|cL(x,D)W

Lφ〉D′(G),D(G) (61)

for any u ∈ E ′(G) and φ ∈ D(G), where the bJ (x,D)’s and the cL(x,D)’s are properly
supported pseudodifferential operators with symbols in Sk and Sh, respectively. More-
over, if 31(x, ξ) and 32(x, ξ) lie respectively in bounded subsets of Sk and Sh, then all
the bJ ’s and the cL’s lie in bounded subsets of Sk and Sh, respectively.

Proof. We argue by induction on |I1| + |I2|. If |I1| + |I2| = 1, the assertion is
straightforward, since the only non-trivial case we are dealing with is the scalar prod-
uct 〈[Wj ,31]u,32u〉L2(G), which is already in the form of the right hand side of (61).
Suppose now (61) is true when |I1| + |I2| = d < 2r , and let us prove the assertion for
|I1| + |I2| = d + 1. Suppose also j0 + `0 = d + 1− 1 = d . The following two cases can
occur: either

〈[WW I∗1 ,31]u,W I232u〉L2(G) (62)
or

〈[W I1 ,31]u,WW I∗232u〉L2(G), (63)
where W is one of the horizontal vector fields and |I ∗1 | + |I2| = |I1| + |I

∗

2 | = d .
Consider first (63). By Lemma 5.1, there exist properly supported pseudodifferential

operators CJ (x,D) of order k such that

〈[W I1 ,31]u,WW I∗232u〉L2(G) =
∑
|J |<|I1|

〈cJ (x,D)W
Ju,WW I∗232u〉L2(G)

=

∑
|J |<|I1|

〈W J cJ (x,D)u,WW
I∗232u〉L2(G)

+

∑
|J |<|I1|

〈[cJ (x,D),W J ]u,WW I∗232u〉L2(G)

=:
∑
|J |<|I1|

S1
J +

∑
|J |<|I1|

S2
J . (64)

We notice that in S2
J we have |J | + |I ∗2 | + 1 ≤ |I1| + |I

∗

2 | = d , so that we can apply
the inductive hypothesis replacing (for instance, if j0 > 0) j0 by j0 − 1 and keeping `0
unchanged. This is possible, since j0 − 1 + `0 = d − 1. Hence S2

J is bounded by a sum
of terms like ∑

|L1|≤j0−1, |L1|≤`0

〈bL1(x,D)W
L1u, cL2(x,D)W

L2u〉L2(G),

which are among those on the right hand side of (61). As for S1
J , we notice that |J | +

|I2| + 1 ≤ |I1| + |I2| = d + 1− 1 < 2r . Thus, integrating by parts (to be formal: using
iteratively the duality for distributional derivatives), we can write

S1
J = ±〈W

K1cJ (x,D)u,W
K232u〉L2(G) (65)
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with |K1| ≤ j0 and |K2| ≤ `0. We again apply Lemma 5.1 to both terms in the scalar
product (65), and we get

S1
J =

∑
|L1|≤|K1|, |L2|≤|K2|

〈cL1(x,D)W
L1u, cL2(x,D)W

L2u〉L2(G), (66)

where the cL1(x,D)’s and the cL2(x,D)’s are properly supported pseudodifferential op-
erators of order k. Again since |L1| ≤ |K1| ≤ j0 and |L2| ≤ |K2| ≤ `0, (66) is one of the
terms on the right hand side of (61).

Consider now the term (62). We can write

〈[WW I∗1 ,31]u,W I232u〉L2(G)

= 〈W [W I∗1 ,31]u,W I232u〉L2(G) + 〈[W,31]W I1∗u,W I232u〉L2(G)

= −〈[W I1∗,31]u,WW I232u〉L2(G) + 〈[W,31]W I1∗u,W I232u〉L2(G). (67)

The first term above has the form of (63) and can be handled precisely in the same way.
The second term can be written as

〈[W,31]W I1u,W I232u〉L2(G)

= 〈W I1 [W,31]u,W I232u〉L2(G) + 〈[[W,31],W I1 ]u,W I232u〉L2(G). (68)

But these terms have the form of those in S1
J and S2

J in (64), respectively, and can be
written in the same way. This completes the proof of the lemma. ut
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[11] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Grundlehren Math.
Wiss. 256, Springer, Berlin (1990) Zbl 0712.35001 MR 1065993
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