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Abstract. We study the existence and instability properties of saddle-shaped solutions of the semi-
linear elliptic equation −1u = f (u) in the whole R2m, where f is of bistable type. It is known
that in dimension 2m = 2 there exists a saddle-shaped solution. This is a solution which changes
sign in R2 and vanishes only on {|x1| = |x2|}. It is also known that this solution is unstable.

In this article we prove the existence of saddle-shaped solutions in every even dimension, as
well as their instability in the case of dimension 2m = 4. More precisely, our main result establishes
that if 2m = 4, every solution vanishing on the Simons cone {(x1, x2) ∈ Rm × Rm : |x1

| = |x2
|}

is unstable outside every compact set and, as a consequence, has infinite Morse index. These results
are relevant in connection with a conjecture of De Giorgi extensively studied in recent years and for
which the existence of a counter-example in high dimensions is still an open problem.

1. Introduction

This paper is concerned with the study of bounded solutions of bistable diffusion equa-
tions

−1u = f (u) in Rn. (1.1)

In the last years there has been special interest in a symmetry property of certain solutions.
It consists of establishing whether every monotone solution u of (1.1) depends only on
one Euclidean variable or, equivalently, whether the level sets of such solutions are all
hyperplanes. This question was raised by De Giorgi [13] in 1978, who conjectured that
the level sets of every bounded, monotone in one direction, solution of the Allen–Cahn
equation

−1u = u− u3 in Rn (1.2)

must be hyperplanes, at least if n ≤ 8. The conjecture has been proven to be true for n = 2
by Ghoussoub and Gui [17], and for n = 3 by Ambrosio and Cabré [5]. For 4 ≤ n ≤ 8
and assuming an additional limiting condition on u, it has been established by Savin [22]
(see Section 2 for more details).
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The existence of a counter-example in higher dimensions remains open. By a result of
Jerison and Monneau [19], the existence of a counter-example to the conjecture in Rn+1

would be established if one could prove the existence of a bounded, even with respect
to each coordinate, global minimizer of (1.2) in Rn. By global minimizer we mean an
absolute minimizer of the energy with respect to compactly supported perturbations. On
the other hand, by a deep result of Savin [22], for n ≤ 7 every global minimizer is an
odd function of only one Euclidean variable. In particular, an even function with respect
to each coordinate cannot be a global minimizer in Rn whenever n ≤ 7.

The crucial remaining question is whether a global minimizer of (1.2), even with
respect to each coordinate, exists in higher dimensions. A natural candidate is expected to
be found in the class of saddle-shaped solutions, that is, solutions that depend only on two
radial variables s = |x1

| and t = |x2
|, change sign in Rn = R2m

= {(x1, x2) ∈ Rm×Rm}
and vanish only on the Simons cone C = {s = t}. This cone is of importance in the
theory of minimal surfaces and its variational properties are related to the conjecture of
De Giorgi. Namely, the cone C ⊂ R2m has zero mean curvature in all even dimensions
(except at the singular point 0), but it is a minimal cone (minimal in the variational sense)
if and only if 2m ≥ 8 (see Section 2).

Towards the understanding of this open question on global minimizers, we study here
saddle-shaped solutions and their stability properties. To be precise in our statements, we
first present the definitions to be used throughout the paper.

Equation (1.1) is the Euler–Lagrange equation associated to the energy functional

E(v,�) :=
∫
�

{
1
2
|∇v|2 +G(v)

}
dx, where G′ = −f (1.3)

and � ⊂ Rn is a bounded domain. The energy E leads to the following notions of mini-
mality, stability, and Morse index of bounded solutions.

Definition 1.1. Let f ∈ C1(R).

(a) We say that a bounded C1 function u : Rn→ R is a global minimizer of (1.1) if

E(u,�) ≤ E(u+ ξ,�)

for every bounded domain � and every C∞ function ξ with compact support in �.
(b) We say that a bounded solution u of (1.1) is stable if the second variation of energy

δ2E/δ2ξ with respect to compactly supported perturbations ξ is nonnegative. That is,

Qu(ξ) :=
∫

Rn
{|∇ξ |2 − f ′(u)ξ2

} dx ≥ 0 for all ξ ∈ C∞c (R
n). (1.4)

We say that u is unstable if it is not stable.
(c) We say that a bounded solution u of (1.1) has finite Morse index equal to k ∈
{0, 1, 2, . . .} if k is the maximal dimension of a subspace Xk of C1

c (Rn) such that
Qu(ξ) < 0 for every ξ ∈ Xk \ {0}. Here C1

c (Rn) is the space of C1(Rn) functions
with compact support and Qu is defined in (1.4). If there is no such finite integer k,
we say that u has infinite Morse index.
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Clearly, every global minimizer is a stable solution. At the same time, every stable
solution has finite Morse index equal to 0. It is also easy to verify that every solution with
finite Morse index is stable outside a compact set (see Theorem 1.4 and its proof for more
details). In some references, global minimizers are called “local minimizers”, where local
refers to the fact that the energy is computed in bounded domains.

The following assumption on G:

G ≥ 0 = G(±M) in R and G > 0 in (−M,M) (1.5)

for some constant M > 0, guarantees the existence of an increasing solution of (1.1)
in dimension 1, that is, in all of R, taking values in (−M,M); see Lemma 4.3. In addi-
tion, such an increasing solution is unique up to translations of the independent variable.
Normalizing it to vanish at the origin, we call it u0. Thus, we haveu0 : R→ (−M,M),

u0(0) = 0, u̇0 > 0,
−ü0 = f (u0) in R.

(1.6)

We will see that (1.5) is related to the bistable character of f . Hypothesis (1.5) is satisfied
by f (u) = u − u3, for which G(u) = (1/4)(1 − u2)2 and M = 1. For this nonlinearity,
the solution u0 can be computed explicitly and it is given by u0(τ ) = tanh(τ/

√
2).

Next, note that for every given b ∈ Rn with |b| = 1 and c ∈ R, the function

ub,c(x) = u0(b · x + c) for x ∈ Rn (1.7)

is a bounded solution of (1.1). These solutions are called 1-D solutions since they depend
only on one Euclidean variable. Equivalently, these are the solutions with every level set
being a hyperplane. As a consequence of a result of Alberti, Ambrosio, and the first author
[2], it is now known that, under hypothesis (1.5) on the nonlinearity, every 1-D solution
ub,c is a global minimizer of (1.1). In particular, ub,c is a stable solution.

Furthermore, by a result of Savin [22] in connection with the conjecture of De Giorgi,
we now know that 1-D solutions are the only global minimizers of the Allen–Cahn equa-
tion (1.2) in Rn for n ≤ 7. On the other hand, as mentioned before (see Theorem 2.1 in
the next section for more details), trying to find a counter-example to the conjecture in
higher dimensions (still an open problem) is related to the possibility of finding certain
global minimizers in dimensions n ≥ 8 which are not 1-D. More precisely, the existence
of a counter-example to the conjecture in Rn+1 would be established if one could prove
the existence of a bounded, even with respect to each coordinate, global minimizer of
(1.2) in Rn. Natural candidates to be minimizers of this type are certain saddle-shaped
solutions. The study of their existence and stability properties is the goal of this paper.

The saddle-shaped solutions that we consider are expected to have relevant variational
properties due to a well known connection between semilinear equations modeling phase
transitions and the theory of minimal surfaces (see Section 2 for details). That connection
also motivated De Giorgi to state his conjecture. More precisely, the saddle solutions that
we consider are odd with respect to the Simons cone, defined for n = 2m by

C = {x ∈ R2m : x2
1 + · · · + x

2
m = x

2
m+1 + · · · + x

2
2m}. (1.8)
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It is easy to verify that C has zero mean curvature at every x ∈ C \ {0}, in every dimension
2m ≥ 2. However, it is only in dimensions 2m ≥ 8 (besides the case 2m = 2) that this
cone is locally stable. In dimensions 2m ≥ 8 it is in addition a minimizer of the area
functional, that is, it is a minimal cone (in the variational sense); see [18].

For x = (x1, . . . , x2m) ∈ R2m, we define two radial variables s and t by

s =

√
x2

1 + · · · + x
2
m ≥ 0, t =

√
x2
m+1 + · · · + x

2
2m ≥ 0. (1.9)

The Simons cone is given by C = {s = t}.
We now introduce our notion of saddle solution. These solutions depend only on s

and t , and are odd with respect to C.

Definition 1.2. Let f ∈ C1(R) be odd. We say that u : R2m
→ R is a saddle-shaped

solution (or simply a saddle solution) of

−1u = f (u) in R2m (1.10)

if u is a bounded solution of (1.10) and, with s and t defined by (1.9),

(a) u depends only on the variables s and t , written u = u(s, t);
(b) u > 0 in O = {s > t};
(c) u(s, t) = −u(t, s) in R2m.

It follows from (c) that every saddle solution vanishes on the Simons cone C = {s = t}.
Note also that saddle solutions are even with respect to each coordinate xi , 1 ≤ i ≤ 2m,
as in the result of Jerison–Monneau.

By classical elliptic regularity theory, it is well known that for f ∈ C1(R), every
bounded solution of −1u = f (u) in Rn satisfies u ∈ C2,α(Rn) for all 0 < α < 1, and
thus it is a classical solution. In particular, saddle solutions are classical solutions. See the
beginning of Section 3 for more details.

Saddle solutions were first studied by Dang, Fife, and Peletier [12] in dimension n = 2
for f odd, bistable, and with f (u)/u decreasing for u ∈ (0, 1). They proved the existence
and uniqueness of a saddle solution in dimension 2. They also established monotonicity
properties and the asymptotic behavior of the saddle solution. Its instability, already indi-
cated in a partial result of [12], was studied in detail by Schatzman [23]. This paper estab-
lished that the saddle solution is unstable in R2 by studying the linearized operator at the
solution in some appropriate function spaces, and by showing that it has a strictly negative
eigenvalue corresponding to an eigenfunction having the symmetries of the square. More-
over, in the case of the Allen–Cahn equation (1.2), the linearized operator was shown to
have exactly one negative eigenvalue.

The article [1] studies vector-valued saddle solutions in R2. The recent work [4] con-
cerns scalar saddle type solutions in R2 changing sign on more nodal lines than x1 = ±x2.

The instability of the saddle solution in dimension 2 (in the sense of Definition 1.1)
is nowadays a consequence of a more recent result related to the conjecture of De Giorgi.
Namely, [17] and [6] established that, for all f ∈ C1, every bounded stable solution of
(1.1) in R2 must be a 1-D solution, that is, a solution depending only on one Euclidean
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variable. In particular, in R2 bounded stable solutions cannot be saddle-shaped. These
ideas were further used in [24] for the dimension n = 2.

To state our results on saddle solutions, given a C1 nonlinearity f : R → R and
M > 0, define

G(u) =

∫ M

u

f. (1.11)

We haveG ∈ C2(R) andG′ = −f. In our results we assume some, or all, of the following
conditions on f , for some M > 0 and with G defined as above:

f is odd; (1.12)
G ≥ 0 = G(±M) in R and G > 0 in (−M,M); (1.13)

f is concave in (0,M). (1.14)

Condition (1.13) is actually condition (1.5) presented before in connection with the
existence of 1-D solutions. Note that if (1.12) and (1.13) hold, then f (0) = f (±M) = 0.
On the other hand, if f is odd in R, positive and concave in (0,M), and negative in
(M,∞), then f satisfies (1.12)–(1.14). Hence, the nonlinearities f that we consider are
of “balanced bistable type”, while the potentials G are of “double-well type”. Our three
assumptions (1.12)–(1.14) are satisfied for the Allen–Cahn (or scalar Ginzburg–Landau)
equation

−1u = u− u3.

In this case we have G(u) = (1/4)(1− u2)2 and M = 1. The three hypotheses also hold
for the equation

−1u = sin(πu),

for which G(u) = (1/π)(1+ cos(πu)).
Our first result establishes the existence of a saddle solution in R2m and some of its

variational properties.

Theorem 1.3. Let f ∈ C1(R) satisfy (1.12) and (1.13) for some constant M > 0, where
G is defined by (1.11). Then, for every even dimension 2m ≥ 2, there exists a saddle-
shaped solution u as in Definition 1.2 of −1u = f (u) in R2m.

In addition, u satisfies |u| < M in R2m, as well as the energy estimate

E(u, BR) =
∫
BR

{
1
2
|∇u|2 +G(u)

}
dx ≤ CR2m−1 for all R > 1, (1.15)

where C is a constant independent of R, and BR denotes the open ball of radius R cen-
tered at 0.

If in addition f satisfies (1.14), then the second variation of energy Qu(ξ) at u, as
defined in (1.4), is nonnegative for all functions ξ ∈ C1(R2m) with compact support in
R2m and vanishing on the Simons cone C = {s = t}.
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As a consequence of the last statement in the theorem, the instability of saddle solutions
in low dimensions is related to perturbations which do not vanish on the Simons cone,
and hence, which change the zero level set of the solution.

We prove the existence of a saddle solution by first constructing a positive solution in
O = {s > t} depending only on s and t . For this, we use a variational method. We then
obtain the saddle solution in the whole space through odd reflection with respect to the
cone C.

Further variational and monotonicity properties of saddle solutions, as well as their
asymptotic behavior, will be established in a forthcoming article [9] by the same authors.

Note that for functions u depending only on s and t , such as saddle solutions, the
energy functional (1.3) becomes

E(u,�) = am
∫
�

sm−1tm−1
{

1
2
(u2
s + u

2
t )+G(u)

}
ds dt, (1.16)

where am is a positive constant depending only on m—here we have assumed that � ⊂
R2m is radially symmetric in the first m variables and also on the last m variables, and we
have abused notation by identifying � with its projection in the (s, t) variables. In these
variables, the semilinear equation (1.10) reads

−(uss + ut t )− (m− 1)
(
us

s
+
ut

t

)
= f (u) for s > 0, t > 0. (1.17)

The following is our main result. In dimension n = 4, we establish the instability
outside every compact set of all bounded solutions (not necessarily depending on s and t
only) that vanish on the Simons cone C = {s = t}. As a consequence, the Morse index of
such solutions is proved to be infinite.

Theorem 1.4. Let f ∈ C1(R) satisfy (1.12)–(1.14). Then every bounded solution of
−1u = f (u) in R4 that vanishes on the Simons cone C = {x2

1 + x
2
2 = x2

3 + x
2
4} is

unstable. Furthermore, every such solution u is unstable outside every compact set. That
is, for every compact setK in R4 there exists ξ ∈ C1(R4) with compact support in R4

\K

for whichQu(ξ) < 0, whereQu is defined in (1.4). As a consequence, u has infinite Morse
index in the sense of Definition 1.1.

In particular, all the previous statements hold true for every saddle-shaped solution
as in Definition 1.2 if 2m = 4.

As mentioned before, the instability of the saddle solution in dimension 2 was already
proven by Shatzman [23]. More recently we have established the instability result also in
dimension 6—this is to appear in a forthcoming paper [9]. The computations in Section 6
of the present paper, and the more delicate ones in [9], suggest the possibility of saddle
solutions being stable in dimensions 2m ≥ 8. Such a stability result would be a promising
hint towards the possible global minimality of saddle solutions in high dimensions, and
hence towards a counter-example to the conjecture of De Giorgi.
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A crucial ingredient in the proof of Theorem 1.4 is the following pointwise estimate.

Proposition 1.5. Let f ∈ C1(R) satisfy (1.12) and (1.13). If u is a bounded solution of
−1u = f (u) in R2m that vanishes on the Simons cone C = {s = t}, then

|u(x)| ≤ |u0(dist(x, C))| =
∣∣∣∣u0

(
s − t
√

2

)∣∣∣∣ for all x ∈ R2m, (1.18)

where u0 is defined by (1.6) and dist(·, C) denotes the distance to the Simons cone.
In addition, the function u0((s − t)/

√
2) is a supersolution of −1u = f (u) in the set

O = {s > t}.

This proposition is proven in Section 4 using an important gradient bound of Modica
[20] for bounded solutions of (1.1). Instead, its last statement—u0((s − t)/

√
2) being

a supersolution in {s > t}, which by the way will not be used in this paper—follows
simply from direct computation using (1.17). Since |s − t |/

√
2 is the distance to the

Simons cone, this last statement corresponds to the well known fact that the distance
function to a hypersurface of zero mean curvature is superharmonic on each side of the
hypersurface.

The heuristic idea behind the instability result of Theorem 1.4 is the following. One
expects that the saddle solution behaves at infinity as the transition profile u0 placed over
the cone C, that is, as u0((s − t)/

√
2) in (1.18). One may expect that this, combined with

the instability of the Simons cone in dimensions 4 and 6, could lead to the instability of
the saddle solution. In this paper we see that this idea works in dimension 4 thanks to the
estimate of Proposition 1.5.

Indeed, the proof of Theorem 1.4 proceeds as follows. We prove that the quadratic
form Qu defined by (1.4) with u replaced by the explicit function u0((s − t)/

√
2) is

negative when n = 4 for some test function ξ . This will imply—based on estimate (1.18)
and the assumptions on f— that Qu is also negative for some test function, where u is
any given solution vanishing on C. That is, u is unstable in dimension n = 4.

Finally, let us comment on results about the Morse index of stationary surfaces, i.e.,
surfaces of zero mean curvature. The usual proof of the instability of the Simons cone in
dimension 4 and 6 (see [18]) also leads to its instability outside every compact set, and
hence to the infinite Morse index property. A precise study of the Morse index of station-
ary surfaces close to the Simons cone is made in [3] through the analysis of intersection
numbers.

The paper is organized as follows. In Section 2 we present the precise statement of
the conjecture of De Giorgi and its connections with the variational properties of solu-
tions to (1.2) and with minimal cones. We also recall the result of Jerison and Monneau
mentioned above. Section 3 is devoted to the proof of Theorem 1.3 on the existence of
saddle solution. Section 4 concerns the proof of Proposition 1.5, an important tool towards
the proof of our instability result, Theorem 1.4, which is presented in Section 5. Finally,
in Section 6 we present the asymptotic computations used in the proof of Theorem 1.4
carried out in every dimension 2m ≥ 4.
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2. A conjecture of De Giorgi, minimal cones, and saddle solutions

In 1978 De Giorgi [13] raised the following question:

Conjecture (De Giorgi [13]). Let u ∈ C2(Rn) be a solution of

−1u = u− u3 in Rn

such that
|u| ≤ 1 and ∂xnu > 0

in the whole Rn. Is it true that all level sets {u = λ} of u are hyperplanes, at least if
n ≤ 8 ?

This conjecture was proved for n = 2 by Ghoussoub and Gui [17], and for n = 3 by
Ambrosio and Cabré [5]. For n ≤ 8, a weaker version of the conjecture was proven
recently by Savin [22]. Namely, if one further assumes that

lim
xn→±∞

u(x′, xn) = ±1 for all x′ ∈ Rn−1 (2.1)

and n ≤ 8, then all level sets of u are hyperplanes. We emphasize that, in this result, the
limits above are not assumed to be uniform in x′ ∈ Rn−1.

A related and deep result of Savin [22] is the following. If u is a global minimizer of
(1.2) (a local minimizer in the terminology of [22]) and n ≤ 7, then the level sets of u
are hyperplanes. One expects that n ≤ 7 is optimal in this result. However, the existence
for n ≥ 8 of a global minimizer not being 1-D is still an open problem. In this direction,
saddle solutions are natural candidates for being global minimizers (and not 1-D) in high
dimensions. More precisely, if their minimality held true in some dimension, this would
provide a counter-example to the conjecture of De Giorgi in one more dimension.

Indeed, the connection between the existence of certain global minimizers and the
veracity of the conjecture of De Giorgi is established by Jerison and Monneau in [19].
Namely, they prove that if there existed a bounded, even with respect to each coordinate,
global minimizer in Rn−1, then there would be a bounded solution u to (1.2), increasing
in xn and with one level set not being a hyperplane. That is, this would provide a counter-
example to the conjecture in Rn. Their precise result is the following.

Theorem 2.1 (Jerison–Monneau [19]). Let G satisfy (1.13) with M = 1 and assume
that there exists a global minimizer v in Rn−1 such that |v| < 1 and v is even with respect
to each coordinate xi , i = 1, . . . , n− 1. Then, for each γ ∈ (0,

√
2G(v(0))), there exists

a solution u ∈ C2(Rn) of 1u = G′(u) in Rn satisfying |u| ≤ 1 and ∂xnu > 0 in Rn, and
such that, for some λ ∈ R, the set {u = λ} is not a hyperplane.

Moreover, this solution u is a global minimizer in Rn, it is even in the first n − 1
coordinates, and satisfies ∂xnu(0) = γ and u(0) = v(0).

It is not known, however, if the solution u of the previous theorem would satisfy
limxn→±∞ u(x

′, xn) = ±1 for all x′ ∈ Rn as in hypothesis (2.1).
Note that saddle solutions (as in Definition 1.2) are even with respect to each coordi-

nate xi , 1 ≤ i ≤ 2m, as in the previous theorem (here we would have n− 1 = 2m).
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As a first step towards understanding global minimizers with the properties of v in
Theorem 2.1, one may study stable solutions—stability being a necessary condition for
global minimality. Classifying all bounded stable solutions to (1.1) is a difficult task.
A complete characterization of stable solutions is only available in dimension n = 2.
The results of [17] imply that, for all f , a nonconstant bounded solution to (1.1) in R2 is
stable if and only if it is 1-D and monotone. The proof of this stability result involves a
Liouville-type theorem due to Berestycki, Caffarelli, and Nirenberg [6]. As an immediate
corollary of the previous result, we find that, for n = 2, if u is radially symmetric then
it is unstable, since all stable solutions must be 1-D. In higher dimensions, Cabré and
Capella [8] have established that, for n ≤ 8 and all f ∈ C1(R), if u is a nonconstant
bounded radial solution of (1.1), then u is unstable. The same result holds for 9 ≤ n ≤ 10
by a more recent result of Villegas [26]. On the other hand, for n ≥ 11, [8] provides
a polynomial f which admits a stable nonconstant bounded radial solution u of (1.1).
Recent works of Dancer and Farina [14, 15, 11] establish interesting classification results
for stable and finite Morse index solutions (general solutions, not only radial, and even
unbounded) of supercritical elliptic problems.

The level sets of 1-D solutions and of radial solutions are, respectively, hyperplanes
and spheres. Instead, saddle solutions have the Simons cone as a level set, and thus their
geometry is more involved. In the remainder of this section we explain the results on
minimal graphs and minimal cones that are relevant to the conjecture of De Giorgi and to
the variational properties of saddle solutions.

Let u be a bounded solution of (1.2) in all of Rn and consider the blow-down family of
functions {uε} defined by uε(x) = u(x/ε) for small ε. This is a solution of the same equa-
tion with f replaced by ε−2f . The study of the behavior of uε as ε → 0 leads to some
information on u at infinity. It was proven by Modica and Mortola [21] that the energy
functionals Eε corresponding to uε (see [2] for details) 0-converge to a multiple of the
perimeter functional P as ε → 0. Let us explain this by giving one of its consequences.
If {uε} is a sequence of minimizers of Eε, then a subsequence of uε converges to a char-
acteristic function χE − χ�\E as ε → 0 for which ∂E ∩ � is a minimal hypersurface
(minimal in the variational sense).

Since the level sets {uε = λ} are rescaled versions of the level sets {u = λ} of u, the
result of Modica and Mortola indicates that the level sets {u = λ} of u converge at infinity,
in some weak sense and along subsequences, to a minimal surface. The minimality of u,
under the hypothesis of the conjecture and (2.1), is guaranteed by a result of [2]. Since u
satisfies the monotonicity condition

∂xnu > 0 in Rn,

each level set of u is the graph of a function from Rn−1 to R along the xn direction.
Therefore, the limiting minimal surface should be the graph of a function from Rn−1

to R.
The problem of classifying all entire minimal graphs was settled by Simons in [25].

His result establishes that every entire minimal graph of a function from Rk to R is nec-
essarily a hyperplane for k ≤ 7. Going back to our problem, we expect that the limiting
minimal graph is a hyperplane (that is, the level sets of u are in some sense flat at infinity)
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whenever k = n− 1 ≤ 7, i.e., when n ≤ 8. The conjecture of De Giorgi raises the ques-
tion of whether each level set itself is a hyperplane, and not only their limit at infinity and
along subsequences.

To prove Simon’s result on minimal graphs, one first studies minimal cones; see [18].
Simons [25] proved that all minimal cones of dimension less than or equal to 6 in Rn
for n ≤ 7 are hyperplanes. In addition, he established the existence of a singular cone
of dimension 2m− 1 in R2m with zero mean curvature (except at its vertex) and locally
stable for the area functional if 2m ≥ 8. This cone, known as the Simons cone, is defined
by

C = {x ∈ R2m : x2
1 + · · · + x

2
m = x

2
m+1 + · · · + x

2
2m}.

One year later, Bombieri, De Giorgi, and Giusti [7] proved that this cone is not only
locally stable but actually a minimal cone, that is, a minimizer of the area functional
when 2m ≥ 8. Moreover, they proved that there exists a minimal graph of a smooth
function from Rk to R which is not a hyperplane when k ≥ 8.

By our definition, the zero level set of a saddle solution coincides with the Simons
cone. Hence we expect the minimality properties of C in high dimensions to play an
important role in the variational properties of saddle solutions.

3. Existence of saddle solution in R2m

In this section we prove the existence of a saddle solution in every even dimension. Before
this, let us recall some well known facts about the regularity of weak solutions.

Every bounded solution of −1u = f (u) in Rn, with f ∈ C1, satisfies u ∈ C2,α(Rn)
for all 0 < α < 1. In addition, |∇u| ∈ L∞(Rn). Indeed, we can apply interior W 2,p

estimates, with p > n, to the equation in every ball B2(x) of radius 2 in Rn. We find that

‖u‖C1(B1(x))
≤ C‖u‖W 2,p(B1(x))

≤ C{‖u‖L∞(B2(x)) + ‖f (u)‖Lp(B2(x))} ≤ C (3.1)

for some constant C independent of x ∈ Rn. Next, we apply W 2,p interior estimates to
the equations −1∂ju = f ′(u)∂ju, to obtain W 3,p and hence C2,α estimates for u.

To prove the existence of a saddle solution in R2m
= {x = (x1, x2) ∈ Rm ×Rm}, we

consider the open set

O := {s > t} = {|x1
| > |x2

|} ⊂ R2m
;

note that
∂O = C.

Using a variational technique we will construct a solution u in O satisfying u > 0 in O
and u = 0 on C = ∂O. Then, since f is odd, by odd reflection with respect to the cone C
we obtain a saddle solution in the whole space.

Let BR be the open ball in R2m centered at the origin and of radius R. In the proof we
will consider the open bounded set

OR := O ∩ BR = {s > t and |x|2 = s2
+ t2 < R2

}.

Note that
∂OR = (C ∩ BR) ∪ (∂BR ∩O).
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Even though we will not need it in the proof, let us point out that the sets OR and O
are domains (i.e., open connected sets) in dimensions 2m ≥ 4 (but clearly not in dimen-
sion 2). Indeed, to see thatOR is connected, let x = (x1, x2) ∈ OR . We can arc-connect x
withinOR to the point (x1, 0), simply using the path (x1, σx2), 0 ≤ σ ≤ 1. Finally, since
m ≥ 2, the point (x1, 0) can be arc-connected within {p ∈ Rm : 0 < |p| < R}×{0} to the
point (R/2, 0, . . . , 0). Thus,OR is arc-connected. It follows thatO is also arc-connected.

Proof of Theorem 1.3. With OR defined as above, consider the space

H̃ 1
0 (OR) = {v ∈ H

1
0 (OR) : v = v(s, t) a.e.}

of H 1
0 functions in the bounded open set OR which depend only on s and t . Equivalently,

these are the H 1
0 (OR) functions which are invariant under orthogonal transformations in

the firstm variables and also under orthogonal transformations in the secondm variables.
Thus, H̃ 1

0 (OR) is a weakly closed subspace of H 1
0 (OR).

Consider the energy functional in OR ,

E(v,OR) =
∫
OR

{
1
2
|∇v|2 +G(v)

}
dx for v ∈ H̃ 1

0 (OR).

Next we show the existence of a minimizer of the functional among functions in this
space. Recall that we assume condition (1.13) on G, that is,

G ≥ 0 = G(±M) in R and G > 0 in (−M,M).

Since E is nonnegative, we can take a minimizing sequence {ukR}, k = 1, 2, . . . ,
of E in H̃ 1

0 (OR). Without loss of generality we may assume that 0 ≤ ukR ≤ M . To
see this, simply replace the minimizing sequence {ukR} by the sequence {vkR} defined by
vkR = min{|ukR|,M} ∈ H̃

1
0 (OR), which is also a minimizing sequence. Indeed, {|ukR|} is a

minimizing sequence since G is even; then use the fact that G ≥ G(M) to conclude that
{vkR} is also minimizing.

Since G ≥ 0, we have ∫
OR
|∇ukR|

2 dx ≤ 2E(ukR,OR) ≤ C

for some constant C, and thus there exists a subsequence (denoted again by {ukR}) such
that ukR converges weakly in H 1

0 (OR) to a function uR ∈ H̃ 1
0 (OR). Due to the weak

convergence we deduce∫
OR
|∇uR|

2 dx ≤ lim inf
k

∫
OR
|∇ukR|

2 dx.

By Fatou’s lemma, we also have∫
OR
G(uR) dx ≤ lim inf

k

∫
OR
G(ukR) dx.

Hence, uR is a minimizing function in H̃ 1
0 (OR) and 0 ≤ uR ≤ M in OR .
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Next, we can consider perturbations uR + ξ of uR , with ξ depending only on s and t ,
and with ξ having compact support in OR ∩ {t > 0} = BR ∩ {0 < t < s}. In particular, ξ
vanishes in a neighborhood of {t = 0}. Since equation (1.17) in the (s, t) variables is the
first variation of E(·,OR)—recall that E has the form (1.16) on H̃ 1

0 functions— and the
equation is not singular away from {s = 0} and {t = 0}, we deduce that uR is a solution
of (1.17) in OR ∩ {t > 0}. That is, we have

−1uR = f (uR) in OR ∩ {t > 0}. (3.2)

We now prove that uR is also a solution in all of OR , that is, also across {t = 0}.
To see this for dimensions 2m ≥ 4, let ξε be a smooth function of t alone, identically 0
in {t < ε/2} and identically 1 in {t > ε}. Let v ∈ C∞c (OR), multiply (3.2) by vξε and
integrate by parts to obtain∫

OR
ξε∇uR∇v dx +

∫
OR∩{t<ε}

v∇uR∇ξε dx =

∫
OR
f (uR)vξε dx. (3.3)

We conclude by seeing that the second integral on the left hand side goes to zero as ε→ 0.
Indeed, by the Cauchy–Schwarz inequality,∣∣∣∣∫

OR∩{t<ε}
v∇uR∇ξε dx

∣∣∣∣2 ≤ C ∫
OR∩{t<ε}

|∇uR|
2 dx

∫
OR∩{t<ε}

|∇ξε|
2 dx.

Since |∇ξε|2 ≤ C/ε2, |OR ∩ {t < ε}| ≤ CRε
m, and m ≥ 2, the second factor in the

previous bound is bounded independently of ε. At the same time, the first factor tends to
zero as ε→ 0 since |∇uR|2 is integrable in OR .

In dimension 2m = 2 the previous proof does not apply and we argue as follows. We
now consider perturbations ξ ∈ H̃ 1

0 (OR) which do not vanish on BR ∩ {t = 0}. Consid-
ering the first variation of energy and integrating by parts, we find that the boundary flux
sm−1tm−1∂tuR = ∂tuR (here m − 1 = 0) must be identically 0 on BR ∩ {t = 0}. This
implies that uR is a solution also across {t = 0}.

We have established the existence of a solution uR in OR = BR ∩ {s > t} with
0 ≤ uR ≤ M . Considering the odd reflection of uR with respect to the Simons cone C,

uR(s, t) = −uR(t, s),

we obtain a solution in BR \ {0}. Using the same cut-off argument as above, but choosing
now 1 − ξε to have support in the ball of radius ε around 0, we conclude that uR is also
a solution around 0, and hence in all of BR . Here, the cut-off argument also applies in
dimension 2.

We now wish to pass to the limit in R and obtain a solution in all of R2m. For this,
let S > 0 and consider the family {uR}, for R > S + 2, of solutions in BS+2. Since
|uR| ≤ M , interior elliptic estimates applied in balls of radius 2 centered at points in BS
(as explained at the beginning of this section) give a C2,α(BS) bound for uR (uniform
with respect to R). For later purposes, using the argument in (3.1) for uR , we have

|∇uR| ≤ C in BS for all R > S + 2, (3.4)
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for some constant C independent of S and R. In addition, by the Arzelà–Ascoli theorem,
a subsequence of {uR} converges in C2(BS) to a solution in BS . Taking S = 1, 2, 3, . . . ,
by a Cantor diagonal argument, we obtain a sequence uRj converging in C2

loc(R
2m) to a

solution u ∈ C2(R2m).
By construction, u is a solution in R2m depending only on s and t , odd with respect to

the Simons cone C, with |u| ≤ M in R2m, and with u ≥ 0 in {s > t}. Now, as f (M) = 0
and u 6≡ M (since u vanishes on C), the strong maximum principle shows that u < M

everywhere. As a consequence, we also have u > −M .
We claim that u 6≡ 0 in R2m. Then the strong maximum principle leads to u > 0 in

{s > t}, since f (0) = 0 and u ≥ 0 in {s > t}. Thus, u has all the properties of a saddle
solution as in Definition 1.2.

To show that u 6≡ 0, let 1 < S < R − 2 and wR be defined as

wR = ξ min
{
M,

s − t
√

2

}
+ (1− ξ)uR,

where ξ is a smooth function depending only on r2
= s2

+ t2 such that ξ ≡ 1 in BS−1
and ξ ≡ 0 outside BS . We see that wR ∈ H̃ 1

0 (OR) satisfies

wR =


uR in OR \OS,

min
{
M,

s − t
√

2

}
in OS−1.

(3.5)

In addition, by (3.4), we have

|∇wR| ≤ C in OS (3.6)

for some constant C independent of S and R.
Since uR minimizes the energy in H̃ 1

0 (OR), we have E(uR,OR) ≤ E(wR,OR). Now,
since wR = uR in OR \OS , we must have, for constants C independent of S and R,∫
OS

{
1
2
|∇uR|

2
+G(uR)

}
dx ≤

∫
OS

{
1
2
|∇wR|

2
+G(wR)

}
dx

=

∫
OS−1

{
1
2
|∇wR|

2
+G(wR)

}
dx +

∫
OS\OS−1

{
1
2
|∇wR|

2
+G(wR)

}
dx

≤ C

∣∣∣∣OS−1 ∩

{
s − t
√

2
< M

}∣∣∣∣+ C|OS \OS−1|

≤ C

∫ S−1

0
{(t +

√
2M)m − tm}tm−1 dt + C|BS \ BS−1|

≤ CS2m−1.

We have used the uniform gradient bound (3.6), the equality in OS−1 stated in (3.5),
and G(M) = 0. We have also used the fact that dx is equal to cmsm−1tm−1dsdt to
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bound the measure of the subset of OS−1, and that (t +
√

2M)m − tm ≤ Ctm−1 and
S2m
− (S−1)2m ≤ CS2m−1 for t and S larger than 1. We now let R = Rj →∞ to obtain∫

OS

{
1
2
|∇u|2 +G(u)

}
dx ≤ CS2m−1

for some constant C independent of S. Note that this bound, after odd reflection with
respect to C, establishes the energy bound

E(u, BS) ≤ CS2m−1, (3.7)

which is estimate (1.15) in the statement of the theorem.
Suppose that u ≡ 0. Then the energy bound (3.7) would read

cmG(0)S2m
= G(0)|BS | = E(0, BS) ≤ CS2m−1.

This is a contradiction for S large, and thus u 6≡ 0.
Finally, we establish the last statement of the theorem on stability under perturbations

vanishing on the Simons cone. We assume hypothesis (1.14) on the concavity of f in
(0,M). Since f (0) = 0, concavity leads to f ′(w) ≤ f (w)/w for all w ∈ (0,M). Hence

−1u = f (u) ≥ f ′(u)u in O.

That is, u is a positive supersolution for the linearized operator −1 − f ′(u) at u in all
of O. By a simple argument (see the proof of Proposition 4.2 of [2]), the value of the
quadratic form Qu(ξ) is nonnegative for all ξ ∈ C1 with compact support in O (and not
necessarily depending only on s and t). By an approximation argument, the same holds
for all ξ ∈ C1 with compact support in O and vanishing on ∂O = C. Finally, by odd
symmetry with respect to C, the same is true for all C1 functions ξ with compact support
in R2m and vanishing on C. ut

4. Pointwise estimate for saddle solutions

In this section we prove Proposition 1.5 using an important estimate of Modica [20] and
two elementary lemmas. In [20] Modica proved the following pointwise gradient bound
for global solutions of semilinear elliptic equations.

Theorem 4.1 (Modica [20]). Let G ∈ C2(R) be a nonnegative function and u be a
bounded solution of 1u−G′(u) = 0 in Rn. Then

|∇u|2

2
≤ G(u) in Rn. (4.1)

In addition, if G(u(x0)) = 0 for some x0 ∈ Rn, then u is constant.
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In [20] this bound was proved under the hypothesis u ∈ C3(Rn). The result as stated
above, which applies to all solutions—recall that every weak solution is C2,α(Rn) since
G ∈ C2(R)—was established in [10].

Note that 1-D solutions—the functions ub,c defined in (1.7)—turn (4.1) into an equal-
ity (see Lemma 4.3). In 1994, Caffarelli, Garofalo, and Segàla [10] extended the previous
result of Modica to a wider family of equations which includes operators such as the
p-Laplacian and the mean curvature operator for graphs. They also established that if
equality holds in (4.1) at some point of Rn, then u must a 1-D solution.

The following are two auxiliary lemmas towards Proposition 1.5. The first one pro-
vides a formula for the distance to the cone C. The second one concerns increasing solu-
tions of (1.1) in R.

Lemma 4.2. For every point x ∈ R2m, the distance from x to the Simons cone C =
{s = t} is given by

dist(x, C) =
|s − t |
√

2
.

This formula can be found, and also proven rigorously, using the method of Lagrange
multipliers. Next we give an alternative simple proof of it.

Proof of Lemma 4.2. Let x = (x1, x2) ∈ R2m
\ C and x0 = (x

1
0 , x

2
0) ∈ C. Let s = |x1

|,
t = |x2

|, and s0 = t0 = |x1
0 | = |x

2
0 |. We have

|x − x0|
2
= |x1

− x1
0 |

2
+ |x2

− x2
0 |

2
= s2
+ t2 + 2s2

0 − 2x1
· x1

0 − 2x2
· x2

0

≥ s2
+ t2 + 2s2

0 − 2(s + t)s0

=
(s − t)2

2
+

1
2
((s + t)− 2s0)2

≥

(
s − t
√

2

)2

.

Next, given x ∈ R2m we show that x0 ∈ C can be chosen so that the two inequalities
above are in fact equalities. In case s > 0 and t > 0, choose x0 = (αx1, βx2) =

(αx1, . . . , αxm, βxm+1, . . . , βx2m), where α and β are given by αs = βt = (s + t)/2. If
either s or t are zero, say s > 0 and t = 0, choose x0 = (x

1/2, x1/2). ut

The proof of the following lemma, which follows from integrating the ODE ü − G′(u)
= 0, can be found in [5]—see also a sketch of the proof below, after the statement.

Lemma 4.3. Let G ∈ C2(R). There exists a bounded function u0 ∈ C
2(R) satisfying

ü0 −G
′(u0) = 0 and u̇0 > 0 in R

if and only if there exist two real numbers m1 < m2 for which G satisfies

G′(m1) = G
′(m2) = 0, (4.2)

G > G(m1) = G(m2) in (m1, m2). (4.3)
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In that case we have m1 = limτ→−∞ u0(τ ) and m2 = limτ→+∞ u0(τ ). Moreover, the
solution u0 = u0(τ ) is unique up to translations of the independent variable τ .

Adding a constant to G, assume that

G(m1) = G(m2) = 0. (4.4)

Then
u̇2

0/2 = G(u0) in R. (4.5)

If in addition
G′′(m1) 6= 0 and G′′(m2) 6= 0, (4.6)

then
0 < u̇0(τ ) ≤ Ce

−c|τ | in R (4.7)

for some positive constants C and c, and∫
+∞

−∞

{
1
2
u̇0(τ )

2
+G(u0(τ ))

}
dτ < +∞. (4.8)

GivenG satisfying (4.2)–(4.4), to construct u0 we simply choose anym0 ∈ (m1, m2) and
define

φ(σ) =

∫ σ

m0

dw
√

2(G(w))
for σ ∈ (m1, m2).

Then let u0 := φ−1 be the inverse function of φ. This formula is found by multiplying
ü − G′(u) = 0 by u̇ and integrating the equation—which also gives the necessity of
conditions (4.2) and (4.3) for existence. The above definition of u0 leads automatically to
(4.5).

Under the hypothesis G′′(mi) 6= 0, G behaves like a quadratic function near each
mi . Using the expression above for φ, this shows that φ blows up logarithmically at mi ,
and thus its inverse function u0 attains its limits mi at ±∞ exponentially. From this and
identity (4.5), the exponential decay (4.7) for u̇0 follows, as well as (4.8).

Next we prove our pointwise bound.

Proof of Proposition 1.5. Let u be a bounded solution of −1u = f (u) in R2m that
vanishes on the Simons cone C = {s = t}. We wish to show that

|u(x)| ≤

∣∣∣∣u0

(
s − t
√

2

)∣∣∣∣ in R2m.

First we prove that |u| < M . Arguing by contradiction, assume that |u| ≥ M some-
where. Since u(0) = 0, there exists a point x0 such that u(x0) = ±M . Then, by Modica’s
gradient bound (4.1) we have |∇u(x0)|

2
≤ 2G(u(x0)) = 2G(±M) = 0. Therefore

G(u(x0)) = 0 and, by the second part of Theorem 4.1, u is constant. Since u = 0 on
the Simons cone, we must have u ≡ 0. This contradicts the assumption |u| ≥ M > 0
somewhere.
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Next, since |u| < M , we may write

u(x) = u0(v(x))

for some function v : R2m
→ R, where u0 is the 1-D solution whose existence is given

by Lemma 4.3, with m1 = −M and m2 = M , and such that u0(0) = 0. Now, Modica’s
estimate (4.1) written in terms of v becomes

1
2
u̇2

0(v)|∇v|
2
≤ G(u0(v)) in R2m.

Since u̇2
0/2 ≡ G(u0) by (4.5), the expression above leads to

|∇v| ≤ 1 in R2m.

Finally, since u = 0 on C, we also have v = 0 on C. Given x ∈ R2m, let x0 ∈ C be
such that |x − x0| = dist(x, C). Then

|v(x)| = |v(x)− v(x0)| ≤ ‖∇v‖L∞ |x − x0| ≤ |x − x0| = dist(x, C).

By Lemma 4.2, using the fact that u0 is odd since f is odd and that u0 is increasing, we
conclude

|u(x)| = |u0(v(x))| = u0(|v(x)|) ≤ u0(dist(x, C)) =
∣∣∣∣u0

(
s − t
√

2

)∣∣∣∣,
which is the desired bound.

Finally, we prove the last statement of the proposition, that u0((s− t)/
√

2) is a super-
solution of −1u = f (u) in O = {s > t}. First, direct computation using equation (1.17)
in (s, t) variables for t > 0 shows that the function is a supersolution in {s > t > 0}. In
dimension 2m ≥ 4 there is nothing else to be checked, by a capacity (or cut-off) argument
used as in (3.3). Instead, in dimension 2, u0((s− t)/

√
2) is a supersolution inO since the

outer flux −∂tu0((s − t)/
√

2)|t=0 = u̇0(s/
√

2)/
√

2 is positive. ut

5. Instability in dimension n = 4

In this section we prove the instability result of Theorem 1.4. For this, we establish that the
function u0((s−t)/

√
2) is unstable in dimension 4 in the sense that the second variation of

energyQ at u0((s−t)/
√

2) is negative for some test function ξ depending only on s and t .
Our proof also gives its instability outside every compact set. Even though u0((s−t)/

√
2)

is not a solution of the equation, we define the quadratic form

Qu0(ξ) :=
∫

R2m
{|∇ξ(x)|2 − f ′(u0((s − t)/

√
2))ξ2(x)} dx, (5.1)

where there is some abuse of notation in writing Qu0 since by u0 we really mean
u0((s − t)/

√
2).
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The key point of the proof is thatQu0 not being nonnegative definite leads to the same
property forQu, where u is any bounded solution that vanishes on the Simons cone. This
fact will follow from our main pointwise bound of Proposition 1.5.

For the proof it is useful to consider the variables

y =
s + t
√

2
, z =

s − t
√

2
,

which satisfy −y ≤ z ≤ y.
Recall that a bounded solution u of −1u = f (u) in R2m is stable provided

Qu(ξ) =

∫
R2m
{|∇ξ |2 − f ′(u)ξ2

} dx ≥ 0 for all ξ ∈ C∞c (R
2m).

If v is a function depending only on s and t , the quadratic form Qv(ξ) acting on pertur-
bations of the form ξ = ξ(s, t) becomes

cmQv(ξ) =

∫
{s>0, t>0}

sm−1tm−1
{ξ2
s + ξ

2
t − f

′(v)ξ2
} ds dt,

where cm > 0 is a constant depending only on m. We can further change to variables
(y, z) and obtain, for a different constant cm > 0,

cmQv(ξ) =

∫
{−y<z<y}

(y2
− z2)m−1

{ξ2
y + ξ

2
z − f

′(v)ξ2
} dy dz. (5.2)

Given the definition of the variables y and z, a function ξ = ξ(y, z) has compact
support in R2m if and only if ξ(y, z) vanishes for y large enough.

Proof of Theorem 1.4. Let u be a bounded solution of −1u = f (u) in R2m vanishing on
the Simons cone C = {s = t}. By Proposition 1.5, we know that

|u(x)| ≤ |u0(z)| in all of R2m.

This leads to f ′(|u(x)|) ≥ f ′(|u0(z)|) for all x ∈ R2m, since we assume f to be concave
in (0,M). Now, since f ′ is even, we deduce that

f ′(u(x)) ≥ f ′(u0(z)) for all x ∈ R2m.

Therefore, since Qu0 is defined by (5.1) and (s − t)/
√

2 = z, we conclude that

Qu(ξ) ≤ Qu0(ξ) for all ξ ∈ C∞c (R
2m). (5.3)

It follows that, in order to prove that u is unstable, it suffices to find a smooth func-
tion ξ with compact support in R2m for which Qu0(ξ) < 0. This is an easier task since
u0(z) is explicit. Note also that, by an approximation argument, it suffices to find a Lip-
schitz function ξ , not necessarily smooth, with compact support in R2m and for which
Qu0(ξ) < 0.
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Expression (5.2) with v(x) = u0(z) reads

cmQu0(ξ) =

∫
{−y<z<y}

(y2
− z2)m−1

{ξ2
y + ξ

2
z − f

′(u0(z))ξ
2
} dy dz

for all ξ = ξ(y, z) with compact support in R2m. We now take ξ of separated variables,
that is, of the form

ξ(y, z) = φ(y)ψ(z).

For ξ to have compact support in R2m it suffices that φ has compact support in y ∈
(0,+∞) (with no requirement on the support of ψ). Note also that ξ is a Lipschitz func-
tion of x ∈ R2m if φ and ψ are Lipschitz. However, even if φ and ψ are smooth, ξ will not
be in general better than Lipschitz—to be smooth it would be necessary that the normal
derivatives of ξ vanish at s = 0 and t = 0 (i.e., at z = ±y).

Since ξ2
y + ξ

2
z = φ

2
yψ

2
+ φ2ψ2

z , we have

cmQu0(ξ) =

∫
{−y<z<y}

(y2
− z2)m−1

{φ2
yψ

2
+ φ2ψ2

z − f
′(u0(z))φ

2ψ2
} dy dz. (5.4)

Choose
ψ(z) = u̇0(z).

We now let 2m = 4 and thus m − 1 = 1. In the following computations, we first inte-
grate by parts the term {(y2

− z2)φ2ψz}ψz with respect to z (note that here we obtain no
boundary terms), and later we write the term 2zφ2ψψz as φ2z(ψ2)z and we integrate it
by parts with respect to z. Thus,

cmQu0(ξ) =

∫
{−y<z<y}

(y2
− z2){φ2

yψ
2
+ φ2ψ2

z − f
′(u0(z))φ

2ψ2
} dy dz

=

∫
{−y<z<y}

(y2
− z2)φ2

yψ
2 dy dz+

∫
{−y<z<y}

2zφ2ψψz dy dz

−

∫
{−y<z<y}

(y2
− z2)φ2ψ{ψzz + f

′(u0(z))ψ} dy dz

=

∫
{−y<z<y}

(y2
− z2)φ2

yψ
2 dy dz−

∫
{−y<z<y}

φ2ψ2 dy dz

+

∫
+∞

0
φ2(y)[zψ2(z)]y−ydy

=

∫
{−y<z<y}

(y2
− z2)φ2

yψ
2 dy dz−

∫
{−y<z<y}

φ2ψ2 dy dz+

∫
+∞

0
φ2(y)2yψ2(y)dy

≤

∫
{−y<z<y}

y2φ2
yψ

2 dy dz−

∫
{−y<z<y}

φ2ψ2 dy dz+

∫
+∞

0
φ2(y)2yψ2(y)dy,

where we have used the fact that ψ = u̇0 is an even function and a solution to the lin-
earized 1-D problem ψzz + f

′(u0(z))ψ = 0.



838 Xavier Cabré, Joana Terra

For a > 1 a constant that we will make tend to infinity, let η = η(ρ) be a Lipschitz
function of ρ := y/a with compact support [ρ1, ρ2] ⊂ (0,+∞). Let us denote by

φ(y) = φa(y) = η(y/a) and ξa(y, z) = φa(y)u̇0(z) = η(y/a)u̇0(z)

the functions named φ and ξ above. In the last bound for Qu0 , we make the change
y = aρ, dy = adρ, and we use the fact that ψ = u̇0 is decreasing in (0,+∞). We obtain

cmQu0(ξa)

≤

∫
{−y<z<y}

y2φ2
yψ

2 dy dz−

∫
{−y<z<y}

φ2ψ2 dy dz+

∫
+∞

0
φ2(y)2yψ2(y) dy

≤

∫
{−aρ<z<aρ}

a3ρ2 η
2
ρ

a2ψ
2 dρ dz−

∫
{−aρ<z<aρ}

aη2ψ2 dρ dz

+

∫ ρ2

ρ1

aη2(ρ)2aρψ2(aρ) dρ

= a

{∫
+∞

0
ρ2
{
η2
ρ −

η2

ρ2

}{∫ aρ

−aρ

u̇0
2 dz

}
dρ + 2aρ2u̇

2
0(aρ1)

∫
+∞

0
η2 dρ

}
.

Dividing by a leads to

cmQu0(ξa)

a
≤

∫
+∞

0
ρ2
{
η2
ρ −

η2

ρ2

}{∫ aρ

−aρ

u̇2
0 dz

}
dρ + 2aρ2u̇

2
0(aρ1)

∫
+∞

0
η2 dρ.

Since f is a concave function in (0,M) with f (0) = f (M) = 0, we have f ≥ 0 in
(0,M). In addition, since f 6≡ 0 in (0,M) by (1.13), we must have f > 0 in (0,M) by
concavity. Now, f being concave and positive in (0,M) and with f (M) = 0, we deduce
that f ′(M) < 0. Hence, G′′(±M) > 0, i.e., hypothesis (4.6) in Lemma 4.3 is satisfied.
Thus by (4.7), we conclude that

lim
a→+∞

au̇2
0(aρ1) = 0.

Therefore, letting a→+∞ in the last bound for Qu0 we obtain

lim sup
a→+∞

cmQu0(ξa)

a
≤

{∫
+∞

−∞

u̇2
0(z) dz

}∫
+∞

0
ρ2
{
η2
ρ −

η2

ρ2

}
dρ. (5.5)

By (4.8) in Lemma 4.3, u̇2
0 is integrable in (−∞,+∞). Thus, by (5.3) and the comments

after it, the proof of the instability of the solution u will be finished if there exists a
Lipschitz function η = η(ρ) with compact support in (0,+∞) for which the second
integral in (5.5) is negative.

Arguing by contradiction, assume that∫
+∞

0
ρ2 η

2

ρ2 dρ ≤

∫
+∞

0
ρ2η2

ρ dρ (5.6)
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for every Lipschitz function η = η(ρ)with compact support in (0,+∞). The requirement
that η vanishes in a neighborhood of 0 can be removed by simply cutting-off η in (0, ε)
and letting ε→ 0. The integrals in (5.6) can be seen as integrals in R3 of radial functions,
that is, functions of the radius ρ. Hardy’s inequality in R3 states that

(3− 2)2

4

∫
R3

η2

|x|2
dx ≤

∫
R3
|∇η|2 dx

for every Lipschitz function η with compact support in R3, and the constant (3 − 2)2/4
= 1/4 is the best possible even when the inequality is considered only for radial functions
(see [16]). Hence, since

1 >
1
4
=
(3− 2)2

4
,

(5.6) leads to a contradiction, and this finishes the proof of instability.
The following is a direct way (without using Hardy’s inequality) to see that the sec-

ond integral in (5.5) is negative for some Lipschitz function η with compact support in
(0,+∞). For α > 0 and 0 < 2ρ1 < 1 < ρ2, let

η(ρ) =


(1− ρ−α2 )ρ−1

1 (ρ − ρ1) for ρ1 ≤ ρ ≤ 2ρ1,

1− ρ−α2 for 2ρ1 ≤ ρ ≤ 1,
ρ−α − ρ−α2 for 1 ≤ ρ ≤ ρ2,

0 otherwise,

a Lipschitz function with compact support [ρ1, ρ2]. We simply compute the second inte-
gral in (5.5) and find

∫
+∞

0
ρ2
{
η2
ρ −

η2

ρ2

}
dρ

≤

∫ 2ρ1

ρ1

ρ2(1− ρ−α2 )2ρ−2
1 dρ +

∫
+∞

1
α2ρ−2α dρ −

∫ ρ2

1
(ρ−α − ρ−α2 )2 dρ.

Choosing 1/2 < α < 1, as ρ2 →∞ the difference of the last two integrals converges to
a negative number, since α2 < 1. Since the first of the last three integrals is bounded by
3ρ1, we conclude that the above expression is negative by choosing ρ2 large enough and
then ρ1 small enough.

The previous proof of instability also leads to the instability outside every compact
set—and thus to the infinite Morse index property of u. Indeed, choosing ρ1 and ρ2 (and
thus η) as above, we consider the corresponding function ξa for a > 1. Now, (5.3) and
(5.5) lead to Qu(ξa) ≤ Qu0(ξa) < 0 for a large enough. Thus, the Lipschitz func-
tion ξa makes the quantity Qu negative for a large, and has compact support contained
in {aρ1 ≤ (s + t)/

√
2 ≤ aρ2}. By approximation, the same is true for a function ξ of

class C1, not only Lipschitz. Hence, given any compact set K in R4, by taking a large
enough we conclude that u is unstable outside K , as stated in the theorem.
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From the instability outside every compact set, it follows that u has infinite Morse
index in the sense of Definition 1.1(c). Indeed, let Xk be a subspace of C1

c (R4) of dimen-
sion k, generated by functions ξ1, . . . , ξk , and with Qu(ξ) < 0 for all ξ ∈ Xk \ {0}.
Let K be a compact set containing the support of all the functions ξ1, . . . , ξk . Since
u is unstable outside K , there is a C1 function ξk+1 with compact support in R4

\ K

for which Qu(ξk+1) < 0. Since ξk+1 has disjoint support with each of the functions
ξ1, . . . , ξk , it follows that ξ1, . . . , ξk, ξk+1 are linearly independent and that Qu(a1ξ1 +

· · · + ak+1ξk+1) = Qu(a1ξ1 + · · · + akξk) +Qu(ak+1ξk+1) < 0 for every nonzero lin-
ear combination a1ξ1 + · · · + ak+1ξk+1 of them. We conclude that u has infinite Morse
index. ut

6. Asymptotic stability of u0(z) in dimensions 2m ≥ 6

In this section we carry out, in all dimensions n = 2m ≥ 4, the asymptotic analysis
done for n = 4 in the proof of Theorem 1.4. We will see that the argument does not lead
to the instability of saddle solutions in dimensions n = 2m ≥ 6. Indeed, we will show
that u0(z) = u0((s − t)/

√
2) is, in every dimension n = 2m ≥ 6 and only in some weak

sense, asymptotically stable with respect to perturbations ξ(y, z)with separated variables.
Although this applies in dimension 6, note that Qu ≤ Qu0 is only an inequality, and thus
u0 may be asymptotically stable (or even stable) and at the same time the solution u
be unstable. Indeed, a more recent result of ours [9] establishes that saddle solutions in
dimension 6 are unstable.

Recall that by (5.4), the second variation of energy at u0(z) applied to test functions
ξ(y, z) = φ(y)ψ(z) has the form

cmQu0(ξ) =

∫
{−y<z<y}

(y2
− z2)m−1

{φ2
yψ

2
+ φ2ψ2

z − f
′(u0(z))φ

2ψ2
} dy dz.

We choose, as in Theorem 1.4, ψ(z) = u̇0(z)—which is a solution of the linearized
problem in z and thus it should be the most unstable perturbation in the z variable. We pro-
ceed as in the proof of Theorem 1.4, integrating by parts the term {(y2

− z2)m−1φ2ψz}ψz
with respect to z, and later rewriting (y2

− z2)m−22zφ2ψψz as (y2
− z2)m−2φ2z(ψ2)z,

and integrating it by parts with respect to z. Now there are no boundary terms when we
integrate by parts since m− 2 ≥ 1. We obtain

cmQu0(ξ) =

∫
{−y<z<y}

(y2
− z2)m−1

{φ2
yψ

2
+ φ2ψ2

z − f
′(u0(z))φ

2ψ2
} dy dz

=

∫
{−y<z<y}

(y2
− z2)m−1

{φ2
yψ

2
− φ2ψ

(
ψzz + f

′(u0(z))ψ
)
} dy dz

+

∫
{−y<z<y}

(m− 1)(y2
− z2)m−22zφ2ψψz dy dz
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=

∫
{−y<z<y}

(y2
− z2)m−1ψ2

{
φ2
y −

m− 1
y2 − z2φ

2
}
dy dz

+

∫
{−y<z<y}

(m− 1)(m− 2)(y2
− z2)m−32z2φ2ψ2 dy dz,

where we have used the fact that ψ = u̇0 is a solution to the linearized 1-D problem
ψzz + f

′(u0(z))ψ = 0.
As before, let a > 1 and φ(y) = η(y/a), where η = η(ρ) is a function of ρ = y/a

with compact support in (0,+∞). Let

ξa(y, z) = ξ(y, z) = η(y/a)u̇0(z).

Since y = aρ, dy = adρ, we have

cmQu0(ξa)

=

∫
{−aρ≤z≤aρ}

a2m−3ρ2m−2
(

1−
z2

a2ρ2

)m−1

u̇2
0

{
η2
ρ −

m− 1

ρ2
(
1− z2

a2ρ2

)η2
}
dρ dz

+

∫
{−aρ≤z≤aρ}

2(m− 1)(m− 2)a2m−5ρ2m−6η2u̇2
0z

2
(

1−
z2

a2ρ2

)m−3

dρ dz.

Dividing by a2m−3 we deduce

cmQu0(ξa)

a2m−3 =

∫
{−aρ≤z≤aρ}

ρ2m−2
(

1−
z2

a2ρ2

)m−1

u̇2
0

{
η2
ρ −

m− 1

ρ2
(
1− z2

a2ρ2

)η2
}
dρ dz

+

∫
{−aρ≤z≤aρ}

2(m− 1)(m− 2)
a2 ρ2m−6η2u̇2

0z
2
(

1−
z2

a2ρ2

)m−3

dρ dz.

Since 0 ≤ 1 − z2/(a2ρ2) ≤ 1, m ≥ 3, and z2u̇2
0(z) is integrable in (−∞,+∞), as

a→∞ the second integral tends to zero and we are left with the expression

lim sup
a→+∞

cmQu0(ξa)

a2m−3 =

{∫
+∞

−∞

u̇2
0 dz

}∫
+∞

0
ρ2m−2

{
η2
ρ −

m− 1
ρ2 η2

}
dρ.

According to Hardy’s inequality for radial functions in R2m−1 (see [16]), the last integral
in ρ is nonnegative for all η = η(ρ) with compact support if and only if

m− 1 ≤
(2m− 3)2

4
.

When 2m ≥ 6 this inequality is true (it is even strict) and we conclude some kind of
asymptotic stability for u0(z).
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