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Abstract. In this paper we want to solve a fifty year old problem on R-algebras over cotorsion-
free commutative rings R with 1. For simplicity (but only for the abstract) we will assume that R
is any countable principal ideal domain, but not a field. For example R can be the ring Z or the
polynomial ring Q[x]. An R-algebra A is called a generalized E(R)-algebra if its algebra EndR A
ofR-module endomorphisms of the underlyingR-module RA is isomorphic toA (as anR-algebra).
Properties, including the existence of such algebras are derived in various papers ([5, 6, 9, 10, 20,
22, 24, 25]). The study was stimulated by Fuchs [13], and specially by Schultz [26]. But due to
[26] the investigation concentrated on ordinary commutative E(R)-algebras. A substantial part of
problem 45 (p. 232) in the monograph [13] (repeated in later publications, e.g. [27]), which will be
answered positively for all rings R above in this paper, remained open:

Can we find non-commutative generalized E(R)-algebras?

In Theorem 1.5 we will show that for all countable, principal ideal domains R which are not
fields and for any infinite cardinal κ there is a non-commutative R-algebra A of cardinality |A| =
κℵ0 with EndR A ∼= A, so A is a non-commutative generalized E(R)-algebra, and—not too
surprisingly—there is a proper class of examples.

The new strategy should be interesting and useful for other problems as well: We will first
translate the heart of the algebraic question on the existence of certain monoids via model theory
into geometric structures leading to a special class of (decorated) trees and solve this problem
introducing products of trees etc. This can be compared with the well-known, but different process
of translating group problems to small cancelations in groups via the van Kampen lemma. By small
cancelation of trees we are able to find a suitable monoid and thus a non-commutative algebra
A with an important non-canonical embedding A ↪→ EndR A, our ∗-scalar multiplication. In a
second part of this paper we must enlarge A to get rid of all undesired endomorphisms. This can be
done more easily (thus first) with the help of additional set theory (Jensen’s diamond predictions),
which will support the reader to understand more quickly the last steps of the proof. In a final
chapter we will also give an argument (for removing unwanted endomorphisms) which is based on
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ordinary set theory of ZFC only (using our favored Black Box predictions; see [20]). Thus we get
the result as stated above. Furthermore, this last chapter includes a construction for rigid systems of
non-commutative generalized E(R)-algebras.

Keywords. Endomorphism rings, indecomposable modules, E-rings

1. Introduction

As indicated in the abstract we want to construct certain non-commutative R-algebras
over commutative rings R with 1. Recall that an R-algebra A is a generalized E(R)-
algebra if EndR A ∼= A as R-algebras, where EndRM denotes the algebra of R-module
endomorphisms of an R-module M . The question originates from Problem 45 (p. 232) in
the monograph [13] by Fuchs, which (in the case R = Z) reads as follows:

Characterize the rings A with End(A+) ∼= A, A+ considered as a group
without operators.

Despite the fact that many such commutative R-algebras (the so called E(R)-algebras,
see Definition 1.3) were constructed in the last twenty years, the existence of non-com-
mutative generalized E(R)-algebras remained a challenging open problem; see also Vin-
sonhaler [27]. In the introduction we will discuss how the existence of those algebras
can be achieved. It turns out that the main case R = Z (for the underlying ring) can be
extended to arbitrary commutative rings R which are cotorsion-free (or more precisely
p-cotorsion-free). Thus the ring R must satisfy the following conditions:

• There is an element p ∈ R (which pretends to be a prime) satisfying
⋂
n<ω p

nR = 0
such that the multiplicatively closed set S = {pn | n < ω} has no zero-divisors; this is
to say that R is p-reduced and p-torsion-free, thus the p-adic topology on R (generated
by {pnR | n < ω}) is Hausdorff and the p-adic completion R̂ of R exists.
• The p-adic completion R̂ of R satisfies HomR(R̂, R) = 0.

By the first condition the ring R cannot be a field and by the second condition R cannot be
the ring Jp of p-adic integers. It is easy to see that for these two examples the required R-
algebras would not exist. Thus cotorsion-freeness is not only sufficient but also necessary
for our work. Furthermore, it was shown in [18] that any p-reduced and p-torsion-free,
commutative ring R with 1 (in particular any principal ideal domain with prime p) of
size |R| < 2ℵ0 is also cotorsion-free; and it is easy to find arbitrarily large cotorsion-free
principal ideal domains, which can serve as our ground ring of the algebraA. The element
p will also be used to define pure submodules U ⊆∗ M of R-modules M , which means
that pnM ∩ U ⊆ pnU for all n < ω; in particular R ⊆∗ R̂.

Since the rings R need not satisfy the freeness criterion by Pontryagin (see [14, p.
93]), we will use the following definition to circumvent its application.

Definition 1.1. An R-moduleM is ℵ0-free if every finite subset S ⊆ M belongs to a free,
p-pure submodule F ⊆ M with p-reduced quotient M/F .
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Thus an ℵ0-freeR-moduleM is ℵ1-free ifR permits application of Pontryagin’s theorem.
Recall here the definition of κ-free and strongly κ-free R-modules from [8, 20].

Definition 1.2. An R-module M is κ-free for some cardinal κ ≥ ℵ1 if every subset
S ⊆ M of size |S| < κ belongs to a free submodule F ⊆ M . Moreover, M is strongly
κ-free if we can always choose a free submodule F ⊆ M with κ-free quotient M/F .

The study of E(R)-algebras began with the fundamental paper [26] by Schultz, where
the question about non-commutative rings answering Problem 45 is mentioned and where
also the term E-rings was chosen. We recall the following

Definition 1.3. If A is an R-algebra, then δ : A → EndR A denotes the R-algebra
homomorphism which takes any a ∈ A to the induced right multiplication ar ∈ EndR A
by a. If this homomorphism is an isomorphism, then A is called an E(R)-algebra and RA
is called an E(R)-module. Furthermore, E(Z)-algebras are also called E-rings.

The class of E-rings attracted works concerning its existence and properties (see [3, 5,
6, 9, 10, 15, 16, 17, 22, 24, 25]). Several of these results are discussed in the mono-
graph [20]. In particular, it is easy to see that E(R)-algebras are necessarily commutative;
see [20, Proposition 13.1.9, p. 468]. Since we will construct non-commutative R-algebras
A with EndR A ∼= A, it follows that our new examples A are not E(R)-algebras, but
proper generalized E(R)-algebras, as required. Their existence is also needed to illus-
trate a main result in [11]. Moreover, this fills in essential details to justify the main result
of [19].

It is crucial for the construction of a proper generalized E(R)-algebra A to derive the
existence of a well-behaving but non-canonical embeddingA ↪→ EndR A. Well-behaving
means that we are able to perform calculations in a reasonable way, and non-canonical
means very distinct from the embedding in Definition 1.3. This is the main topic of the
next five sections of this paper. Using model-theoretic arguments, we will define struc-
tures which we call skeletons. These are objects with a special binary function symbol ∗,
the ∗-scalar product. Due to required closure properties of this ∗-multiplication (the ∗-
scalar product law; Definition 2.1(iv)) further function symbols and a right identity 1
are needed satisfying certain (not very algebraic) laws of first order logic; see Section 2.
If now this ∗-scalar product acts faithfully on a skeleton M , then M can be converted
into a monoid with a new multiplication · derived from its ∗-multiplication. Thus the
skeleton M turns into an ordinary (non-commutative) monoid (M, ·, ∗) with an addi-
tional ∗-scalar product (and some further functions). From this special monoid (M, ·) we
will proceed in Section 3 to our desired non-commutative R-algebra A as the induced
monoid-R-algebra, while the ∗-scalar product will be used for the non-canonical embed-
ding A ↪→ EndR A.

It remains to establish the existence of skeletons (M, ∗). Here we will use an idea
which has a flavor of van Kampen’s lemma, where relations (terms) in groups can be
interpreted by diagrams of cell decompositions of surfaces. This allows one to transfer
group-theoretic questions to problems of combinatorial topology, which are often easier.
A consequence is small cancelation theory which opened simpler proofs for the Burnside
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problem and many other group-theoretic questions (see [23]). A first nice application of
this transfer method is a proof by Baer–Levi [1] from 1936 of Kurosh’s subgroup theo-
rem for free products (see also [21, pp. 274–285]). Through Sections 4, 5 and 6 we now
have to find new geometric objects (which are finite (decorated) trees), and must define a
∗-multiplication of these trees. This is related to products of n-fold operads (see [12, Sec-
tion 3, pp. 8–10] and the references in this survey paper). And since our ∗-multiplication
must satisfy the first order logic laws of Definition 2.1, we also need reductions between
these trees. By putting up a carefully chosen family of permitted small cancelations (see
Definition 4.3 and the subsequent Reduction Cases A to D) we finally derive the existence
of arbitrarily large skeletons which extend to R-algebras with an additional ∗-scalar prod-
uct (and some further functions)—the bodies of our construction. The nice advantage of
this geometric-combinatorial approach is that now many proofs can be easily inspired by
pictures (which are included).

In the second part of this paper (starting with Section 7) we will enlarge bodiesAwith
their derived non-canonical ∗-embedding A ↪→ EndR A in such a way that this embed-
ding becomes an R-algebra isomorphism. The arguments here are obvious, we must kill
all undesired R-module endomorphisms. However, the details need a more sophisticated,
but (as we believe even) elegant Step Lemma taking care of the strays; see Section 8.

To get rid of unwanted R-module endomorphisms globally (in the construction of the
final R-algebra A), we will first (in Section 9) apply Jensen’s diamond principle for their
prediction. This has the advantage that the proof is more transparent, which might help
the reader to understand the transfinite construction of A. As usual, as an extra gift, we
can conclude that the R-algebra A (being the union of a κ-filtration of free bodies) is very
free in a by now obvious sense (strongly κ-free as an R-module); see Eklof–Mekler [8],
for instance.

Theorem 1.4. Let R be a cotorsion-free commutative ring with 1 and |R| < κ be a
regular, uncountable cardinal with ♦κE for a non-reflecting stationary subset E ⊆ κ of
ordinals cofinal to ω. Then there is a strongly κ-free, non-commutative R-algebra A of
cardinality |A| = κ with EndR A ∼= A. Thus A is a proper generalized E(R)-algebra.

Proof. In Section 9 we construct an R-algebra A = (B,+, ·) from a suitable body B.
This algebra possesses another binary operation ∗, the ∗-scalar product, and every g ∈ A
induces an R-module endomorphism ∗g : x 7→ x ∗ g (x ∈ A) of RA. With our Main
Lemma 9.1 this correspondence A → EndR A (g 7→ ∗g) is an R-algebra isomorphism
A ∼= EndR A. ut

Our main theorem will take place in the ordinary set theory of ZFC (see Section 10). The
final steps are based on the Black Box (see [4, 20]). This prediction principle has been
adjusted for its application to bodies (over R) in Theorem 10.3. It will be applied in the
same Section 10.3 to prove Main Lemma 10.7 and this will be used below to derive the
existence of the R-algebras A mentioned in our Main Theorem 1.5. By this construction
and the setting of the Black Box it follows that these R-algebras A are ℵ0-free as R-
modules (see Definition 1.1). Moreover, if R permits Pontryagin’s theorem (as for all
principal ideal domains), then A will automatically be an ℵ1-free R-module.
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Main Theorem 1.5. Let R be a cotorsion-free commutative ring with 1 and |R| ≤ κ

be an uncountable cardinal with κ = κℵ0 . Then there is an ℵ0-free, non-commutative
R-algebra A of cardinality |A| = κ with EndR A ∼= A. Thus A is a proper generalized
E(R)-algebra.

From Corollary 8.8 it follows that A in the theorem is cotorsion-free.
In Appendix 10.4 we also indicate how to construct a rigid system of non-commutative

generalized E(R)-algebras. This is a maximal family of generalized E(R)-algebras A as
in Main Theorem 1.5 with only the zero-homomorphism between its distinct members.

Proof of Main Theorem 1.5. Arguing as above for Theorem 1.4 we now apply our Main
Lemma 10.7 to complete the proof. ut

Finally, we would like to emphasize that the presented method will be useful for various
other problems in ring and module theory. We furthermore thank Professor Charles Vin-
sonhaler (from the University of Connecticut) for a donation of $45 for the solution of the
problem discussed here.

2. The theory of skeletons

Let τ be a vocabulary with no predicates consisting of an infinite set of free variables
X and a set F of function symbols with an arity function ar : F → ω assigning to each
function symbol F its arity n = ar(F ), the number n of places of F . Furthermore, let 1
be a fixed constant symbol, ∗ a particular binary function symbol and Fid a special unary
function belonging to τ . Apart from 1 there may be further constant symbols belonging
to τ which we view as function symbols in F with arity 0.

As usual we define τ -terms of the language τ starting from atomic terms (elements
from X and constant symbols) and deriving inductively new terms F(t0, . . . , tn−1) if F
is any function symbol with arity n and t0, . . . , tn−1 are terms already defined.

Thus, with equations between τ -terms, a τ -theory is obtained by first order logic. We
now come to our first basic

Definition 2.1. We call the following axioms the skeleton theory T on τ .

(i) ∀x : (x ∗ 1 = x) and ∀x : (Fid (x) = x), where x is a variable and x ∗ 1 := ∗(x, 1).
(ii) If F ∈ τ is a function symbol with arity ar(F ) = n and

π : {0, . . . , n− 1} → {0, . . . , n− 1}

is a permutation, then

∀xi : F(x0π , x1π , . . . , x(n−1)π ) = F
′(x0, x1, . . . , xn−1)

for another function symbol F ′ ∈ τ of arity ar(F ′) = n.
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(iii) If Fj , F ∈ τ is a family of function symbols with arities ar(F ) = k, ar(Fj ) = nj for
j < k and n =

∑k−1
j=0 nj , then

∀xi : F(F0(x0, . . . , xn0−1), F1(xn0 , . . . , xn0+n1−1), . . . , Fk−1(xn−nk−1 , . . . , xn−1))

= F ′(x0, . . . , xn−1)

for another function symbol F ′ ∈ τ of arity ar(F ′) = n.
(iv) If F ∈ τ and 0 ≤ m < n = ar(F ), then

∀xi, y : F(x0, x1, . . . , xm−1, y, xm+1, . . . ) = y ∗ F
′(x0, x1, . . . , xm−1, xm+1, . . . )

for another function symbol F ′ ∈ τ of arity ar(F ′) = n− 1.

We note that 1 by (i) acts like an identity element on the right and Fid is the identity
function. The set F of function symbols is closed under permutation of arguments by (ii).
Moreover, (iii) says that substitutions of legal functions are legal functions, where all
variables xi must be pairwise distinct, while (iv) is a ∗-scalar product: the function F(y)
on the left can be viewed as ∗-multiplication of y by some function F ′ on the right. We
will call (ii) the permutation law, (iii) the substitution law and (iv) the ∗-scalar product
law, andM is a τ -skeleton or just a skeleton ifM is a τ -structure satisfying these axioms.

As usual, we will also say that a skeleton M is a T -model. Furthermore, recall that
the axioms of our skeleton theory T are a family of equations in first order logic only: We
fix the choice of F ′ ∈ τ rather than using the quantifier ∃F ′. Thus, strictly speaking, T
depends on the exact choice of the function symbols F ′. (But this important fact will not
be relevant for the following general observations.) It follows immediately that T is a τ -
theory and the class of all skeletons is a variety, which we also denote by T . As a variety,
T is closed under taking cartesian products, epimorphic images and substructures and it
has free skeletons. We are particularly interested in the existence and the description of
these T -free objects and will represent them by free generators with the help of special
finite trees in Section 6.

We will very often write τ -terms σ as σ(x0, . . . , xn−1) to emphasize the free variables
x0, . . . , xn−1 appearing in σ . Furthermore, the notion of a τ -term carries over naturally
to the (well-known) definition of anM-term. Next we single out particular τ -terms which
will later serve as endomorphisms.

Definition 2.2. We will call a τ -term σ a strict τ -term if σ = F(x0, . . . , xn−1) for a
function symbol F of arity n and suitable variables xi ∈ X.

Again, recall that the variables xi are all pairwise distinct. We note that x0 ∗ (x1 ∗x2) itself
is not a strict term, because this term is not generated by a single function symbol, but the
theory allows us to show that it is equal to a strict term after using the axioms: first note
that x1 ∗ x2 = ∗(x1, x2) and x0 = Fid (x0) can be expressed by using function symbols
from τ . By the substitution axiom (iii), there is a function symbol F with x0 ∗ (x1 ∗ x2)

= ∗(Fid (x0), ∗(x1, x2)) = F(x0, x1, x2) which is strict; observe also that Fid ∈ F was
needed for substitution in the last equation. However, x0 ∗ x0 = ∗(x0, x0) cannot be
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transformed by the axioms from T into a strict term, because x0 appears twice and substi-
tution does not apply. Furthermore, the class of strict τ -terms is obviously closed under
permutation of variables.

Next we present another simple method to find derived strict τ -terms.

Observation 2.3. Let F be a function symbol from τ of arity n and suppose that cn1 , . . . ,

cn−1 (n1 < n) are constants. Then there is a strict τ -term F ′(x0, . . . , xn1−1) such that

F ′(x0, . . . , xn1−1) = F(x0, . . . , xn1−1, cn1 , . . . , cn−1).

Proof. Note that in the τ -term F(x0, . . . , xn1−1, cn1 , . . . , cn−1) we can replace xi =
Fid (xi) and the constant ci is interpretable as a function symbol Fci of arity 0. This leads
to the equivalent representation F(Fid (x0), . . . , Fid (xn1−1), Fcn1

, . . . , Fcn−1), the substi-
tution axiom applies and there is a strict τ -term F ′(x0, . . . , xn1−1) as required. ut

By the same argument, any τ -term, in which every variable xi appears only once, equals
in T some strict τ -term. All other τ -terms are still closely connected with strict τ -terms,
as shown in the next

Observation 2.4. For every τ -term σ(x0, . . . , xn−1) there exists a strict τ -term
F ′(y0, . . . , ym−1) with suitable variables yi ∈ X and a surjective map π :
{y0, . . . , ym−1} → {x0, . . . , xn−1} with σ(x0, . . . , xn−1) = F

′(y0π, . . . , ym−1π).

Proof. By induction on the complexity of σ : The initial step is trivial. We assume that
σ(x0, . . . , xn−1) = F(σ0, . . . , σk−1) and the observation holds for the σis, thus

σi = σi(x
i
0, . . . , x

i
ni−1) = Fi(y

i
0πi, . . . , y

i
mi−1πi), Fi(y

i
0, . . . , y

i
mi−1) is τ -strict

and πi : {yi0, . . . , y
i
mi−1} → {x

i
0, . . . , x

i
ni−1} ⊆ {x0, . . . , xn−1} is surjective.

Without loss of generality, the variables yij can be chosen pairwise distinct. By the
substitution axiom, there is a function symbol F ′ (with an obvious arity) such that

F(F0(y
0
0 , . . . , y

0
m0−1), . . . , Fk−1(y

k−1
0 , . . . , yk−1

mk−1−1))

= F ′(y0
0 , . . . , y

0
m0−1, . . . , y

k−1
0 , . . . , yk−1

mk−1−1),

which is strict. If we patch the surjective maps πi together, then π =
⋃
i<k πi and

σ = F(σ0, . . . , σk−1)

= F(F0(y
0
0π0, . . . , y

0
m0−1π0), . . . , Fk−1(y

k−1
0 πk−1, . . . , y

k−1
mk−1−1πk−1))

= F ′(y0
0π, . . . , y

k−1
mk−1−1π)

is as required. ut

We will often use the following

Notation 2.5. If k < ω, then s = 〈s0, s1, . . . , sk−1〉 denotes an arbitrary finite sequence
of length k consisting of elements si . If s is a fixed element (e.g. s ∈ X or s is taken from
a model M), then sk = 〈s, . . . , s〉 denotes the constant sequence of k copies of s.
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For m < ω and M a set we denote by mM the set of all sequences in M of length m.
We next define a notion similar to strict τ -terms for M-terms and introduce at the same
time a simple, but very useful argument to get rid of redundant M-terms.

Definition 2.6. Let M be a τ -skeleton.

(i) Furthermore, let s ∈ mM and σ(x1, x2) be a strict τ -term with x1 of length k and
x2 of length m. We will write σ(x, s) for the derived M-term σM(xk, s) and call
σ(x, s) a strict M-term.

(ii) If σ1(x, s1) and σ2(x, s2) are strict M-terms, then we say that σ1(x, s1) and
σ2(x, s2) are M-equivalent if σ1(t, s1) = σ2(t, s2) for all t ∈ M.

(iii) If σ = σ(x, s) = σM(xk, s) is a strictM-term, then we can choose k minimal under
all M-equivalent strict representations of σ and call σ a k-strict M-term (or just
k-strict).

Observation 2.4 has immediate consequences for strict M-terms.

Corollary 2.7. Let M be a τ -skeleton, σ(x, x) be a τ -term with x of length m, and
σM(x, s) be a derived M-term for some s ∈ mM . Then there exists a strict τ -term
F ′(x1, x2) (with x1 of length k and x2 of length n ≥ m) and a finite sequence s′ ∈ nM

with Im(s′) = Im(s) such that σM(x, s) = F ′M(xk, s′) is a k-strict M-term.

Next we will derive from ∗ another multiplication on M . For its uniqueness we will
require that M is faithful (with respect to ∗). If x, y, z are variables, then by the axiom of
substitution there is a function symbol F0 with F0(x, y, z) = (x∗y)∗z and by the ∗-scalar
product law there is another function symbol F1 such that F0(x, y, z) = x ∗F1(y, z), thus
(x ∗ y) ∗ z = x ∗ F1(y, z) holds in T .

Definition 2.8. Let M be a τ -skeleton.

(i) M is faithful if the ∗-multiplication is faithful, meaning that for all a 6= b ∈ M there
is c ∈ M such that c ∗ a 6= c ∗ b.

(ii) Using the equation (x ∗ y) ∗ z = x ∗ F1(y, z) from above, we let y · z := F1(y, z),
thus (x ∗ y) ∗ z = x ∗ (y · z). The product y · z is uniquely determined by the last
equation for any faithful τ -skeleton M .

WhileM with the operation ∗ is not associative, nor is 1 a two-sided identity element, the
new product is more algebraic; indeed, we have the following important

Lemma 2.9. Let M be a faithful τ -skeleton. Then the following holds.

(a) The new product is associative, i.e. (x · y) · z = x · (y · z) for all x, y, z ∈ M .
(b) The element 1 ∈ M of the skeleton is a two-sided identity element, 1 · x = x · 1 = x

for all x ∈ M and (M, ·) is an associative monoid with 1.

Proof. (a) As M is faithful, it suffices to show

a ∗ ((b · c) · d) = a ∗ (b · (c · d)) for all a, b, c, d ∈ M.

Using the definition of the new product we have a ∗ ((b · c) · d) = (a ∗ (b · c)) ∗ d =

((a ∗ b) ∗ c) ∗ d and also a ∗ (b · (c · d)) = (a ∗ b) ∗ (c · d) = ((a ∗ b) ∗ c) ∗ d. Thus (a)
is immediate.



Skeletons, bodies and generalized E(R)-algebras 853

(b) Again using the assumption that M is faithful, it suffices to show that

a ∗ (1 · b) = a ∗ (b · 1) = a ∗ b for all a, b ∈ M.

From T it follows that a∗(1·b) = (a∗1)∗b = a∗b and also a∗(b·1) = (a∗b)∗1 = a∗b,
thus also (b) is immediate. ut

Finally, in order to have enough elements inM to control the maps derived from strictM-
terms locally, we will also need the definition of a nice skeleton. This technical definition
is easily achieved for T -models and will be used for a linear independence argument
similar to linear algebra to relate endomorphisms and strictM-terms by ∗-multiplication;
see the crucial Theorem 3.5.

We first identify every n < ω with its underlying set {0, 1, . . . , n− 1} and define for
anym ≤ n < ω the set3m,n of all non-constant maps η : m→ n; thus30,n = 31,n = ∅

for all n < ω. If s = 〈s0, . . . , sn−1〉 and η ∈ 3m,n, then we put sη = 〈slη | l < m〉.

Definition 2.10. A skeleton M is nice if the following holds. Suppose that 2 ≤ ki ≤ ni ,
i t ∈ ni−kiM and σi(x, i t) = σMi (x

ki , i t) (i < i∗) is a family of strict M-terms which
are pairwise not M-equivalent. Then for k∗ = max{ki | i < i∗} there is a sequence
s = 〈s0, . . . , sk∗−1〉 of elements from M such that for all i, j < i∗, η ∈ 3ki ,k∗ , and
θ ∈ 3kj ,k∗ with (i, η) 6= (j, θ) we have σMi (sη,

i t) 6= σMj (sθ ,
j t).

3. Bodies

We now extend the language τ of a skeleton and also strengthen the variety T by including
a commutative ring R with 1. This leads to τR and TR , respectively.

Definition 3.1. Let R be a (fixed) commutative ring with 1.
(i) Then we introduce the extended language τR of τ by including additional unary

function symbols Fa (a ∈ R) representing scalar multiplication by a ∈ R for TR-
models B, a binary function symbol + for addition on B and a constant symbol 0.
As usual we will write x + y for +(x, y) and ax = Fa(x) for any a ∈ R.

(ii) The theory T of skeletons (which remains restricted to function symbols from τ) is
extended to the theory of bodies TR by the following additional laws. (We will omit
the obvious quantifiers!)
(1) The left R-module axioms: The function symbols +, Fa and the constant sym-

bol 0 satisfy the usual axioms for R-modules, i.e. for all a, b ∈ R the following
equations hold.
(a) x + 0 = x, x + y = y + x, x + (y + z) = (x + y)+ z, x + (−1)x = 0.
(b) 1x = x, a(bx) = (ab)x, (a + b)x = ax + bx, a(x + y) = ax + ay.

(2) Multi-linearity: If F is a function symbol with ar(F ) = n, ai ∈ R (i ≤ t) and
0 ≤ l < n, then

F
(
x0, . . . , xl−1,

t∑
i=1

aixli, xl+1, . . . , xn−1

)
=

t∑
i=1

aiF(x0, . . . , xl−1, xli, xl+1, . . . , xn−1).
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(iii) If the τR-structure B is a TR-model, then B is called a τR-body (over the ring R) or
for short an R-body.

The theory of bodies is defined by laws which are equations, so the class of bodies is
a variety (and as the class of skeletons) closed under cartesian products, quotients and
substructures. Moreover, there are free bodies, the building blocks for the construction
of generalized E(R)-algebras. We will show the existence of non-trivial free bodies and
investigate their properties in the next sections. We summarize some immediate conse-
quences of the last definition.

Observation 3.2. Let B be a τR-body. Then the following holds.

(a) B is an R-module and a τ -skeleton.
(b) t ∗ 0 = 0 for all t ∈ B.

Proof. The first statement follows by definition of a body. Moreover, by the module laws
and multi-linearity we have 0 + 0 = 0 and t ∗ 0 = t ∗ (0 + 0) = t ∗ 0 + t ∗ 0, which
implies t ∗ 0 = 0. ut

Next we convert skeletons into bodies, a technique that will be central for this paper.

Definition 3.3. If M is a τ -skeleton, then we define:

(i) linRM :=
⊕

t∈M Rt , the R-module freely generated by the elements of M .
(ii) If F is a function symbol from τ (of arity n), then, by multi-linearity, we can extend

the map F : Mn
→ M to a unique function F : (linRM)n→ linRM .

(iii) The canonical R-module linRM together with the extended maps F from (ii) is a
τR-body, denoted by LinRM .

Note that linRM is just the freeR-module structure of the τR-body LinRM . Furthermore,
linRM provides a natural class of R-endomorphisms induced by the 1-strictM-terms; we
state this more precisely as

Corollary 3.4. If M is a τ -skeleton and σM(x, s) is a 1-strict M-term, then for K =
LinRM and G = linRM ,

σ : G→ G (x 7→ σK(x, s)) is an R-endomorphism of G.

Proof. Apply the definition of bodies and note that all the functions involved are multi-
linear. ut

Additional induced R-endomorphisms on linRM can be derived from linear combination
of 1-strict M-terms. Furthermore, |linRM| ≤ |M| + |R| + ℵ0 is immediate. Also recall
from Lemma 2.9 that for any faithful skeleton M an associative multiplication · on M is
induced by a multi-linear function symbol. In this particular case (LinRM,+, ·) becomes
an R-algebra, the (classical) monoid-R-algebra (with multiplication as in a group ring).
These are the obvious parts (a) and (c) of the following crucial

Theorem 3.5. Let R be a commutative ring with 1 and M be a nice τ -skeleton. For
K = LinRM and G = linRM the following holds.
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(a) K is a τR-body of size ≤ |M| + |R| + ℵ0 with G = RK .
(b) If σ(x, x) is a τR-term and t is a sequence from G such that lg(t) = lg(x) and

G→ G (x 7→ σK(x, t)) is an R-endomorphism of G,

then there is some g ∈ G such that σ(t, t) = t ∗ g for all t ∈ G.
(c) If in additionM is faithful, then (K,+, ·) with the multiplication · from Definition 2.8

is a monoid-R-algebra over the monoid (M, ·).

Proof. It remains to show part (b). Recall from the theorem that the R-endomorphism

σ : G→ G (x 7→ σK(x, t))

should be ∗-scalar multiplication by some g ∈ G. Suppose that this is not the case. Using
the definition of G and the multi-linearity in K we can express the K-term σK(x, t) as

σK(x, t) =
∑
i<i∗

aiσ
K
i (x, si) in reduced form

with suitable 0 6= ai ∈ R, skeleton τ -terms σi(x, xi) and sequences si from M .
We may assume that i∗ > 0, because otherwise σK(t, t) = 0 = t ∗ 0 for all t ∈ G

by Observation 3.2. Thus the choice g = 0 ∈ G would contradict our assumption. From
Observation 2.4 it follows that we can find strict τ -terms F ′i (y0, . . . , yni−1) and surjective
maps πi : {y0, . . . , yni−1} → {x} ∪ Im(xi) with σi(x, xi) = F ′i (y0πi, . . . , yni−1πi). Let
ki = |π

−1
i (x)| and k∗ = max{ki | i < i∗}. Using axiom (ii) of Definition 2.1 we may

assume that π−1
i (x) = {y0, . . . , yki−1}, hence we can express

σKi (x, si) = F
′

i
K
(xki , s′i) with a strict τ -term and a suitable sequence s′i from M .

Finally, using Corollary 2.7, we can assume that σMi (x, si) = F
′

i
M
(xki , s′i) is ki-strict.

Now we decompose

σK(x, t) =
∑
i<i∗

aiF
′

i
K
(xki , s′i) = t

′(x)+ t ′′(x)

with t ′(x) =
∑
i<i∗,ki=0 aiF

′

i
K
(s′i) and t ′′(x) =

∑
i<i∗,ki 6=0 aiF

′

i
K
(xki , s′i). Clearly, the

first summand t ′(x) = t ′ does not depend on x and the second summand must be 0 by
multi-linearity if we substitute 0, thus t ′′(0) = 0. By assumption σK(x, t) represents an
R-endomorphism and therefore also σK(0, t) = 0; it follows that t ′ = 0. So we can
assume that ki > 0 for all i < i∗. If ki = 1 for some i < i∗, then F ′i

K
(xki , s′i) =

F ′i
K
(x, s′i) = x ∗ F ′′i

K
(s′i) by axiom (iv) in Definition 2.1, thus this summand acts as

an R-endomorphism as required (see Corollary 3.4) and can be removed from the sum
σK(x, t) =

∑
i<i∗

aiF
′

i
K
(xki , s′i). Hence we may also assume ki > 1 for all i < i∗. We

can reduce this sum even further, adding up those summands which areM-equivalent (and
therefore also K-equivalent); see Definition 2.6. Thus we may assume that all summands
F ′i
M
(xki , s′i) (i < i∗) are pairwise not M-equivalent with ki > 1.
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Finally, we apply the fact that M is a nice skeleton and for any sequence t =
〈t0, . . . , tk∗−1〉 from M ⊆ G and η ∈ 3ki ,k∗ we define as in Definition 2.10 a sequence
tη = 〈tlη | l < ki〉. We first claim that∑

i<i∗

ai
∑

η∈3ki ,k∗

F ′i
M
(tη, s

′

i) = 0 in G = linRM. (3.1)

We use multi-linearity of the F ′i
Ks, the definition of σK(x, t) and the fact that σ

represents an R-endomorphism to calculate∑
i<i∗

ai
∑
η∈ki k∗

F ′i
M
(tη, s

′

i) =
∑
i<i∗

ai
∑
η∈ki k∗

F ′i
K
(tη, s

′

i) =
∑
i<i∗

aiF
′

i
K
(∑
l<k∗

tl
ki
, s′i

)
= σK

(∑
l<k∗

tl, t
)
=

(∑
l<k∗

tl

)
σ =

∑
l<k∗

tlσ =
∑
l<k∗

σK(tl, t)

=

∑
l<k∗

∑
i<i∗

aiF
′

i
K
(t
ki
l , s

′

i) =
∑
i<i∗

ai
∑
l<k∗

F ′i
M
(t
ki
l , s

′

i),

and the difference of the two ends of this equation with the help of the definition of3ki ,k∗
establishes the claim.

Since M is nice we find a sequence t ∈ k∗M such that for all i < i∗ and η ∈ 3ki ,k∗ ,

F ′i
M
(tη, s

′

i) /∈ {F
′

j
M
(tθ , s

′

j ) | j < i∗, θ ∈ 3kj ,k∗ and (j, θ) 6= (i, η)}.

We fix i < i∗, η ∈ 3ki ,k∗ and consider the F ′i
M
(tη, s

′

i)-component of (3.1). Hence ai = 0
by linear independence. But this means that the sum σK(x, t) =

∑
i<i∗

aiσ
K
i (x, si) was

not reduced, contrary to our assumption. The theorem follows. ut

4. Types

After introducing the notions of skeletons and bodies in the last two sections and dis-
cussing the model-theoretic part of the construction of generalized E(R)-algebras we
will now investigate (in Section 4 and 5) this topic from the other side, introducing a
combinatorial-geometric description of the algebra which are our (decorated) trees, called
types for short. This section is fairly independent of the model-theoretic part which we
just completed, but we will draw attention to useful connections. Finally, in Section 6 all
this will be used to construct large free skeletons and bodies.

We begin with the combinatorial-geometric part by defining types, which are finite
(decorated) trees. Let ω>ω be the family of all finite sequences with values in ω. This set
is partially ordered by inclusion: if η ⊆ ν, then η is an initial segment of ν, and we also
write η E ν. If η is not an initial segment of ν, we will write η 6E ν. Every non-empty
subset of ω>ω that is closed under initial segments is called a tree. Naturally ω>ω itself
is a countable tree by this definition and every other tree is a subtree of ω>ω. The empty
sequence ⊥ = 〈 〉 is the minimal element of every tree. If u is a subtree of ω>ω, then for
any η ∈ u,

suc(η) := {ν ∈ u | η ⊂ ν, lg(ν) = lg(η)+ 1}
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denotes the set of direct successors of η in u. Furthermore, max u denotes the subset
{η ∈ u | suc(η) = ∅} which is the family of all sequences η in u which cannot be
extended inside u. We will apply standard notations for trees, call ⊥∈ u the root of
the tree u, and all other elements η ∈ u are called knots or branches, in particular, the
elements in max u are the maximal branches of this tree.

Definition 4.1. Let T be the family of types t which are octuples

t = (ut, P t
l , F

t,Gt
| l ≤ 5) = (u, Pl, F,G | l ≤ 5)

satisfying several (carefully chosen) conditions.

(i) u is a finite subtree of ω>ω.
(ii) {Pl | l ≤ 5} is a partition of u.

(iii) P0, P3, P4 are subsets of max u.
(iv) If η ∈ P1, then suc(η) = {η∧〈0〉, η∧〈1〉}.
(v) F : P2 → P3 is a bijective map.

(vi) If η ∈ P2, then suc(η) = {η∧〈1〉} and η E F(η).
(vii) G : P5 → τ0 \ {Fid , 1, ∗} and if η ∈ P5, then ar(G(η)) = {n | η∧〈n〉 ∈ u}.

Remark 4.2. By Definition 4.1(vii) of types t ∈ T we also introduce the function Gt.
This needs explanation: the language of skeletons τ (from Section 2) can be viewed as
the closure (under the axioms (ii), (iii) and (iv) of Definition 2.1) of a set of function
symbols τ0 with {Fid , 1, ∗} ⊆ τ0. There we did not specify the elements in τ0\{Fid , 1, ∗}.
These elements will be made precise in Section 6, when we fix the language τ suitable
for free skeletons and τ0 as a corresponding canonical system of generators. The function
symbols from τ0 \ {Fid , 1, ∗} will be related to the construction of free skeletons, so they
have to wait until we come to their particular tree-elements. The option τ0 = {Fid , 1, ∗}
will be the minimal choice for τ0 in which case we can restrict our trees t to sixtuples
(ut, P t

l , F
t
| l ≤ 4) without any reference to Gt. For the sake of additional applications

we will continue to use t as in Definition 4.1 with the extended language coming from τ0
and provide all the proofs (without any harm) for the more general languages τ0s.

The basic idea of this approach is the correspondence between certain (decorated)
trees from T with the elements of the aimed skeleton. The relations of the skeleton must
appear in T. This is similar to the relations in combinatorial group theory which must
carry over to path-relations in 2-dimensional manifolds. In this context the goal will be
taken care of by the very crucial reduction of types, which we call, parallel to the group
case, small cancelation of trees (or types). We declare certain branches as cancelation
points—they will be cut down.

Definition 4.3. (i) η is a cancelation point of t = (u, Pl, F,G | l ≤ 5) if one of the
following conditions holds.

(a) η ∈ P1 and η∧〈0〉 ∈ P0 ∪ P2.
(b) η ∈ P2 and η∧〈1〉 ∈ P3.
(c) η ∈ P2, η∧〈1〉 ∈ P1 and F(η) = η∧〈1, 1〉.
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(ii) Let can(t) be the collection of cancelation points of t.
(iii) A type t ∈ T is reduced if can(t) = ∅. Let Tred be the family of all reduced types t.

We are mainly interested in the family Tred of reduced (types) trees and will make it a
monoid while multiplying trees. The product of two reduced trees, as in free groups, will
not in general be a reduced tree, so we will have to apply small cancelation to products of
trees again. Thus we must first study general small cancelations of trees from T.

5. Small cancelation of types

In this section we want to see that every element of T can be reduced to a unique ele-
ment of Tred by small cancelation. Here we first introduce various cancelation steps; their
combined efforts will lead to reduced trees. It is trivial to check that the set P t

4 of a tree
t = (ut, P t

l , F
t,Gt
| l ≤ 5) can also be written as

P t
4 = {η ∈ max ut | η /∈ P

t
0 ∪ P

t
5 ∪ Im(F t)}. (5.1)

As a warm-up we start with two construction tools that will prove very useful later
on.

Construction Tool I—“Picking a twig”: If t = (ut, P t
l , F

t,Gt
| l ≤ 5) ∈ T and

ν ∈ ut, then we define s = t≥ν by the following components.

(i) us
= {ρ | ν∧ρ ∈ ut

}.
(ii) P s

l = {ρ | ν
∧ρ ∈ P t

l } for l = 0, 1, 2, 5.
(iii) If F t(ν∧ρ) = ν∧σ , then F s(ρ) = σ .
(iv) P s

3 = Im(F s).
(v) P s

4 = {ρ | ν
∧ρ ∈ P t

4} ∪ {ρ | ν
∧ρ ∈ P t

3 \ (ν
∧P s

3 )}.

(vi) Gs(ρ) = Gt(ν∧ρ) for ρ ∈ P s
5 .

Recall that ν∧P s
3 in (v) is the collection of all concatenations of ν with elements from P s

3 .
This and (v) ensure that {P s

l | l ≤ 5} is a partition of all of us. From (iii) and (iv) it
follows that F s is a bijection. It is now easy to check that s ∈ T. Figure 1 illustrates this
construction tool.

Construction Tool II—“Engrafting a twig”: If s, r ∈ T and ν ∈ P s
4 , then we define

t = s[ν,r]
∈ T componentwise as follows.

(i) ut
= us
∪ {ν∧ρ | ρ ∈ ur

}.
(ii) If ⊥ /∈ P r

l , then P t
l = (P

s
l \ {ν}) ∪ {ν

∧ρ | ρ ∈ P r
l }.

(iii) If ⊥ ∈ P r
l , then P t

l = P
s
l ∪ {ν

∧ρ | ρ ∈ P r
l }.

(iv) F t(η) = F s(η) for η ∈ P s
2 and F t(ν∧ρ) = ν∧F r(ρ) if ρ ∈ P r

2 .
(v) Gt(η) = Gs(η) for η ∈ P s

5 and if ρ ∈ P r
5 , then Gt(ν∧ρ) = Gr(ρ).

From (ii) and (iii) it follows that (⊥ ∈ P r
l ⇔ ν ∈ P t

l ). It is easy to check that t ∈ T.
Figure 2 illustrates the second construction tool.



Skeletons, bodies and generalized E(R)-algebras 859

u

t

u

ν
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Now we give details on the four small cancelation steps for types.

Reduction—Case A: If s ∈ T, η ∈ can(s) ∩ P s
1 and η∧〈0〉 ∈ P s

0 , then we define t =
redη s ∈ T componentwise as follows.

(i) ut
= us

1 ∪ u
s
2 with us

1 = {ν | ν ∈ u
s, η 6E ν} and us

2 = {η
∧ρ | η∧〈1〉∧ρ ∈ us

}.
(ii) Next we define a bijection hst : us

\ {η, η∧〈0〉} → ut by the following two cases: If
η 6E ν, then hst(ν) = ν, and if ν = η∧〈1〉∧ρ, then hst(ν) = η∧ρ.

(iii) P t
l = h

st(P s
l ∩ Dom(hst)) for l ≤ 5.

(iv) If gts
= (hst)−1, then F t

= hst
◦ F s
◦ gts and Gt

= Gs
◦ gts.

Note that η∧〈0〉 is maximal in us. It is clear from the construction that hst is a bijection
and we leave it to the reader to check that t ∈ T. Figure 3 illustrates this small cancelation.

Reduction—Case B: If s ∈ T, η ∈ can(s) ∩ P s
1 and η∧〈0〉 ∈ P s

2 , then we define t =
redη s ∈ T componentwise as follows.

(i) ut
= us

1 ∪ u
s
2 ∪ u

s
3 with us

1 = {ν | ν ∈ u
s, η 6E ν}, us

2 = {η
∧ρ | η∧〈0, 1〉∧ρ ∈ us,

ρ 6= η1} and us
3 = {η

∧η1
∧ρ | η∧〈1〉∧ρ ∈ us

}, where η1 is defined by F s(η∧〈0〉) =
η∧〈0, 1〉∧η1.

(ii) Next we define a bijection hst : us
\ {η, η∧〈0〉, F s(η∧〈0〉)} → ut by three cases: If

η 6E ν, then hst(ν) = ν, if ν = η∧〈0, 1〉∧ρ, then hst(ν) = η∧ρ, and if ν = η∧〈1〉∧ρ,
then hst(ν) = η∧η1

∧ρ.
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(iii) P t
l = h

st(P s
l ∩ Dom(hst)) for l ≤ 5.

(iv) If gts
= (hst)−1, then F t

= hst
◦ F s
◦ gts and Gt

= Gs
◦ gts.

0 in P01 0 in P01

s

η

r

r

ηin P1

t

A

Fig. 3

Again, it must be checked that t ∈ T. Figure 4 visualizes this small cancelation.

0 in P211

s

η ηin P1

t

r2

r1

η1

η1

r1

r2

B

Fig. 4

Reduction—Case C: If s ∈ T, η ∈ can(s) ∩ P s
2 and η∧〈1〉 ∈ P s

3 , then we define t =
redη s ∈ T componentwise as follows.

(i) ut
= us
\ {〈η∧〈1〉}.

(ii) Next we define a bijection hst : us
\ {η} → ut by two cases: If ν 6= η∧〈1〉, then

hst(ν) = ν, and if ν = η∧〈1〉, then hst(ν) = η. Moreover, let gts
= (hst)−1.

(iii) If 0 < l ≤ 5, then let P t
l = P

s
l \ {η

∧
〈1〉, η}, and if l = 0, then P t

0 := P s
0 ∪ {η}.

(iv) Put F t
= F s�P t

2 and Gt
= Gs�P t

5.
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Again, it must be checked that t ∈ T. Figure 5 illustrates this small cancelation.

s

η in P2

t

1 in P3

η in P0

C

Fig. 5

Reduction—Case D: If s ∈ T, η ∈ can(s)∩P s
2 , η∧〈1〉 ∈ P s

1 and F s(η) = η∧〈1, 1〉, then
we define t = redη s ∈ T componentwise as follows.

(i) ut
= us

1 ∪ u
s
2 with us

1 = {ν | ν ∈ u
s, η 6E ν} and us

2 = {η
∧ρ | η∧〈1, 0〉∧ρ ∈ us

}.
(ii) Next we define a bijection hst : us

\{η, η∧〈1〉, η∧〈1, 1〉} → ut by two cases: If η 6E ν,
then hst(ν) = ν, and if ν = η∧〈1, 0〉∧ρ, then hst(ν) = η∧ρ.

(iii) P t
l = h

st(P s
l ∩ Dom(hst)) for l ≤ 5.

(iv) If gts
= (hst)−1, then F t

= hst
◦ F s
◦ gts and Gt

= Gs
◦ gts.

Again, it must be checked that t ∈ T. Figure 6 illustrates this small cancelation.

s

η in P2

t

1 in P1

η

1 in P3

r

r

D
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Fig. 6
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Next we apply small cancelation by Case A, B, C and D, respectively, to any tree
s ∈ T and will show that after a finite number of such steps we obtain a unique, reduced
tree red s ∈ Tred.

It is tempting to base this recursion on the number |can(s)| as we remove one can-
celation point η ∈ can(s) in every small cancelation step; however, unfortunately, it can
happen that |can(s)| = |can(redη s)| as new cancelation points may appear. This phe-
nomenon is possible in all Cases A, B, C and D, and we will next exemplify this for
Case A.

Example 5.1. Let u = {⊥, 〈1〉, 〈0〉, 〈0, 1〉, 〈0, 0〉}, which is closed under initial seg-
ments, thus a finite 5-element subtree of ω>ω. Put P0 = {〈1〉, 〈0, 1〉, 〈0, 0〉}, P1 =

{⊥, 〈0〉}, P2 = P3 = P4 = P5 = ∅ and note that
⋃
l≤5 Pl is a partition of u. Moreover,

define the maps F = G = ∅ (as relations). We obtain a decorated tree s = (u, Pl, F,G |
l ≤ 5) from T with can(s) = {〈0〉}, hence |can(s)| = 1. If we reduce s by Case A with
η = 〈0〉, then we get the tree t = redη s with ut

= {⊥, 〈1〉, 〈0〉}, P t
0 = {〈1〉, 〈0〉}, P

t
1 =

{⊥} and can(t) = {⊥}, hence |can(t)| = |can(s)| = 1.

Figure 7 illustrates the example.

in P1

0 in P1

0 in P01 in P0

1 in P0 0 in P01 in P0

A

⊥ in P1
⊥

Fig. 7

In view of Example 5.1 the small cancelation of trees s ∈ T will be based on |P s
1∪P

s
2 |.

Thus we consider first the following proposition which controls the size of the Pis during
the small cancelation.

Proposition 5.2. Let s ∈ T be a tree with η ∈ can(s) and t = redη s be its small cancela-
tion, depending on Cases A, B, C and D, respectively. Then the following holds.

(a) gts : ut
→ us is injective.

(b) gts(P t
4) = P

s
4 and gts(P t

5) = P
s
5 .

(c) In Case A we have us
\ Im(gts) = {η, η∧〈0〉}.

(d) In Case B we have us
\ Im(gts) = {η, η∧〈0〉, F s(η∧〈0〉)}.

(e) In Case C we have us
\ Im(gts) = {η}.

(f) In Case D we have us
\ Im(gts) = {η, η∧〈1〉, η∧〈1, 1〉}.

(g) η ∈ can(s) \ Im(gts).
(h) |ut

| < |us
| and |P t

1 ∪ P
t
2| < |P

s
1 ∪ P

s
2 |.
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Proof. A simple application of the definitions. ut

The canonical embeddings gts compose naturally, that is, for s2 = redη1 s1 and s3 =

redη2 s2 we set gs3s1 = gs2s1 ◦ gs3s2 .

Next we will show the crucial claim that the reduced form red t of a type t ∈ T is
uniquely determined.

Main Lemma 5.3. For every t ∈ T the following holds.

(a) By a finite application of small cancelations by Cases A, B, C and D we obtain a
unique reduced tree red t ∈ Tred. In particular, the reduction does not depend on the
path of the small cancelation steps.

(b) Let gred t, t be the canonical embedding associated to a particular path of small can-
celation steps. Then the map gred t,t�(P red t

4 ∪ P red t
5 ) is uniquely determined, thus in-

dependent of the path chosen.

Proof. We will outline the proof of claim (a); the proof of (b) is essentially the same.
First we note that can(t) ⊆ P t

1∪P
t
2, so by Proposition 5.2(h) we definitely get can(t) =

∅ after |P t
1 ∪ P

t
2| steps and the corresponding tree is reduced. It remains to show the

uniqueness of this tree. Observe that this includes the uniqueness of the partition 〈P red t
l |

l ≤ 5〉 and of the functions F red t and Gred t, respectively.
We apply induction on |P t

1 ∪ P
t
2|. (Alternatively also induction on |ut

| is possible.)
If |P t

1 ∪ P
t
2| = 0, then obviously can(t) = ∅ and t = red t is uniquely determined and

reduced. We put gred t, t
= id .

Given n < ω, we assume that the claim holds for t’s with |P t
1 ∪ P

t
2| ≤ n, and we

consider some t ∈ T with |P t
1 ∪ P

t
2| = n+ 1 and must distinguish various cases.

Case I: can(t) = ∅. In this case t = red t is already reduced and there is nothing to show.
Set again gred t, t

= id .

Case II: can(t) 6= ∅. This time we must apply small cancelation and consider subcases.
Suppose that there are two distinct paths for small cancelation, one beginning with η1 ∈

can(t), the other with η2 ∈ can(t).

Subcase 1: Suppose that η1 = η2 = η. Then by induction hypothesis red t = red(redη t)
for both paths, and the claim follows.

Subcase 2: Suppose that η1 6E η2 and η2 6E η1, thus η1, η2 are incomparable. We put
si = redηi t for i = 1, 2. In this case the cancelations of the starting tree t take place in
disjoint areas of the tree, which immediately gives the commutativity

redhts1 (η2)
s1 = redhts2 (η1)

s2, (5.2)

and the claim follows again by induction hypothesis.

Thus without loss of generality we may focus on the remaining case η2 6= η1 E η2.

Subcase 3: Suppose that η2 6= η1 E η2, and η1 does not reduce by Case B. Now we must
distinguish further subcases depending on the small cancelations A, B, C and D used.
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Note that η1 cannot reduce by Case C, as follows from the hypothesis η1 E η2. In most
cases small cancelations by η1 and η2, respectively, are performed again on disjoint areas
of t, and (5.2) will apply. Hence we will restrict attention to those interesting subcases,
which need more sophisticated arguments.

Subcase 3DA: Suppose that t reduces with η1 by Case D and with η2 = η1
∧
〈1〉 by

Case A. Small cancelation by η2 is illustrated in Figure 8.

η1 in P2

1 in P3

η2in P1

0 in P0

A

η1 in P2

1 in P3

t s2

1

Fig. 8

The resulting tree s2 = redη2 t is not yet reduced and reduces further using small cance-
lation of η1 ∈ can(s2) by Case C. We obtain the tree s1 as illustrated in Figure 9.

η1 in P2

1 in P3

η1 in P0

C

s2 s1

Fig. 9

If we apply small cancelation by η1 to t (this is Case D), we obtain directly the last tree s1.
Despite the fact that the paths of small cancelation may differ in length, application of the
induction hypothesis shows that red t = red s1 = red s2.



Skeletons, bodies and generalized E(R)-algebras 865

Subcase 3DB: Suppose that t reduces with η1 by Case D and with η2 = η1
∧
〈1〉 by

Case B. Recall that F(η1) = η1
∧
〈1, 1〉 and observe that redη1 t = redη2 t = s. The small

cancelation is illustrated in Figure 10.

1

η1in P2

t

η2in P1

1 in P3

0 in P2

1

F(η2
^ 0)

1

η1in P2

F(η2
^ 0)

1
F( η1)

s

r

r

Fig. 10

Subcase 4: Suppose that η2 6= η1 E η2, and t reduces with η1 by Case B. In this
subcase the arguments are particularly complex and deserve more details. We begin with
the possibility that η2 = η1

∧
〈0〉.

Subcase 4A: Suppose that t reduces with η2 = η1
∧
〈0〉 by Case C. Small cancelation

by η2 is illustrated in Figure 11. The resulting tree s2 = redη2 t can be further reduced

1

η1in P1

t

η2in P2

1 in P3

1

η1in P1

r r
0 in P0

C

s2

0

Fig. 11
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1

η1in P1 η1

r
r0 in P0

s2

A

s1

Fig. 12

using small cancelation of η1 ∈ can(s2) by Case A. We obtain the tree s1 as illustrated in
Figure 12. If we apply small cancelation by η1 to t (this is Case B), we obtain directly this
last tree s1. Application of the induction hypothesis shows that red t = red s1 = red s2.

Subcase 4B: Suppose that t reduces with η2 = η1
∧
〈0〉 by Case D. Recall that F(η2) =

η2
∧
〈1, 1〉 and observe that redη1 t = redη2 t = s. The small cancelation is illustrated in

Figure 13.

η1in P1

t

η2in P2

1 in P3

1
0

0

1 in P1

1

r1

r2

0

η1in P1

r1 r2

s
Fig. 13
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After inspecting these two special cases we can exclude the hypothesis η2 = η1
∧
〈0〉.

Subcase 4C: Suppose that η1
∧
〈1〉 E η2.

Subcase 4D: Suppose that η2 6= η1
∧
〈0〉 and η1

∧
〈0〉 E η2 6E F(η1

∧
〈0〉).

In these last two cases commutativity (5.2) follows, because the action takes again place
on disjoint areas of t.

Subcase 4E: Suppose that η2 6= η1
∧
〈0〉 and η1

∧
〈0〉 E η2 E F(η1

∧
〈0〉), and η2 does

not reduce by Case B. Then η2 does not reduce by Case C, as can be seen in Figure 14.
From η2 E F(η1

∧
〈0〉) it follows that F(η1

∧
〈0〉) = η2

∧
〈1〉, while also F(η2) = η2

∧
〈1〉,

contradicting the injectivity of the function F .

η1in P1

t

1 0 in P2

1

1 in P3

η1in P1

η2in P2

Fig. 14

If η2 reduces by Case A or D, then by disjointness of the areas of action we again derive
commutativity (5.2) and the claim follows.

Subcase 4F: Suppose that η2 6= η1
∧
〈0〉 and η1

∧
〈0〉 E η2 E F(η1

∧
〈0〉), and t reduces

with η2 by Case B. In this subcase the following diagrams will explain the commutativ-
ity (5.2) of the small cancelation steps showing the resulting tree s = redhts1 (η2)

s1 =

redhts2 (η1)
s2, respectively. We must distinguish two cases depending on the position of

F(η1
∧
〈0〉) in the tree t.

For η2
∧
〈0〉 E F(η1

∧
〈0〉) small cancelation is illustrated in Figure 15.
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η1in P1

t

0 in P2

F(η2
^ 0)F( ^ 0)

1 0 in P21

η2 in P1

0 in P21

η1
^ 0)F( ^ 0)

11

η1

'η2

r1

u

v
u v

r2

r1

r2

s

1

1

Fig. 15

η1in P1

t

0 in P2

F(η2
^ 0)F( ^ 0)

1 0 in P21

η2 in P1

0 in P21

η1

^ 0)

F( ^ 0)

11

η1

'η2

r1

u

r2

r1

r2

s

v1
v1

v2

v2
u

1

1

Fig. 16
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Finally, small cancelation for η2
∧
〈1〉 E F(η1

∧
〈0〉) is illustrated in Figure 16.

This subcase completes the proof of the main lemma. ut

6. Arbitrarily large free skeletons

In this section we will show how to modify the set Tred of reduced trees (from Section 4) to
get Tred

Y . The small cancelation theory from Section 5 will be extended to arbitrarily large
canonical τ -skeletons. Thus, we will first apply Tred to get the universes (the underlying
sets) Tred

Y of our actual desired τ -skeletons.

Definition 6.1. Let {Fid , 1, ∗} ⊆ τ0 be a set of function symbols and Y be a non-empty
set.

(i) The family of (decorated) Y -colored trees TY consists of all pairs tY = (t, f t) of
trees t ∈ T with a (coloring) map f t : P t

4 → Y . Moreover, we define the subset Tred
Y

of all reduced Y -colored trees, and let tY = (t, f t) ∈ Tred
Y ⇔ t ∈ Tred.

(ii) We now define the reduction of an arbitrary element tY = (t, f t) ∈ TY by letting

red tY = (red t, f t
◦ gred t,t)

with a canonical embedding

gred t, t : red t→ t

which comes from the Main Lemma 5.3 related to a fixed path of small cancelation
steps. It is clear by this lemma that red tY ∈ Tred

Y does not depend on the particular
choice of the path, thus is uniquely determined by tY .

We will next turn the set Tred
Y into a τ -skeleton by adjoining a suitable family of func-

tions, in particular adding the ∗-scalar product. To do this, we use the same set Tred of
trees (from Section 5) to define a family of function symbols (Definition 6.3) representing
concrete functions acting on Tred

Y (Definition 6.2) and thus make the following two defi-
nitions. The map σ takes care of the permutation law in Definition 2.1(ii) of the skeleton.
Observe that a well-ordering on ω>ω is defined comparing two elements η, µ ∈ ω>ω by
inclusion and then (if that fails) by lexicographic order, thus we can compare both (finite)
sequences componentwise. And without loss of generality we will always assume that the
list P s

4 = 〈η0, . . . , ηn−1〉 is given in decreasing order for any s ∈ Tred.

Definition 6.2. For every s ∈ Tred with |P s
4 | = n we fix an enumeration P s

4 =

〈η0, . . . , ηn−1〉. Moreover, let σ : n→ n be any permutation and define an n-ary function
symbol F s σ to represent the following function on Tred

Y :

F s σ
Y : (Tred

Y )n→ Tred
Y , (t0

Y , . . . , tn−1
Y ) 7→ red tY ,
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where for tlY = (t
l, f l) ∈ Tred

Y (l < n) we define tY = (t, f ) ∈ TY by iterated application
of Construction Tool II:

t = (. . . ((s[η0, t 0σ ])[η1, t 1σ ]) . . . )[ηn−1, t (n−1)σ ] and f (ηl
∧ρ) = f lσ (ρ) for all ρ ∈ P t lσ

4 ,

so we are engrafting twigs as explained in the last section.

Next we fix the language τ and choose our candidate for a τ -skeleton, the link between
function symbols and the actual functions of MY .

Definition 6.3. (i) Let τ be a vocabulary with no predicates consisting of an infinite set
of free variables X and the set

F = {F s σ
| s ∈ Tred, σ : |P s

4 | → |P
s
4 | permutation} of function symbols.

(ii) LetMY be the τ -structure with universe Tred
Y interpreting every function symbol F s σ

as the function F s σ
Y .

Remark 6.4. (i) We point out that MY depends on Y while the family F of function
symbols (in Definition 6.3) is independent of Y . This also reflects the purpose of
these elements: Depending on Y , the τ -skeletons MY can be arbitrarily large. How-
ever, the set F describes the fixed family of function symbols of our universal lan-
guage τ of these skeletons.

(ii) Figure 17 illustrates the application of F s σ
Y . Moreover, note that by the arguments

of the last section concerning actions on disjoint areas the repeated application
of our Construction Tool II does not depend on the order of these steps [ηl, tlσ ]
but will in general not be reduced. This explains the final reduction before we get
F s σ
Y (t0

Y , . . . , tn−1
Y ) ∈ Tred

Y .

η
0

η
n-1

s

in P4
η

0
η

n-1

n-1
...

0 1t t t

t

0t

1t

1t 1t t

... ...

σ σ σ(n-1)

( ), , , =

Fig. 17

(iii) Allowing the trivial case Y = ∅ we may identify T∅ = T, Tred
∅
= Tred and

F s σ
∅
(t0, . . . , tn−1) = t

in Definition 6.2. This extension will be applied in the proof of Main Theorem 6.5.

As already noted, the function symbols F s σ serve as source for our language τ .
Finally, we have to do the necessary bookkeeping and identify the function symbols from
{Fid , 1, ∗} ⊆ τ0.
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We begin with the particular function symbols Fid , 1, ∗ and identify ∗ = F s σ with
the following reduced tree s ∈ Tred and the following permutation σ (see also Figure 18):

us
= {⊥, 〈0〉, 〈1〉}, P s

1 = {⊥}, P
s
4 = {〈0〉, 〈1〉}, P

s
0 = P

s
2 = P

s
3 = P

s
5 = ∅, σ = id .

in P1
⊥

0 in P41 in P4

Fig. 18

The constant 1 is represented as 1 = F s σ by the reduced tree

us
= P s

0 = {⊥}, P s
1 = P

s
2 = P

s
3 = P

s
4 = P

s
5 = ∅, with σ = ∅.

Observe that this tree appears twice: as a function symbol in F and as a Y -colored
tree inMY . This is the case for every constant in F ; it reflects the canonical identification
of function symbols of arity 0 with certain elements inMY . Moreover, put Fid = F

s σ for

us
= P s

4 = {⊥}, P s
0 = P

s
1 = P

s
2 = P

s
3 = P

s
5 = ∅, σ = id .

Using the mapping properties (Definition 6.2), it follows that Fid acts as identity on MY .
Every other function symbol f ∈ τ0 \ {Fid , 1, ∗} will be interpreted as f = F s σ with

us
= {⊥, 〈l〉 | l < ar(f )}, P4 = {〈l〉 | l < ar(f )},

P5 = {⊥}, P s
0 = P

s
1 = P

s
2 = P

s
3 = ∅, Gs(⊥) = f, σ = id .

Thus we get the following functions acting on MY :

in P5
⊥in P0

⊥ in P4
⊥

1 Fid

1
...

f

0 in P4
ar(f)-1

Fig. 19

With each y ∈ Y we associate the reduced Y -colored tree (ty, fy) ∈ MY of the form

ut y = P
t y
4 = {⊥}, P

t y
0 = P

t y
1 = P

t y
2 = P

t y
3 = P

t y
5 = ∅, fy(⊥) = y.

We will write y = (ty, fy) and thus Y ⊆ MY (without loss of generality).
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The last remarks are the initial steps to establish the following

Main Theorem 6.5. If Y is a non-empty set, then MY is a τ -skeleton of size |MY | =

|τ0| + |Y | and Y ⊆ MY canonically. If Y is infinite, then MY is also faithful and nice.

Proof. Obviously |MY | ≤ |T
red
| × |

ω>Y | = (ℵ0 + |τ0|) × |Y | = |τ0| + |Y |, and the
canonical embedding Y ↪→ MY given above shows |MY | ≥ |Y | ≥ ℵ0. Another injective
mapping τ0 \ {Fid , 1, ∗} ↪→ MY is easily defined by replacing every argument in f ∈ τ0
by 1 ∈ MY . Thus also |MY | ≥ |τ0|, and |MY | = |τ0| + |Y | follows. Next we have to
verify the skeleton axioms given in Definition 2.1.

(i) We already checked Fid (tY ) = tY on MY . We must now show that tY ∗ 1 = tY .
When calculating tY ∗ 1 = ∗(tY , 1), we note that 1 ∈ MY is represented by us

= P s
0 =

{⊥}, and the tree tY ∗ 1 reduces by Case A to tY ; see Figure 20.

tY * 1 =

tY
0 in P0

⊥ in P1

=
A tY

1

Fig. 20

(ii) For every n-ary function symbol F s σ
∈ F and any permutation π : n → n we

have from Definition 6.2 the obvious identity

F s σ
Y (t0π

Y , t1π
Y , . . . , t(n−1)π

Y ) = F sπσ
Y (t0

Y , t1
Y , . . . , tn−1

Y ).

We leave it to the reader to check (iii) with the help of Figure 21. We first reformulate
this axiom, so that the argument is more direct:

When proving the substitution law we are given function symbols F r ρ, F s iσi ∈ F
with obvious arities, and it remains to check the equality

F
r ρ
Y (F

s 0σ0
Y (t0

Y , . . . , tn0−1
Y ), F

s 1σ1
Y (tn0

Y , . . . , tn0+n1−1
Y ), . . . , F

s k−1σk−1
Y (tn−nk−1

Y , . . . , tn−1
Y ))

= F red tπ
Y (t0

Y , . . . , tn−1
Y ),

where t = F
r ρ
∅
(s0, s1, . . . , sk−1) and π : n → n is a suitable permutation. Figure 21

visualizes this equation, where we rely on unreduced trees and their unique reduction by
small cancelation.

In fact, π = π1π2 is a product of two permutations. The first permutation π1 :
n → n comes from the reduction of the tree t. If P t

4 = 〈µ0, . . . , µn−1〉 and P red t
4 =

〈µ′0, . . . , µ
′

n−1〉, then

iπ1 = j for gred t, t(µ′i) = µj (0 ≤ i, j < n). (6.1)
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...

r

s0ρ (k-1)ρs

tY
... ...m

FY

FY

(...)

t

s

r

σ

ρ

ii

( FY
(...)

s σ ii |

η η k-10

i = 0, ..., k-1)

Fig. 21

The second permutation π2 : n→ n comes from engrafting the twigs and is defined by

mπ2 =

lρ−1∑
j=0

nj + iσlρ for m =

l−1∑
j=0

njρ + i (0 ≤ l < k, 0 ≤ i < nlρ).

(iv) For the ∗-scalar product law we have F s σ (x0, . . . , xm−1, y, xm+1, . . . , xn−1) and
must specify a function symbol F red tπ

∈ F such that

F s σ (x0, . . . , xm−1, y, xm+1, . . . , xn−1) = y ∗ F
red tπ (x0, . . . , xm−1, xm+1, . . . , xn−1).

We determine t and π first:
For P s

4 = 〈η0, . . . , ηn−1〉 let ν = ηmσ−1 be the branch corresponding to the argument
y in F s σ . Now we characterize the tree t by s and the defining relations

⊥ ∈ P t
2, F t(⊥) = 〈1〉∧ν ∈ P t

3, t≥〈1〉 = s

with the help of Construction Tool I (see the previous section). Figure 22 shows what t
looks like.

s

s

t

ν in P4

ν in P31^

⊥ in P2

1

Fig. 22

The appropriate permutation π : n − 1 → n − 1 is easy to visualize but not so
easy to describe: we can express π = π1π2 as a product of two permutations. The first
permutation π1 : n − 1→ n − 1 comes from the reduction of the tree t as in (6.1). The
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second permutation π2 : n − 1 → n − 1 is the result of the construction of the tree t
from s. Using the auxiliary functions ρk : n− 1→ n (0 ≤ k < n) with iρk = i for i < k

and iρk = i + 1 for i ≥ k we let π2 = ρmσ−1σρ−1
m .

Now F red tπ is determined and it remains to check

tmY ∗ F
red tπ
Y (t0

Y , . . . , tm−1
Y , tm+1

Y , . . . , tn−1
Y ) = F s σ

Y (t0
Y , . . . , tn−1

Y ).

This equation is clear by Figure 23 using Definition 6.2 (as the left-hand side reduces
with small cancelation by Case B to the right-hand side). Again we rely on the unique
reduction of trees. Therefore also the ∗-scalar product law holds.

tY
... ...

(...)
t π

FY

red

ν0^1^

tY

m

k

0 in P2

1

⊥ in P1

s

=

1

tY
... ... ν

k

s

tY

m

B

in P3

Fig. 23

Thus MY is a skeleton containing Y as a subset. Next we claim that

MY is faithful for Y infinite. (6.2)

To show (6.2) we make essential use of the additional small cancelation steps by
Cases C and D, while up to now only small cancelation by Cases A and B applied. And
indeed, if we do not allow small cancelation by Cases C and D, then for sY = (s, f s),
tY = (t, f t) with

us
= P s

4 = {⊥}, f s(⊥) = y (thus sY = y ∈ Y )

and

ut
= {⊥, 〈1〉, 〈1, 0〉, 〈1, 1〉}, P t

1 = {〈1〉}, P t
2 = {⊥}, P t

3 = {〈1, 1〉}, P t
4 = {〈1, 0〉},

F t(⊥) = 〈1, 1〉, f t(〈1, 0〉) = y = f s(⊥)

both sY 6= tY are reduced in this restricted sense (see Figure 24).
But applying small cancelation by Case B to rY ∗tY we see immediately that rY ∗tY =

rY ∗ sY for all rY ∈ MY (see Figure 25).
The way out of this problem is to add the additional two cases C and D of small

cancelations to ensure that sY , tY above reduce to the same Y -colored tree.
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in P2
⊥

0 in P4

1 in P1

1 in P3

in P4
⊥

y

y

sY tY

Fig. 24

in P1
⊥

0 in P4

1 in P1

1 in P3

y

in P1
⊥

rY rY=
B

1 0 in P2

0 in P4

y1

Fig. 25

Now we prove (6.2) and apply the ∗-scalar product to particular test elements from
MY . Let sY = (s, f s), tY = (t, f t) be two elements from MY and choose some y ∈ Y ⊆
MY which does not appear as a color of sY , tY , respectively. (Here we use the fact that Y is
infinite!) We now compare s′Y = y ∗ sY = (s′, f s ′) ∈ T and t′Y = y ∗ tY = (t′, f t ′) ∈ TY
and suppose that

red s′Y = red t′Y . (6.3)

It remains to show that also sY = tY . The arguments depend on the small cancelation steps
we can apply to s′Y and t′Y . The two corresponding, possibly not yet reduced diagrams look
as in Figure 26.

in P1
⊥

y y

in P1
⊥

1 in P4 1 in P4

sY tY

s'Y
t'Y

00

=

Fig. 26
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Here we use y (a new color which does not appear in sY and tY ) to mark distinctively
branches of the two trees s′Y , t′Y . This will be particularly important if the trees get mixed
up by using small cancelation steps.

Thus, if we are lucky, and the two trees s′Y , t′Y are both reduced, then automatically
both right-hand components must coincide, so sY = tY .

In the remaining cases we must check all possible small cancelation steps of s′Y and t′Y .
By the last remark one of these trees must reduce further while obviously can(s′), can(t′)
⊆ {⊥}. Suppose that s′Y can be reduced. Thus can(s′) = {⊥} and s′ reduces either by
small cancelation Case A or Case B.

y y

1 in P4

in P1
⊥

0 in P0

in P4
⊥

y

1 in P4

in P1
⊥

0 in P2

1

F(0)
in P3

A

sY

s'Y
s'Y

sY

in P4

y

B

η

η

red s'Y red s'Y

y y

1 in P4

in P1
⊥

0 in P0

in P4
⊥

y

1 in P4

in P1
⊥

0 in P2

1

F(0)
in P3

A

sY

s'Y
s'Y

sY

in P4

y

B

η

η

red s'Y red s'Y

Fig. 27

Observe that in both cases the outcoming tree will be reduced, thus small cancelation
stops after the first step.

Comparing now the reductions of s′Y and t′Y there are only two possibilities:

Case 1: If 〈0〉 ∈ P s ′
0 , then the right-hand component of s′ is a maximal branch and the

tree reduces with small cancelation by Case A to y ∈ MY . Now from (6.3) it follows
that also t′ must reduce. If t′ reduces with small cancelation by Case A, then sY = tY is
immediate. If t′ reduces with Case B, then (6.3) brings t into the form ut

= {⊥, 〈1〉} with
P t

2 = {⊥}, P
t
3 = {〈1〉}, F

t(⊥) = 〈1〉, which reduces to s by Case C, but we assumed that
tY is reduced, hence this case is impossible.

y y

1 in P4

in P1
⊥

0 in P0

in P4
⊥

y

1 in P4

in P1
⊥

0 in P2A

sY

s'Y

B

1 in P3

==

t'Y

tY

F(0)

Fig. 28
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Case 2: Now without loss of generality we can assume that neither s′ nor t′ reduces
with small cancelation by Case A, while 〈0〉 ∈ P s ′

2 . Thus the right-hand component of s′

extends further with F s ′(〈0〉) = 〈0, 1〉∧η and it reduces by Case B with η ∈ P red s ′
4 . If t′

also reduces by Case B, then tY = sY is immediate. Suppose that t′ is already reduced.
Then comparing the two reduced trees gives

in P1
⊥

in P4

y
η

red s'Y

in P4

y
η

red s'Y

=
y

1 in P4

tY

0

t'Y

Fig. 29

and we use the marker y to identify the respective branches to reconstruct s as

in P2
⊥

in P3ηη

=

1 in P3

tY

0

in P2
⊥

1 1 in P1

sY

F( ⊥ )
F( ⊥ )

Fig. 30

But now s reduces with small cancelation by Case D to t, which is a contradiction. Hence
MY is faithful (as witnessed by the action of ∗ on Y ⊆ MY ).

Finally, we must show that

MY is nice for Y infinite. (6.4)

For the convenience of the reader we now repeat the essentials of the technical, but harm-
less Definition 2.10. Given integers 2 ≤ ki ≤ ni (i < i∗) we let k∗ = max{ki | i < i∗}

and
itY = 〈ij tY | j ∈ ni \ ki〉 ∈ ni−kiMY ,

where
ij tY = (ij t, ijf ) ∈ MY with ijf : P

ij t
4 → Y.
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For any family

σi(x,
itY ) = σMY

i (xki , itY ) = F
r iρi
Y (xki , itY ) (i < i∗)

of strict, pairwise non-MY -equivalent MY -terms with ni-ary function symbols F r iρi we
must find a suitable sequence sY ∈ k∗MY satisfying the conclusion of Definition 2.10.

Recall that 3ki ,k∗ =
kik∗ \ {n

ki | n < k∗} and choose sY = 〈yi | i < k∗〉 for
distinct variables yi ∈ Y \

⋃
i,j Im ijf . These elements exist because Y is infinite and will

serve as distinguished markers. For (6.4) we claim that the elements F r iρi
Y (sYη, itY ) for

i < k∗, η ∈ 3ki ,k∗ are pairwise distinct. Thus assume that

F
r iρi
Y (sYη, itY ) = F

rjρj
Y (sYθ , j tY ) for some pairs (i, η), (j, θ). (6.5)

If i 6= j , then the assumption easily yields F r iρi
Y (tkiY , itY ) = F

rjρj
Y (tkjY ,

j tY ) for all
tY ∈ MY , hence these terms are MY -equivalent, a contradiction. Thus i = j , and now
comparing branch colors directly in (6.5) also, η = θ . Hence (6.4) and Main Theorem 6.5
hold. ut

Remark 6.6. (i) In Definition 6.3 we have deliberately relaxed the requirements on the
pair (τ, T ), in fact we kept essentially silent about the exact skeleton theory T , be-
cause the missing details did not play any role until now (and they are more delicate).
Now we are ready to adjoin the precise list of equations to T which is revealed in de-
tail in the proof of Main Theorem 6.5. Here it is important to recall that the predicted
function symbols F ′ from Definition 2.1 are indeed fixed inside τ and independent
from Y , thus no quantifier ∃F ′ is used.
For future use (e.g. Proposition 7.1)we should remember that the constructed canon-
ical τ -skeletonsMY are actually canonical τ -skeletons with respect to this canonical
skeleton theory T .

(ii) We now consider the generating sets τ0 of τ and Y of MY as the trees allow a very
suggestive interpretation. For this purpose let t = (ut, P t

l , F
t,Gt
| l ≤ 5) ∈ Tred be

a reduced tree as in Definition 4.1 and F tπ
∈ F an appropriate function symbol. As

in a dictionary, translate the knots of the tree t: every element in P t
0 interprets as an

appearance of the constant 1, the elements of P t
4 represent free variables, while the

elements of P t
3 correspond to bounded variables. Furthermore, elements in P t

1 rep-
resent ∗-scalar multiplication signs, while the elements of P t

5 correspond to function
symbols in τ0 \ {Fid , 1, ∗} by the map Gt. Lastly, P t

2 is used to accommodate new
function symbols F ′ generated by the ∗-scalar product law

F(x0, x1, . . . , xm−1, y, xm+1, . . . ) = y ∗ F
′(x0, x1, . . . , xm−1, xm+1, . . . ).

During this process the branch η of t associated to the free variable y is moved from
P t

4 to P t
3, while y becomes bounded and the map F t keeps track of this process. In

terms of λ-calculus this is equivalent to saying that in

F ′(x0, x1, . . . , xm−1, xm+1, . . . ) = λyF(x0, x1, . . . , xm−1, y, xm+1, . . . )
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the variable y is bounded; see Barendregt [2]. Thus the function symbol F tπ can be
interpreted as a τ0-term (in distinct free variables from X) allowing some λ-calculus
and permutation arguments and thus is generated by τ0 in this sense. Similarly every
element tY = (t, f t) ∈ MY can be viewed as being generated by τ0 and Y only.

(iii) In the given approach the basic set for the τ -skeleton is the family Tred
Y of reduced

trees. We could have followed a different road: for example, constructing the rational
numbers Q or free (non-commutative) groups, we either use uniquely determined re-
duced (‘minimal’) representatives of the obvious equivalence classes or the family
of equivalence classes themselves as members of Q or of the free groups, respec-
tively. Similarly, here we could have used the equivalence classes obtained by small
cancelation of trees as well and created the skeletons MY this way.

(iv) Following Definition 2.8 we will call a τ -body B faithful if the ∗-multiplication is
faithful, i.e. for all a 6= b ∈ B there is some c ∈ B such that c ∗ a 6= c ∗ b. Arguing
as in Main Theorem 6.5 the canonical τR-body LinRMY is faithful for Y infinite as
follows by the action of the ∗-scalar product on Y ⊆ MY ⊆ LinRMY .

According to Theorem 6.5 the τ -skeleton MY is faithful for any infinite set Y . Thus
with Lemma 2.9 we have a well-defined associative multiplication · onMY which we want
to investigate next. By Definition 2.8 we identify · = F s σ with the following reduced tree
s ∈ Tred and the following permutation σ (see also Fig. 31):

us
= {⊥, 〈1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉}, P s

1 = {〈1〉, 〈1, 1〉}, P s
2 = {⊥},

P s
3 = {〈1, 1, 1〉}, P s

4 = {〈1, 0〉, 〈1, 1, 0〉}, P s
0 = P

s
5 = ∅,

F s(⊥) = 〈1, 1, 1〉, σ = id .

Thanks to this identity y1 · y2 6= y2 · y1 is obvious for all generators y1 6= y2 from Y ,
which guarantees that we construct non-commutative R-algebras later on.

in P2
⊥

0 in P4
1 in P3

1 in P1

1 in P1

0 in P4

Fig. 31

Furthermore, · = F s σ
∈ F allows a natural generalization of · to τ -skeletons MY

over arbitrary (in particular finite) sets Y and we have the following

Lemma 6.7. For any non-empty set Y the pair (MY , ·) with the multiplication · from
above is a non-commutative associative monoid with 1.
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Proof. The associativity of the multiplication · is demonstrated in Figure 32 as both
(rY · sY ) · tY and rY · (sY · tY ) reduce by small cancelation B to the same Y -colored
tree for any rY , sY , tY ∈ MY .

in P2
⊥

1 in P3

1 in P1

1 in P1

in P2
⊥

1 in P1

rY
sY

tY rY

sY tY

rY
sY tY

F( ⊥ )

00 in P2

1 in P1

1 in P1

F(1 ^ 1 ^ 0)

01 in P3

(rY sY) tY
. .

0

0 in P2

1 in P1

01 in P3

F( ⊥ )

1 in P1

0 0

1 in P1

1 in P3

F(1 ^ 0)

in P2
⊥

1 in P3

F( ⊥ )
0 0 0

1 in P1

1 in P1

1 in P1

B B
= =

rY
. .(sY tY

)

Fig. 32

Similarly 1 · tY = tY = tY · 1 holds for any tY ∈ MY using small cancelation by
Cases A and D. And finally, the non-commutativity of the multiplication · follows by
Figure 33 from (1 ∗ y) · y 6= y · (1 ∗ y) for any generator y ∈ Y . ut

in P2
⊥

0 in P4

1 in P3

1 in P1

1 in P1

0 in P4

in P2
⊥

0 in P4
1 in P3

1 in P1

1 in P1

0 in P1

y
y

1 in P0

0 in P1

0 in P4
1 in P0

y
y

=/

(1 (1 y)y)* *y y. .

Fig. 33

An inspection of the last proof allows the following obvious generalization.

Observation 6.8. If M is a τ -skeleton induced by the pair (τ, T ) of the language τ from
Definition 6.3 and the theory T from Theorem 6.5, then the pair (M, ·) with the multipli-
cation · from above is an associative monoid with 1.
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7. The algebraic structure of the free body BY from MY

Let R be a cotorsion-free commutative ring with 1 and p ∈ R be the element in charge
of the p-adic completion R̂; see Section 1. Moreover, saying that G is a pure submodule
of H (or G ⊆∗ H ) actually means that the R-module G is a p-pure submodule of the
R-module H where p is the distinguished element from above.

In this section we want to investigate those τR-bodies which are induced by the pair
(τ, T ) of the language τ and the theory T introduced in Definition 6.3 and Main Theorem
6.5. We will use the letter B for these bodies to emphasize this special choice of (τ, T ).

We recall from Section 3 that B is an R-module with a constant element 1, a ∗-scalar
product and a family of multi-linear functions F satisfying the axioms from Definition
2.1. In particular, m ∗ 1 = m for all m ∈ B, the substitution axiom holds for F , and the
following important law is satisfied in F :

For any function symbol F ∈ F of arity n and any 0 ≤ m < n some func-
tion symbol F ′ ∈ F of arity n − 1 satisfies ∀y : F(x0, . . . , xm−1, y, xm+1, . . . ) =

y ∗ F ′(x0, . . . , xm−1, xm+1, . . .), and the corresponding equations for functions FB, F ′B

etc. on B hold for all xi, y ∈ B. Furthermore, by Observation 6.8 there exists a canonically
defined multiplication · which turns B into an associative R-algebra (B,+, · ) with 1.

The axioms of τR-bodies are equations. Hence the class of τR-bodies constitutes a
variety, and this class is closed under taking cartesian products, subobjects and quotients.
Moreover, for each non-empty set Y there exists a free τR-body BY for the skeleton MY

from the last section with Y ⊆ BY . If BY ′ is another free body generated by Y ′, then any
bijection between these sets Y, Y ′ induces a body isomorphism. Hence free τR-bodies are
(up to isomorphism) uniquely determined by |Y |. To make this precise, we choose one of
the (equivalent) definitions for freeness (for varieties). The τR-body B is free (as a body)
if there is a subset Y ⊆ B such that any map ϕ : Y → B′ into another τR-body B′ extends
uniquely to a body homomorphism (also called) ϕ : B→ B′. The set Y is a family of free
generators of B, which we also call a (body) basis of B.

We recall that a map ϕ : B → B′ between two τR-bodies B,B′ is a τR-body homo-
morphism if the following holds:

• ϕ : RB→ RB′ is an R-module homomorphism.
• ϕ is compatible with all function symbols F ∈ F : clearly the map ϕ induces a canonical

map Bn → B′ n acting componentwise like ϕ, which we also denote by ϕ. If F ∈ F is
a function symbol and FB : Bn→ B, FB′ : B′ n→ B′ are the corresponding functions
on B and B′, respectively, then ϕ satisfies the equation FBϕ = ϕFB′ .

The above remarks will follow immediately from the next

Proposition 7.1. If Y is a non-empty set, then the τR-body BY = LinRMY is a free τR-
body with basis Y and (BY ,+, ·) is a non-commutative R-algebra. If Y is infinite, then
(BY ,+, ·) is also faithful.

Proof. The multiplication · on BY is obviously non-commutative by Lemma 6.7, while
for the proof that the ∗-scalar product is faithful we refer to Remark 6.6(iv) [and Main
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Theorem 6.5]. Thus it remains to prove freeness and we recall Definition 3.3 for LinRMY

and Y ⊆ MY ⊆ BY .
We must show that any map ϕ : Y → B′ into a τR-body B′ extends uniquely to a

body homomorphism. If m ∈ BY , then we must define mϕ ∈ B′. Using multi-linearity
it is enough to define tYϕ for elements tY = (t, f t) ∈ MY , which are the reduced trees
from Definition 6.1.

If tY is represented by the reduced tree t with P t
4 = 〈η0, . . . , ηn−1〉 and the coloring

map f t : P t
4 → Y , then tY = F t id

Y (f t(η0), . . . , f
t(ηn−1)) with the help of Definition 6.2

and we let

tYϕ = (F t id )B
′

(f t(η0)ϕ, . . . , f
t(ηn−1)ϕ).

It is now easy to show that the extended map ϕ is well-defined and a uniquely determined
body homomorphism. ut

We apply the last proposition to

Corollary 7.2. Let BY be a free τR-body with (non-empty) basis Y and Y ′ ⊆ BY be a set
of linearly independent elements of the underlying R-module RBY such that

|Y ′| = |Y | and R〈Y 〉 = R〈Y
′
〉 as R-submodules of RBY .

Then Y ′ is a τR-body basis of BY .

Proof. There is a bijection ϕ : Y → Y ′ which gives rise to an R-automorphism of R〈Y 〉.
Now from Proposition 7.1 both maps ϕ and ϕ−1 extend uniquely to a pair of mutually
inverse body endomorphisms of BY . Therefore Y ′ is an automorphic image of the body
basis Y and thus itself a body basis of BY . ut

By Corollary 7.2 with d ∈ Y and Y ′ = (Y \ {d})∪{d+ e} where e ∈ R〈Y \ {d}〉 it follows
that Y ′ is a body basis. The next claim strengthens this a little.

Lemma 7.3. Let BY be a free τR-body with (non-empty) basis Y , d ∈ Y and e ∈
BY\{d} ⊆ BY . Then Y ′ = (Y \ {d}) ∪ {d + e} is a τR-body basis of BY .

Proof. We have BY = LinRMY and BY\{d} = LinRMY\{d} ⊆ BY . Define the bijection
ϕ : Y → Y ′ by dϕ = d + e and yϕ = y for y ∈ Y \ {d} and similarly a second map
ψ : Y → BY by dψ = d − e and yψ = y for y ∈ Y \ {d}. By Proposition 7.1 both maps
ϕ and ψ extend uniquely to body endomorphisms of BY with

ϕ�BY\{d} = ψ�BY\{d} = id BY\{d} .

Now obviously (d − e)ϕ = (d + e)ψ = d and ϕψ�Y = ψϕ�Y = id Y , and consequently
ϕ and ψ are mutually inverse body automorphisms of BY . Therefore Y ′ is an automorphic
image of the body basis Y and thus itself a body basis of BY . ut
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8. The step lemma

We now prepare those skeletons and bodies implemented into the Step Lemmas.

Notation 8.1. (i) We will consider free bodies B′ ⊆ B with a basis Y of B such that
Y ∩ B′ is a basis of B′. If this is the case, then we will say that B is free over B′.

(ii) Suppose that B is a body and S ⊆ B is a subset. The subbody generated by S is the
image 〈S〉B ⊆ B under the substitution map ϕ : BX → B with xs 7→ s (s ∈ S),
where X = 〈xs | s ∈ S〉 is a set of free variables.

(iii) We say that for free bodies B′ := BY ′ , B := BY with B′ ⊆ B an element g ∈ B is
free over B′ if the body 〈B′, g〉B = 〈Y ′, g〉B is free with body basis Y ′ ∪ {g}.

It follows that the free body BY is a free R-module, thus also cotorsion-free. More-
over, BY naturally is a pure R-submodule of its p-adic completion B̂Y which is p-adically
closed, thus by continuity we are allowed to build infinite p-adic sums in B̂Y . Also by
continuity R-linear functions on BY , in particular all functions coming from the function
symbols inF , extend uniquely to B̂Y , which thus becomes a τR̂ -body and BY is also a τR-
subbody of B̂Y . Furthermore, for Y uncountable the ∗-multiplication on B̂Y is obviously
faithful again as witnessed by the action of ∗ on Y ⊆ MY ⊆ B̂Y .

We now fix our notation for the construction using the diamond principle which will
be used throughout this section.

(i) Let Yω =
⋃
n<ω Yn be a strictly increasing sequence of infinite sets Yn of free vari-

ables and fix a sequence y of elements yk ∈ Yk+1 \ Yk (k < ω).
(ii) Let Mn := MYn be the free skeleton over Yn for n ≤ ω.

(iii) Let Bn := LinRMYn be the corresponding free τR-body and Gn := RBn be the
underlying R-module for n ≤ ω.

(iv) For y from (i), b ∈ B0, π =
∑
k<ω p

krk ∈ R̂, rk ∈ R and n < ω we define

πn =
∑
k≥n

pk−nrk, wn = wn(y) =
∑
k≥n

pk−nyk ∈ B̂ω, vn = πnb+wn (8.1)

and set v = v0 and w = w0.

It is easy to check that for all n < ω,

wn − pwn+1 = yn ∈ Gn+1 \Gn and vn − pvn+1 = yn + rnb ∈ Gn+1. (8.2)

Using these notations, we first prove a sequence of lemmata analyzing the algebraic
structure of the bodies needed for the forthcoming generalized E(R)-algebras. We begin
with a proposition related to the diamond case showing that freeness can be maintained
during the construction.

Proposition 8.2. Let y be as above and Y := (Yω \{yi | i < ω})∪V with V := {vi | i <
ω}. If σ denotes the substitution yi 7→ vi for i < ω and Bω+1 := Bωσ , Gω+1 := RBω+1,
then the following holds.

(a) Gω ⊆∗ Gω+1 ⊆∗ Ĝω.
(b) Gω+1 = R( 〈Gω, v〉B )∗ ⊆ Ĝω.
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(c) Gω+1/Gω is p-divisible.
(d) The τR-body Bω+1 ⊆ B̂ω is freely generated by Y , thus Bω+1 ∼= LinRMY canoni-

cally.
(e) Bω+1 is free over Bn (as body) for any n < ω.

Proof. (a) We have the canonical τR-bodies Bω and B̂ω. If we now substitute yi 7→ vi ∈

B̂ω for i < ω and y 7→ y ∈ B̂ω for y ∈ Yω \ {yi | i < ω}, then (by Proposition 7.1)
we obtain a body homomorphism σ : Bω → B̂ω, and Bω+1 = Bωσ ⊆ B̂ω is obviously
a τR-subbody. Moreover, every basis element of the free R-module Gω is a reduced tree
tYω = (t, f t) with P t

4 = 〈η0, . . . , ηn−1〉, a coloring map f t : P t
4 → Yω as discussed in

Section 6 (see Definition 6.1) and

tYωσ = F
t id
Yω
(f t(η0)σ, . . . , f

t(ηn−1)σ ) ∈ Ĝω.

This representation of tYωσ naturally corresponds to the element (t, f tσ) from the free
τR-body LinRMY . Now, on the other hand, we identify Y ⊆ B̂ω. Using (8.1), by multi-
linearity and continuity the term tYωσ can also be expressed as a p-adic sum of basis
elements in Gω, while clearly by (8.2) the elements of Gω belong to Gω+1. Thus

Gω ⊆ Gω+1 ⊆ Ĝω as R-modules. (8.3)

Next we note that the inclusions (8.3) are pure R-submodules. By definition of the
p-adic topology clearlyGω is a p-pure R-submodule of Ĝω, thusGω ⊆ Gω+1 is p-pure.
If g ∈ Gω+1 and ph = g for some h ∈ Ĝω, then using (8.2) we can write g = g′ + pg′′

with g′ ∈ Gω, g′′ ∈ Gω+1, thus g′ = p(h− g′′) ∈ Gω and by the p-purity of Gω ⊆ Ĝω
we have h′ = h− g′′ ∈ Gω. Now g = g′ + pg′′ = p(h′ + g′′) with h′ + g′′ ∈ Gω+1, so
Gω+1 ⊆ Ĝω is p-pure as well and (a) is shown.

(b) An argument similar to (a) shows the equality

Gω+1 = RBω+1 = R(〈Y 〉B) = R(〈Yω, V 〉B) = R(〈Gω, V 〉B) = R(〈Gω, v〉B)∗.

(c) By the p-adic completion it is obvious that Ĝω/Gω is p-divisible (by density).
From (a) and (b) it follows that Gω+1/Gω ⊆ Ĝω/Gω is p-pure, hence p-divisible as
well.

(d) For any n < ω let ϕn be the substitution yn 7→ vn. We now claim that

Y ′ := (Yω \ {yn}) ∪ {vn} is a free body basis of Bωϕn. (8.4)

We will follow the proof of Lemma 7.3 and begin with the canonical τR-bodies Bω =
LinRMYω , BYω\{yn} = LinRMYω\{yn} ⊆ Bω, B̂ω and B̂Yω\{yn} ⊆ B̂ω. Moreover, by (8.2)
we have yn + rnb + pvn+1 = vn with rnb + pvn+1 ∈ B̂Yω\{yn}.

Define the bijection ϕn : Yω → Y ′ by ynϕn = yn + rnb + pvn+1 = vn and yϕn = y
for y ∈ Yω \ {yn} and similarly we find another map ψn : Yω → B̂ω with ynψn =
yn − rnb − pvn+1 and yψn = y for y ∈ Yω \ {yn}. By Proposition 7.1 both maps ϕn and
ψn extend uniquely to body homomorphisms Bω → B̂ω that by continuity extend further
to body endomorphisms B̂ω → B̂ω with

ϕn�B̂Yω\{yn} = ψn�B̂Yω\{yn} = id B̂Yω\{yn}
.
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Now obviously (yn − rnb − pvn+1)ϕn = (yn + rnb + pvn+1)ψn = yn and ϕnψn�Yω =
ψnϕn�Yω = id Yω , and consequently ϕn and ψn are mutually inverse body automorphisms
of B̂Y . Thus Bωϕn is a free τR-body with associated body basis Yϕn = Y ′ and (8.4) holds.

Combining Lemma 7.3, (8.2) and (8.4) shows immediately that for any n < ω the set
(Yω \ {yi | i ≤ n}) ∪ {vi | i ≤ n} is a body basis of Bωϕn. Using the fact that the body
basis property is of finite character, it now easily follows that Y is a body basis of Bωσ as
required.

(e) By Proposition 7.3, (8.2) and (c) the set

Y ′n := (Yω \ {yi | n ≤ i < ω}) ∪ {vi | n ≤ i < ω}

is a body basis of Bω+1 for n < ω, where Yn ⊆ Y ′n. ut

Proposition 8.2 can be generalized to a non-free setting. Thus it is convenient to ease our
notations.

Notation 8.3. (i) If BY is a τR-body freely generated by Y , then (as before) BY =
LinRMY and the elements m of its skeleton MY (which are trees) will be called
body monomials (or body R-monomials if we consider rm with r ∈ R). All other
elements of BY which are sums of R-monomials will be called body polynomials
and allow a unique representation as reduced sum (i.e. as sum of minimal length) of
body R-monomials.

(ii) If Bω ⊆ B ⊆ B̂ω and v ∈ B̂ω, then we will write B[v] = 〈B, v〉B for the subbody of
B̂ω generated by B and v.

(iii) As mentioned in Notation 8.1, for S ⊆ B the subbody generated by this set is
〈S〉B ⊆ B. It is induced by a free body BX through the substitution map ϕ with
xs 7→ s (s ∈ S). If m = (s, f s) is a body monomial of BX, then we have the color-
ing map f s : P s

4 = 〈η0, . . . , ηn−1〉 → X and with a mild abuse of notation we will
write m = m(xs0 , . . . , xsn−1) to emphasize the colors xsi = f s(ηi) contributing to
the colored tree m. This expression also agrees with the representation

m = F s id
X (f s(η0), . . . , f

s(ηn−1)) = m(xs0 , . . . , xsn−1)

resulting from Definition 6.2 and the canonical identification X ⊆ BX. In this new
notation we will write

mϕ = (F s id )B(f s(η0)ϕ, . . . , f
s(ηn−1)ϕ) = m(s0, . . . , sn−1)

and call mϕ a body monomial in the generators si of the subbody 〈S〉B ⊆ B. Re-
placing id by an arbitrary permutation σ it is possible to change the order of the
generators si .

Notation 8.3(ii) should remind us of rings R[x] with an element x adjoined. However,
we must keep in mind that the two notions are fundamentally distinct. But nevertheless,
it will help us as a guideline for arguments.

Now the next two lemmata will generalize our results from Proposition 8.2 on the
p-purification of bodies. For this we still apply our notation for the diamond case.
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Lemma 8.4. Let Bω ⊆ B ⊆ B̂ω and B be a body. If B∗ = {b ∈ B̂ω | ∃n < ω with
pnb ∈ B} denotes the p-purification of B, then B∗ is a subbody of B̂ω.

Proof. We must show that B∗ is closed under the functions arriving from the function
symbols in our body theory TR (see Definition 3.1). Let F ∈ F be such an additional
function symbol of arity ar(F ) = i∗. If mi ∈ B∗ for i < i∗, then there is n < ω such that
pnmi ∈ B for all i < i∗. By the multi-linearity of F it follows that

pni∗F B̂ω (m0, . . . , mi∗−1) = F
B̂ω (pnm0, . . . , p

nmi∗−1) ∈ B.

Thus also F B̂ω (m0, . . . , mi∗−1) ∈ B∗. ut

Lemma 8.5. Let Bω ⊆ B ⊆∗ B̂ω and B be a body. Moreover, let y be the sequence from
(i) above, π ∈ R̂ and v = πb + w ∈ B̂ω also be as above. Then

B[v]∗ = B[vi | i < ω] ⊆∗ B̂.

Proof. From Lemma 8.4 it follows that B[v]∗ is a body. If c ∈ B[v]∗, there is k < ω

with pkc ∈ B[v]. By (8.2) we can write v = v′ + pkvk for some v′ ∈ B. The ele-
ment pkc ∈ B[v] can be represented as a finite linear combination of body monomi-
als m(vj , b0, . . . , bn−1) in v and some additional generators bi ∈ B (see Notation 8.3).
So we can substitute for v the above sum and by multi-linearity we can express this
v-sum of monomials by a similar v′-sum living in B plus a new summand pkc′ with
c′ ∈ B[vi | i < ω]. Thus pk(c− c′) ∈ B ⊆∗ B̂ω, and c− c′ ∈ B follows by purity. Hence
also c ∈ B[vi | i < ω]. This shows the desired equality. ut

Next we introduce the notations of the Black Box construction which constitute an obvi-
ous generalization of the setting in the diamond case.

(1) Let Y be an infinite set of free variables that is well-ordered by some limit ordinal
and let α be an ordinal number.

(2) Let M := MY be the free skeleton over Y , BY := LinRMY be the corresponding
free τR-body and GY := RBY be the underlying R-module.

(3) For every β ≤ α let yβ = {y
β
n | n < ω} ⊆ Y be a strictly increasing sequence with

respect to the well-ordering. For bβ ∈ BY define the divisibility chains πβn , w
β
n , v

β
n

as in (8.1).
(4) For β1 6= β2 ≤ α let

{yβ1
n | n < ω} ∩ {yβ2

n | n < ω} be finite. (8.5)

(5) For g ∈ B̂Y a support [g]Y ⊆ Y is well-defined by

[g]Y =
⋂
{Y ′ ⊆ Y | g ∈ B̂Y ′ ⊆ B̂Y }.

Now we can formulate and prove the ℵ1-free counterpart of Proposition 8.2 for the
Black Box construction.
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Proposition 8.6. Let R be a cotorsion-free commutative ring with 1, and let Y and yβ
(β < α) be as above. Then the body B := BY [vβ | β < α] ⊆ B̂Y is freely generated by
Y ∪ {vβ | β < α} and the R-module G := RB is free.

Proof. We only sketch the arguments as they are very similar to the preceding proofs.
LetX = {xβ | β < α} be a set of additional free variables and let BY∪X be the induced

free body. We now have to show that the substitution ϕ : BY∪X → B with y 7→ y (y ∈ Y )

and xβ 7→ vβ (β < α) is a body isomorphism, in particular it is injective. As this is a
property of finite character, we can restrict ourselves to proving the finite case α < ω.

Thus let α < ω be finite. Using (8.5) we can choose some m < ω with

{yβ1
n | m ≤ n < ω}∩{yβ2

n | m ≤ n < ω}∩
⋃
β<α

[bβ ]Y = ∅ for all β1 6= β2 < α. (8.6)

Set B′ := BY [vβ | β < α]∗. Then B′ = BY [vβn | β < α,m ≤ n < ω] (Lemma 8.5) and
similarly to Proposition 8.2 by (8.6) the body B′ is free having the body basis

Y ′ = (Y \ {yβn | β < α, m ≤ n < ω}) ∪ {vβn | β < α, m ≤ n < ω}. (8.7)

Now from (8.7) it follows that (Y \ {yβn | β < α, m ≤ n < ω})∪ {v
β
m | β < α} ⊆ Y ′ and

(Y \ {yβn | β < α, m ≤ n < ω}) ∪ {pmvβm | β < α} (8.8)

are body bases of their induced bodies, respectively. Furthermore, combining (8.8) with
(8.2), (8.6) and Lemma 7.3, also

(Y \ {yβn | β < α,m ≤ n < ω}) ∪ {vβ | β < α} is a body basis (8.9)

of its induced body. Since the body basis property is of finite character and (8.6) and
in its wake (8.9) actually hold for every m < ω large enough, we finally conclude that
Y ∪ {vβ | β < α} is a body basis of its induced body B. ut

Similar to Proposition 8.2, it is not B := BY [vβ | β < α] ⊆ B̂Y but its purification
B′ := B∗ ⊆ B̂Y which is our main object of interest. We will start studying B′ and its
properties by introducing a refined support inspired from the proof of Proposition 8.6.

Notation 8.7. (i) Let BX be a free body with body basisX. We recall RBX=
⊕

t∈MX
Rt

from Definition 3.3, thus RB̂X ⊆
∏
t∈MX

R̂t and every element g ∈ B̂X has a
unique representation g =

∑
t∈MX

rt t with coefficients rt ∈ R̂. We will call rt t
the t-component of g and rt the t-coefficient.

(ii) In Proposition 8.6 we only use support arguments. Therefore the τR-body isomor-
phism ϕ : BY∪X → B extends uniquely to a canonical τR̂-body isomorphism ϕ :
〈BY∪X〉R̂ → 〈B〉R̂ of the related τR̂-bodies and we may again equate coefficients.
The proofs of Lemma 8.9 and Step Lemma 8.10 will make extensive use of this fact.

Our aim now is to show that B′ := BY [vβ | β < α]∗ ⊆ B̂Y has a cotorsion-free
R-module structure. For this we recall Definition 1.1 and state the following crucial
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Corollary 8.8. If R is a cotorsion-free commutative ring with 1, then any ℵ0-free R-
module is cotorsion-free.

Proof. Let σ : R̂ → M be an R-module homomorphism into the ℵ0-free R-module M
and choose a free and p-pure submodule F ⊆ M with 1σ ∈ F and p-reduced quotient
M/F . Now with R̂/R also (R̂σ+F)/F is p-divisible, while as a submodule ofM/F it is
also p-reduced. Hence R̂σ ⊆ F which is free, and therefore cotorsion-free by assumption
on R. Thus R̂σ = 0 follows and M is cotorsion-free. ut

Now everything is prepared for the proof of

Lemma 8.9. LetR be a cotorsion-free commutative ring with 1, and let Y and yβ (β<α)
be as above. Then for B := BY [vβ | β < α] ⊆ B̂Y and B′ := B∗ ⊆ B̂Y the R-module
G′ := RB′ is ℵ0-free (and thus cotorsion-free).

Proof. For every finite subset S ⊆ G′ there exist finite sets ∅ 6= Y ′ ⊆ Y and I ⊆ α with
S ⊆ BY ′ [vβ | β ∈ I ]∗ ⊆ B′. Set

Y ′′ := Y ′ ∪
⋃
β∈I

[vβ ]Y ⊆ Y. (8.10)

Then also S ⊆ B′′ := BY ′′ [vβ | β ∈ I ]∗ ⊆ B′. Furthermore, by (8.7) the body B′′ is free
and thus F := RB′′ is a free and p-pure submodule of G′.

It remains to show that the quotient G′/F is p-reduced. For this let h ∈ G′ be such
that h+ F is p-divisible. Thus there exist elements gn ∈ G′ and fn ∈ F with

h = pngn + fn (n < ω). (8.11)

We now take advantage of Notation 8.7 to compare coefficients of equation (8.11) in-
side B̂Y .

First assume that h /∈ BY [vβ | β ∈ I ]∗. Then the representation of h needs some vγ
with γ /∈ I . Now from (8.5) and (8.10) it follows that [vγ ]Y \ Y ′′ 6= ∅ and there exists
some non-trivial component in the reduced representation of h that does not contribute
to any fn (n < ω). By (8.11) the coefficient of this component has to be a non-zero
p-divisible element of R̂, a contradiction. Thus h ∈ BY [vβ | β ∈ I ]∗.

Next assume that h ∈ BY [vβ | β ∈ I ]∗, but h /∈ B′′ = BY ′′ [vβ | β ∈ I ]∗. Then the
representation of h needs some basis element from Y \ Y ′′ 6= ∅ and we proceed as before
to derive a contradiction. Thus h ∈ B′′ and h+ F = 0 follows. ut

The remaining part of this section is devoted to proving the required Step Lemmas. We
will continue using the notations basic for the Black Box construction and prove the
appropriate version of the Step Lemma first. Recall that for any body BY ⊆ B ⊆ B̂Y
and any g ∈ B we have an induced R-endomorphism ∗g : RB → RB (x 7→ x ∗ g) on
RB by multi-linearity of the ∗-scalar product. Thus, as ∗ is faithful on B for uncountable
sets Y (as seen by its action on Y ⊆ B), we can view these endomorphisms as canonical
embedding B ⊆ EndR B. Finally, we must consider the remaining endomorphisms in
EndR B \ B. By the following crucial lemma it will be possible to get rid of them.
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Step Lemma 8.10. LetR be a cotorsion-free commutative ring with 1, Y and yβ (β ≤ α)
be as above, and set B = BY [vβ | β < α] ⊆ B̂Y and B′ = BY [vβ | β ≤ α] ⊆ B̂Y .
Moreover, let {yαn | n < ω} ⊆ Y ′ be a subset of Y and P := BY ′ ⊆ BY be the induced
subbody. If ϕ : P → B∗ ⊆ B̂Y is an R-module homomorphism with (pNϕ − ∗g)�P 6≡ 0
for all N < ω and g ∈ B∗, then we can choose πα ∈ R̂ and bα ∈ P ⊆ BY such that
vαϕ /∈ B′∗ ⊆ B̂Y for vα = παbα + wα ∈ P̂ .

Proof. We consider the R-module homomorphism ϕ : P → B∗, and claim that (for yα
as above) there are bα ∈ P and πα ∈ R̂ with vα = παbα + wα and vαϕ /∈ B′∗ = B[vα]∗
⊆ B̂Y . In the opposite case we may assume that for all bα ∈ P and πα ∈ R̂ we have
vαϕ ∈ B′∗. Furthermore, to ease notation we will abbreviate from now on πα, bα, wα, vα
by π, b,w, v, respectively.

In particular (for π = 0) it follows that wϕ ∈ B[w]∗. By purity we find N < ω such
that

pNwϕ =
∑
i∈I

cimi(w
ni ) ∈ B[w] is in reduced form (8.12)

with ci ∈ R and body monomialsmi(wni ) = mi(wni , vi, yi) inw and finite sequences vi
and yi of additional generators from {vβ | β < α} and Y , respectively. Let n = max{ni |
i ∈ I } be the maximal number of w’s appearing in one of the monomials mi . Similarly
we treat any other v = πb + w (but we will specify the actual elements b and π only
later); and by assumption we also get vϕ ∈ B[v]∗. The same way we find N ′ < ω such
that

pN
′

(πb + w)ϕ =
∑
i∈I ′

dim
′

i(v
n′i ) ∈ B′ = B[πb + w] is in reduced form (8.13)

with di ∈ R and body monomials m′i(v
n′i ) = m′i(v

n′i , v′i, y
′

i), and we set n′ = max{n′i |
i ∈ I ′}. Next we want to exclude

Case n′ > 1: We may assume N = N ′, and subtracting (8.12) from (8.13) we get

pNπbϕ =
∑
i∈I ′

dim
′

i(v
n′i )−

∑
i∈I

cimi(w
ni ) ∈ 〈B[w]〉R̂. (8.14)

For the last inclusion we use v = πb + w and multi-linearity of the body monomials
mi, m

′

i to rewrite the first sum accordingly.
By Proposition 8.6 and Notation 8.7 the body B[w] is freely generated by Y ∪{w, vβ |

β < α} and we can compare coefficients of components in (8.14). As b ∈ P ⊆ BY there
will be no non-trivial component on the left-hand side containing the generator w. In the
first sum on the right-hand side for every n′i = n′ > 1 we have a non-trivial m′i(w

n′)-
component that needs to be eliminated by the second sum, thus n′ ≤ n. By symmetry
also n ≤ n′, thus n = n′ and we must rule out the possibility n = n′ > 1.

We first restrict (8.14) to those components with the maximal number n = n′ of
occurrences of the generator w. We get the new equation

0 =
∑

i∈I ′, n′i=n

dim
′

i(w
n)−

∑
i∈I, ni=n

cimi(w
n). (8.15)
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We equate the coefficients of both sums on the right-hand side of (8.15) and get without
loss of generality

{i ∈ I | ni = n} = {i ∈ I
′
| n′i = n} =: J,

ci = di and mi(w
n) = m′i(w

n) for all i ∈ J. (8.16)

Next we restrict (8.14) to all those components with exactly n−1 ≥ 1 entries fromw.
Again, we use multi-linearity of the body monomials mi, m′i to decompose v = πb + w
and collect summands according to the appearance of w. We get the following equation:

0 =
∑
i∈J

n−1∑
j=0

dim
′

i(w
j , πb,wn−1−j )+

∑
i∈I ′, n′i=n−1

dim
′

i(w
n−1)

−

∑
i∈I, ni=n−1

cimi(w
n−1). (8.17)

Using again multi-linearity of the body monomials m′i and continuity (of linear maps
in the p-adic topology), we can extract π , and applying (8.16) the first sum becomes

π
∑
i∈J

n−1∑
j=0

dim
′

i(w
j , b, wn−1−j ) = π

∑
i∈J

n−1∑
j=0

cimi(w
j , b, wn−1−j ).

We next want to fix the appropriate choice of b ∈ P and π ∈ R̂. For this we consider
the function

ψ : B[w]→ B[w], x 7→
∑
i∈J

n−1∑
j=0

cimi(w
j , x, wn−1−j ).

Observe that ψ depends only on the representation of wϕ in (8.12), but is independent
of b, π, vϕ and (8.13). Moreover, ψ(x) is defined by a B[w]-term over the free τR-body
B[w] which is linear and homogeneous in x. Thus by multi-linearity ψ is an R-module
endomorphism of B[w], and from Theorems 6.5 and 3.5 we can write ψ(x) = x ∗ g for
some g ∈ B[w]. Next observe that by our reduced representation (8.12),

ψ(w) = n
∑
i∈J

cimi(w
n) 6= 0 for w ∈ P̂ .

Thus ψ is not the zero endomorphism and in particular there is b ∈ P ⊆ B[w] such
that ψ(b) = b ∗ g 6= 0. Moreover, b ∗ g ∈ B[w], and RB[w] is a free R-module by
Proposition 8.6, thus cotorsion-free, and R̂(b ∗ g) * B[w]. Hence we also find π ∈ R̂
such that π(b ∗ g) /∈ B[w]. But from (8.17) we derive

π(b ∗ g) = πψ(b) =
∑

i∈I, ni=n−1

cimi(w
n−1)−

∑
i∈I ′, n′i=n−1

dim
′

i(w
n−1) ∈ B[w],

which is a contradiction. It remains to consider
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Case n, n′ ≤ 1: According to the previous case this restriction on the representations
(8.12), (8.13) holds for every b ∈ P and π ∈ R̂. The equations now become much
simpler; we have for (8.12) the new expression

pNwϕ =
∑

i∈I, ni=1

cimi(w)+
∑

i∈I, ni=0

cimi ∈ B[w] in reduced form. (8.18)

Here the second sum does not involve a generator w and therefore is an element of B
while the first sum has only body monomials with exactly one occurrence of w. We now
consider the function

ψ : B→ B, x 7→
∑

i∈I,ni=1

cimi(x),

and a similar argument to that in Case n′ > 1 applies. We can write ψ(x) = x ∗ g for
some g ∈ B. As ψ extends to B̂Y , by continuity also ψ(w) = w ∗ g and we can write
(8.18) as

pNwϕ = w ∗ g + c for some c, g ∈ B. (8.19)

Now by assumption of the lemma, (pNϕ − ∗g) 6≡ 0 and we can choose b ∈ P with
0 6= b(pNϕ−∗g) = pNbϕ−b∗g ∈ B. Furthermore, the R-module RB∗ is cotorsion-free
by Lemma 8.9 and there is some π ∈ R̂ with

π(pNbϕ − b ∗ g) /∈ B∗. (8.20)

This will be our fixed choice of b ∈ P and π ∈ R̂. Similarly to (8.19) equation (8.13)
becomes

pN
′

(πb + w)ϕ = (πb + w) ∗ g′ + c′ for some c′, g′ ∈ B and N ′ < ω. (8.21)

From (8.19) and (8.21) we derive the difference

pN+N
′

πbϕ = pN+N
′

(πb + w)ϕ − pN+N
′

wϕ

= pN ((πb + w) ∗ g′ + c′)− pN
′

(w ∗ g + c)

= π(b ∗ pNg′)+ w ∗ (pNg′ − pN
′

g)+ pNc′ − pN
′

c,

thus
w ∗ (pNg′ − pN

′

g) = π(pN+N
′

bϕ − b ∗ pNg′)+ pN
′

c − pNc′ ∈ 〈B〉R̂.

Again we use Notation 8.7 to compare components and conclude pNg′ = pN
′

g from the
left-hand side of the last equation. It follows that

pN
′

π(pNbϕ − b ∗ g) = π(pN+N
′

bϕ − b ∗ pNg′) = pNc′ − pN
′

c ∈ B

and π(pNbϕ − b ∗ g) ∈ B∗, contradicting (8.20). ut

We formulate the Step Lemma for the diamond construction of the next section as a
direct consequence of Step Lemma 8.10 applied to the special notations of the diamond
construction.
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Step Lemma 8.11. Let R be a cotorsion-free commutative ring with 1, Bn := BYn (n ≤
ω + 1) be as in Proposition 8.2 and ϕ ∈ EndR Bω be such that (pNϕ − ∗g)�B0 6≡ 0 for
all N < ω and g ∈ Bω. Then we can choose π ∈ R̂ and b ∈ B0 such that vϕ /∈ Bω+1 =

Bω[v]∗ ⊆ B̂ω for v = πb + w as in (8.1).

We will apply the next simple proposition to both the diamond construction (Section 9)
and the Black Box construction (Section 10) of generalized E(R)-algebras. Thus its set-
ting must be adjusted to either case by

Definition 8.12. Let B be a τR-body and let ϕ ∈ EndR B be an R-module homomor-
phism. A family P of subbodies of B is useful for ϕ if the following conditions hold:

(i)
⋃
P∈P P = B.

(ii) P is (upwards) directed, i.e. for any P, P ′ ∈ P there is P ′′ ∈ P with P ∪ P ′ ⊆ P ′′.
(iii) The ∗-scalar product is faithful on B as witnessed by the action on every P ∈ P ,

i.e. for every pair of distinct elements a, b ∈ B and P ∈ P there is c ∈ P such that
c ∗ a 6= c ∗ b.

(iv) For every P ∈ P there are N < ω and gP ∈ B such that P(pNϕ − ∗gP ) = 0.

Proposition 8.13. Let B be a τR-body such that RB is torsion-free, let ϕ ∈ EndR B andP
be a useful family for ϕ. Then there are (uniform) N < ω and g ∈ B such that pNϕ = ∗g .

Proof. We apply Definition 8.12. If P, P ′ ∈ P , then we can choose P ′′ ∈ P with
P ∪ P ′ ⊆ P ′′ and note by condition (iv) that there are N,N ′, N ′′ < ω and elements
gP , gP ′ , gP ′′ ∈ B such that

P(pNϕ − ∗gP ) = P
′(pN

′

ϕ − ∗gP ′ ) = P
′′(pN

′′

ϕ − ∗gP ′′ ) = 0. (8.22)

From (8.22) it follows that x ∗ pN
′′

gP = p
N+N ′′xϕ = x ∗ pNgP ′′ for all x ∈ P ⊆ P ′′.

Thus pN
′′

gP = p
NgP ′′ by condition (iii) and we may assume N = N ′′ and gP = gP ′′ .

Applying the same argument for x ∈ P ′ ⊆ P ′′ shows that we can choose N = N ′′ = N ′

and gP = gP ′′ = gP ′ uniformly. ut

9. The main construction using the diamond principle

We will next construct the κ-filtration
⋃
α<κ Bα of free τR-bodies for application using

♦κE for some non-reflecting stationary subset E ⊆ κo = {α < κ | cf(α) = ω}.

9.1. Construction of a κ-filtration of free bodies

The desired body B will be constructed as a κ-filtration B =
⋃
α<κ Bα of free τR-bodies

Bα of cardinality< κ . We choose this κ-filtration such that |Bα| = |α|+|R| = |Bα+1\Bα|
for all α < κ , and let {γα | α ∈ E} be the family of Jensen functions given by ♦κE.

Next we define the free bodies Bα by transfinite induction and let B0 := BY be a free
τR-body of rank |Y | = |R|. All subsequent bodies will be constructed according to the
following rules:

(i) If α < κ is a limit ordinal, then Bα =
⋃
β<α Bβ by continuity.
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(ii) Suppose that α ∈ E and there exists some strictly increasing sequence of ordinals
αn ∈ α \ E (n < ω) with supn<ω αn = α such that with Bn := Bαn (n < ω) the
hypotheses of Step Lemma 8.11 hold for

⋃
n<ω Bn and ϕ := γα . Then we choose a

suitable sequence yα as in (8.1) and identify Bα+1 with Bω+1 = Bα[vα]∗ ⊆ B̂α from
Step Lemma 8.11 (so γα does not extend to an R-module endomorphism of Bα+1).

(iii) Suppose α < κ is such that (ii) fails, and that Bα := BYα is a free τR-body with
basis Yα . Then we define Bα+1 := BYα∪{yα} as the free τR-body with some new free
variable yα .

Furthermore, the following conditions will hold for the constructed chain B =
⋃
α<κ Bα:

(iv) Bα is a free τR-body of rank |Bα| = |α| + |R| for all α < κ .
(v) Bα is a free τR-body over Bβ for all β ∈ α \ E (see Notation 8.1).

Next we must check by transfinite induction that conditions (iv) and (v) hold indeed.
We distinguish the case of limit ordinals α and of successor ordinals α + 1:

Let α + 1 be a successor ordinal. If (iii) applies for Bα , then (iv) and (v) are imme-
diate. If on the other hand (ii) applies, then Step Lemma 8.11 is designed to guarantee.
Condition (iv) is the freeness of Bω+1 in Proposition 8.2. Condition (v) needs that Bα+1
is a free body over Bβ . However, Bβ ⊆ Bαn for some large enough n < ω. Hence (v)
follows from the freeness of Bαn over Bβ (inductively) and the freeness of Bα+1 over Bαn
(Proposition 8.2).

Now let α be a limit ordinal. In this case we can choose a strictly increasing, contin-
uous sequence αν ∈ α \ E (ν < cf(α)) with supν<cf(α) αν = α. For cf(α) = ω this is
easily done by choosing only successor ordinals αν , while for cf(α) > ω we use the fact
that E is non-reflecting. Now Bα =

⋃
ν<cf(α) Bαν with the help of (iv) and (v) is a free

τR-body and free over Bβ .
Conditions (iv) and (v) in turn guarantee that the construction of the chain

⋃
α<κ Bα

follows exclusively the rules of (i) to (iii). Thus we can proceed and obtain B =
⋃
α<κ Bα ,

which is a κ-filtration of free τR-bodies. ut

It remains to show that RB has only the desired R-module endomorphisms.

9.2. Proof of the main theorem with ♦κE

Main Lemma 9.1. Let |R| < κ be a regular, uncountable cardinal with ♦κE for a non-
reflecting stationary subset E ⊆ κo. Moreover, let B =

⋃
α<κ Bα be the κ-filtration of

free τR-bodies Bα just constructed and define A := (B,+, ·) as the R-algebra structure
of the τR-body B. Then A is a strongly κ-free, non-commutative R-algebra of cardinality
|A| = κ and for every ϕ ∈ EndR A there is a unique g ∈ A such that xϕ = x ∗ g for all
x ∈ A.

Proof. By conditions (iv) and (v) of the construction, A is a strongly κ-free R-module of
cardinality κ (see Definition 1.2) and a non-commutative R-algebra (see Proposition 7.1).

For the last part of the claim let {γα | α ∈ E} be the set of Jensen functions given
by ♦κE. If ϕ ∈ EndR A, then C = {α < κ | Bαϕ ⊆ Bα} is a cub and Eϕ = {α ∈ E |
ϕ�Bα = γα} ∩ C is a stationary subset of E.
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In the first case we assume that there exist α < κ and α < β ∈ Eϕ with
(pNϕ − ∗g)�Bα 6≡ 0 for all N < ω and g ∈ Bβ . Then Step Lemma 8.11 applies (any
strictly increasing sequence of ordinals βn ∈ β \ E (n < ω) with supn<ω βn = β and
α < β0 will do) and vβϕ /∈ Bβ+1 by construction step (ii). But (v) implies that any Bγ
(β < γ ) is a free body over Bβ+1, thus Bβ+1 ⊆ B is the p-adic closure of Bβ in B and
therefore vβϕ ∈ B ∩ B̂β ⊆ Bβ+1, a contradiction.

Now, in the opposite case we may assume that for any α < κ there are N < ω and
gα ∈ B such that Bα(pNϕ − ∗gα ) = 0. The family P := {Bα | α < κ} constitutes an
ascending chain of free τR-bodies and with Remark 6.6 and (v) the ∗-scalar product is
faithful on B =

⋃
α<κ Bα as observed by the action on every body basis Yα of Bα for

α ∈ κ \ E; thus P is directed and useful for ϕ (in the sense of Definition 8.12) and we
can apply Proposition 8.13 to find a uniform N < ω and g′ ∈ B with pNϕ = ∗g′ .

For the last step of the proof we apply similar arguments to those for Theorem 6.5:
Choosing α < κ with g′ ∈ Bα , some body basis Yα of Bα and a generator y ∈ Yα that
is not involved in the reduced representation of g′ with respect to Yα we can show that
pN | y ∗ g′ implies pN | g′ in Bα . Thus there is g ∈ B with pNg = g′, and ϕ = ∗g
follows. ut

The final step of the proof of Theorem 1.4 is given in the introduction (Section 1).

10. The main construction in ZFC

10.1. The adjusted Black Box

In order to prove Theorem 1.5 about the existence of generalized E(R)-algebras in ZFC,
we need a prediction principle which is based on the ordinary axioms of set theory, but
nothing else. The obvious candidate is a version of the Black Box, adjusted to the present
setting. Hence we only have to explain its basic definitions. Its proof will then be an easy
modification of the arguments in Göbel and Trlifaj [20, The General Black Box 9.2.27,
pp. 340–351].

In this section we will outline these definitions of the Black Box and discuss those
minor modifications relevant in the present setting starting with the used trees.

For any non-empty set U we define the canonical tree TU = {τ : n → U, n < ω}

on U and let Br(TU ) = {τ : ω → U}. The ordering on TU is extension of maps. The
element τ ∈ TU (τ : n→ U ) has length l(τ ) := n and the set {τ�n : n ≤ l(τ )} of initial
segments of τ is called the finite branch induced by τ . Similarly, for any f ∈ Br(TU )
the set {f �n : n < ω} ⊆ TU is the infinite branch induced by f . We do not distinguish
between τ ∈ TU (f ∈ Br(TU )) and its induced branch. A non-empty subset of TU is a
subtree of TU if it is closed under taking initial segments. If V is another non-empty set,
then the product U ′ × V ′ of subtrees U ′ ⊆ TU , V ′ ⊆ TV is naturally given by

{τ : n→ U × V | τ(m) = (τ1(m), τ2(m)) for m < n,

τ1 ∈ U
′, τ2 ∈ V

′, l(τ1) = l(τ2) = n}.
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Let κ be an uncountable cardinal with κℵ0 = κ . We now consider the product T :=
Tℵ1×κ of the two trees Tℵ1 and Tκ . Following [20], the first subtree Tℵ1 is reserved for the
norm on T :

‖τ‖ = sup
i<l(τ )

τ1(i) ∈ ℵ1 for any τ = (τ1, τ2) ∈ T .

This norm extends naturally to countable subsets X ⊆ T by ‖X‖ = supτ∈X ‖τ‖ < ℵ1.
In particular, ‖f ‖ < ℵ1 for any branch f ∈ Br(T ) (remember f ⊆ T ); and we call f a
stretched branch if ‖f �n‖ < ‖f �(n+ 1)‖ for all n < ω.

Next we define the basic τR-body B for constructing the final generalized E(R)-
algebras; compare [20, p. 324 ff.]:

Let Y := T = {yτµ | τ ∈ T , µ < ω} be a family of variables and choose B := BY as
the induced free τR-body. We will also consider the p-adic completion B̂ and define for
b ∈ B̂ the T -support [[b]] ⊆ T as the set

[[b]] =
⋂
{S ⊆ T | b ∈ B̂S ⊆ B̂} with S = {yτµ | τ ∈ S,µ < ω} ⊆ Y

and a more refined Y -support [b] ⊆ Y ,

[b] =
⋂
{S ⊆ Y | b ∈ B̂S ⊆ B̂}.

Note here that BS (S ⊆ Y ) and BS (S ⊆ T ) are defined for non-empty sets S as the
canonically induced free subbodies of BY , while in the special case of empty sets we
define

M∅ = {tY = (t, f t) ∈ MY | P
t
4 = ∅} ⊆ MY

as the canonical τ -subskeleton of all “color-free” Y -colored trees in MY and

B∅ := B
∅

:= LinRM∅ ⊆ BY .

Furthermore, for every b ∈ B̂ the supports [[b]] ⊆ T , [b] ⊆ [[b]] ⊆ Y are at most
countable with b ∈ B̂[b] ⊆ B̂[[b]]. We state the following simple support lemma.

Lemma 10.1. For the Y -support (and similarly for the T -support) the following holds.

(a) [rb] ⊆ [b] for all r ∈ R̂ and b ∈ B̂.
(b) [b1 + b2] ⊆ [b1] ∪ [b2] for all b1, b2 ∈ B̂. Furthermore, [b1 + b2] = [b1] ∪ [b2] for

[b1] ∩ [b2] = ∅.
(c) [b1 ∗ b2] ⊆ [b1] ∪ [b2] and [b1 · b2] ⊆ [b1] ∪ [b2] for all b1, b2 ∈ B̂.

The support extends naturally to countable subsetsX (and also to their generated subbod-
ies 〈X〉 ⊆ B̂) by [X] =

⋃
x∈X[x] and [[X]] =

⋃
x∈X[[x]]; moreover, ‖X‖ := ‖[[X]]‖

also extends naturally. Following [20] we finally define traps of the Black Box.

Definition 10.2. A pair p = (f, ϕ) is called a trap if the following conditions hold:

(i) f : ω→ ℵ1 × κ is a stretched branch of the tree Tℵ1×κ .
(ii) ϕ : P → P̂ is an R-module endomorphism with P := BS for some countable

S ⊆ Y .
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(iii) [[P ]] ⊆ T is a subtree with f ⊆ [[P ]].
(iv) S = [[P ]] and ‖x‖ < ‖P ‖ for all x ∈ P .
(v) ‖p‖ := ‖f ‖ = ‖P ‖ ∈ ℵo1, where ℵo1 = {α < ℵ1 | cf(α) = ω} = ℵ1 ∩ LORD.

We are now ready to state the Black Box (Theorem) which is only slightly different from
[20, The General Black Box 9.2.27].

The Black Box 10.3. Let κ be an uncountable cardinal with κℵ0 = κ . Moreover, let the
tree T and the τR-body B = BY be as just defined. Then there exist an ordinal κ∗ < κ+

and a list of traps pα = (fα, ϕα) (α < κ∗)with the following properties for all α, β < κ∗:

(i) If β ≤ α, then ‖pβ‖ ≤ ‖pα‖.
(ii) If α 6= β, then |fα ∩ fβ | < ℵ0.

(iii) If β + 2ℵ0 ≤ α, then |fα ∩ [[Pβ ]]| < ℵ0.
(iv) If X ⊆ B̂ is a countable subset and ϕ ∈ End B̂, then there is an α < κ∗ such that the

trap pα catches X and ϕ, i.e. the following holds:

(a) X ⊆ Pα := Domϕα .
(b) ‖X‖ < ‖pα‖.
(c) ϕ�Pα = ϕα .

The proof is similar to the proof of the General Black Box 9.2.27 in [20]. ut

We are now in a position to construct the τR-body B for Theorem 1.5 using the Black
Box 10.3.

10.2. Construction of an ascending chain of bodies

Given Y = T = {yτµ | τ ∈ T , µ < ω} and B = BY as in the Black Box 10.3, we want
to define the desired τR-body B ⊆ B ⊆ B̂ as continuous ascending chain B = Bκ∗ =⋃
α≤κ∗ Bα by transfinite induction on α ≤ κ∗ and begin with B0 := B. By continuity of

this chain we let Bα =
⋃
β<α Bβ for limit ordinals α ≤ κ∗, and if Bα (α < κ∗) is given,

then we will define Bα+1 = Bα[vα]∗ ⊆ B̂. In fact, we will express vα = παbα +wα as in
(8.1) for suitable elements

πα ∈ R̂, bα ∈ Pα and wα =
∑
k<ω p

kyαk with yαk := yfα�(k+1),eα(k) ∈ Y

for some map eα : ω→ ω,

and we set yα = {y
α
n | n < ω}. Thus wα ∈ P̂α by Definition 10.2, and by continuity the

R-module homomorphism ϕα is well-defined on vα ∈ P̂α . Furthermore, bα ∈ Pα ⊆ B,
and property (ii) of the Black Box guarantees (8.5). Thus, equipping Y with some well-
ordering respecting the norm on T we can use the notations of the Black Box from Sec-
tion 8.

As a direct consequence of Lemmas 8.5 and 8.9 and without any further specific
knowledge about the elements vα we can summarize the following general algebraic prop-
erties.
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Lemma 10.4. For Bα (α ≤ κ∗) defined as above the following holds.

(a)
⋃
α≤κ∗ Bα is a strictly ascending continuous chain of subbodies B ⊆ Bα ⊆ B̂.

(b) Bα = B[vβ | β < α]∗ = B[vβi | β < α, i < ω] ⊆ B̂ for any α ≤ κ∗.
(c) RBα is an ℵ0-free R-module (and in particular cotorsion-free) for any α ≤ κ∗.

We next want to specify the elements vα (α < κ∗) we are going to use for Bα+1 =

Bα[vα]∗. To begin with we want to choose the map eα : ω→ ω such that the construction
of Bα at earlier stages will not be demolished by the new choice of vα . This is taken care of
by a lemma which is entirely based on support arguments, so it can be taken over verbatim
from earlier constructions of modules with prescribed endomorphism rings. For details
we refer to Corner and Göbel [4, Lemma 3.9, p. 457] (“there are no useless ordinals”).

Lemma 10.5. For some α < κ∗ let Bβ (β ≤ α) be as above. Then there exists a family
of functions eαγ : ω → ω (γ < 2ℵ0) such that for vαγ = παγ bαγ + wαγ (γ < 2ℵ0)

with arbitrary elements παγ ∈ R̂, bαγ ∈ Pα and wαγ =
∑
k<ω p

kyfα�(k+1),eαγ (k) the
following properties hold:

(i) The function eαγ is injective for any γ < 2ℵ0 .
(ii) If γ 6= γ ′, then |Im eαγ ∩ Im eαγ ′ | < ℵ0.

(iii) If γ 6= γ ′, then |[x] ∩ [wαγ ′ ]| < ℵ0 for any x ∈ Bα[vαγ ]∗ ⊆ B̂.
(iv) There exist γ 6= γ ′ with vβϕβ /∈ Bα[vαγ ]∗,Bα[vαγ ′ ]∗ for all β < α with vβϕβ /∈

Bβ+1.

Proof. We can choose the family of functions eαγ : ω → ω (γ < 2ℵ0) independent of
the chain

⋃
β≤α Bβ . For (i) and (ii) we only have to observe that Br(Tω) is interpretable

as a family of almost disjoint subsets of Tω with |Tω| = ℵ0 and |Br(Tω)| = 2ℵ0 . An easy
support argument similar to Section 8 shows (iii).

Finally, (iv) is immediate for ordinals β + 2ℵ0 ≤ α by claim (iii) of the Black Box
while for the remaining ordinals β we can apply

Bα[vαγ ]∗ ∩ Bα[vαγ ′ ]∗ = Bα (γ 6= γ ′)

and a simple pigeonhole argument as in [4, Lemma 3.9, p. 457]. ut

We now want to choose vα = παbα + wα (α < κ∗) such that Step Lemma 8.10 holds
for vα and ϕα (α ∈ I ). At the same time we define the set I = Iκ∗ =

⋃
α≤κ∗ Iα ⊆ κ∗

recursively as a continuous ascending chain of subsets Iα ⊆ α and a family of auxiliary
elements w′α ∈ P̂α (α < κ∗) for subsequent support arguments. By continuity we set
Iα =

⋃
β<α Iβ for all limit ordinals α ≤ κ∗ and in the case of successor ordinals we

distinguish the following two cases:

(I) If Pα(pNϕα − ∗g) = 0 for some N < ω and g ∈ Bα , we set παγ = bαγ = 0 for
every map eαγ (γ < 2ℵ0) from Lemma 10.5. Here we define Iα+1 := Iα , vα := vαγ ,
w′α := wαγ ′ and Bα+1 = Bα[vα]∗ for ordinals γ, γ ′ < 2ℵ0 according to condition
(iv) of Lemma 10.5.
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(II) If otherwise (pNϕα − ∗g)�Pα 6≡ 0 for all N < ω and g ∈ Bα , then the hypotheses
of Step Lemma 8.10 hold and for every map eαγ (γ < 2ℵ0) from Lemma 10.5 there
are παγ ∈ R̂ and bαγ ∈ Pα such that vαγ ϕα /∈ Bα[vαγ ]∗ for vαγ = παγ bαγ + wαγ .
We now choose ordinals γ, γ ′ < 2ℵ0 according to condition (iv) of Lemma 10.5 and
set Iα+1 := Iα ∪ {α}, vα := vαγ , w′α := wαγ ′ and Bα+1 = Bα[vα]∗.

As an immediate consequence of this construction and Lemma 10.5 we add to Lem-
ma 10.4 the following

Lemma 10.6. For Bα (α ≤ κ∗) defined as above the following holds.

(a) vαϕα ∈ Bα+1 for any α /∈ I .
(b) vαϕα /∈ Bβ for any α ∈ I and β ≤ κ∗.
(c) [w′α] ⊆ Pα ∩ Y is a countable set for any α ≤ κ∗.
(d) |[x] ∩ [w′α]| < ℵ0 for any α, β ≤ κ∗ and x ∈ Bβ .

It remains to show that RB has only the desired R-module endomorphisms.

10.3. Proof of the Main Theorem with the General Black Box

Main Lemma 10.7. Let |R| ≤ κ be an uncountable cardinal with κℵ0 = κ . Moreover,
let B =

⋃
α≤κ∗ Bα be the ascending chain of τR-bodies Bα just constructed and define

A := (B,+, ·) as the R-algebra structure of the τR-body B. Then A is an ℵ0-free, non-
commutative R-algebra of cardinality |A| = κ and for every ϕ ∈ EndR A there is a
unique g ∈ A such that xϕ = x ∗ g for all x ∈ A.

Proof. Obviously A is an ℵ0-free R-module with κ = |B| ≤ |A| ≤ |B̂| = κℵ0 = κ by
Lemma 10.4, and a non-commutative R-algebra as B ⊆ A and by Proposition 7.1.

For the last claim let pα = (fα, ϕα) with Pα = Domϕα (α < κ∗) be the list of traps
given by the Black Box 10.3 and define for any ϕ ∈ EndR A the set J = {α < κ∗ |

ϕ�Pα = ϕα}.
If now construction case (II) applies for some α ∈ J , then α ∈ I and vαϕ = vαϕα /∈ B

follows from Lemma 10.6, contradicting ϕ ∈ EndR A. Thus for any α ∈ J there are
N < ω and gα ∈ B such that Pα(pNϕ − ∗gα ) = Pα(p

Nϕα − ∗gα ) = 0. Furthermore,
the family P := {Pα | α ∈ J } of free τR-bodies is upwards directed by condition (iv) of
the Black Box and with Remark 6.6 and Lemma 10.6 the ∗-scalar product is faithful on
B =

⋃
α∈J Pα as observed by the action on [w′α] ⊆ Pα; thus P is useful for ϕ (in the

sense of Definition 8.12) and we can apply Proposition 8.13 to find uniform N < ω and
g′ ∈ B with pNϕ = ∗g′ , and similar to Lemma 9.1 the existence of some g ∈ B with
ϕ = ∗g follows. ut

The final step of the proof of Theorem 1.5 is given in the introduction (Section 1).

10.4. Appendix: Rigid systems of generalized E(R)-algebras

We sketch the five steps for extending the existence of a non-commutative generalized
E(R)-algebra (Theorem 1.5) to the existence of a fully rigid system of them.
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(1) Let B be the τR-body and generalized E(R)-algebra constructed in Main Lem-
ma 10.7. Consider the set U = {α < κ∗ | α satisfies case (I) in Section 10.2}. We
note the trivial fact that |U| = κ . If U ⊆ U, then let U ] := (κ∗ \ U) ∪ U ⊆ κ∗ and
define by

BU := B[vβ | β ∈ U ]]∗ ⊆ B = BU

a family of 2|U| = 2κ τR-bodies.
(2) If U,V ⊆ U and ϕ ∈ HomR(BU ,BV ), then BUϕ ⊆ BV and arguments similar

to Main Lemma 10.7 apply, showing that ϕ = ∗g for some g ∈ B. From this we
even conclude that g ∈ BV ⊆ B with an easy test argument: If g /∈ BV , then
for any generator y ∈ Y \ [g] ⊆ BU we have yϕ = y ∗ g /∈ BV , contradicting
ϕ ∈ HomR(BU ,BV ).

(3) If U ⊆ V ⊆ U and ϕ ∈ HomR(BU ,BV ), then BU ⊆ BV and by (2) there is g ∈ BV
with ϕ = ∗g . Conversely, ∗g ∈ HomR(BU ,BV ) for any g ∈ BV . Thus

HomR(BU ,BV ) = B∗V := {∗g | g ∈ BV }.

In particular, EndR BU = B∗U ∼= BU for any U ⊆ U and BU is always a non-
commutative generalized E(R)-algebra.

(4) If U,V ⊆ U and U 6⊆ V , then we claim that

HomR(BU ,BV ) = 0.

Indeed, if 0 6= ϕ ∈ HomR(BU ,BV ), then by (2) there is 0 6= g ∈ BV with ϕ = ∗g .
We now choose any α ∈ U\V and the corresponding element vα = παbα+wα ∈ BU .
Then vαϕ = vα ∗ g /∈ BV , contradicting ϕ ∈ HomR(BU ,BV ).

(5) If we choose a maximal family Uα (α < 2κ) of pairwise incomparable subsets
Uα ⊆ U and put Bα := BUα , then HomR(Bα,Bβ) = B∗αδαβ for all α, β < 2κ .

Hence we derive the following

Corollary 10.8. Let R be a cotorsion-free commutative ring R with 1 and |R| ≤ κ be an
uncountable cardinal with κ = κℵ0 . Then there are a set U of cardinality |U| = κ and an
ℵ0-free (thus cotorsion-free), non-commutativeR-algebra B of cardinality |B| = κ with a
fully rigid family of 2κ subalgebras BU (U ⊆ U) which are non-commutative generalized
E(R)-algebras of cardinality κ , such that

HomR(BU ,BV ) =
{

B∗V if U ⊆ V ⊆ U,
0 if U 6⊆ V, U, V ⊆ U.

Moreover, BU ⊆ BV ⊆ B if U ⊆ V ⊆ U.
In particular, there is a rigid family Bα (α < 2κ) of maximal size 2κ of non-commutat-

ive generalized E(R)-algebras of cardinality κ such that

HomR(Bα,Bβ) = B∗αδαβ .
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[6] Dugas, M., Göbel, R.: Torsion-free nilpotent groups and E-modules. Arch. Math. (Basel) 54,
340–351 (1990) Zbl 0703.20033 MR 1042126

[7] Dugas, M., Mader, A., Vinsonhaler, C.: Large E-rings exist. J. Algebra 108 (1987), 88–101.
Zbl 0616.20026 MR 0887193

[8] Eklof, P., Mekler, A.: Almost Free Modules, Set-Theoretic Methods. Rev. ed., North-Holland,
Amsterdam (2002) Zbl 1054.20037 MR 1914985

[9] Feigelstock, S.: Additive Groups of Rings. Vol. I, Pitman Res. Notes in Math. 83, Pitman,
Boston (1983) Zbl 0504.20032 MR 0704506

[10] Feigelstock, S.: Additive Groups of Rings. Vol. II, Pitman Res. Notes in Math. 163, Longman,
Harlow (1988) Zbl 0647.20052 MR 0940015

[11] Feigelstock, S., Hausen, J., Raphael, R.: Abelian groups mapping onto their endomorphism
rings. In: Abelian Groups and Modules (Dublin, 1998), Trends in Math., Birkhäuser, Basel,
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