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Abstract. Our first objective in this paper is to give a natural formulation of the Christoffel prob-
lem for hypersurfaces in Hn+1, by means of the hyperbolic Gauss map and the notion of hyperbolic
curvature radii for hypersurfaces. Our second objective is to provide an explicit equivalence of this
Christoffel problem with the famous problem of prescribing scalar curvature on Sn for conformal
metrics, posed by Nirenberg and Kazdan–Warner. This construction lets us translate into the hyper-
bolic setting the known results for the scalar curvature problem, and also provides a hypersurface
theory interpretation of such an intrinsic problem from conformal geometry. Our third objective is
to place the above result in a more general framework. Specifically, we will show how the problem
of prescribing the hyperbolic Gauss map and a given function of the hyperbolic curvature radii in
Hn+1 is strongly related to some important problems on conformally invariant PDEs in terms of the
Schouten tensor. This provides a bridge between the theory of conformal metrics on Sn and the the-
ory of hypersurfaces with prescribed hyperbolic Gauss map in Hn+1. The fourth objective is to use
the above correspondence to prove that for a wide family of Weingarten functionalsW(κ1, . . . , κn),
the only compact immersed hypersurfaces in Hn+1 on whichW is constant are round spheres.

Keywords. Christoffel problem, Nirenberg problem, Kazdan–Warner conditions, Schouten tensor,
hyperbolic Gauss map, Weingarten hypersurfaces

1. Introduction

Some of the most interesting problems in the theory of geometric PDEs come from the
following classical question: given a diffeomorphismG : Sn→ Sn and a smooth function
F : Sn → R, can one find a (necessarily strictly convex) hypersurface f : Sn →
Rn+1 with Gauss mapG and with F as a prescribed function of its principal curvatures?
Possibly the oldest particular case of this problem is the famous Christoffel problem [Chr]
that prescribes F as the mean of the curvature radii of the hypersurface:

F =
1
n

n∑
i=1

Ri, Ri :=
1
κi
, (1.1)
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where κ1, . . . , κn are the principal curvatures of the hypersurface. The Christoffel prob-
lem was classically solved in [Fi1, Fi2].

It is very natural to ask for the extension of the Christoffel problem to space forms.
But surprisingly, even though many interesting contributions on hypersurfaces with pre-
scribed Weingarten curvatures in space forms have been made in the past, a satisfactory
development of the Christoffel problem in Sn+1 or Hn+1 remains unknown. The reason
for that seems to be, as Oliker [Ol1] points out, that the classical Gauss map is not avail-
able on those spaces. Indeed, the unit normal takes its values in the unit tangent bundle
of the space form, no longer identified with Sn, which makes it unexpectedly subtle even
how to formulate the Christoffel problem in Sn+1 or Hn+1.

Our first goal in this paper is to show that the Christoffel problem can be naturally
formulated in the context of hypersurfaces Mn

⊂ Hn+1 in the hyperbolic space. For
that we substitute the Euclidean Gauss map by the hyperbolic Gauss map G : Mn

→

Sn, which is widely accepted among specialists in hyperbolic geometry to be the right
analogue of the classical Gauss map. In addition, the inverses of the principal curvatures
ofMn

⊂ Hn+1 do not serve anymore as curvature radii in this context. We will overcome
this difficulty by introducing the hyperbolic curvature radii of Mn

⊂ Hn+1, defined as
Ri := 1/|1 − κi |, and they will be shown to play the role in Hn+1 of the Euclidean
curvature radii from several different perspectives.

The second objective of the paper is to provide a geometric back-and-forth procedure
which shows that the Christoffel problem in Hn+1 is essentially equivalent to a famous
problem from the theory of geometric PDEs, namely, the Nirenberg problem (or Kazdan–
Warner problem) of prescribing scalar curvature in Sn: given a map S : Sn → R, does
there exist a metric g = e2ρg0 conformal to the standard metric g0 of Sn, and whose
scalar curvature function is given by S? Equivalently, this problem is to find functions S
on Sn for which the non-linear elliptic PDE

−1g0ρ + 1 =
e2ρ

2
S(x) if n = 2,

−1g0u+
n(n− 2)

4
u =

n− 2
4(n− 1)

S(x)u
n+2
n−2 if n > 2, u4/(n−2)

=: e2ρ,

(1.2)

admits a solution globally defined on Sn.
The Nirenberg–Kazdan–Warner problem (Nirenberg problem for short from now on)

has gained an impressive number of contributions over the last 30 years. As a result,
researchers on geometric PDEs have clarified to a large extent which smooth functions
on Sn arise as the scalar curvature functions of conformal metrics. We may cite [AM,
BC, BE, Cha, CY1, CY2, CLi1, CLi2, CLn, ES, KW1, KW2, L1, L2, Mo] to name
just a few of these works (see the survey [L6] for more details). However, a complete
characterization of scalar curvature functions on Sn is still unknown.

The back-and-forth construction that we develop here will let us translate all these re-
sults on the Nirenberg problem into results for the Christoffel problem in Hn+1. And con-
versely, our construction also provides a hypersurface theory interpretation of an abstract
problem of conformal geometry such as the Nirenberg problem. This is not an immediate
fact, since the conformal flatness of solutions to the Nirenberg problem is rarely satisfied
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by the induced metric of a hypersurface in a model space. Moreover, a remarkable con-
sequence of (1.2) is that the Christoffel problem in Hn+1 cannot be reduced to a linear
PDE, in contrast with the classical problem in Rn+1.

The third objective of the paper is to analyze the scope of the previous construction.
For that, we will consider the generalized Christoffel problem in Hn+1, in which we pre-
scribe the hyperbolic Gauss map and a given functional of the hyperbolic curvature radii
of a compact surface Mn

⊂ Hn+1, not just its mean. Problems of this nature for con-
vex hypersurfaces in Rn+1 have been intensively studied: see [GMa, GLM, GMZ] and
references therein. Again, we will show that this question in Hn+1 is tightly linked to an
important problem from the theory of geometric PDEs that we describe next.

Recall first of all that on a Riemannian manifold (Mn, g), n > 2, one has the following
decomposition:

Riem = Wg + Schg � g,

where Riem is the Riemann curvature tensor, Wg is the Weyl tensor, � is the Kulkarni–
Nomizu product, and

Schg :=
1

n− 2

(
Ricg −

S(g)

2(n− 1)
g

)
is the Schouten tensor. As the Weyl tensor is conformally invariant, the above decomposi-
tion reveals that the Schouten tensor encodes all the information on how curvature varies
under a conformal change of metric. For this reason the Schouten tensor is the main ob-
ject of study in conformal geometry. It is also remarkable that Wg vanishes identically
in case (Mn, g) is locally conformally flat, which is the situation of the present paper.
The eigenvalues of Schg are defined as the eigenvalues of the symmetric endomorphism
g−1Schg obtained by raising an index to Schg .

We will show that the generalized Christoffel problem is equivalent to the problem of
prescribing a functional of the eigenvalues of the Schouten tensor for conformal metrics
g = e2ρg0 on Sn, under the regularity condition that g − 2Schg is positive definite. An
equivalent version of this regularity condition appeared in [Sc] in connection with the
existence of hypersurfaces in Hn+1 with a given horospherical metric, but was not linked
there to the Schouten tensor of g.

A remarkable consequence of this equivalence is that the theory of locally conformally
flat Riemannian manifolds can be identified to a large extent with the local theory of hy-
persurfaces in Hn+1 with prescribed regular hyperbolic Gauss map. This fact yields a new
way of applying methods from geometric PDEs to investigate hypersurfaces in Hn+1, but
is also of great interest in the opposite direction: on the one hand, the above equivalence
motivates new problems for conformally invariant PDEs that are very interesting from
the viewpoint of hypersurfaces in Hn+1, although they do not appear so naturally in con-
formal geometry. And on the other hand, the hypersurface theory interpretation reveals
non-trivial superposition principles via which one may obtain new solutions to a geomet-
ric PDE starting from a previously known one (in the spirit of Bäcklund transformations,
for instance). An example of this use is given in Theorem 35.
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Finally, the fourth objective of the paper is to give a more concrete application of
the general correspondence between compact hypersurfaces in Hn+1 with regular hy-
perbolic Gauss map and conformal metrics on Sn. Specifically, we will prove the exis-
tence of a wide family of smooth functions W(x1, . . . , xn) with the following property:
if Mn

⊂ Hn+1 is an immersed compact hypersurface whose principal curvatures satisfy
W(κ1, . . . , κn) = 1, then Mn is a totally umbilical round sphere. This will follow from a
deep theorem in [LL1] and the above correspondence.

The above result constitutes a relevant advance in what refers to sphere theorems for
Weingarten hypersurfaces, since: (a) we are not assuming a priori that the hypersurfaces
are embedded, and (b) the family of Weingarten functionalsW(x1, . . . , xn) for which the
result holds is extremely large, i.e. it is not just a specific Weingarten relation. We shall
also prove a similar classification theorem for horospheres among Weingarten hypersur-
faces in Hn+1 with one regular end.

The paper is organized as follows. Section 2 will review the hyperbolic Gauss map
for hypersurfaces Mn

⊂ Hn+1 and its relation to tangent horospheres. We will introduce
horospherical ovaloids as compact hypersurfaces with regular hyperbolic Gauss map and
analyze their properties, especially regarding the horospherical metric induced on the hy-
persurface via its associated space of tangent horospheres. Section 3 analyzes the possible
formulations of the Christoffel problem in Hn+1. We will show that this problem is natu-
rally formulated in the class of horospherical ovaloids, and that this leads to the notion of
hyperbolic curvature radiiRi := 1/|1− κi |, in terms of which the Christoffel problem in
Hn+1 is satisfactorily formulated. These two preliminary sections constitute an important
part of the paper, because they discuss in great detail why the problem we are considering
here seems to be the most natural formulation of the Christoffel problem in Hn+1.

In Section 4 we will prove that the Nirenberg problem on Sn (modulo dilations) is
equivalent to the Christoffel problem in Hn+1 (modulo parallel translations). This equiv-
alence is made explicit by means of a representation formula for hypersurfaces in terms
of the hyperbolic Gauss map and the horospherical support function, and shows how to
translate into the Christoffel problem the known results for the Nirenberg one.

In Section 5 we generalize the above result, by showing that the generalized Christof-
fel problem in Hn+1 is equivalent to the problem of prescribing a given function of the
eigenvalues of the Schouten tensor for conformal metrics on Sn. Some applications of
this relationship are explored, in particular regarding problems involving the elementary
symmetric functions. In Section 6 we shall prove the above explained characterization
of round spheres and horospheres in Hn+1 among a very general class of Weingarten
hypersurfaces. At the very end of the paper, we will take the inverse approach and use
hypersurface theory in Hn+1 to prove: (1) an inversion formula for the eigenvalues of
Schg on an arbitrary locally conformally flat manifold (Mn, g), and (2) a characterization
of constant curvature metrics on S2 by the eigenvalues of the 2-dimensional analogue of
the Schouten tensor.

From a conceptual viewpoint, this paper investigates hypersurfaces in Hn+1 by an-
alyzing the local variation of their tangent horospheres, thus bifurcating from the usual
perspective in which the variation of tangent hyperplanes is considered. This approach
appears in other works [Ep1, Ep2, Ep3, Sc, FR, GMM, GM], but always from different
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perspectives. In particular, topics such as the Nirenberg problem or the Schouten tensor
have not been linked to hypersurface theory in Hn+1 before.

2. The hyperbolic Gauss map

In this preliminary section we study the hypersurfaces in Hn+1 with regular hyperbolic
Gauss map in terms of their principal curvatures and their tangent horospheres.

Horospheres and the hyperbolic Gauss map

Let Hn+1 denote the (n + 1)-dimensional hyperbolic space of constant curvature −1,
and let Sn∞ = ∂∞Hn+1 denote its ideal boundary. In what follows, horospheres of Hn+1

play a central role. These hypersurfaces are easily visualized in the Poincaré ball model
(Bn+1, ds2) for Hn+1, where, as usual, Bn+1

= {x ∈ Rn+1 : ‖x‖ < 1}. In this model,
horospheres correspond to the n-spheres that are tangent at one point to the sphere at
infinity Sn∞. In this way, two horospheres are always congruent, and they are at a constant
distance if their respective points at infinity coincide. In addition, given a point p ∈ Sn∞,
the horospheres having p as their point at infinity provide a foliation of Hn+1.

From a hypersurface theory viewpoint, horospheres are flat totally umbilical hyper-
surfaces in Hn+1, and they are complete and embedded.

All of this suggests that horospheres can be naturally regarded in many ways as hy-
perplanes in the hyperbolic space Hn+1, even though they are not totally geodesic.

Definition 1 ([Ep1, Ep2, Br]). Let φ : Mn
→ Hn+1 denote an immersed oriented hy-

persurface in Hn+1 with unit normal η. The hyperbolic Gauss map

G : Mn
→ Sn∞ ≡ Sn

of φ is defined as follows: for every p ∈ Mn, G(p) ∈ Sn∞ is the point at infinity of
the unique horosphere in Hn+1 passing through φ(p) and whose inner unit normal at p
coincides with η(p).

Let us point out here that horospheres are globally convex, which allows us to talk about
the inner orientation of a horosphere, meaning simply that the unit normal points to the
convex side of the horosphere. With respect to this orientation, the second fundamen-
tal form of the horosphere is positive definite. Moreover, it turns out that inner oriented
horospheres are the only hypersurfaces in Hn+1 with constant hyperbolic Gauss map.

There is an equivalent definition: the hyperbolic Gauss map G : Mn
→ Sn∞ ≡ Sn

of Mn sends each p ∈ Mn to the point G(p) at the ideal boundary Sn∞ reached by the
unique geodesic γ of Hn+1 that starts at φ(p) with initial speed η(p).

The hyperbolic Gauss map is an analogue in the hyperbolic space of the classical
Gauss map for hypersurfaces of Rn+1, especially if we want tangent horospheres, as we
do here, to play the role of tangent hyperplanes in the Euclidean theory. It must however
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be remarked that the a priori chosen orientation for the hypersurface matters for the hy-
perbolic Gauss map. Indeed, if we change the orientation of Mn, then G turns into the
negative hyperbolic Gauss map G− : Mn

→ Sn, whose behaviour is totally different
from that of G.

Regularity of the hyperbolic Gauss map

We shall work in the Minkowski model of Hn+1. For that, consider the Minkowski space
Ln+2 with canonical coordinates (x0, . . . , xn+1) and the Lorentzian metric

〈 , 〉 = −dx2
0 +

n+1∑
i=1

dx2
i .

The hyperbolic space is then realized in this model as the hyperquadric

Hn+1
= {x ∈ Ln+2 : 〈x, x〉 = −1, x0 > 0}.

In the same way, the de Sitter (n+ 1)-space and the light cone are given, respectively, by

Sn+1
1 = {x ∈ Ln+2 : 〈x, x〉 = 1}, Nn+1

+ = {x ∈ Ln+2 : 〈x, x〉 = 0, x0 > 0}.

Let φ : Mn
→ Hn+1 be an immersed oriented hypersurface, and let η : Mn

→ Sn+1
1

denote its unit normal. Then we can define a normal map associated to φ, taking values
in the light cone, as

ψ = φ + η : Mn
→ Nn+1

+ . (2.1)

The map ψ is strongly related to the hyperbolic Gauss map G : Mn
→ Sn∞ of φ. Indeed,

the ideal boundary of Nn+1
+ coincides with Sn∞, and can be identified with the projective

quotient space Nn+1
+ /R+. So, altogether, we have G = [ψ] : Mn

→ Sn∞ ≡ Nn+1
+ /R+.

Moreover, if we write ψ = (ψ0, . . . , ψn+1), then we may interpret G as the map
G : Mn

→ Sn given by

G =
1
ψ0
(ψ1, . . . , ψn+1). (2.2)

In this way, if we label eρ := ψ0, we get the useful relation

ψ = eρ(1,G) : Mn
→ Nn+1

+ . (2.3)

Observe also that, by differentiating (2.3),

〈dψ, dψ〉 = e2ρ
〈dG, dG〉Sn . (2.4)

We thus introduce the following terminology, in analogy with the Euclidean setting.

Definition 2. The smooth function eρ : Mn
→ R will be called the horospherical support

function, or just the support function, of the hypersurface φ : Mn
→ Hn+1.
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Moreover, if {e1, . . . , en} denotes an orthonormal basis of principal directions of φ at p,
and if κ1, . . . , κn are the associated principal curvatures, it is immediate that

〈dψ(ei), dψ(ej )〉 = (1− κi)2δij . (2.5)

Thus we have:

Lemma 3. Let φ : Mn
→ Hn+1 be an oriented hypersurface. The following conditions

are equivalent at p ∈ Mn.

(i) The hyperbolic Gauss map G is a local diffeomorphism.
(ii) The associated light cone map ψ in (2.1) is regular.

(iii) All principal curvatures of Mn are 6= 1.

The regularity of the hyperbolic Gauss map gives rise to a notion of convexity specific to
the hyperbolic setting, and weaker than the usual geodesic convexity notion:

Definition 4 ([Sc]). LetMn
⊂ Hn+1 be an immersed oriented hypersurface, and letHp

denote the horosphere in Hn+1 that is tangent toMn at p, and whose interior unit normal
at p agrees with the one of Mn. We will say that Mn is horospherically convex at p if
there exists a neighborhood V ⊂ Mn of p so that V \ {p} does not intersect Hp, and in
addition the distance function of the hypersurface to the horosphere does not vanish up
to the second order at p in any direction.

This definition can be immediately characterized as follows.

Corollary 5. An oriented hypersurfaceMn
⊂ Hn+1 is horospherically convex at p ∈ Mn

if and only if all the principal curvatures of Mn at p satisfy simultaneously κi(p) < 1 or
κi(p) > 1.

In particular, if Mn is horospherically convex at p, then any of the equivalent conditions
in Lemma 3 holds.

Horospherical ovaloids

Definition 6. A compact immersed hypersurface φ : Mn
→ Hn+1 will be called a horo-

spherical ovaloid of Hn+1 if it can be oriented so that it is horospherically convex at every
point.

Equivalently, a compact hypersurface is a horospherical ovaloid if and only if it can be
oriented so that its hyperbolic Gauss map is a global diffeomorphism. This equivalence
follows directly from Lemma 3 and Corollary 5 by a simple topological argument, bearing
in mind that every compact hypersurface in Hn+1 has a point p at which |κi(p)| > 1 for
every i. In particular, Mn is diffeomorphic to Sn.

It is also immediate from the existence of the point with |κi(p)| > 1 that every
horospherical ovaloid has a unique orientation such that κi < 1 everywhere for every
i = 1, . . . , n. We call this orientation the canonical orientation of the horospherical
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ovaloid. It follows that the hyperbolic Gauss map of a canonically oriented horospheri-
cal ovaloid is always a global diffeomorphism. This is not necessarily true for the other
possible orientation. Let us also point out that if p is a point of a canonically oriented
horospherical ovaloid Mn

⊂ Hn+1, then Mn lies around p in the concave part of the
unique horosphere that passes through p and whose interior unit normal at p coincides
with the unit normal of Mn.

Recall that a compact hypersurfaceMn
⊂ Hn+1 is a (strictly convex) ovaloid if all its

principal curvatures are non-zero and of the same sign. Thus, any ovaloid is a horospher-
ical ovaloid, but the converse is not true.

Horospherical ovaloids in Hn+1 seem to be an unexplored topic that is of independent
interest as a generalization of the usual geodesic ovaloids in Hn+1. However, let us point
out that a horospherical ovaloid is not necessarily embedded. For instance, take a regular
curve α : [0, 1] → H2 with geodesic curvature smaller than 1 at every point, and such
that α(0) = α(1) and, moreover, α′(0) = −α′(1). Then by considering H2 as a totally
geodesic surface of H3 and after rotating α about the geodesic of H2 that meets α orthog-
onally at α(0), we get a surface of revolution in H3 that is a non-embedded horospherical
ovaloid.

This lack of embeddedness shows that one cannot talk in general about the outer
orientation of a horospherical ovaloid, and justifies the way we introduced the canonical
orientation for them.

Another interesting feature of canonically oriented horospherical ovaloids is their
good behaviour with regard to the parallel flow. As usual, the parallel flow of an ori-
ented hypersurface φ : Mn

→ Hn+1 is defined for every t ∈ R as φt : Mn
→ Hn+1,

φt (p) = expφ(p)(tηp) : Mn
→ Hn+1, (2.6)

where exp denotes the exponential map of Hn+1, and ηp is the unit normal of φ at p.
It is then easy to check that if φ is a canonically oriented horospherical ovaloid, then
the forward flow {φt }t , t ≥ 0, is made up by regular canonically oriented horospherical
ovaloids. This is no longer true in general for the backward flow (i.e. t < 0) due to the
possible appearance of wave front singularities of the hypersurfaces.

The horospherical metric

It will be important for our purposes to introduce a natural metric on the space of horo-
spheres in Hn+1. This construction has appeared in other works previously, but we repro-
duce it here in order to put special emphasis on some aspects.

Let M denote the space of horospheres in Hn+1. Let us also fix an arbitrary point
p ∈ Hn+1, which we will regard without loss of generality as the origin in the Poincaré
ball model. Then we can view each horosphere H as a pair (x, t) ∈ Sn × R, where x is
the point at infinity of H and t is the (signed) hyperbolic distance of H to the point p.
Here, t is negative if p is contained in the convex domain bounded by H. Thus we may
identify M ≡ Sn × R.
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Let us now construct a natural metric on this space of horospheres. Points of the form
(x, 0) correspond to horospheres passing through the origin in the Poincaré ball model. It
is then natural to endow each of these points with the canonical metric g0 of Sn evaluated
at x.

But now, the horosphere (x, t) is a parallel hypersurface of (x, 0), and the induced
metric in Hn+1 of this parallel horosphere is a dilation of the one of H ≡ (x, 0), with
factor e2t . Thus, the natural metric to define at (x, t) is the dilated metric e2tg0 evaluated
at x. Consequently, we may view the space of horospheres in Hn+1 as the product Sn×R
endowed with the natural degenerate metric

〈 , 〉∞ := e2tg0.

Observe that the vertical rulings of Sn × R are null lines with respect to this degenerate
metric.

Definition 7. Let φ : Mn
→ Hn+1 denote an oriented hypersurface in Hn+1, and let

Hφ : Mn
→M ≡ Sn × R be its tangent horosphere map at every point. We define the

horospherical metric g∞ of φ as

g∞ := H∗φ(〈 , 〉∞),

i.e. as the pullback metric via Hφ of the degenerate metric 〈 , 〉∞.

It turns out that the horospherical metric is everywhere regular if and only if the hyper-
bolic Gauss map of the hypersurface is a local diffeomorphism. This is a consequence of
Lemma 3 and the following interpretation of the horospherical metric in the Minkowski
model of Hn+1, i.e. the model in which we will be working.

In the Minkowski model, horospheres of Hn+1
⊂ Ln+2 are the intersections of affine

degenerate hyperplanes of Ln+2 with Hn+1. A simple calculation shows that horospheres
are characterized by the fact that its associated light cone map is constant: φ + η =
v ∈ Nn+1

+ . Moreover, if we write v = eρ(1, x), we see that x ∈ Sn is the point at infinity
of the horosphere, and that parallel horospheres correspond to collinear vectors in Nn+1

+ .
This shows that the space of horospheres in Hn+1 is naturally identified with the positive
null cone Nn+1

+ . Thus, it is natural to endow this space with the canonical degenerate
metric of the light cone, and it is quite obvious from the above construction that this light
cone metric coincides with the degenerate metric 〈 , 〉∞ defined above.

Consequently, the horospherical metric on a hypersurface in Hn+1 is simply the pull-
back metric of its associated light cone map. Thus, it is regular if and only if the hyperbolic
Gauss map is a local diffeomorphism.

All this construction is clearly reminiscent of the usual identification of the space of
oriented vector hyperplanes in Rn+1 with the unit sphere Sn. In this sense, just as the
canonical Sn metric is used in order to measure geometric quantities associated to the
Euclidean Gauss map of a hypersurface in Rn+1, we will use the horospherical metric
for measuring geometrical quantities with respect to the hyperbolic Gauss map. Let us
explain this in more detail, as was first done by Epstein [Ep3].
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First, observe that the ideal boundary Sn∞ of Hn+1 does not carry a geometrically
useful metric (although it has a natural conformal structure), so we cannot endow G with
a pullback metric from the ideal boundary. Moreover, note that to define the hyperbolic
Gauss map G we need to know the exact point p ∈ Hn+1 at which we are working (this
does not happen for the Euclidean Gauss map). The additional knowledge of this point
is then equivalent to the knowledge of the tangent horosphere to the hypersurface at the
point. So, it is natural to use the horospherical metric for measuring lengths associated to
the hyperbolic Gauss map. An alternative justification can be found in [Ep3] in connection
with the parallel flow of hypersurfaces.

It is interesting to observe that the horospherical metric has played an important role
in several different theories. For instance, it is equivalent to the Kulkarni–Pinkall metric
[KP] (see [Sc]). It also happens that the area of a Bryant surface in H3 with respect to the
horospherical metric is exactly the total curvature of the induced metric of the surface.

3. The Christoffel problem in Hn+1

The formulation for the Christoffel problem in Hn+1 that seems most reasonable at first
sight is: given a diffeomorphism G : Sn → Sn and a function F : Sn → R, does there
exist a hypersurface φ : Sn → Hn+1 with hyperbolic Gauss map G and such that (1.1)
holds for its principal curvatures κ1, . . . , κn? Disappointingly, this is not a natural prob-
lem in Hn+1, because the two required hypotheses belong to different contexts. Specifi-
cally, a compact hypersurface Mn

⊂ Hn+1 whose hyperbolic Gauss map is a global dif-
feomorphism is not necessarily convex (it is just horospherically convex at every point),
and therefore the functional (1.1) may not be defined at some points of Mn. On the other
hand, the convexity condition that is required on Mn for defining (1.1) is quite mean-
ingless for the hyperbolic Gauss map. These limitations do not appear in the Euclidean
setting, where the Gauss map is a global diffeomorphism exactly when the hypersurface
is an ovaloid, which is the precise condition needed to define the functional (1.1).

Another a priori natural choice for replacement of curvature radii for the Christoffel
problem in Hn+1 are the contact radii

%i(p) := coth−1(κi(p)). (3.1)

These quantities arise from the following fact: if α is a curve in H2 with geodesic curva-
ture kg at p, then the inverse of the curvature of the unique circle in H2 having an order
two contact with α at p is given by coth−1(kg). However, we again see that the quantities
(3.1) are not well defined if κi ∈ [−1, 1], so we also have to discard them.

The above discussion shows that we must seek an alternative formulation of the
Christoffel problem in Hn+1. More specifically, we need to find a more suitable notion of
curvature radii for hypersurfaces in Hn+1 that makes sense exactly when the hypersurface
is a horospherical ovaloid.
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The hyperbolic curvature radii

The key observation at this point is that the Euclidean Gauss map N : Mn
→ Sn of a

strictly convex hypersurface Mn
⊂ Rn+1 is related in a very simple way to the Euclidean

curvature radii Ri , as follows. Let

αi : (−ε, ε)→ Mn

denote a curve in Mn
⊂ Rn+1 with αi(0) = p and such that α′i(0) = ei , where

{e1, . . . , en} is an orthonormal basis of principal directions in TpMn. Let Lt0(αi) (resp.
Lt0(N ◦ αi)) denote the length of αi([0, t]) (resp. of N ◦ αi([0, t])), where N is the unit
normal of Mn, is assumed to be a local diffeomorphism at p. Then

lim
t→0

Lt0(αi)

Lt0(N ◦ αi)
= lim
t→0

∫ t
0 |α
′

i(u)| du∫ t
0 |(N ◦ αi)

′(u)| du
=

|α′i(0)|
|(N ◦ αi)′(0)|

=
1

|κi(p)|
= Ri(p).

(3.2)
This relation is relevant to the Christoffel problem, since it indicates that the curvature
radii admit an interpretation in terms of the Gauss map.

The above construction can also be carried out in Hn+1, with the Euclidean Gauss
map substituted by the hyperbolic Gauss map. Specifically, let us consider an oriented
hypersurface Mn

⊂ Hn+1 that is horospherically convex at p ∈ Mn, and let {e1, . . . , en}

be an orthonormal basis of principal directions in TpMn. If we now take a regular curve
αi : (−ε, ε)→ Mn with αi(0) = p and α′i(0) = ei , we may define, in analogy with the
Euclidean situation, the hyperbolic curvature radii of Mn at p as

Ri(p) := lim
t→0

Lt0(αi)

Lt0(G ◦ αi)
.

Here the length of the hyperbolic Gauss map along αi is obviously taken with respect
to the horospherical metric g∞. In addition, the quotients make sense since G is a local
diffeomorphism at p. Finally, by an argument analogous to (3.2) we deduce thatRi(p) =
1/|1 − κi(p)|. So, we propose the following definition as the natural analogue in Hn+1

of the Euclidean curvature radii for geometrical problems involving the hyperbolic Gauss
map.

Definition 8. LetMn
⊂Hn+1 be a hypersurface that is horospherically convex at p∈Mn.

We define the hyperbolic curvature radii {R1, . . . ,Rn} of Mn at p as

Ri(p) =
1

|1− κi(p)|
,

where {κ1, . . . , κn} are the principal curvatures of Mn at p.

Remark 9. We may observe that 1/Ri is simply the length of dGp(ei) with respect to
the horospherical metric, where ei is a principal unit vector at p. As the same property is
true in the Euclidean setting, this indicates again that Ri is the proper extension to Hn+1

of the Euclidean curvature radii.
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The above arguments suggest the following formulation of the Christoffel problem in
Hn+1 as the most natural one: given a diffeomorphism G : Sn → Sn and a smooth func-
tion C : Sn → R, does there exist an oriented hypersurface φ : Sn → Hn+1 (necessarily
a horospherical ovaloid) with hyperbolic Gauss map G and with C as the mean of the
hyperbolic curvature radii? It must be stressed here that the hyperbolic curvature radii
Ri make sense in the compact case exactly for the class of horospherical ovaloids, which
is the condition we were looking for.

It is convenient to work with a simplified (but equivalent) version of the above Chris-
toffel problem. In order to present this simplification (see next page), we introduce the
next remark, as well as the following subsection.

Remark 10. As G is a global diffeomorphism in the Christoffel problem, it can be used
as a global parametrization of the horospherical ovaloid. In other words, we may assume
that G(x) = x on Sn without losing generality.

Orientation and the parallel flow

It is interesting to observe the behaviour of the Christoffel problem under the parallel
flow. Let {φt }t∈R denote the parallel flow of a solution φ : Sn → Hn+1 to the Christof-
fel problem for the function C(x). Then the hyperbolic Gauss map G(x) = x remains
invariant under this flow, and the horospherical metric of φt is g∞,t = e2tg∞. Moreover,
the principal curvatures κ ti of φt at regular points are given by

κ ti (p) =
κi(p)− tanh(t)

1− κi(p) tanh(t)
, (3.3)

and so the mean Ct (x) of the hyperbolic curvature radii of φt is, at its regular points,

Ct (x) =
1
2
−
e−2t

2
(1− 2C(x)). (3.4)

Unfortunately, φt is not always regular. Indeed, the first fundamental form of φt is given
by

It (ei, ej ) = (cosh(t)− κi sinh(t))2δij , (3.5)

where {e1, . . . , en} is an orthonormal basis of principal directions of Mn, and it can be
singular. Nonetheless, it is immediate from (3.5) that there exists t0 ∈ R such that φt
is regular (and hence solves the Christoffel problem for the function Ct (x) in (3.4)) for
t ≥ t0. In this way, the solutions to the Christoffel problem come in 1-parameter families
determined by the parallel flow in the above way. Moreover, if κi < 1, i.e. the solution to
the Christoffel problem is canonically oriented, then φt is regular for every t ≥ 0.

Remark 11. In the Euclidean Christoffel problem it is usually assumed that the ovaloid
Mn
⊂ Rn+1 is canonically oriented, so that Ri = 1/κi > 0. In contrast, in the hyperbolic

case it is at first sight restrictive to deal only with canonically oriented horospherical
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ovaloids Mn in Hn+1, as a change of orientation on Mn transforms the hyperbolic Gauss
map G into the negative hyperbolic Gauss map G−, which is totally different from G.

Nevertheless, if φ : Sn → Hn+1 is a negatively oriented horospherical ovaloid, there
exists t0 > 0 such that if t ≥ t0 the parallel hypersurface φt : Sn→ Hn+1 is a canonically
oriented horospherical ovaloid.

This property lets us work without loss of generality with the canonically oriented
situation in the Christoffel problem in Hn+1, as this problem is invariant under the parallel
flow.

Formulation of the Christoffel problem in Hn+1

Taking all of this into account, we formulate the Christoffel problem as follows:

The Christoffel problem in Hn+1. LetC : Sn→ R+ denote a positive smooth function.
Find if there exists a canonically oriented horospherical ovaloid φ : Sn→ Hn+1 such that
its hyperbolic Gauss map and its mean of the hyperbolic curvature radii are, respectively,

G(x) = x and C(x) =
1
n

n∑
i=1

1
1− κi

(3.6)

for every x ∈ Sn. Here κ1, . . . , κn are the principal curvatures of φ.

Definition 12. We will say that a smooth function C : Sn→ R+ is a Christoffel function
if it arises as the mean of the hyperbolic curvature radii of some canonically oriented
horospherical ovaloid φ in Hn+1 with hyperbolic Gauss map G(x) = x.

Convention. From now on, and unless otherwise stated, by a horospherical ovaloid we
will always mean a canonically oriented one. So, we will have

Ri =
1

1− κi
. (3.7)

In [Ol2] one can find an alternative formulation of a Christoffel problem in Hn+1,
which is very different from the one here. However, the Christoffel-type problem pro-
posed in that work is not invariant under isometries of Hn+1 (since it implicitly uses the
Euclidean Gauss map), while the one formulated here does not have this flaw.

4. Solution of the Christoffel problem

This section is devoted to showing the equivalence of the Christoffel problem in Hn+1

and the Nirenberg problem (or Kazdan–Warner problem) on prescribing scalar curvature
on Sn, by means of an explicit back-and-forth procedure.
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A representation formula

Firstly, we shall deduce a formula that represents locally a hypersurface in Hn+1 in terms
of its hyperbolic Gauss map G and its support function eρ . As we shall work at a point
around which G is a local diffeomorphism, we may use the hyperbolic Gauss map to
parametrize the hypersurface, i.e. we may assume that the hypersurface is given by φ :
U ⊂ Sn→ Hn+1 with G(x) = x, where U is an open subset of Sn.

Theorem 13. Let φ : U ⊂ Sn → Hn+1 denote a locally horospherically convex hyper-
surface with hyperbolic Gauss map G(x) = x, and support function eρ : U → (0,+∞).
Then

φ =
eρ

2
(1+ e−2ρ(1+ ‖∇g0ρ‖2g0

))(1, x)+ e−ρ(0,−x +∇g0ρ). (4.1)

Proof. We will give a constructive proof, in order to explain the origin of the expression
(4.1). Let g := e2ρg0, where g0 is the canonical metric in Sn. It follows from (2.4) that
〈dψ, dψ〉 = e2ρ

〈dG, dG〉Sn = e2ρg0 = g. Our first objective is to prove the formula

φ =
1
n
1gψ +

S(g)+ n(n− 1)
2n(n− 1)

ψ, (4.2)

where S(g) is the scalar curvature of g, and 1gψ stands for the Laplacian of ψ with
respect to g.

Let {e1, . . . , en} be an orthonormal basis of principal directions at p, with principal
curvatures κ1, . . . , κn. We set vi := (1/(1−κi))ei . It follows that 〈dψ(vi), dψ(vj )〉 = δij .
Let us now view ψ : Mn

→ Nn+1
+ ⊂ Ln+2 as a spacelike codimension-2 submanifold of

Ln+2. Its normal space at every point is spanned by {φ, η}, and its second fundamental
form α : X(Mn)× X(Mn)→ Ln+2 is given by

α(vi, vj ) =

(
1

1− κi
φ +

κi

1− κi
η

)
δij . (4.3)

If K(x, y) denotes the sectional curvature of ψ , the Gauss equation in Ln+2 lets us infer
from (4.3) that

K(vi, vj ) = 〈α(vi, vi), α(vj , vj )〉 − ‖α(vi, vj )‖
2
= 1−

1
1− κi

−
1

1− κj
.

Hence

S(g) = n(n− 1)− 2(n− 1)
n∑
i=1

1
1− κi

. (4.4)

Also by (4.3) we infer that the mean curvature vector of ψ in Ln+2 is

H =
1
n

n∑
i=1

α(vi, vi) =
1
n

n∑
i=1

(
1

1− κi
φ +

κi

1− κi
η

)

= φ +
1
n

( n∑
i=1

κi

1− κi

)
ψ = φ +

(
−1+

1
n

n∑
i=1

1
1− κi

)
ψ.
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Now, if we recall the general relation 1gψ = nH that holds for any spacelike n-sub-
manifold of Ln+2, we find that

φ =
1
n
1gψ +

(
1−

1
n

n∑
i=1

1
1− κi

)
ψ.

Finally, (4.4) shows that the above equation yields (4.2).
Let us now compute 1gψ . We shall work at a fixed point x ∈ U ⊂ Sn. There exists

an orthonormal basis {e1, . . . , en} of (Sn, g0) around x such that

∇
g0
ei ej = 0

at x. From now on we will suppress the point x from our notation when possible, as we
will always be working at that point.

Let {v0, . . . , vn+1} denote the canonical basis of Ln+2, and writeψ= (ψ0, . . . , ψn+1)

in canonical coordinates. Recalling now that ψ = eρ(1, x), and after expressing the point
x ∈ Sn ⊂ Rn+1

≡ {v ∈ Ln+2 : v0 = 0} as x =
∑n+1
k=1 xkvk , we compute

1g0ψ =
(
1g0(eρ),1g0(eρ)x + eρ1g0x + 2eρ

n+1∑
k=1

g0(∇
g0xk,∇

g0ρ)vk

)
= (1g0(eρ),1g0(eρ)x + eρ1g0x + 2eρ∇g0ρ)

= (e−ρ1g0(eρ))ψ + (0, eρ1g0x + 2eρ∇g0ρ).

Now, since 1g0x = −nx and 1g0eρ = eρ(1g0ρ + ‖∇g0ρ‖2g0
), we have

1g0ψ = (1g0ρ + ‖∇g0ρ‖2g0
)ψ + eρ(0,−nx + 2∇g0ρ). (4.5)

Let us now introduce the following notation, for any Z ∈ X(Sn):

g0(∇
g0ψ,Z) :=

n+1∑
k=0

g0(∇
g0ψk, Z)vk =

n+1∑
k=0

Z(ψk)vk = Z(ψ) ∈ X(ψ) ≡ X(φ).

Then we have

g0(∇
g0ψ,∇g0ρ) = (∇g0ρ)(ψ) =

n∑
i=1

ei(ρ)ei(ψ)

=

n∑
i=1

ei(ρ)(e
ρ(ei(ρ))(1, x)+ eρ(0, ei))

= eρ
( n∑
i=1

(ei(ρ))
2
)
(1, x)+ eρ

(
0,

n∑
i=1

ei(ρ)ei

)
= ‖∇

g0ρ‖2g0
ψ + eρ(0,∇g0ρ). (4.6)
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We now recall the usual relation between the Laplacians of two conformal metrics to
deduce that, since g = e2ρg0, we have

1gψ = e−2ρ(1g0ψ + (n− 2)g0(∇
g0ρ,∇g0ψ)). (4.7)

Thus, by (4.5) and (4.6), we deduce from (4.7) that

1gψ = e−2ρ(1g0ρ + (n− 1)‖∇g0ρ‖2g0
)ψ + ne−ρ(0,−x +∇g0ρ). (4.8)

On the other hand, it is well known that if g = e2ρg0 is a conformal metric on Sn,
then the scalar curvature S(g) of g is related to ρ by means of the following elliptic PDE:

1g0ρ +
n− 2

2
‖∇

g0ρ‖2g0
−
n

2
+

e2ρ

2(n− 1)
S(g) = 0. (4.9)

Thus,

e−2ρ(1g0ρ + (n− 1)‖∇g0ρ‖2g0
) = −

S(g)

2(n− 1)
+
ne−2ρ

2
(1+ ‖∇g0ρ‖2g0

). (4.10)

If we substitute (4.10) into (4.8) we obtain

1gψ =

(
−

S(g)

2(n− 1)
+
ne−2ρ

2
(1+ ‖∇g0ρ‖2g0

)

)
ψ + ne−ρ(0,−x +∇g0ρ). (4.11)

Finally, plugging (4.11) into (4.2) we get (4.1), as we wished. ut

Remark 14. The parallel flow {φt }t∈R of φ in Hn+1
⊂ Ln+2 is given by

φt = cosh(t)φ + sinh(t)(ψ − φ) = e−tφ + sinh(t)ψ.

Thus, using (4.1) we obtain the explicit formula

φt =
et

2
eρ
(

1+
e−2ρ

e2t (1+ ‖∇
g0ρ‖2g0

)

)
(1, x)+

e−ρ

et
(0,−x +∇g0ρ). (4.12)

A solution for the Christoffel problem in Hn+1

We are now in a position to prove one of our main results.

Theorem 15. Let φ : Sn → Hn+1 be a solution of the Christoffel problem in Hn+1 for
the smooth function C : Sn → R+. Then its horospherical metric g∞ is a solution to the
Nirenberg problem in Sn for the scalar curvature function S : Sn→ R given by

S(x) = n(n− 1)(1− 2C(x)). (4.13)
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Conversely, let g = e2ρg0 denote a solution to the Nirenberg problem for the scalar
curvature function S : Sn → R. Then there exists τ0 > 0 such that for every τ ≥ τ0 the
map φτ : Sn→ Hn+1 given by

φτ =
τ

2
eρ
(

1+
e−2ρ

τ 2 (1+ ‖∇g0ρ‖2g0
)

)
(1, x)+

e−ρ

τ
(0,−x +∇g0ρ) (4.14)

is a solution to the Christoffel problem in Hn+1 for the smooth function

Cτ (x) =
1
2

(
1−

S(x)

τ 2n(n− 1)

)
. (4.15)

Moreover, the horospherical metric of φτ is actually g∞ = τ 2g.

Remark 16. Theorem 15 proves that the Christoffel problem in Hn+1 and the Nirenberg
problem on Sn are essentially equivalent problems. On the other hand, we cannot claim
that they are completely equivalent. For instance, a scalar curvature function S(x) on Sn
that arises as the horospherical metric of some horospherical ovaloid must satisfy S(x) <
n(n−1) by (4.13), while this estimate does not hold for general scalar curvature functions
on Sn. Alternatively, one can say that given a conformal metric g = e2ρg0 on Sn, the map
φ : Sn → Hn+1 given by the representation formula (4.1) will be a solution to the
Christoffel problem in Hn+1 if and only if it is free of singular points, which is not always
the case. We will write down in Corollary 23 an explicit condition for g that is equivalent
to the regularity of φ.

Remark 17. Let us explain in more detail the converse in Theorem 15. First, note that
two conformal metrics g, g̃ on Sn differ just by a dilation (i.e. g̃ = e2tg for some fixed
t ∈ R) if and only if their associated hypersurfaces φ, φ̃ : Sn → Hn+1 are parallel
(specifically, φ̃ = φt ). Thus, given a conformal metric g = e2ρg0 in Sn, there exists some
τ0 > 0 such that for τ ≥ τ0 the hypersurface φτ : Sn→ Hn+1 associated to gτ := τ 2g is
everywhere regular, and hence a solution to the Christoffel problem. This is the way that
we prevented in Theorem 15 the appearance of singular points for φ.

Proof of Theorem 15. Let φ : Sn → Hn+1 denote a solution to the Christoffel problem
in Hn+1. Then its hyperbolic Gauss map is G(x) = x. So, by (2.4), the horospherical
metric of φ is

g∞ = 〈dψ, dψ〉 = e
2ρ
〈dG, dG〉Sn = e

2ρg0,

where g0 is the canonical metric of Sn. Hence, the horospherical metric of φ is globally
conformal to g0. Moreover, by (4.4) and (3.6) we see that (4.13) holds. This proves the
first assertion.

Conversely, let g = e2ρg0 denote a conformal metric on Sn with scalar curvature
function S(x), and view Sn ⊂ Rn+1 in the usual way. Consider in addition a positive
constant τ > 0 and the conformal metric gτ := τ 2g, whose scalar curvature function is
obviously Sτ (x) = (1/τ 2)S(x). Then we can construct the map

ψτ = τe
ρ(1, x) : Sn→ Nn+1

+ ⊂ Ln+2
≡ L× Rn+1, (4.16)
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which has the property that 〈dψτ , dψτ 〉 = τ 2e2ρg0 = gτ . If we let

ξ := (0,−x +∇g0ρ),

we may write (4.14) as

φτ =
1
2

(
1+

e−2ρ

τ 2 (1+ ‖∇g0ρ‖2g0
)

)
ψτ +

e−ρ

τ
ξ. (4.17)

Next, observe that 〈ψτ , ψτ 〉 = 0, and also that

〈ψτ , ξ〉 = −τe
ρ
+ τeρ〈x,∇g0ρ〉 = −τeρ,

and in the same way 〈ξ, ξ〉 = 1 + ‖∇g0ρ‖2g0
. Therefore 〈φτ , ψτ 〉 = −1 (thus the first

coordinate of φ in Ln+2 is positive), and

〈φτ , φτ 〉 = −1−
e−2ρ

τ 2 (1+ ‖∇g0ρ‖2g0
)+

e−2ρ

τ 2 (1+ ‖∇g0ρ‖2g0
) = −1.

This proves that φτ takes its values in Hn+1
⊂ Ln+2. Finally, let Z ∈ X(Sn). Then, using

the fact that Z(x) = Z, 〈x, Z〉 = 0 and 〈∇g0ρ,Z〉 = Z(ρ), we see by (4.14) and (4.16)
that

〈φτ , Z(ψτ )〉 = τ 〈φτ , e
ρZ(ρ)(1, x)+ eρ(0, Z)〉

= 〈(0,−x +∇g0ρ), Z(ρ)(1, x)+ (0, Z)〉 = −Z(ρ)+ 〈∇g0ρ,Z〉 = 0.

Putting all of this together we have found that φτ : Sn → Hn+1 is a hypersurface pos-
sibly with singular points, but such that at its regular points its associated light cone
immersion is ψτ : Sn → Nn+1

+ . This happens because 〈φτ , ψτ 〉 = −1, 〈ψτ , ψτ 〉 = 0
and 〈d(φτ ), ψτ 〉 = 0, i.e. ψτ is normal to φτ . In particular, its hyperbolic Gauss map at
regular points is G(x) = x, and it is horospherically convex at those points. Moreover,
the horospherical metric of φτ at regular points is g∞ = 〈dψτ , dψτ 〉 = gτ , which has the
scalar curvature function Sτ (x) = τ−2S(x). Thus, by (4.4) the mean of the hyperbolic
curvature radii of φτ at any regular point is given by

Cτ =
1
n

n∑
i=1

Rτi =
1
n

n∑
i=1

1
1− κτi

=
1
2

(
1−

S(x)

τ 2n(n− 1)

)
,

which is exactly (4.15). Thus, in order to finish the proof we only need to ensure the
existence of some τ0 > 0 such that ψτ : Sn → Hn+1 is everywhere regular whenever
τ ≥ τ0. First of all, set φ := φ1 and ψ := ψ1. Then we may easily observe that

φτ =
1
τ
φ +

τ 2
− 1

2τ
ψ. (4.18)

Let USn denote the unit tangent bundle of Sn, i.e.

USn = {(p, v) ∈ Sn × Sn : 〈p, v〉 = 0}.
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By (4.18) we have d(φτ )p(v) = (1/τ)dφp(v)+((τ 2
−1)/(2τ))dψp(v) for every (p, v) ∈

USn. Thus, φτ is everywhere regular if and only if d(φτ )p(v) 6= 0 for every (p, v) ∈ USn,
if and only if

dφp(v) 6=
1
2
(1− τ 2)dψp(v) for every (p, v) ∈ USn. (4.19)

But now, as USn is compact, the sets

3 := {dψp(v) ∈ Ln+2 : (p, v) ∈ USn}, � := {dφp(v) ∈ Ln+2 : (p, v) ∈ USn}

are compact in Rn+2
≡ Ln+2. Moreover, as dψp(v) 6= 0 always, we have 0 /∈ 3, and

thus we may infer the existence of some r0 > 0 such that if r ≥ r0, then � ∩ r3 = ∅. In
particular, there exists some τ0 > 0 such that if τ ≥ τ0, the condition (4.19) holds. This
proves that φτ is everywhere regular if τ ≥ τ0, and finishes the proof. ut

Applications

As a straightforward consequence of Theorem 15, we can rephrase in the context of the
Christoffel problem in Hn+1 all the results on the prescribed scalar curvature problem
in Sn. It is our aim now to make explicit some of them.

The following result is a translation into our setting via Theorem 15 of the classical
necessary conditions by Kazdan–Warner [KW1] and Bourguignon–Ezin [BE] on pre-
scribing scalar curvature in Sn.

Corollary 18 (Necessary conditions). LetC : Sn→ R+ be a Christoffel function. Then:

(i) C(x) < 1/2 for some x ∈ Sn.
(ii) If x1, . . . , xn+1 denote the coordinate functions of Sn ⊂ Rn+1, then∫

Sn
g0(∇

g0C,∇g0xi) dvg = 0, i = 1, . . . , n+ 1,

where dvg is the volume element of the horospherical metric of the horospherical
ovaloid φ. In particular, C cannot be a monotonic function of a coordinate xi .

(iii) More generally, ∫
Sn
X(C) dvg = 0

for any conformal vector field X ∈ X(Sn).

The following very interesting result on the moduli space of solutions to the Nirenberg
problem was obtained by Y.Y. Li in [L1], as a strong generalization of a previous den-
sity result by Bourguignon–Ezin: Smooth scalar curvature functions on Sn are C0 dense
among functions on Sn that are positive somewhere. As a consequence of this result and
Theorem 15 we have:
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Corollary 19. Let F : Sn → R denote a smooth function such that F(x0) < 1/2 for
some x0 ∈ Sn. Then for every ε > 0 there exists a Christoffel function C : Sn → R+ and
some t ∈ R such that

‖F − Ct‖C0(Sn) < ε, Ct (x) :=
1
2
−
e−2t

2
(1− 2C(x)).

Moreover, the Christoffel function C can be chosen so that F(x) = Ct (x) on the exterior
of an arbitrarily small ball of Sn centred at x0.

Concerning sufficient conditions for the Nirenberg problem, we cannot make justice in a
few lines to the diversity of results that are known once some technical condition on the
scalar curvature function is imposed (a good reference for that is the survey [L6]). Let us
simply say here that each of these sufficient conditions can be rephrased in our context to
yield sufficient conditions for a function to be a Christoffel function.

We shall nonetheless point out just a couple of sufficient conditions under symmetry
assumptions on the Christoffel function. They follow from [Mo, ES, CLi2]. Let us say
that a function C ∈ C∞(Sn) is a generalized Christoffel function if there exists t0 ∈ R
such that for every t ≥ t0 the map

Ct (x) :=
1
2
−
e−2t

2
(1− 2C(x)) : Sn→ R

is a Christoffel function.

Corollary 20. Let C ∈ C∞(Sn) be a smooth function with C(x0) < 1/2 for some
x0 ∈ Sn. Then C is a generalized Christoffel function if it satisfies one of the follow-
ing conditions.

(i) C(x) = C(−x) and there is some x̄ ∈ Sn such that C(x̄) = minC and all derivatives
of C up to order n− 2 vanish at x̄.

(ii) C = C(r) is rotationally invariant on Sn, C′(r) changes sign in the region(s) where
C < 1/2, and near any critical point r0 the following flatness condition holds:

C(r) = C(r0)+ a|r − r0|
α
+ h(|r − r0|),

where a 6= 0, n− 2 < α < n, and h′(s) = o(sα−1).

5. Generalized Christoffel problems

A natural extension of the Christoffel problem in hyperbolic space is to prescribe for a
horospherical ovaloid in Hn+1 the hyperbolic Gauss map together with a given functional
of the hyperbolic curvature radii. Our aim in this section is to show that this problem
is equivalent to the question of prescribing a given functional of the eigenvalues of the
Schouten tensor for a conformal metric on Sn.
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Given a Riemannian metric g on a manifold Mn, n > 2, the Schouten tensor of g is
the symmetric (0, 2)-type tensor given by

Schg :=
1

n− 2

(
Ricg −

S(g)

2(n− 1)
g

)
, (5.1)

where Ricg and S(g) stand for the Ricci and scalar curvatures of g. Its study is an impor-
tant issue in conformal geometry, as it represents the non-conformally invariant part of
the Riemann curvature tensor. For instance, if g̃ = e2ug is a conformal metric, then

Schg̃ = Schg −∇2,gu+ du⊗ du−
1
2
‖∇

gu‖2gg. (5.2)

Let us now consider a conformal metric g = e2ρg0 on Sn, n > 2. By (5.1) it follows
immediately that Schg0 = (1/2)g0, which is independent of n. Hence (5.2) yields

Schg = −∇2,g0ρ + dρ ⊗ dρ −
1
2
(−1+ ‖∇g0ρ‖2g0

)g0. (5.3)

The Schouten tensor (5.1) is not defined for 2-dimensional metrics. Nevertheless, as
(5.3) makes sense also for n = 2, we may naturally define the Schouten tensor for con-
formal metrics on S2 in a unifying way:

Definition 21. Let g = e2ρg0 denote a conformal metric on S2. Then its Schouten tensor
is defined as the symmetric (0, 2)-type tensor given by (5.3).

Bearing this in mind, we have

Theorem 22. Let φ : Sn→ Hn+1 denote a horospherical ovaloid with hyperbolic Gauss
map G(x) = x, and let g = e2ρg0 denote its horospherical metric. Then the first and
second fundamental forms of φ at x ∈ Sn are given, respectively, by

Iφ(ei, ej ) =
e−2ρ

4
(g(ei, ej )− 2Schg(ei, ej ))2 (5.4)

and

IIφ = Iφ −
1
2
g + Schg. (5.5)

Here e1, . . . , en ∈ TxSn is an orthonormal frame with respect to g0 such that ∇g0
ei ej = 0

at x for every i, j .

Proof. Let {e1, . . . , en} be the basis at x ∈ Sn as in the statement. Then by Theorem 13
we may write (4.1) as

φ = f (1, x)+ e−ρ(0, ξ), (5.6)

where

f :=
eρ

2
(1+ e−2ρ(1+ ‖∇g0ρ‖2g0

)), ξ := (0,−x +∇g0ρ).
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Since ∇g0
ei ej = 0 implies ei(ej ) = −δijx at x, we get

ei(ξ) =
(

0,−ei + ei
( n∑
j=1

ej (ρ)ej

))
=

(
0,−ei − ei(ρ)x +

n∑
j=1

ei(ej (ρ))ej

)
. (5.7)

So, by (5.6) and (5.7) we get

ei(φ) = ei(f )(1, x)+ (f −e−ρ)(0, ei)−e−ρ
(

0,
n∑
j=1

{ei(ρ)ej (ρ)−ei(ej (ρ))}ej

)
. (5.8)

From (5.8) we see directly that 〈(1, x), ei(φ)〉 = 0. In addition,

〈ei(φ), (0, ej )〉 = (f − e−ρ)δij − e−ρ(ei(ρ)ej (ρ)− ei(ej (ρ))). (5.9)

Thus, by (5.8), (5.9) we have

〈ei(φ), ej (φ)〉 = e
−2ρ(f − e−ρ)2δij − 2e−2ρ(f − e−ρ)(ei(ρ)ej (ρ)− ei(ej (ρ)))

+ e−2ρ
( n∑
k=1

(ei(ρ)ek(ρ)− ei(ek(ρ)))(ej (ρ)ek(ρ)− ej (ek(ρ)))
)
.

In order to simplify this expression, let A,B denote the n× n matrices

A = (aij ) with aij := e−ρ(ei(ej (ρ))− ei(ρ)ej (ρ)), B := (f − e−ρ) Idn.

Then the above expressions immediately imply that 〈ei(φ), ej (φ)〉 is the (i, j) entry of
the matrix (A+ B)2. On the other hand, we may observe that A is the matrix expression
of e−ρ(∇2,g0ρ − dρ ⊗ dρ) with respect to the basis {e1, . . . , en}. Therefore, A+B is the
matrix expression of

eρ

2
g0 + e

−ρ

(
∇

2,g0ρ − dρ ⊗ dρ +
1
2
(−1+ ‖∇g0ρ‖2g0

)g0

)
,

which by (5.3) is just e−ρ(g/2− Schg). Thus,

〈ei(φ), ej (φ)〉 =
e−2ρ

4
(g(ei, ej )− 2Schg(ei, ej ))2,

which yields (5.4).
In order to compute the second fundamental form, let us first note that

ei(ψ) = e
ρei(ρ)(1, x)+ eρ(0, ei),

and so by (5.9) and (5.3) we have

〈dφ, dψ〉 = g/2− Schg. (5.10)

Therefore, as IIφ = −〈dφ, dη〉 = 〈dφ, dφ〉−〈dφ, dψ〉, we obtain (5.5) from (5.10). ut

As an immediate consequence of this result and Theorem 15, we have
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Corollary 23. A smooth function C : Sn → R+ is a Christoffel function if and only if
S(x) := n(n− 1)(1− 2C(x)) is the scalar curvature function of some conformal metric
g = e2ρg0 such that g − 2Schg is everywhere positive definite on Sn.

In [Sc] Schlenker gave a necessary and sufficient condition for a conformally flat metric
to be realized as the horospherical metric of some locally horospherically convex hyper-
surface in Hn+1. Thus, Corollary 23 can be seen as an easy consequence of Theorem 15
and [Sc], although the Schouten tensor Schg is never mentioned there.

Let g = e2ρg0 be a conformal metric on Sn, and take x ∈ Sn. Then we can consider
the eigenvectors v1, . . . , vn ∈ TxSn and the eigenvalues λ1, . . . , λn of the Schouten tensor
Schg with respect to g. Thus, g(vi, vj ) = δij and Schg(vi, vj ) = λiδij . Theorem 22 then
yields the following conclusion:

Corollary 24. Let φ : Sn → Hn+1 be a horospherical ovaloid, and let {R1, . . . ,Rn}
denote its hyperbolic curvature radii at x ∈ Sn. Then

Ri = 1/2− λi, i = 1, . . . , n, (5.11)

where {λ1, . . . , λn} are the eigenvalues of the Schouten tensor of the horospherical met-
ric g of φ at x. Moreover, the eigendirections of Schg at x coincide with the principal
directions of φ at x.

Proof. Let {e′1, . . . , e
′
n} denote an orthonormal basis of principal directions of φ at x, and

define vi := (1/(1− κi))e′i . Then g(vi, vj ) = δij and

〈dφ(vi), dψ(vj )〉 =
1

1− κi
δij = Riδij .

On the other hand, by (5.10),

〈dφ(vi), dψ(vj )〉 =
1
2
δij − Schg(vi, vj ).

Thus Schg(vi, vj ) = (1/2−Ri)δij , which yields (5.11). The assertion on the eigendirec-
tions of Schg also follows directly. ut

Let us point out that from (5.11) and (3.7) we get

λi =
1
2
−Ri =

1
2
−

1
1− κi

= −
1+ κi

2(1− κi)
. (5.12)

An interpretation in Hn+1 of the Schouten tensor. Let φ : Mn
→ Hn+1 denote an ori-

ented hypersurface that is horospherically convex at p, and let us assume that |κi(p)| < 1
or |κi(p)| > 1 simultaneously for every i = 1, . . . , n. Then φ with its opposite orienta-
tion is still horospherically convex at p. Thus, its negative hyperbolic Gauss map G− is a
local diffeomorphism at p, and we can define the negative curvature radii

R∗i (p) =
1

|1+ κi(p)|
.
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We can now consider the quotient

Di(p) :=
Ri(p)
R∗i (p)

=
|1+ κi(p)|
|1− κi(p)|

> 0, (5.13)

which measures the variation in the hyperbolic curvature radii of φ after a change of
orientation. We call Di(p) the dilation ratios of φ at p. This concept does not have a
Euclidean counterpart, i.e. it is specific to hyperbolic geometry.

Now, let φ : Sn → Hn+1 denote a horospherical ovaloid, and assume furthermore
that κi < −1 everywhere. This condition is equivalent (by compactness) to requiring that
G− : Sn→ Sn be a global diffeomorphism, and it forces the convexity of φ. We will say
that φ is then a strongly H -convex ovaloid in Hn+1.

Let {λ1, . . . , λn} denote the eigenvalues of the Schouten tensor for the horospherical
metric of φ. Then by (5.12) we have

λi =
1
2
Di . (5.14)

Hence, the eigenvalues λi of the Schouten tensor are identified on a strongly H -convex
ovaloid as half the dilation ratios Di of φ.

Alternatively, by (3.1), we can conclude that

e2%i =
|1+ κi |
|1− κi |

= Di = 2λi, (5.15)

which provides an interpretation of the eigenvalues λi in terms of the classical contact
radii %i = coth−1(|κi |).

We will work with a slightly more general notion of contact radii, which is more
suitable for non-convex horospherical ovaloids.

Definition 25. LetMn
⊂ Hn+1 denote a horospherical ovaloid with principal curvatures

κ1, . . . , κn. We define the signed contact radii δ1, . . . , δn of Mn at p as

δi(p) :=
1+ κi(p)
1− κi(p)

(thus |δi(p)| = Di(p) if κi(p) 6= −1). (5.16)

The generalized Christoffel problem. Let 0 : Sn → R be a smooth function. Find if
there exists a hypersurface φ : Sn → Hn+1 (necessarily a horospherical ovaloid) whose
hyperbolic Gauss map is G(x) = x for every x ∈ Sn, and such that

F(R1, . . . ,Rn) = 0, (5.17)

where F(R1, . . . ,Rn) is a prescribed functional of the hyperbolic curvature radii Ri of
the hypersurface φ.

Remark 26. By (3.7) it is obvious that prescribing a relation of the form (5.17) for the
hyperbolic curvature radii Ri > 0 can also be seen as prescribing a relation of the
form W(κ1, . . . , κn) = 0 for the principal curvatures κ1, . . . , κn, with the restriction
κi ∈ (−∞, 1). The novelty of the generalized Christoffel problem with respect to other
previous works on hypersurfaces in space forms satisfyingW(κ1, . . . , κn) = 0 is that we
are also prescribing here the hyperbolic Gauss map G.
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In this generality, the problem is quite hopeless. Nonetheless, we can deduce from
Corollaries 23 and 24 the following:

Corollary 27. Let φ : Sn→ Hn+1 denote a solution to the generalized Christoffel prob-
lem, let g denote its horospherical metric, and define

G(t1, . . . , tn) := F(1/2− t1, . . . , 1/2− tn). (5.18)

Then the eigenvalues λi of Schg satisfy λi < 1/2 and G(λ1, . . . , λn) = 0(x).

Conversely, if g = e2ρg0 is a conformal metric on Sn such that the eigenvalues λi of
its Schouten tensor satisfy λi < 1/2 and G(λ1, . . . , λn) = 0(x) for a certain functional G,
then there exists a solution to the generalized Christoffel problem for F given by (5.18),
and whose horospherical metric is g.

This result paves the way for studying the generalized Christoffel problem in special
cases, as the behaviour of the eigenvalues of the Schouten tensor is a widely studied sub-
ject. We next discuss some interesting points of the correspondence given by Corollary 27.

The k-th symmetric problems on Sn and Hn+1

The problem of prescribing a certain functional of the eigenvalues of the Schouten tensor
for a conformal metric on a Riemannian manifold has gained several contributions in
the last few years: see [Cha, CGY1, CGY2, Vi, JLX] and specially the book [Gu] and
references therein. In particular, special attention has been paid to the study of the σk-
curvatures of a Riemannian metric g, which can be defined as follows.

First, let Sk(x1, . . . , xn) be the k-th elementary symmetric function of (x1, . . . , xn),
i.e.

Sk(x1, . . . , xn) =
∑

xi1 · · · xik , (5.19)
where the sum is taken over all strictly increasing sequences i1, . . . , ik of indices from the
set {1, . . . , n}. Then, given a metric g on a manifold Mn, the σk-curvature of g is defined
as Sk(λ1, . . . , λn), where λi are the eigenvalues of the Schouten tensor of g.

The problem of finding a conformal metric on Sn with a prescribed σk-curvature has
been specifically treated, as a generalization of the Nirenberg problem. By Corollary 27
and (5.14), this σk-Nirenberg problem is equivalent (up to dilations) to a natural prob-
lem for horospherical ovaloids in Hn+1, namely, the generalized Christoffel problem in
which the k-th elementary symmetric function of the signed dilation ratios δi in (5.16)
is prescribed. Consequently, the local estimates in [Gu] or the Kazdan–Warner type ob-
structions in [Ha] can be translated into analogous results for the hyperbolic setting. We
omit the details, as the process is clear from Corollary 24.

The σn-problem is of special interest in Hn+1. Recall that the contact radii %i in (3.1)
can be seen to some extent as analogues of the classical curvature radii in Rn+1. The
negative point was that they only make sense for strongly H -convex ovaloids in Hn+1,
which is quite restrictive. Nonetheless, by (5.15) we can see that

3 :=
1
n

n∑
i=1

%i =
log(2nσn)

2n
. (5.20)
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Hence, by Corollary 27, the σn-Nirenberg problem on Sn is equivalent (up to a regularity
condition) to the contact Christoffel problem for strongly H -convex ovaloids in Hn+1,
in which the hyperbolic Gauss map together with the mean 3 of the contact radii %i are
prescribed.

On the other hand, it is a natural question to consider the k-th symmetric Christoffel
problem in Hn+1, i.e. the generalized Christoffel problem in Hn+1 with the specific choice
F = Sk .

It is clear that if we take k = 1 we get the Christoffel problem in Hn+1. The k-th sym-
metric Christoffel problem is a natural analogue in Hn+1 of the Christoffel–Minkowski
problem for ovaloids in Rn+1, which prescribes the Gauss map as well as the k-th sym-
metric function of the principal curvature radii. However, in this hyperbolic setting, the
Minkowski problem (i.e. prescribing the hyperbolic Gauss map along with the Gauss–
Kronecker curvature) does not appear as any of the k-th symmetric problems.

Now, by (5.11) we have

Sk(R1, . . . ,Rn) =
k∑

j=0

(
n− j

k − j

)
(−1)j2j−kSj (λ1, . . . , λn).

So, by this relation and Corollary 27, the above k-th symmetric problem in Hn+1 is
equivalent (up to a regularity condition) to the Nirenberg-type problem in Sn in which the
following linear combination of the σk-curvatures is prescribed:

k∑
j=0

cjσj (g) = 0, cj :=
(
n− j

k − j

)
(−1)j2j−k.

Thus, a natural situation in Hn+1 motivates the (seemingly unexplored) problem of pre-
scribing a linear combination of the σk-curvatures for conformal metrics on Sn.

Let us finally point out that there are many other interesting problems for hypersur-
faces in Hn+1 that can be formulated in terms of geometric PDE problems by means
of Corollaries 24 and 27: for instance, Dirichlet problems at infinity for horospherically
convex hypersurfaces with prescribed Weingarten curvatures, or Christoffel–Minkowski
type problems for horospherically convex hypersurfaces with one or two points at the
ideal boundary of Hn+1. So, an important point of the construction developed in this sec-
tion is that it motivates new interesting problems for conformally invariant PDEs in terms
of the Schouten tensor.

6. Weingarten hypersurfaces in Hn+1

An oriented hypersurface in a model space Rn+1, Sn+1, or Hn+1 is a Weingarten hyper-
surface if there exists a non-trivial relation

W(κ1, . . . , κn) = c ∈ R (6.1)
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between its principal curvatures κ1, . . . , κn. In particular, totally umbilical hypersurfaces
are Weingarten hypersurfaces. An important problem in hypersurface theory is to estab-
lish for which functionals W the only examples that satisfy (6.1) together with a global
condition (usually compactness) are totally umbilical.

Our next objective is to exhibit a wide family of functionals W for which the only
compact hypersurfaces satisfying (6.1) are totally umbilical round spheres. This result
will be obtained as a consequence of Corollary 24 and a deep result by A. Li and Y.Y. Li
[LL1, Corollary 1.6] on the Schouten tensor of conformal metrics on Sn.

There are two remarkable facts regarding our result. To start, it seems to be the first
example of a wide family of Weingarten functionals for which round spheres can be
characterized as the only compact examples satisfying (6.1). Previous results in this line
for specific Weingarten functionals in Hn+1 may be found, for instance, in [Al, Bi, CD,
Ko, Ro] and references therein. The other remarkable feature of our result is that we
are not assuming a priori that the hypersurface is embedded. This additional topological
hypothesis appears in most of the previous geometric works on the characterization of
compact Weingarten hypersurfaces in model spaces.

In order to state the result, some notation is needed. Let us first of all set � :=
{(x1, . . . , xn) ∈ Rn : xi < 1}, and consider the involutive diffeomorphism T : � → �

given by

T (x1, . . . , xn) =

(
x1 + 1
x1 − 1

, . . . ,
xn + 1
xn − 1

)
. (6.2)

Consider in addition

an open convex symmetric cone 0 ⊂ Rn with vertex at the origin (6.3)

such that
0n ⊂ 0 ⊂ 01, (6.4)

where 0n := {(x1, . . . , xn) : xi > 0}, and 01 := {(x1, . . . , xn) :
∑n
i=1 xi > 0}. Here

symmetric means symmetric with respect to the variables (x1, . . . , xn).
Let us define next

0∗ := T (0 ∩�) ⊂ �. (6.5)

It is clear that 0∗n ⊂ 0
∗
⊂ 0∗1 , where

0∗n := {(x1, . . . , xn) : xi < −1}, 0∗1 :=
{
(x1, . . . , xn) :

1
n

n∑
i=1

1
1− xi

<
1
2

}
.

Consider now a real function W(x1, . . . , xn) satisfying the following conditions:

W ∈ C1(0∗) ∩ C0(0∗) is symmetric with respect to x1, . . . , xn, (6.6)
W = 0 on ∂0∗ and ∂W/∂xi < 0 in 0∗, (6.7)
sW(x) =W(T (s(T (x)))) for every x ∈ 0∗. (6.8)
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In this last condition, s > 0 is arbitrary except that the right hand side has to be well
defined. Let us observe that if we set

f (x) :=W(T (2x)) : 0 ∩ {(x1, . . . , xn) : xi < 1/2} → R, (6.9)

then (6.8) simply means that f (sx) = sf (x). This allows us to extend f by homogeneity
to the whole cone 0. This extension (still denoted by f ) satisfies:

f ∈ C1(0) ∩ C0(0) is symmetric with respect to x1, . . . , xn, (6.10)
f = 0 on ∂0 and ∂f/∂xi > 0 in 0, (6.11)
f (sx) = sf (x) for every x ∈ 0, s > 0. (6.12)

Under the conditions (6.3), (6.4), (6.10), (6.11), (6.12) for (0, f ), A. Li and Y.Y. Li
[LL1] proved that if g = e2ρg0 is a conformal metric on Sn such that the eigenvalues of
its Schouten tensor satisfy

f (λ1, . . . , λn) = 1, (λ1, . . . , λn) ∈ 0, (6.13)

then g differs from g0 by, at most, a dilation and a conformal isometry of Sn.
As a consequence of this result in [LL1] and of our previous discussion, we can de-

duce the following:

Theorem 28. Define (0∗,W) by the conditions (6.3) to (6.8), and let Mn
⊂ Hn+1,

n > 2, denote an immersed oriented compact hypersurface in Hn+1 such that its principal
curvatures κi satisfy

W(κ1, . . . , κn) = 1. (6.14)

Then Mn is a totally umbilical round sphere.

Proof. Since 0∗ ⊂ �, we infer that κi < 1 always holds, and thus Mn is a canonically
oriented horospherical ovaloid in Hn+1. Therefore, Mn is diffeomorphic to Sn and its
horospherical metric g∞ is conformal to the canonical metric of Sn. Moreover, by (3.7)
and (5.11) we can express the eigenvalues of the Schouten tensor of g∞ as

2λi =
κi + 1
κi − 1

. (6.15)

Let us recall at this point that the conditions imposed on (0∗,W) ensure that (f, 0) given
by (6.3), (6.4), (6.5), (6.9) satisfies the conditions of [LL1, Corollary 1.6]. Moreover, we
see from (6.8), (6.14), (6.15) that

f (λ1, . . . , λn) = 1, (λ1, . . . , λn) ∈ 0.

Consequently, g∞ is a metric of constant (positive) curvature, and all eigenvalues λi are
constant and equal. By (6.15) we see that Mn is a totally umbilical round sphere. ut
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An important remark. Observe that if the Weingarten functionalW(x1, . . . , xn), which is
defined on 0∗, admits an extension W̃ to some larger domain 0̃ ⊂ Rn, then the condition
(6.14) on an immersed oriented hypersurface Mn

⊂ Hn+1 simply means that

W̃(κ1, . . . , κn) = 1

and there exists some p ∈ Mn with (κ1(p), . . . , κn(p)) ∈ 0
∗. This happens because W

vanishes identically on ∂0∗. So, ifMn is compact, the condition (κ1(p), . . . , κn(p)) ∈ 0
∗

is not restrictive because, by a change of orientation if necessary, there is some p ∈ Mn

with κi(p) < −1 for every i. That is, (κ1(p), . . . , κn(p)) ∈ 0
∗
n ⊂ 0

∗.

Let us now consider a particular case of Theorem 28 that is specially important. Let
Sk(x1, . . . , xn) denote the elementary k-th symmetric function (5.19), and let 0k ⊂ Rn
denote the connected component of

{(x1, . . . , xn) ∈ Rn : Sk(x1, . . . , xn) > 0}

that contains the positive cone 0n. It is then known (see [LL1, LL2, L3]) that (0k, fk)
satisfies conditions (6.3), (6.4), (6.10), (6.11), (6.12), where

fk(x1, . . . , xn) := (Sk(x1, . . . , xn))
1/k.

Therefore, Theorem 28 and (6.15) yield

Corollary 29. Let Mn
⊂ Hn+1, n > 2, denote a horospherical ovaloid, and assume that

a k-th symmetric elementary function of its signed contact radii is constant, i.e.

Sk(δ1, . . . , δn) = c > 0, δi :=
κi + 1
κi − 1

. (6.16)

Then Mn is a totally umbilical round sphere.

The particular case k = n tells us (by (5.20)) that any stronglyH -convex ovaloid in Hn+1

with constant mean of their contact radii, i.e.
∑n
i=1 %i = c > 0, is a round sphere.

The above corollary is relevant in the context of linear Weingarten hypersurfaces.
Let us recall that for an oriented hypersurface Mn

⊂ Hn+1 with principal curvatures
κ1, . . . , κn, the r-th mean curvature function is defined as(

n

r

)
Hr := Sr(κ1, . . . , κn), 1 ≤ r ≤ n.

In particular, H = H1 is the mean curvature and K = Hn is the Gauss–Kronecker
curvature. With these notations, we recall the following

Definition 30. An immersed oriented hypersurface Mn
⊂ Hn+1 is a linear Weingarten

hypersurface if there are constants c0, . . . , cn ∈ R such that

n∑
i=1

crHr = c0. (6.17)
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Now, observe that, for any oriented horospherically convex hypersurface, the equality
(6.16) can be rewritten as (we use here r instead of k for clarity)∑

i1<···<ir

κi1 + 1
κi1 − 1

· · ·
κir + 1
κir − 1

= c,

or equivalently,∑
i1<···<ir

(κi1 + 1) · · · (κir + 1)(κj1 − 1) · · · (κjn−r − 1) = c(κ1 − 1) · · · (κn − 1),

where we have labelled {i1, . . . , ir , j1, . . . , jn−r} = {1, . . . , n}. This proves that the
Weingarten relation given by (6.16) can be actually written as a linear Weingarten re-
lation

n∑
i=1

crHr = c0

for some constants c0, . . . , cn depending on c and r .
Thus, as a consequence of Corollary 29 we can conclude that the only compact ori-

ented immersed hypersurfaces in Hn+1 that satisfy (6.17) on 0∗r (given by (6.5) in terms
of 0r ) for the above constants cj are totally umbilical round spheres. This last conclusion
was obtained in [FR] for k = 1.

Remark 31. A problem of interest in hypersurface theory is to classify the elements
(c0, . . . , cn) ∈ Rn+1 for which the only compact linear Weingarten hypersurfaces satis-
fying (6.17) are round spheres. For that, one obviously needs some condition on the ci’s
in order to ensure that round spheres belong to this class. Again, this problem is tightly
linked by Corollary 27 to the one of determining when a conformal metric g = e2ρg0 on
Sn whose σk-curvatures satisfy a relation of the type

n∑
k=1

ckσk = c0, (c0, . . . , cn) ∈ Rn+1,

differs from g0 at most by a dilation and a conformal isometry of Sn.

Weingarten hypersurfaces with one end

It is possible to extend partially the above arguments to the case of non-compact Wein-
garten hypersurfaces. Again, the key is provided by some deep theorems by Y.Y. Li [L3,
L4, L5] on the characterization of solutions globally defined on Rn of some confor-
mally invariant PDEs involving the Schouten tensor. Li’s results generalize other previous
works, like [CGS, CGY2, LL1, LL2]. For that we introduce the following notions.

Definition 32. A manifoldMn is said to have one end if it is homeomorphic to a compact
manifold Kn with one point removed, i.e. Mn

' Kn
\ {p}.
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Definition 33. LetMn
⊂ Hn+1 denote an immersed oriented hypersurface with one end.

We say that this end is regular (or that Mn has one regular end) provided the hyperbolic
Gauss map G of Mn

≡ Kn
\ {p} extends continuously to Kn.

The most basic examples of non-compact hypersurfaces in Hn+1 with one regular end
are horospheres (with the outer orientation). The following result shows that, for a large
class of Weingarten functional equationsW(κ1, . . . , κn) = 0, the only Weingarten hyper-
surfaces with one regular end are horospheres. We are not assuming here completeness
or embeddedness of the hypersurface. Previous characterization results in Hn+1 for horo-
spheres can be found in [FR, Cu].

Theorem 34. Let (0∗,W) be given by (6.3) to (6.7) and such that W > 0 on 0∗. Let
Mn
⊂ Hn+1, n > 2, denote an immersed oriented hypersurface with one regular end,

and whose principal curvatures κ1, . . . , κn satisfy

(κ1, . . . , κn) ∈ ∂0
∗, and so W(κ1, . . . , κn) = 0. (6.18)

Then Mn is a horosphere (with its outer orientation).

Proof. Let us start by observing that if G : Mn
→ Sn is the hyperbolic Gauss map of

Mn, then G is a local diffeomorphism at every point of Mn (since from (6.18) we know
that κi < 1). In addition, as the end ofMn

≡ Kn
\{p} is regular, there exists a continuous

map Ḡ : Kn
→ Sn with Ḡ|Mn = G.

Set x0 := Ḡ(p) ∈ Sn and N := G−1(x0) ⊂ Mn. Obviously, N consists only of
isolated points, since G is a local diffeomorphism. Thus Mn

\ N is a smooth manifold,
and

G : Mn
\N → Sn \ {x0}

is a covering map. Therefore Mn
\ N is simply connected, and a simple topological

argument immediately implies that N has to be empty. Then we can infer that

G : Mn
→ Sn \ {x0}

is a global diffeomorphism. In particular, Mn is homeomorphic to Rn, and so we can
view it as an immersion φ : Rn → Hn+1 with hyperbolic Gauss map G = π−1(x),
where π : Sn \ {north pole} → Rn is the stereographic projection.

The rest of the proof is basically the same as the one of Theorem 28, but this time
using the main results of [L3, L4, L5]. ut

Results on the Schouten tensor

We now use the interrelation between hypersurfaces in Hn+1 and conformal metrics on
Sn in the opposite direction, i.e. we will transfer results from hypersurface theory into
conformal geometry.

First, we will prove a general duality for locally conformally flat metrics on a mani-
fold Mn. It is an example of how a geometrically simple transformation (a change from
positive to negative hyperbolic Gauss map in our situation) can yield a non-trivial super-
position formula for a geometric PDE.
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Theorem 35. Let (Mn, g), n > 2, denote a locally conformally flat Riemannian mani-
fold, and let λ1, . . . , λn ∈ C

∞(Mn) be the eigenvalues of its Schouten tensor. If none of
the λi’s vanish onMn, then there exists a new locally conformally flat Riemannian metric
g∗ on Mn whose Schouten tensor eigenvalues λ∗i ∈ C

∞(Mn) are

λ∗i = 1/λi .

Proof. Let p0 ∈ M
n be an arbitrary point. Then there exists some relatively compact

neighbourhood U ⊂ Mn of p0 and a conformal embedding f : U → Sn. Moreover, by
[Ku], the map f on U is unique up to conformal transformations of Sn.

Consider now the dilated metric gt := e2(ρ+t)g0 on U , where t > 0 is a positive
constant. As this is just a dilation of g with factor e2t , the eigenvalues of the Schouten
tensor of gt are λti = e−2tλi 6= 0. Therefore, as U is relatively compact, there exists
t0 > 0 such that λti 6= 1/2 everywhere on U if t ≥ t0.

Consider the map

ψt (x) := eρ(x)+t (1, x) : U ⊂ Sn→ Nn+1
+ ,

which is an immersion with induced metric gt . It follows from the proof of Theorem 15
that the map φt : U ⊂ Sn→ Hn+1 given by

φt =
eρ+t

2
(1+ e−2(ρ+t)(1+ ‖∇g0ρ‖2g0

))(1, x)+ e−(ρ+t)(0,−x +∇g0ρ) (6.19)

hasψt as its associated light cone immersion for a specific orientation, i.e. 〈dφt , dψt 〉 = 0
and 〈φt , ψt 〉 = −1. Moreover, by (5.4), the map φt is everywhere regular, and hence an
immersed hypersurface in Hn+1. We shall orient φt so that its unit normal ηt satisfies
ψt = φt + ηt .

Now, by (3.3) and (5.12) we find that the principal curvatures κ ti of φt satisfy

e−2tλi =
1
2
−

1
1− κ ti

, (6.20)

and thus κ ti 6= ±1 at every point in U (recall that, by hypothesis, the eigenvalues λi never
vanish).

This implies that the negative Gauss map of φt is a local diffeomorphism, since by
Lemma 3 and after a change of orientation, this condition for

G−t := [φt − ηt ] : U ⊂ Sn→ Sn

is equivalent to κ ti 6= −1 for every i ∈ {1, . . . , n}. Moreover,

g∗t := 〈d(φt − ηt ), d(φt − ηt )〉 (6.21)

is a new regular metric on U , which is conformally flat since it is the induced metric of an
immersion in the light cone. In other words, g∗t is just the horospherical metric of φt after
a change of orientation, which, as we already know, changes completely the geometry of
the hyperbolic Gauss map.
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Now, by (5.12), the eigenvalues λt,∗i of the Schouten tensor of g∗t satisfy the relation

λ
t,∗
i =

1
2
−

1
1− κ ti

.

From this expression and (6.20) we get

λ
t,∗
i =

e2t

4λi
.

It follows directly that the metric

g∗ := e2tg∗t (6.22)

defined on U has the Schouten tensor eigenvalues λ∗i = 1/(4λi).
Let us check finally that the definition of the conformally flat metric g∗ on U does not

depend on the choices of the positive constant t > 0 and of the conformal embedding f .
Let t1, t2 ≥ t0 > 0, and denote by

ψt1(x) = e
ρ(x)+t1(1, x), ψt2(x) = e

ρ(x)+t2(1, x)

the associated light cone immersions. Then by Remark 14 we have

φt2 = e
−(t2−t1)φt1 + sinh(t2 − t1)ψt1 .

Thus, φt2 − ηt2 = et1−t2(φt1 − ηt1). But this equality together with (6.21) shows that
e2t2g∗t2 = e

2t1g∗t1 . This indicates that the definition of the metric g∗ in (6.22) is indepen-
dent of the value of the constant t > 0.

On the other hand, as we said, the conformal embedding f of U into Sn is unique up
to conformal transformations of Sn. This implies that ψt , φt and thus φt − ηt are unique
up to isometries of Nn+1

+ or Hn+1. In particular, g∗ is independent of the choice of the
conformal embedding f : U → Sn.

These independence properties of the metric g∗ clearly imply that if U1, U2 are two
relatively compact neighbourhoods of Mn, and if g∗1 , g

∗

2 denote the respective associated
metrics defined via (6.22), then g∗1 = g

∗

2 on U1∩U2. In this way, the metric g∗ is a locally
conformally flat Riemannian metric globally defined on Mn. Moreover, its Schouten ten-
sor eigenvalues at an arbitrary point are 1/(4λi). Finally, a dilation of this metric g∗ by
an appropriate constant gives the desired metric. ut

Let us point out regarding this result that the conformally flat metrics g, g∗ are not in
general conformal to each other on Mn.

The final result of this work is a 2-dimensional analogue of the results in [LL1] re-
garding conformal metrics on Sn. It is remarkable that in this 2-dimensional case the
hypotheses are much weaker.
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Theorem 36. Let g = e2ρg0 denote a conformal metric on S2, and let λ1, λ2 be the
eigenvalues of its 2-dimensional Schouten tensor, i.e. of

Schg := −∇2,g0ρ + dρ ⊗ dρ −
1
2
(−1+ ‖∇g0ρ‖2g0

)g0.

Assume that W(λ1, λ2) = 0 for a smooth function W : D ⊂ R2
→ R such that

∂W
∂λ1

∂W
∂λ2

> 0 whenever λ1 = λ2.

Then λ1 ≡ λ2 and g = 8∗(g0), where 8 is some linear fractional transformation.

Proof. Reasoning as in Theorem 35, there exists a real number t and an immersion φ :
S2
→ H3 such that

• the eigenvalues λi of the new metric e2tg satisfy λi = e−2tλi < 1/2 on S2,
• the horospherical metric of φ is e2tg,
• the principal curvatures ki of φ satisfy e−2tλi =

1
2 −

1
1−ki

.

Therefore, φ is a Weingarten immersion with

W̃(k1, k2) =W
(
e2t
(

1
2
−

1
1− k1

)
, e2t

(
1
2
−

1
1− k2

))
= 0.

Now, using the fact that

∂W̃
∂k1

∂W̃
∂k2
=

e4t

(1− k1)2(1− k2)2
∂W
∂λ1

∂W
∂λ2

> 0

whenever k1 = k2, we see that φ must be a totally umbilical immersion [HW, Che]. Let
us remark here that [HW, Che] only consider surfaces in R3, but their arguments carry
over essentially unchanged to the space forms S3, H3, since they rely only on the Codazzi
equation, which is the same in all those spaces.

Thus, the result follows easily. ut

A closing remark. At the core of the results in the present paper there is an important
phenomenon that we would like to emphasize.

It is well known that the metric geometry of Hn+1 is tightly linked to the confor-
mal geometry of Sn, in the following sense: any isometry of Hn+1 induces a conformal
transformation of the ideal boundary ∂∞Hn+1

≡ Sn, and conversely, any conformal trans-
formation of Sn extends to an isometry of the unit ball (Bn+1, ds2

P ) ≡ Hn+1 with respect
to the Poincaré metric.

In this paper, we have shown that this relation is the base of a much more general
situation. Indeed, we have proved that the conformal metrics g = e2ρg0 on Sn are in cor-
respondence with the compact immersed hypersurfaces of Hn+1 with prescribed regular
hyperbolic Gauss map. Moreover, the fundamental conformal invariants of g in Sn, i.e.
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the eigenvalues of the Schouten tensor Schg , are linked to the basic extrinsic quantities of
the hypersurface in Hn+1 (the principal curvatures) by the simple relation

2λi =
κi + 1
κi − 1

.

It is our impression that this is a far reaching relation that goes beyond the specific results
proved here, which seem to be just the most visible consequences of the above correspon-
dence.
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