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Abstract. A Hermitian form q on the dual space, g∗, of the Lie algebra, g, of a Lie group, G, de-
termines a sub-Laplacian,1, onG. It will be shown that Hörmander’s condition for hypoellipticity
of the sub-Laplacian holds if and only if the associated Hermitian form, induced by q on the dual
of the universal enveloping algebra, U ′, is non-degenerate. The subelliptic heat semigroup, et1/4,
is given by convolution by a C∞ probability density ρt . When G is complex and u : G→ C is a
holomorphic function, the collection of derivatives of u at the identity inG gives rise to an element,
û(e) ∈ U ′. We will show that if G is complex, connected, and simply connected then the “Taylor”
map, u 7→ û(e), defines a unitary map from the space of holomorphic functions in L2(G, ρt ) onto
a natural Hilbert space lying in U ′.
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1. Introduction

Denote by G a real or complex Lie group, by g = TeG its Lie algebra, and by g∗ the
dual space of g. Let q be a non-negative quadratic or Hermitian form on g∗ according to
whether g is real or complex. Let K = Nul(q) = {α ∈ g∗ : q(α, α) = 0} and

H = K0 := {ξ ∈ g : α(ξ) = 0 for all α ∈ Nul(q)}

be the backward annihilator subspace of K in g. We say that q satisfies Hörmander’s
condition if H generates g as a Lie algebra.

In Section 2 we are going to characterize those q for which Hörmander’s condi-
tion holds in terms of the following natural seminorms on the dual space of the uni-
versal enveloping algebra of g. Denote by q⊗k the extension of q to a non-negative
quadratic/Hermitian form on (g∗)⊗k where by convention, (g∗)⊗0 is R or C according
to whetherG is real or complex and q⊗0(1) = 1. If T (g) is the tensor algebra over g then
the algebraic dual space of T (g) is the direct product: T (g)′ =

∏
∞

k=0(g
∗)⊗k. For each

t > 0 define

qt =

∞∑
k=0

tk

k!
q⊗k (1.1)

on T (g)′, where we allow for the possibility that qt (α) is infinite. On the subspace where
qt is finite it is the square of a seminorm. Because of the allowed degeneracy of q the
seminorm may not be a norm. But we are going to restrict the domain of qt further.
Denote by J the two-sided ideal in T (g) generated by the elements ξ ⊗η−η⊗ ξ − [ξ, η]
where ξ and η run over g. We can identify the universal algebra U of g with T (g)/J and
then the algebraic dual space, U ′, may be identified with J 0, the annihilator of J in T (g)′.
Let

J 0
t := {α ∈ J 0 : qt (α) <∞}.

We will show in Section 2 (see Theorem 2.7 and Corollary 2.14) that the following
conditions on q are equivalent: 1) Hörmander’s condition holds, 2) T (g) = T (H) + J

(T (H) is the tensor algebra over H ), and 3) for any t > 0, qt |J 0
t

is the square of a norm,
i.e., qt |J 0

t
is the quadratic (Hermitian) form associated to a positive definite inner product

on J 0
t .

For each A ∈ g, let Ã denote the unique extension of A to a left invariant vector field
on G. If G is real, for any basis X1, . . . , XM of g with dual basis {X′j } the second order
differential operator

1q =

M∑
j,k=1

q(X′j , X
′

k)X̃j X̃k (1.2)

is easily seen to be independent of the choice of basis. Hörmander’s theorem [20] states
that 1q is hypoelliptic if and only if q satisfies Hörmander’s condition.

Now suppose that G is a complex connected Lie group and q is a non-negative Her-
mitian form on g∗ satisfying Hörmander’s condition. Let Re q denote the real part of the
Hermitian inner product on g∗ with the complex structure forgotten. Since Nul(q) =
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Nul(Re q), one easily shows that q satisfies Hörmander’s condition iff Re q satisfies
Hörmander’s condition. We may form the associated hypoelliptic sub-Laplacian, 1Re q ,

as in (1.2) and in this case the heat semigroup, exp( t41Re q), is given by convolution by a
C∞ heat kernel ρt onG. LetH = H(G) denote the space of holomorphic functions onG
and for any function f in H and x ∈ G, let f̂ (x) ∈ J 0 ∼= U ′ be the “Taylor coefficient”
at the point x defined by

〈f̂ (x), β〉 = (β̃f )(x) for all β ∈ T (g), (1.3)

where β̃ is the left invariant differential operator on G associated to β (see Notation 2.4
below). Because of the results of Section 2, we know J 0

t is a Hilbert space with respect
to the norm (qt |J 0)1/2. The aim of this paper is to show that the Taylor map, f 7→ f̂ (e),

is a unitary isomorphism of H ∩ L2(G, ρt ) onto J 0
t when G is simply connected.

This kind of unitary isomorphism of holomorphic function spaces with a Hilbert space
of “Taylor coefficients” has a long history. A knowledgeable reader could “read out” of
the 1932 paper [8] by the physicist V. A. Fock such an isomorphism in the classical case,
where the complex group G is just CM , q is the usual Hermitian norm on CM , and ρt is
a Gaussian density. However, the isomorphism in this classical setting was not actually
made clear until the work of Segal [32, 33] and Bargmann [2]. (See also [17] for more
history.) Inspired by related work of B. Hall [18], the first named author [4] proved such
an isomorphism for a wide class of complex Lie groups G, for a strictly positive definite
quadratic form q. This was subsequently extended to an arbitrary complex Lie group in
[5] but again, for a strictly positive definite quadratic form q. A detailed exposition of
this isomorphism along with a discussion of its extensive history may be found in the
expository portion of the paper [17].

The Taylor map isomorphism has also been proven for some infinite-dimensional
groups: in [11] and [10] M. Gordina found a precise analog of this unitary isomor-
phism for the infinite-dimensional complex Hilbert–Schmidt orthogonal group, and in
[12] she proved the analog for the group of invertible operators in a factor of type II1.
Also M. Cecil, in [3], has shown that a unitary Taylor isomorphism holds for path groups
over stratified nilpotent Lie groups. To our knowledge the present paper is the first work
dealing with this isomorphism in the degenerate (i.e. subelliptic) case.

Section 4 establishes that f̂ (e) ∈ J 0
t for every

f ∈ H ∩ L2(G, ρt ) =: HL2(G, ρt (x) dx)

and that the Taylor map,

f ∈ HL2(G, ρt ) 7→ f̂ (e) ∈ J 0
t ,

is an isometry into J 0
t . The proof is similar to that for the non-degenerate case given in [5].

In Section 5 we will adapt the method first introduced in [4] to recover a holomorphic
function from its Taylor coefficient f̂ (e). Then, in Section 6, we will prove the surjectivity
for an arbitrary simply connected group G. See Theorem 6.1 for a precise statement.

Our proof of surjectivity in this subelliptic setting depends on a delicate extension of
the machinery of path dependent power series from the non-degenerate case, [5], to our
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subelliptic case (Sections 5 and 6). Although this extension is intrinsically interesting, we
have tried to find other proofs for the subelliptic case that yield the surjectivity directly
from the results already known in the non-degenerate case. In [6] we will report on these
alternative approaches, which work primarily for nilpotent groups. We will also derive
in [6] other interesting information for nilpotent groups besides surjectivity.

This paper continues a body of work in which the heat kernel on a Lie group G plays
the role of a weight for the study of L2(G,w(x) dx). IfG is complex then such a (rapidly
decreasing) weight is required if this space is to contain non-constant holomorphic func-
tions. In addition to a study of these holomorphic function spaces, H ∩ L2(G,w(x) dx),
there are natural transforms into such spaces from function spaces over compact Lie
groups. Heat kernel measures play a key role here also in place of Haar measure. For
further background the reader may consult the recent surveys [16] and [19].

It may be useful to comment on the term “subelliptic” used in the title of this paper.
Consider a second order differential operator L =

∑
∂iai,j (x)∂j with smooth coeffi-

cients in an open set � ⊂ RM . The operator L is called elliptic if the matrix (ai,j (x))
is everywhere positive definite (this is one of the standard usages of the term elliptic, see
[22, 25]). The operator is called subelliptic if the matrix (ai,j (x)) is everywhere positive
semidefinite and there is a real s ∈ (0, 1] such that L satisfies the subelliptic estimate

∀u ∈ C∞0 (�), ‖u‖(2s) ≤ C(‖u‖ + ‖Lu‖), (1.4)

where ‖ · ‖ stands for the usual L2-norm and ‖u‖(s) = (
∫
(1 + |ξ |2)s |û(ξ)|2dξ)1/2 is

the Sobolev norm of index s. See [25] and the references therein. Note that any elliptic
operator satisfies (1.4) with s = 1, locally (see, e.g., Lemma 17.1.2 in [21]), and that any
subelliptic operator is hypoelliptic (see Proposition 3.2 in [20]).

Now, ifG is a real Lie group andL =
∑k
i=1 X̃

2
i is the sum of the squares of left invari-

ant vector fields onG, then L is (locally) subelliptic if and only if it satisfies Hörmander’s
condition, i.e., {X1, . . . , Xk} generates the Lie algebra of G. See [20]. The term subel-
liptic heat kernel on G refers to the minimal solution of the Cauchy problem ∂tu = Lu,

u0 = δe, where L =
∑k
i=1 X̃

2
i and is subelliptic.

2. Hörmander’s condition and non-degeneracy of norms

Notation 2.1. We will denote by g a real (respectively complex) finite-dimensional Lie
algebra. We let q be a non-negative quadratic (respectively Hermitian) form on the dual
space g∗. Thus

q(a) = (a, a)q (2.1)

for some, possibly degenerate, non-negative bilinear (respectively sesquilinear) form
( , )q on g∗. Let

K := {a ∈ g∗ : q(a) = 0} (2.2)

be the null space of q and let

H = K0 := {ξ ∈ g : 〈a, ξ〉 = 0 ∀a ∈ K} (2.3)
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be the backward annihilator ofK. Here, as elsewhere, we use 〈·, ·〉 for the bilinear pairing
between a vector space and its dual, while (·, ·)q denotes the bilinear (or sesquilinear)
form induced by q on g∗. We call H the Hörmander space associated to q.

The degenerate case is of primary interest to us. We will usually allow the kernel, K,
of q to be non-trivial. The next elementary result gives an explicit characterization of q.

Lemma 2.2. There is a unique inner product, (·, ·)H , onH such that for any orthonormal
base {Xj }mj=1 (m := dim(H)) of H we have

(a, b)q =

m∑
j=1

〈a,Xj 〉〈b,Xj 〉 for all a, b ∈ g∗.

In particular,

q(a) = (a, a)q =

m∑
j=1

|〈a,Xj 〉|
2. (2.4)

Proof. The form q descends to a strictly positive definite quadratic form, q̄, on g∗/K and
the map

g∗/K 3 a +K 7→ a|H ∈ H
∗

is a linear isomorphism of vector spaces. Using this isomorphism, q̄ induces an inner
product, (·, ·)H ∗ , on H ∗ and hence, by the Riesz theorem, an inner product, (·, ·)H , on
H. Suppose that {Xj }mj=1 is any orthonormal basis of (H, (·, ·)H ) and a, b ∈ g∗. Then

(a, b)q = (a +K, b +K)q̄ = (a|H , b|H )H ∗ =

m∑
j=1

〈a,Xj 〉〈b,Xj 〉. ut

Notation 2.3. The form q induces a degenerate (real or Hermitian) quadratic form qk :=
q⊗k whose inner product, (·, ·)qk , on (g∗)⊗k is determined by

(a1 ⊗ · · · ⊗ ak, b1 ⊗ · · · ⊗ bk)qk =

k∏
j=1

(aj , bj )q , ai, bi ∈ g∗, i = 1, . . . , k, (2.5)

for k ≥ 1. If α ∈ (g∗)⊗k, we will write qk(α) or |α|2qk for (α, α)qk . By convention, V⊗0

is R or C depending on whether V is a real or complex vector space respectively, and we
define q0 on (g∗)⊗0 so that q0(1) = 1.

Notation 2.4 (Left invariant differential operators). Denote by T (g) the tensor algebra
over g. An element of T (g) is a finite sum

β =

N∑
k=0

βk, βk ∈ g⊗k. (2.6)

We define a linear map (β 7→ β̃) from T (g) to left invariant differential operators on G
determined by: 1) 1̃ = Id and 2) for β = A1 ⊗ · · · ⊗ Ak ∈ g⊗k, β̃ := Ã1 . . . Ãk.
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The algebraic dual space T (g)′ may be identified with the direct product
∏
∞

k=0(g
∗)⊗k

in the pairing

〈α, β〉 =

∞∑
k=0

〈αk, βk〉 (2.7)

where

α =

∞∑
k=0

αk, αk ∈ (g
∗)⊗k. (2.8)

Notation 2.5. Let J denote the two-sided ideal in T (g) generated by

{ξ ⊗ η − η ⊗ ξ − [ξ, η] : ξ, η ∈ g}.

The universal enveloping algebra of g is the associative algebra U := T (g)/J and the
algebraic dual space U ′ can be identified with

J 0 := {α ∈ T (g)′ : 〈α, J 〉 = {0}}. (2.9)

For t > 0 define

‖α‖2t :=
∞∑
k=0

tk

k!
|αk|

2
qk
= qt (α) (2.10)

when α is given by (2.8).

The function ‖ · ‖t defines a seminorm in the subspace of T (g)′ on which ‖α‖2t is
finite. But we will, by restriction, always consider ‖ · ‖t to be a seminorm on

J 0
t := {α ∈ J 0 : ‖α‖2t <∞}. (2.11)

It was shown in [5] that when g is complex and q is non-degenerate then the Hilbert
space J 0

t , in the norm ‖ · ‖t , is naturally isomorphic to the Hilbert space of holomorphic
functions in L2(G, ρt (x) dx)whereG is the simply connected Lie group with Lie algebra
g and convolution by ρt (x) is the heat kernel operator for the left invariant Laplacian onG
induced by q. The isomorphism is given by the Taylor map described in the Introduction
above (cf. [5, Theorem 2.6]). In Sections 4–6 we will prove that the same result holds in
the subelliptic case. But in the present section we will first characterize the circumstances
under which the seminorm ‖ · ‖t on J 0

t is actually a norm.

Definition 2.6. We say that Hörmander’s condition holds for q if the smallest Lie subal-
gebra, Lie(H), containing H is g.

Theorem 2.7. Let t > 0. The seminorm ‖ · ‖t on J 0
t is a norm if and only if Hörmander’s

condition holds.

Proof. The proof of this theorem is the contents of Lemmas 2.12 and 2.13 below whose
proofs were motivated by the techniques developed in [15]. ut
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The Lie subalgebra containing H may be described explicitly as follows. Let Hn denote
those elements of g which may be written as linear combinations of elements of the form

A = adA1 . . . adAk−1 Ak = [A1, [A2, . . . [Ak−1, Ak]] . . . ] (2.12)

with Ai ∈ H for i ≤ k and k ≤ n. Here, for k = 1, we interpret adA1 . . . adAk−1 to be the
identity operator. In particular, H1 = H .

Lemma 2.8. Lie(H) = Hn for all sufficiently large n.

Proof. It is clear that Hn is an increasing sequence of subspaces which are contained in
Lie(H) and because g is finite-dimensional, Hn must be independent of n for large n. So
to finish the proof it suffices to show

⋃
nHn is a Lie algebra and for this it suffices to

show [A,B] ∈
⋃
nHn whenever A is as in (2.12) and

B = adB1 . . . adBm−1 Bm = [B1, [B2, . . . [Bm−1, Bm]] . . . ] (2.13)

for some Bi ∈ H. However, this is easily proved by induction on k. The case k = 1 is
trivial. Now suppose that [A,B] ∈

⋃
nHn for any k ≤ k0. Let

A′ := adA2 . . . adAk0 Ak0+1 and A = adA1 . . . adAk0 Ak0+1 = [A1, A
′].

Then, by the Jacobi identity,

[A,B] = adA B = ad[A1,A′] B = adA1 adA′ B − adA′ adA1 B,

which is in
⋃
nHn by the induction hypothesis and the fact that

⋃
nHn is stable under

adA1 with A1 ∈ H. ut

Notation 2.9. Let r = min{n : Hn = Lie(H)}.

The proof of Theorem 2.7 will depend on the following lemmas. Since the theorem
has no content if q is non-degenerate we will assume throughout that q is degenerate.

Lemma 2.10. Let α ∈ (g∗)⊗k for some k ≥ 1. Then

qk(α) > 0 (2.14)

if and only if there exist vectors ξ1, . . . , ξk ∈ H such that

〈α, ξ1 ⊗ · · · ⊗ ξk〉 6= 0. (2.15)

Proof. From (2.4) and (2.5),

|α|2qk =

m∑
j1,...,jk=1

|〈α,Xj1 ⊗ · · · ⊗Xjk 〉|
2 (2.16)

for any α ∈ (g∗)⊗k . So |α|2qk > 0 if and only if one of the terms on the right side of the
last equality is not zero. ut
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Lemma 2.11. If Hörmander’s condition holds then there exists an r ∈ N and an algebra
homomorphism, P : T (g)→ T (H), such that:

(i) If β ∈ T (g) with maximum rank at most n then Pβ has maximum rank at most nr in
T (H).

(ii) P |T (H) = idT (H) and in particular P is a projection operator.
(iii) For all β ∈ T (g), β − Pβ ∈ J . In particular,

Nul(P ) ⊂ J,
T (g) = T (H)⊕ Nul(P ) = T (H)+ J, (2.17)
J = (J ∩ T (H))⊕ Nul(P ). (2.18)

(iv) P |g : g→
⊕r

k=1H
⊗k
⊂ T (H) is a bounded linear operator.

Proof. Given 0 := (A1, . . . , An) ∈ gn, let

[0] := [A1, [A2, . . . [An−1, An]] . . . ] = adA1 adA2 . . . adAn−1 An. (2.19)

and let
0̂ := A1 ∧ (A2 ∧ . . . (An−1 ∧ An) . . .) ∈ T (g), (2.20)

where u ∧ v = u⊗ v − v ⊗ u for any two tensors u and v. A simple induction argument
shows that 0̂ = [0]+ j (0) with j (0) ∈ J. Indeed, if n = 2,

A1 ∧ A2 = [A1, A2]+ j (A1, A2)

where j (A1, A2) = A1 ∧ A2 − [A1, A2] ∈ J. Similarly, if A0 ∈ g, then

A0 ∧ 0̂ = A0 ∧ [0]+ A0 ∧ j (0) = [A0, [0]]+ j (A0, [0])+ A0 ∧ j (0),

which completes the induction argument since J is an ideal. Clearly if 0 ∈ H n then
0̂ ∈ H⊗n.

Choose a basis X1, . . . , Xm, Y1, . . . , Y` of g (with m + ` = d = dim g) such that
X1, . . . , Xm is a basis for H. By Hörmander’s condition each vector Yk is a finite linear
combination of commutators [0] with 0 ∈ H n and n ≤ r. The corresponding linear
combination, Ŷk , of such 0̂ lies in

∑r
k=1H

⊗k while Ŷk − Yk lies in J. Define P on g by

P
( m∑
j=1

ajXj +
∑̀
k=1

bkYk

)
=

m∑
j=1

ajXj +
∑̀
k=1

bkŶk (2.21)

where aj and bk are in either R or C if g is real or complex respectively. At this point
P : g →

⊕r
k=1H

⊗k
⊂ T (H) is a linear operator such that: (a) P(A) − A ∈ J for all

A ∈ g, (b) P(A) = A for all A ∈ H, and (c) P is bounded for any norm on g because g
is finite-dimensional.

By the universal property of the tensor algebra, there is a unique extension of P
to an algebra homomorphism T (g) → T (H), which we still denote by P, such that
P(1T (g)) = 1T (H). Since, for (A1, . . . , An) ∈ gn,

P (A1 ⊗ · · · ⊗ An) = PA1 ⊗ · · · ⊗ PAn ∈ (A1 + J )⊗ · · · ⊗ (An + J )
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and J is an ideal, it follows that P(A1 ⊗ · · · ⊗ An) − A1 ⊗ · · · ⊗ An ∈ J. With this
observation, the remaining stated properties of P are now easily verified. ut

Lemma 2.12. Assume that Hörmander’s condition holds. If α ∈ J 0 and ‖α‖t = 0 for
some t > 0 then α = 0.

Proof. If α ∈ J 0 and ‖α‖t = 0 for some t > 0 then, by Lemma 2.10 and the definition
(2.10), α|T (H) = 0. By Lemma 2.11(iii), α = α ◦ P = α|T (H) ◦ P = 0. ut

This proves half of Theorem 2.7. The next lemma proves the other half.

Lemma 2.13. If Hörmander’s condition fails then there is an element α ∈ J 0 such that
α 6= 0 but qk(αk) = 0 for k = 0, 1, 2, . . . , i.e. ‖α‖t = 0 for all t > 0.

Proof. Let r be as in Notation 2.9 so thatHr = Lie(H)  g. Then there exists an element
a ∈ g∗ such that a 6= 0 while a|Hr ≡ 0. Let ã ∈ T (g)′ be such that ãj = 0 if j 6= 1 and
ã1
= a.

By the Poincaré–Birkhoff–Witt theorem, T := T (g) is the direct sum, T = S ⊕ J ,
where S is the space of symmetric tensors over g (see e.g. [38, Lemma 3.3.3]). Let PS :
T → S be the projection onto S along J and let α := ã ◦ PS . Then α ∈ J 0. Since
α1
= a 6= 0, we have α 6= 0. So to finish the proof it suffices to show qk(α) = 0 for all k.

Because of Lemma 2.10, this last assertion will be a consequence of

〈α, ξ1 ⊗ · · · ⊗ ξk〉 = 0 for all ξ1, . . . , ξk ∈ Hr = Lie(H) and k = 1, 2, . . . . (2.22)

We will verify (2.22) by induction. The case k = 1 is trivial since α1
= a = 0 on Hr .

Now suppose (2.22) holds up to some level k ≥ 1 and let ξi ∈ Hr for i = 1, . . . , k + 1.
Using the fact that α ∈ J 0, for any i = 1, . . . , k we have

〈α, ξ1 ⊗ · · · ⊗ ξk+1〉 − 〈α, ξ1 ⊗ · · · ⊗ ξi+1 ⊗ ξi ⊗ · · · ⊗ ξk+1〉

= 〈α, ξ1 ⊗ · · · ⊗ ξi−1 ⊗ [ξi, ξi+1]⊗ ξi+2 ⊗ · · · ⊗ ξk+1〉 = 0, (2.23)

where the induction hypothesis along with the fact that [ξi, ξi+1] ∈ Hr was used in the
second equality. Since any permutation of {1, . . . , k + 1} may be written as a product of
transpositions of nearest neighbors, it follows from repeated use of (2.23) that

〈α, ξ1 ⊗ · · · ⊗ ξk+1〉 = 〈α, ξσ(1) ⊗ · · · ⊗ ξσ(k+1)〉 (2.24)

for any permutation σ of {1, . . . , k + 1}. Averaging (2.24) over all permutations of
{1, . . . , k + 1} gives

〈α, ξ1 ⊗ · · · ⊗ ξk+1〉 =

〈
α,

1
(k + 1)!

∑
σ

ξσ(1) ⊗ · · · ⊗ ξσ(k+1)

〉
=

〈
ã ◦ PS ,

1
(k + 1)!

∑
σ

ξσ(1) ⊗ · · · ⊗ ξσ(k+1)

〉
=

〈
ã,

1
(k + 1)!

∑
σ

ξσ(1) ⊗ · · · ⊗ ξσ(k+1)

〉
= 0. ut
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Corollary 2.14. Hörmander’s condition holds if and only if

T (g) = T (H)+ J (not necessarily a direct sum). (2.25)

Proof. We have already seen in Lemma 2.11 that (2.25) holds under Hörmander’s con-
dition. Conversely, if Hörmander’s condition fails to hold, then by Lemma 2.13 there is
a non-zero element α ∈ J 0 (with α0 = 0) which annihilates T (H). Thus α annihilates
T (H)+ J , which would be impossible if (2.25) were valid. ut

Remark 2.15. Given two Hermitian forms, q1 and q2, satisfying Hörmander’s condition,
it is a natural question to ask how the norms q1

t and q2
t are related. We will not discuss

this here, but the reader is referred to [6, 7] where this question is considered.

3. The subelliptic heat kernel

Section 2 gave an algebraic interpretation of Hörmander’s condition in the tensor algebra
(see Theorem 2.7). The rest of this paper is mostly analytic in nature and depends heavily
on heat kernel estimates. This short section reviews the necessary material and gives
pointers to the literature concerning subelliptic heat kernels.

Let G be a real connected Lie group equipped with its right Haar measure dx. Let
q be a non-negative quadratic form on g∗ and let (H, (·, ·)H ) be the Hörmander space
associated to q as defined in Section 2. Assume that Lie(H) = g, i.e., the Hörmander
condition is satisfied. Let {Xi : i = 1, . . . , m} be an orthonormal basis of (H, (·, ·)H ).
Set

1 = 1q =

m∑
i=1

X̃2
i

where, as before, X̃i denotes the left invariant vector field on G which extends the vector
Xi ∈ g = Te(G). Then 1 depends only on q. See (1.2).

It is straightforward to prove that any sum of squares, L =
∑m
j=1 X̃

2
j , of left invariant

vector fields, X̃j , is essentially self-adjoint on C∞c (G) in L2(G, dy) when dy is right
invariant Haar measure. Indeed, it is sufficient to prove that C∞c (G) is a core for L∗. To
this end one proves that L commutes with left convolution by any function u ∈ C∞c (G).
This in turn implies that C∞(G)∩D(L∗) is a core for L∗. For any function f in this core
the truncations fn(x) = hn(x)f (x) are in C∞c (G) and converge to f in the L∗ graph
norm if the sequence hn ∈ C∞c (G) converges to one on G in a strong enough sense,
as e.g. in [5, Lemma 3.6]. A reader pursuing this route will find it necessary to prove
the integration by parts identity

∫
G

∑m
j=1(X̃jf )

2 dy = −(L∗f, f ) < ∞ for functions
f ∈ C∞(G) ∩ D(L∗). This can be proved by inserting the sequence hn in the left side
before integrating by parts.

The exponential et1/4 may therefore be defined by the spectral theorem. This
semigroup commutes with left translations, and the associated quadratic form
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∫
G

∑m
j=1(X̃jf )

2 dy, f ∈ D(
√
−1), is a Dirichlet form (see [9]). It follows that et1/4 ad-

mits a transition kernel ρt (x, dy) with ρ(t, A) ≥ 0 for all Borel sets A and ρt (x,G) ≤ 1
and such that

(et1/4f )(x) =

∫
G

f (y)ρt (x, dy)

for all f ∈ L2(G, dx). We will see shortly that the measure ρt (e, dy) admits a smooth
positive density x 7→ ρt (x)with respect to the right invariant Haar measure onG. We call
the measure ρt (e, dx) = ρt (x) dx the heat kernel measure on G associated to the sub-
Laplacian 1. It plays a central role in this paper since one of the main objects of interest
to us is the scale of Hilbert spaces of holomorphic functions on a complex Lie group
that are in L2 with respect to the heat kernel measure ρt (e, dx) = ρt (x) dx. In order to
study these spaces, one needs information concerning the heat kernel ρt . In particular, the
properties of ρt collected below play a key technical part in the proof of Theorem 4.2,
outlined in Section 4.

The properties of the transition kernel ρt (x, dy) are mostly derived through an under-
standing of the basic geometry associated to the operator 1 (i.e., the quadratic form q).
More precisely, define the intrinsic sub-Riemannian distance d associated to1 by setting

d(x, y) = sup
{
f (y)− f (x) : f ∈ C∞c (G),

m∑
i=1

|X̃if |
2
≤ 1

}
. (3.1)

It is well known that

d(x, y) = dH (x, y)

where dH is the horizontal distance obtained by minimizing the horizontal length of ab-
solutely continuous curves as spelled out precisely in the next definition. See, e.g., [25]
and [37, 35]. In what follows, θ will denote the Maurer–Cartan form on G, i.e., θ is the
g-valued 1-form on G defined by θ(v) ≡ Lg−1∗v when v ∈ TgG.

Definition 3.1. Let (H, (·, ·)H ) be the Hörmander space associated to q as defined in
Section 2 and set |u|2H = (u, u)H , u ∈ H .

(i) A path g : [a, b] → G is said to be horizontal if g is absolutely continuous and
θ(g′(s)) ∈ H for a.e. s.

(ii) The horizontal length or H -length of a horizontal path g : [a, b]→ G is defined to
be

`H (g) =

∫ b

a

|θ(g′(s))|H ds. (3.2)

If g is not horizontal we define `H (g) = ∞.
(iii) The horizontal distance between x and y is defined by

dH (x, y) = inf{`H (g) : g(0) = x, g(1) = y}. (3.3)
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Chow’s theorem asserts (in a more general context, see, e.g., [27]) that Hörmander’s
condition implies that any two points in G can be joined by a horizontal path of finite
H -length. Thus d(x, y) is finite for all x, y. The Ball–Box theorem (see for example
[27, Theorem 2.10] or [14, Section 0.5.A]) asserts that there exists a > 0 such that
for any left invariant Riemannian distance function, dRiem, C1dRiem(x, y) ≤ d(x, y) ≤

C2dRiem(x, y)
a for all x, y such that d(x, y) ≤ 1. Theorem 6.7 below implies the weaker

result that {d(e, x) < r} is an open neighborhood of e in the natural topology of G. By
either of these results, it follows that d is continuous and induces the manifold topology
of G.

Set
B(x, r) = {y ∈ G : d(x, y) < r}

and let |B(x, r)| denote the right Haar measure of B(x, r). One of the most basic results
concerning the local analysis of the sub-Laplacian 1 is the following.

Theorem 3.2. Referring to the above setting and notation, there are constants C1, C2
such that for any x ∈ G and any r ∈ (0, 1) we have:

(i) |B(x, 2r)| ≤ C1|B(x, r)|,

(ii)
∫
B
|f (z)− fB |

2 dz ≤ C2r
2 ∫
B

∑m
i=1 |X̃if (z)|

2 dz, B = B(x, r), f ∈ Lip(B),

where fB := |B|−1 ∫
B
f (z) dz is the mean of f over B.

Proof. For the doubling property (i) we refer to [25, 28, 39]. In fact, there are constants
c3, C3 ∈ (0,∞) and an integer ν = νq such that

∀r ∈ (0, 1), c3r
ν
≤ |B(e, r)| ≤ C3r

ν . (3.4)

The integer ν plays a role in the heat kernel estimates given below.
For the Poincaré inequality (ii), see [24, 25, 30, 31]. ut

By the general results of [30, 36], Theorem 3.2 yields a powerful parabolic Harnack
inequality and the heat kernel bounds stated in the following two theorems.

Theorem 3.3 (Parabolic Harnack inequality). There exists a constant C > 0 such that,
for any T > 0, if (0, T )×G 3 (t, x) 7→ u(t, x) is any non-negative solution of ∂u/∂t =
(1/4)1u then

u(s, x) ≤ u(t, y) exp
(
C

[
t

s
+
d(x, y)2

t − s

])
(3.5)

for all x ∈ G and 0 < s < t < T .

Proof. See [30, Theorem 3.1] and the arguments in [31, Sec. 5.4.3]. See also [36, Theo-
rem 3.5] and [39, Proposition IX.1.1]. ut

One of the many consequences of Theorem 3.2 is that the transition kernel ρt (x, dy) of
the semigroup et1/4 admits a continuous density, ρt (x, dy) = ht (x, y) dy, with respect
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to the right invariant Haar measure on G. The function (t, x, y) 7→ ht (x, y) is called
the heat kernel associated to the sub-Laplacian 1 on G. Moreover, ht is a fundamental
solution of the heat equation on G, i.e., a solution of the initial value problem{

∂ht (x, ·)/∂t = (1/4)1ht (x, ·),
ht (x, y) dy → δx(dy) (weakly) as t → 0. (3.6)

A further consequence of Theorem 3.2 is that uniqueness holds for the non-negative
Cauchy problem associated with the heat equation (3.6). See [1].

By construction, the operator et1/4 commutes with left translations whereas the Haar
measure dy is right invariant. It follows that

ht (x, y) = ht (e, x
−1y)m(x)

where m denotes the modular function defined by
∫
G
f (gx) dx = m(g)

∫
G
f (x) dx (the

function m is a continuous multiplicative function). A reader may consult [29] for further
details. In what follows we set

ρt (x) = ht (e, x)

so that ρt (x) is the density of the heat kernel measure

ρt (e, dx) = ρt (x) dx.

We will often refer to ρt , somewhat improperly, as the heat kernel.

Theorem 3.4. Referring to the above setting and notation, the heat kernel ρt (x) has the
following properties:

(i) (Regularity) (t, x) 7→ ρt (x) is a smooth positive function on (0,∞)×G.
(ii) (Conservation of heat)

∫
G
ρt (x) dx = 1.

(iii) (Gaussian upper bound) For any κ ∈ (0, 1), there exists Cκ ∈ (0,∞) such that for
all x ∈ G and all t > 0,

ρt (x) ≤ Cκ(1+ 1/t)ν/2eCκ te−κd(e,x)
2/t . (3.7)

(iv) (Gaussian lower bound) There are constants C, c ∈ (0,∞) such that, for all x ∈ G
and all t > 0,

ρt (x) ≥ c(1+ 1/t)ν/2e−Cte−Cd(e,x)
2/t . (3.8)

In the last two statements, ν is the integer introduced at (3.4).

Proof (outline). (i) That the heat kernel is smooth is a basic consequence of Hörmander’s
hypoellipticity theorem. That it is positive easily follows, for instance, from (3.5) although
it can be obtained more directly.

(ii) This property (conservativeness) is again a consequence of Theorem 3.2 by way
of a local Harnack inequality (see [34]). It also follows by the remark made above con-
cerning uniqueness of solutions to the positive Cauchy problem (see [1]). Alternatively,
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one can use Grigor’yan’s volume criterion (see [13] and [34]). Indeed, on any group,
r 7→ |B(x, r)| grows at most exponentially fast.

(iii) This heat kernel upper bound is in [39, Theorem IX.1.2]. It also follows from the
local parabolic Harnack inequality and the volume estimate (3.4). See [30].

(iv) This heat kernel lower bound is stated in [39, Theorem IX.1.2] for 0 < t < 1.
The global Harnack type inequality (3.5) easily gives the desired result for t ≥ 1. ut

Remark 3.5. Note that as κ tends to 1, the Gaussian factor e−κd(e,x)
2/t in Theorem

3.4(iii) tends to its optimal value e−d(e,x)
2/t (recall that our heat semigroup is et1/4).

The fact that such an approximately optimal heat kernel upper bound holds is crucial for
the analysis developed in this paper.

4. The Taylor map

Let G be a complex Lie group with Lie algebra g. Suppose we are given a non-negative
Hermitian form q on the complex vector space g∗. As in Notation 2.1 and Lemma 2.2, let
K be the kernel of q, H = K0 be the backward annihilator of K in g, and let {Xj }mj=1 be
an orthonormal basis for the complex inner product space H. Then the vectors {Xj , iXj :
j = 1, . . . , m}, where i =

√
−1, form an orthonormal basis of H as a real vector space

with inner product Re(·, ·)H . The subspace H ⊂ g generates the full Lie algebra g over
the complex numbers if and only if it generates g as a real Lie algebra. Define

1 = 1Re q =

m∑
j=1

(X̃2
j + (̃iXj )

2
) (4.1)

where, as before, for A ∈ g, Ã is the left invariant vector field on G such that Ã(e) = A.
It is easy to see that the second order differential operator 1 is independent of the choice
of orthonormal basis X1, . . . , Xm. By Hörmander’s theorem 1 is subelliptic if and only
if H generates g. Throughout this section we will assume that H does generate g. Let ρt
in C∞(G) be the heat kernel introduced in (3.6).

Notation 4.1. We denote by H the space of holomorphic functions on G and define

HL2(G, ρt (x) dx) = H ∩ L2(G, ρt (x) dx). (4.2)

For any finite-dimensional holomorphic representation, π : G → GL(n,C), poly-
nomials in the matrix entries of π will lie in the space HL2(G, ρt (x) dx) for any such
subelliptic Laplacian. Such a representation π always exists whenG is simply connected.
For example by Ado’s theorem [23, p. 199], g has a faithful representation as a matrix
subalgebra of gl(n,C) for some n. Since G is simply connected, the Lie algebra repre-
sentation integrates to a holomorphic representation, π : G→ GL(n,C).

Recall that for each β ∈ T (g), β̃ is the corresponding left invariant partial differential
operator onG as in Notation 2.4. If f is a holomorphic function defined in a neighborhood
of the identity element of G then, as in (1.3), f defines a linear functional f̂ (e) on T (g).
Notice that f̂ (e) is complex linear and that f̂ (e) ∈ J 0 where J 0 is the annihilator of
J ⊂ T (g), defined in Notation 2.5. The complex linearity is a consequence of the fact
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that f is holomorphic. To see that f̂ (e) ∈ J 0, observe that β̃1h̃β̃2 annihilates all functions
if β1 and β2 are in T (g) and h = A⊗ B − B ⊗ A− [A,B] is a generator of J. Since J
is the linear span of such elements, 〈f̂ (e), β〉 = (β̃f )(e) = 0 for all β ∈ J.

Our main theorem in this section is the following.

Theorem 4.2. LetG be a connected complex Lie group. Suppose that q is a non-negative
Hermitian form on the dual space g∗ and assume that Hörmander’s condition holds (cf.
Definition 2.6). Let ρt denote the heat kernel associated to (3.6). Then the Taylor map,

f 7→ f̂ (e), (4.3)

is an isometry from HL2(G, ρt (x) dx) into J 0
t .

Proof. The proof follows the pattern given in [5] for the case of non-degenerate q. We
therefore just sketch the proof, emphasizing the issues that present a possible difference.
The tensor Dnf (x), of nth order derivatives of f at x, is defined by

〈(Dnf )(x), ξ1 ⊗ · · · ⊗ ξn〉 = (ξ̃1 . . . ξ̃nf )(x). (4.4)

Let us first observe that the identity

(1/4)|Dkf (x)|2qk = |D
k+1f (x)|2qk+1

when f ∈ H(G) (4.5)

holds in our degenerate case when the norms that appear are those induced on k-tensors
by q. The proof is identical to that for the non-degenerate case (cf. [5, Remark 3.7]).
Suppose now that f ∈ HL2(G, ρt (x) dx) and define

F(s) =

∫
G

|f (x)|2ρs(x) dx, 0 ≤ s ≤ t. (4.6)

We are going to proceed, at first, entirely informally and then discuss what needs to
be done to justify the following computations. By definition ρs satisfies ∂sρs(x) =
(1/4)ρs(x). Differentiate (4.6) and use (4.5) to find

dF(s)

ds
=
d

ds

∫
G

|f (x)|2ρs(x) dx (4.7)

=

∫
G

|f (x)|2
∂

∂s
ρs(x) dx (4.8)

=

∫
G

|f (x)|2(1/4)ρs(x) dx

=

∫
G

{(1/4)|f (x)|2}ρs(x) dx (4.9)

=

∫
G

{|Df (x)|2q}ρs(x) dx.

A similar derivation shows by induction that

F (k)(s) =

∫
G

|Dkf (x)|2qkρs(x) dx, k = 0, 1, 2, . . . . (4.10)
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Were it possible to use these derivatives to expand F as a power series around s = 0, we
would find from (4.10) and the expected relation F (k)(0) = lims↓0 F

(k)(s) = |Dkf (e)|2

that

F(s) =

∞∑
k=0

(sk/k!)F (k)(0) =
∞∑
k=0

(sk/k!)|(Dkf )(e)|2qk = |f̂ (e)|
2
J 0
s
. (4.11)

Therefore
‖f ‖2

L2(G,ρs (x) dx)
= ‖f̂ (e)‖2

J 0
s
, (4.12)

which, for s = t , is the isometry we wish to prove.
Among the previous steps the following clearly need justification:

(a) the interchange of d/ds with
∫
G

in (4.8),
(b) the integration by parts in (4.9) (and in the similar derivation of (4.10)),
(c) the validity of the expansion in (4.11).

The only hypothesis available to us for these justifications is the assumption that
f ∈ HL2(G, ρt (x) dx). We do not have, for a general complex group, a method of ap-
proximating such rapidly growing holomorphic functions by more slowly growing holo-
morphic functions. Justification of the three items in (a)–(c) must therefore be done di-
rectly for the rapidly growing function f . The justification of these steps, developed in [5],
consists in establishing expansion coefficient bounds, ‖f̂ (e)‖s ≤ ‖f ‖L2(ρs )

(cf. Proposi-
tion 3.3 in [5]), and pointwise bounds (cf. Corollary 3.10 in [5]),

|f (x)|2 ≤ ‖f̂ (e)‖2s e
d(e,x)2/s for all x ∈ G, (4.13)

as well as similar pointwise bounds on the derivatives of f , |Dkf (x)|qk , where in [5],
d(e, x) refers to the Riemannian distance associated to q in the non-degenerate case.
These estimates go over to the subelliptic case with no changes except that d(e, x) should
now be interpreted as the sub-Riemannian distance associated to q defined in either of
(3.1) or (3.3). (The estimate in (4.13) and the analogous estimates for |Dkf (x)|qk will
be re-derived in Corollary 5.15 below.) One combines growth rates, such as (4.13), with
known decay rates for subelliptic heat kernels (see Theorem 3.4) to justify the steps listed
in (a)–(c). To prove (4.11), it is shown in [5, Section 4], using these rather detailed bounds
on the derivatives Dkf (x) and the consequent bounds on the derivatives F (k)(s) for 0 <
s < t, that F has a complex analytic extension to a complex neighborhood of [0, t).
The result of this procedure is to establish (4.12) for s < t. For s = t one then uses a
monotonicity argument on both sides of (4.12) as s ↑ t (cf. [5, Section 5 or Appendix 8];
one should replace the Li–Yau Harnack inequality used in [5] by the Harnack inequality
stated in (3.5)). ut

The following proposition complements Theorem 4.2 and makes use of the estimate
(4.13). In words, it says that the inverse image of J 0

t under the Taylor map f 7→ f̂ (e)

from H(G) into J 0 is contained in HL2(G, ρt (x) dx).
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Proposition 4.3. Let f ∈ H(G) and assume that f̂ (e) ∈ J 0
t (see (1.3)) for some t > 0.

Then f ∈ HL2(G, ρt (x) dx).

Proof. As noted above, (4.13) and known heat kernel estimates (cf. (3.7)) show that if
f̂ (e) ∈ J 0

t then f ∈ HL2(G, ρs) for s < t . By Theorem 4.2 we have

‖f ‖L2(G,ρs (x) dx)
= ‖f̂ (e)‖s ≤ ‖f̂ (e)‖t .

The desired conclusion follows because

lim
s↑t
‖f ‖L2(G,ρs (x) dx)

= ‖f ‖L2(G,ρt (x) dx)
.

See [5, Sect. 5 or Appendix 8]. The Li–Yau Harnack inequality used in [5] should be
replaced by (3.5). ut

5. Power series along a curve in a Lie group

If z is a point in Cn and z⊗k is its kth tensor power in (Cn)⊗k then the conventional
power series representation of a holomorphic function f in a neighborhood of 0 may be
written f (z) = 〈α,8(z)〉, where 8(z) :=

∑
∞

k=0(k!)−1z⊗k is an element of the (suit-
ably completed) tensor algebra over Cn and α is in the dual space. In order to recover a
holomorphic function f on a complex Lie group G from a knowledge of its Taylor co-
efficient α = f̂ (e) (cf. (1.3)), we will need to represent f locally and globally on G by
an analogous kind of power series. Of course we do not have a global coordinate system
as on Cn. Consider a piecewise smooth curve g : [0, 1] → G beginning at the identity
e ∈ G and ending at a point z ∈ G. We are going to replace the tensor-valued function
8(z) above by a path dependent tensor-valued function 9(g) so that f is again given by
f (z) = 〈α,9(g)〉, both locally and globally. WhenG = Cn and g is the straight-line path
joining 0 to z our function 9(g) reduces to 8(z) and, in addition, 〈α,9(g)〉 = 〈α,8(z)〉
for all paths g joining 0 to z.

In order to carry out the replacement we will first develop, in Section 5.1, the needed
estimates in the space where9(g)will lie. In Section 5.2 we will describe the path depen-
dent power series expansion associated to a local holomorphic function. And in Section
5.3 we will show that the seemingly path dependent series associated to a presumed Tay-
lor coefficient α of limited size actually depends only on the homotopy class (with fixed
endpoints) of the path. For the elliptic case this machinery has been developed in [4]
and [5].

5.1. The Fréchet tensor algebra

Definition 5.1 (Fréchet tensor algebra). Let V be a real or complex finite-dimensional
vector space with an inner product ( , ) and associated norm | · |. Let

T∞(V ) =

∞∏
n=0

V⊗n
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and for A =
∑
∞

n=0An ∈ T∞(V ) and B =
∑
∞

n=0 Bn ∈ T∞(V ) with An, Bn ∈ V⊗n for
all n, define

AB :=
∞∑
n=0

( n∑
k=0

Ak ⊗ Bn−k

)
∈ T∞(V ), ‖A‖2t :=

∞∑
n=0

n!
tn
|An|

2,

Tt (V ) := {A ∈ T∞(V ) : ‖A‖t <∞}, T+(V ) = lim
t↓0
Tt (V ) :=

⋂
t>0

Tt (V ).

Observe that

T (V ) ⊂ T+(V ) ⊂ Ts(V ) ⊂ Tt (V ) ⊂ T∞(V ) for 0 < s < t <∞.

The containment T (V ) ⊂ T+(V ) asserts that any finite rank tensor is in Tt (V ) for all
t > 0, which is clear. T+(V ) also contains some tensors of infinite rank. For example, if
A ∈ T∞(V ) then A ∈ T+(V ) if |An| = O((n!)−δ) for some δ > 1/2. See Proposition
5.10 for more examples of elements of T+(V ).

The following lemma is a technical improvement on [4, Lemma 2.18].

Lemma 5.2 (T+(V ) is an algebra). If s, t > 0, A ∈ Tt (V ) and B ∈ Ts(V ), then AB ∈
Ts+t (V ) and

‖AB‖s+t ≤ ‖A‖t‖B‖s . (5.1)

In particular, T+(V ) is an algebra.

Proof. Write A =
∑
∞

k=0Ak and B =
∑
∞

k=0 Bk, where Ak, Bk ∈ V⊗k. Then

|(AB)n|
2
=

∣∣∣ n∑
k=0

Ak ⊗ Bn−k

∣∣∣2 ≤ ( n∑
k=0

|Ak| |Bn−k|
)2

=

( n∑
k=0

|Ak|

√
k!
tk
|Bn−k|

√
(n− k)!
sn−k

·

√
tksn−k

k! · (n− k)!

)2

≤

n∑
k=0

(
|Ak|

2 k!
tk
|Bn−k|

2 (n− k)!
sn−k

) n∑
k=0

tksn−k

k! · (n− k)!

=
(t + s)n

n!

n∑
k=0

|Ak|
2 k!
tk
· |Bn−k|

2 (n− k)!
sn−k

,

and therefore

‖AB‖2s+t ≤

∞∑
n=0

n!
(t + s)n

·
(t + s)n

n!

n∑
k=0

|Ak|
2 k!
tk
· |Bn−k|

2 (n− k)!
sn−k

=

∑
0≤k≤n<∞

|Ak|
2 k!
tk
· |Bn−k|

2 (n− k)!
sn−k

= ‖A‖2t ‖B‖
2
s . ut
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Remark 5.3. Lemma 5.2 is sharp, in the sense that

sup
A,B∈T+(V )\{0}

‖AB‖r

‖A‖t‖B‖s
= ∞ if r < s + t.

This can be seen by fixing ξ ∈ V with |ξ | = 1 and then taking

A = Exp(aξ) := 1+
∞∑
n=1

an

n!
ξ⊗n

and B = Exp(bξ) while letting a and b range over R.

Corollary 5.4. Denote by Lβ and Rβ the left and right multiplication in T∞(V ). Thus
Rβη = ηβ and Lβη = βη for all η ∈ T∞(V ). If β ∈ T (V ) then Lβ and Rβ are bounded
operators from Ts(V ) into Tt (V ) whenever 0 < s < t .

Proof. By (5.1), ‖Rβη‖t ≤ ‖η‖s‖β‖t−s , with the same inequality for Lβ . Since ‖β‖t−s
<∞ the assertion follows. ut

In the remainder of this section we will letG be a complex Lie group and let g := Lie(G)
be its Lie algebra. Denote by q a non-negative Hermitian form on g∗. We will assume
throughout this section that q satisfies Hörmander’s condition (cf. Definition 2.6). Let
(H, (·, ·)H ) be the inner product space described in (2.3) and Lemma 2.2 and let J 0

t be as
in (2.11). Lemma 5.2 will be often applied with V = H. In particular, if β ∈ T (H) we
define

‖β‖2t =

∞∑
n=0

n!
tn
|βn|

2
H . (5.2)

Remark 5.5. If α ∈ J 0
t and β ∈ T (H), then, in view of (2.10) and (2.16),

|〈α, β〉| ≤ ‖α‖t · ‖β‖t ,

and therefore α|T (H) extends uniquely to an element of Tt (H)∗. We will continue to de-
note this extension by α. Moreover, using this identification, we have ‖α‖t = ‖α‖Tt (H)∗ .
But α is also a linear functional on T (g). No norms have been specified so far on T (g)
and moreover there appears to be no natural norm on T (g) with respect to which α is con-
tinuous. Nevertheless, we will need to make use of 〈α, β〉 for certain elements β which
do not lie over H . To this end, in order to estimate the size of 〈α, β〉, we will need to
project these tensors into T∞(H) along J . The key tool will be the projection constructed
in Lemma 2.11.

Proposition 5.6. Suppose that 0 < s < σ and that α ∈ J 0
σ . If β ∈ T (g) then α ◦ Rβ

and α ◦ Lβ are in J 0
s . Moreover, denoting by P the projection from T (g) onto T (H) as

constructed in Lemma 2.11, we have

‖α ◦ Rβ‖s ≤ ‖Pβ‖σ−s‖α‖σ . (5.3)
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Proof. First observe that if u ∈ J then (α ◦ Rβ)(u) = α(u ⊗ β) = 0 if α ∈ J 0. So
α ◦ Rβ ∈ J 0. Thus we need only focus on the size issue. Since J is an ideal, β =
Pβ mod J, and α annihilates J , we may write, for any element η ∈ T (H),

|〈α ◦ Rβ , η〉| = |〈α, η ⊗ β〉| = |〈α, η ⊗ Pβ〉|

≤ ‖α‖σ‖η ⊗ Pβ‖σ ≤ ‖α‖σ‖η‖s‖Pβ‖σ−s .

This proves (5.3). The proof for Lβ is similar. ut

Corollary 5.7. Suppose that α ∈ J 0
σ for some σ > 0. Let ψ :=

∑
∞

n=0 ψn ∈ T+(H).
Define ψ≤N =

∑N
n=0 ψn. Then α ◦ Lψ := limN→∞ α ◦ Lψ≤N exists in J 0

s for any
s ∈ (0, σ ). Moreover,

‖α ◦ Lψ‖s ≤ ‖ψ‖σ−s‖α‖σ . (5.4)

Proof. By Proposition 5.6,

‖α ◦ Lψ≤N ‖s ≤ ‖ψ≤N‖σ−s‖α‖σ , (5.5)
‖α ◦ Lψ≤N − α ◦ Lψ≤K‖s ≤ ‖ψ≤N − ψ≤K‖σ−s‖α‖σ . (5.6)

Since ψ≤N converges to ψ in the sense of Tσ−s(H), it follows from (5.6) that
{α ◦ Lψ≤N }

∞

N=1 is convergent in Ts(H). Passing to the limit in (5.5) proves (5.4). ut

5.2. A generalized power series

Definition 5.8. A function, g : [0, 1]→ G, is a piecewise Ck path if: (1) g is continuous
and (2) there exists a partition,

D := {0 = r0 < r1 < · · · < rl = 1}, (5.7)

of [0, 1] and functions, gi ∈ Ck([ri−1, ri],G), such that g|[ri−1,ri ] = gi for i = 1, . . . , l.
We further say that a collection of paths {gt }t∈R are piecewise C2 paths depending dif-
ferentiably on t, if: (1) (s, t) 7→ gt (s) ∈ G is continuous and (2) there exists a partition
D as in (5.7) and functions gi ∈ C2([ri−1, ri] × R,G) such that gt (s) = gi(s, t) when
(s, t) ∈ [ri−1, ri]× R. In particular, we are assuming that ġt (s) := d

dt
gt (s) exists for all

s ∈ [0, 1].

For 0 ≤ r < s ≤ 1, let

1n(r, s) := {(s1, . . . , sn) : r ≤ s1 < · · · < sn ≤ s}

and let ds = ds1 · · · dsn.

Notation 5.9. For c ∈ L1([0, 1], g) and 0 ≤ r ≤ s ≤ 1, define

ψr,s(c) =

∞∑
n=0

ψnr,s(c) ∈ T∞(g) (5.8)
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where ψ0
r,s(c) = 1 and for n ≥ 1,

ψnr,s(c) =

∫
1n(r,s)

c(s1)⊗ · · · ⊗ c(sn) ds. (5.9)

Given a piecewise C1 path, g : [0, 1]→ G, and 0 ≤ r < s ≤ 1, let

9nr,s(g) := ψnr,s(c) and 9r,s(g) := ψr,s(c) (5.10)

where c(s) := θ(g′(s)) and θ is the Maurer–Cartan form (cf. Section 3). For notational
simplicity we will write ψ0,s(c) and90,s(g) simply as ψs(c) and9s(g) respectively. It is
important to observe that if the path g is horizontal (cf. Definition 3.1), then 9nr,s(g) lies
in H⊗n.

The following proposition provides a key quantitative control on 9r,s .

Proposition 5.10. Suppose that g : [0, 1] → G is a piecewise C1 horizontal path, and
0 ≤ r < s ≤ 1. Then

|9nr,s(g)|H⊗n ≤
1
n!

(∫ s

r

|θ(g′(σ ))| dσ

)n
=
`H (g|[r,s])

n

n!
. (5.11)

For any t > 0,

‖9r,s(g)‖
2
Tt (H)

≤ exp
(

1
t

[∫ s

r

|θ(g′(σ ))| dσ

]2)
= exp

{
1
t
`H (g|[r,s])

2
}
. (5.12)

Moreover, if 0 < σ < t and β ∈ T (H) then

‖91(g)⊗ β‖
2
Tt (H)

≤ ‖β‖t−σ e
`H (g)

2/σ . (5.13)

Proof. Letting c(s) := θ(g′(s)), we may estimate (5.9) by

|9nr,s(g)| = |ψ
n
r,s(c)| ≤

∫
1n(r,s)

|c(s1)| . . . |c(sn)| ds =
1
n!

(∫ s

r

|c(σ )| dσ

)n
, (5.14)

which proves (5.11). The estimate (5.12) follows by squaring both sides of (5.11), multi-
plying the resulting estimate through by n!/tn, and then summing on n. Inequality (5.13)
now follows from (5.1). ut

The following lemma summarizes some elementary properties of the various9 functions.
We leave the proofs to the reader.
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Lemma 5.11. Let g be a piecewise C1 horizontal path in G and let 9(g) and 9n(g) be
defined as in Notation 5.9.

(i) For n ∈ N and 0 ≤ r ≤ s ≤ 1 with r, s /∈ D (cf. (5.7)),
d

ds
9nr,s(g) = 9

n−1
r,s (g)⊗ c(s) (5.15)

and

d

dr
9nr,s(g) = −c(r)⊗9

n−1
r,s (g). (5.16)

(ii) 9r,s(g) satisfies

d

ds
9r,s(g) = 9r,s(g)⊗ c(s) with 9r,r(g) = 1 (5.17)

and

d

dr
9r,s(g) = −c(r)⊗9r,s(g) with 9s,s(g) = 1 (5.18)

where the derivatives exist in Tt (H) for all t > 0.

Such tensor-valued functions of paths, 9r,s(g), were used in [4] to prove isomorphisms
similar to those in this paper when G is the complexification of a reductive group. They
have also been used as a tool in rough path analysis. See e.g. [26].

The following proposition explains the role of the path dependent 9 function in the
“power series” expansion of a local holomorphic function on G and motivates our recon-
struction, in the next section, of a holomorphic function fα from its “Taylor coefficient”
α ∈ J 0.

Notation 5.12. For any ε > 0, let

UHε := {x ∈ G : d(e, x) = dH (e, x) < ε}.

As we have already mentioned, UHε is an open neighborhood of e.

Proposition 5.13. Let ε > 0 and a ∈ G. If f ∈ H(aUHε ) and g : [0, 1] → G is a
piecewise C1 path such that g(0) = a and `H (g) < ε, then

f (g(1)) = 〈f̂ (a),91(g)〉 :=
∞∑
k=0

〈f̂ (a),9k1 (g)〉 (5.19)

where the sum is absolutely convergent. More generally, if β ∈ T (g), then

(β̃f )(g(1)) = 〈f̂ (a),91(g)⊗ β〉 :=
∞∑
k=0

〈f̂ (a),9k1 (g)⊗ β〉. (5.20)

Proof. See [4, Proposition 5.1] where this same result is proved in the case ε = ∞ (i.e.
UHε = G) and a = e. The proof used there works here as well (when a = e) provided the
parameter z ∈ C which appears in [4] is always required to satisfy |z| < ε/`H (g). The
main point is that if we define gz(s) ∈ G as the solution to the ODE

θ(g′z(s)) = zc(s) with gz(0) = e,
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then `H (gz) = |z|`H (g) < ε provided that |z| < ε/`H (g). In particular, this implies that
gz([0, 1]) ⊂ UHε , and this is what is required to run the argument in [4, Proposition 5.1].
At the end of this argument we set z = 1, which is permissible since ε/`H (g) > 1.

When a 6= e, apply the result with f replaced by w(y) := f (ay) and g(s) replaced
by a−1g(s), in which case we learn that

f (g(1)) = w(a−1g(1)) = 〈ŵ(e),91(a
−1g)〉 = 〈f̂ (a),91(g)〉,

where the last equality holds because f̂ (a) = ŵ(e) and θ((a−1g)′(s)) = θ(g′(s)) so that
91(a

−1g) = 91(g).

Applying (5.19) with f replaced by β̃f implies

(β̃f )(g(1)) =
∞∑
k=0

〈
̂̃
βf (a),9k1 (g)〉,

which completes the proof since

〈
̂̃
βf (a),9k1 (g)〉 = (9̃

k
1 (g)β̃f )(a) = ((9

k
1 (g)⊗ β)

∼f )(a) = 〈f̂ (a),9k1 (g)⊗ β〉. ut

Remark 5.14. It should be observed that the power series in (5.19) converges not because
of some size restriction imposed on f̂ (a), but because f is assumed to be holomorphic
in a neighborhood of a (cf. [4, Proposition 5.1]). A size restriction, such as f̂ (a) ∈ J 0

t ,
yields strong bounds on the growth rate of the derivatives of f at a, much stronger than
those that hold for a locally defined holomorphic function. The following corollary shows
what kind of bounds on the derivatives of f are implied by such a strong condition. The
inequalities (5.21) and (5.22) in the following corollary represent a generalization and an
improvement over the corresponding inequality (3.25) in [5]. We thank M. Gordina for
her proof of the improvement.

Corollary 5.15. Let a ∈ G and f ∈ H(aUHε ) be such that α := f̂ (a) ∈ J 0
t . Suppose

that r, s > 0 are such that r + s ≤ t. Then for every piecewise C1 horizontal path
g : [0, 1]→ aUHε such that g(0) = a and `H (g) < ε,

|Dkf (g(1))|2qk ≤
k!
rk
‖α‖2t e

`H (g)
2/s for k = 0, 1, 2, . . . . (5.21)

Moreover, if x ∈ aUHε , then

|Dkf (x)|2qk ≤
k!
rk
‖α‖2t e

dH (a,x)
2/s for k = 0, 1, 2, . . . . (5.22)

Proof. From Proposition 5.13,

(β̃f )(g(1)) = 〈α,91(g)⊗ β〉 for all β ∈ H⊗k. (5.23)

This identity along with the estimate (5.13) yields

|(β̃f )(g(1))|2 ≤ ‖α‖2t ‖91(g)⊗ β‖
2
t ≤ ‖α‖

2
t

k!|β|2

rk
e`H (g)

2/s . (5.24)
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Since

|Dkf (g(1))|2qk = sup{|〈Dkf (g(1)), β〉|2 : β ∈ H⊗k with |β| = 1}

= sup{|(β̃f )(g(1))|2 : β ∈ H⊗k with |β| = 1}

≤ ‖α‖2t
k!
rk
e`H (g)

2/s,

the estimate (5.21) is proved. If x ∈ aUHε , by definition there exists a piecewise C1

horizontal path, g : [0, 1] → aUHε , such that g(0) = a, g(1) = x and `H (g) < ε.

Therefore. from (5.21) we learn that

|Dkf (x)|2qk ≤
k!
rk
‖α‖2t inf{e`H (g)

2/s : g(0) = a, g(1) = x} =
k!
rk
‖α‖2t e

dH (a,x)
2/s . ut

5.3. Dependence of power series on the endpoint

Theorem 5.16. Let s 7→ gt (s) ∈ G be a piecewise C2 horizontal path depending
smoothly on a parameter t such that gt (0) = e ∈ G for all t. Suppose that α ∈ J 0

T

for some T > 0. Then

d

dt

∣∣∣∣
t=0
〈α,91(gt )〉 =

〈
α,91(g0)⊗ θ

(
d

dt

∣∣∣∣
t=0
gt (1)

)〉
(5.25)

where 91(gt ) is defined in Notation 5.9.

Let us first give an informal but illustrative argument for (5.25). Let ct (s) := θ(g′t (s))

∈ H and ht (s) := θ(ġt (s)) ∈ g where “ ′ ” and “ · ” are shorthand for ∂/∂s and ∂/∂t
respectively. Then

ċt (s) =
d

dt
θ(g′t (s)) =

d

ds
θ(ġt (s))+ dθ(ġt (s), g

′
t (s)) = h

′
t (s)+ [ct (s), ht (s)]g, (5.26)

where we have used the structure equation dθ(v,w) + [θ(v), θ(w)] = 0. Recall from
Lemma 5.11 that 9s(gt ) and 9s,1(gt ) solve

d

ds
9s(gt ) = 9s(gt )⊗ ct (s) with 90(gt ) = 1 (5.27)

and
d

ds
9s,1(gt ) = −ct (s)⊗9s,1(gt ) with 91,1(gt ) = 1. (5.28)

Differentiating (5.27) in t implies

d

ds

d

dt
9s(gt ) =

d

dt
9s(gt )⊗ ct (s)+9s(gt )⊗ ċt (s),
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and using this identity along with (5.28) and (5.26) allows us to conclude

d

ds

[
d

dt
9s(gt ) ·9s,1(gt )

]
= 9s(gt )⊗ ċt (s)⊗9s,1(gt )

= 9s(gt )⊗ (h
′
t (s)+ [ct (s), ht (s)]g)⊗9s,1(gt ).

Integrating this equation on s then gives

d

dt
91(gt ) =

∫ 1

0
9s(gt )⊗ (h

′
t (s)+ [ct (s), ht (s)]g)⊗9s,1(gt ) ds. (5.29)

An integration by parts along with (5.27) and (5.28) shows∫ 1

0
9s(gt )⊗ h

′
t (s)⊗9s,1(gt ) ds

= 9s(gt )⊗ ht (s)⊗9s,1(gt )|
s=1
s=0

−

∫ 1

0
9s(gt )⊗ ct (s)⊗ ht (s)⊗9s,1(gt ) ds

+

∫ 1

0
9s(gt )⊗ ht (s)⊗ ct (s)⊗9s,1(gt ) ds

= 91(gt )⊗ ht (1)−
∫ 1

0
9s(gt )⊗ ct (s) ∧ ht (s)⊗9s,1(gt ) ds.

Using this identity in (5.29) gives

d

dt
91(gt ) = 91(gt )⊗ ht (1)+ Z(t) (5.30)

where

Z(t) =

∫ 1

0
9s(gt )⊗ ([ct (s), ht (s)]g − ct (s) ∧ ht (s))⊗9s,1(gt ) ds.

By truncating 9s and 9s,1, we may write Z(t) as a limit of elements in J and therefore
argue that 〈α,Zt 〉 = 0 for α ∈ J 0

T . Hence applying α ∈ J 0
T to (5.30) yields the desired

result:

d

dt
〈α,91(gt )〉 = 〈α,91(gt )⊗ ht (1)〉 =

〈
α,91(gt )⊗ θ

(
d

dt
gt (1)

)〉
.

The remainder of this section will be devoted to making the above argument rigorous.
The proof of Theorem 5.16 will be completed after Lemma 5.18 below.
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Lemma 5.17. Suppose that h(·) ∈ C([0, 1], g) is piecewise C1 and that c(·) ∈ g is
piecewise continuous. Let v(s) = h′(s)+ [c(s), h(s)]. For an integer N > 1 define

RN = RN (c, h) =

∫ 1

0

N−1∑
m=0

ψms (c)⊗ [c(s), h(s)]⊗ ψN−1−m
s,1 (c) ds. (5.31)

There exists an element ZN = ZN (c, h) ∈ J such that

∂v

( N∑
n=0

ψn1

)
(c) =

N−1∑
n=0

ψn1 (c)⊗ h(1)+ ZN + RN . (5.32)

Proof. Let 1n := 1n(0, 1). Since ψn1 (c) is a multi-linear form in c, it is easy to see that
ψn1 (c) is smooth in c and that

∂vψ
n
1 (c) =

n∑
k=1

∫
1n

c(s1)⊗ · · · ⊗ c(sk−1)⊗ v(sk)⊗ c(sk+1)⊗ · · · ⊗ c(sn) ds

=

n∑
k=1

∫ 1

0
ψk−1
s (c)⊗ v(s)⊗ ψn−ks,1 (c) ds.

Thus the derivative of the n-linear functional ψn1 (c) in the direction v may be written

(∂vψ
n
1 )(c) =

∑
m+k=n−1

∫ 1

0
ψms ⊗ v(s)⊗ ψ

k
s,1 ds (5.33)

where, to simplify notation, we are writing ψnr,s for ψnr,s(c) and we have defined ψkr,s ≡ 1
if k = 0 and ψkr,s ≡ 0 if k < 0. Consider first the terms in (5.33) arising from the
summand h′ in v. An integration by parts, using (5.27) and (5.28), yields

∂h′ψ
n
1 =

∑
m+k=n−1

∫ 1

0
ψms ⊗ h

′(s)⊗ ψks,1 ds

=

∑
m+k=n−1

(
ψms ⊗ h(s)⊗ ψ

k
s,1|

1
s=0

−

∫ 1

0
{ψm−1

s ⊗ c(s)⊗ h(s)⊗ ψks,1 − ψ
m
s ⊗ h(s)⊗ c(s)⊗ ψ

k−1
s,1 } ds

)
.

Since h(0) = 0 and ψk1,1 = 0 if k 6= 0, the boundary terms contain at most one non-zero
term, ψn−1

1 ⊗ h(1). Replace m by m+ 1 in the first integral and replace k by k + 1 in the
second integral. We may then write

∂h′ψ
n
1 = ψ

n−1
1 ⊗ h(1)−

∑
m+k=n−2

∫ 1

0
ψms ⊗ (c(s) ∧ h(s))⊗ ψ

k
s,1 ds.
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Adding now the contribution to v from the term [c(s), h(s)] we find, with the help of
(5.33),

∂vψ
n
1 = ψ

n−1
1 ⊗ h(1)+

∑
m+k=n−1

∫ 1

0
ψms ⊗ [c(s), h(s)]⊗ ψks,1 ds

−

∑
m+k=n−2

∫ 1

0
ψms ⊗ (c(s) ∧ h(s))⊗ ψ

k
s,1 ds.

Summing this equation on n from 0 to N, keeping in mind that ψ0
1 = 1 and ψ−1

r,s = 0,
we find

∂v

N∑
n=0

ψn1 =

N−1∑
n=0

ψn1 ⊗ h(1)

+

N−1∑
n=1

∑
m+k=n−1

∫ 1

0
ψms ⊗ {[c(s), h(s)]− c(s) ∧ h(s)} ⊗ ψ

k
s,1 ds

+

∫ 1

0

∑
m+k=N−1

ψms ⊗ [c(s), h(s)]⊗ ψks,1 ds.

Since the middle line is in J the lemma is proved. ut

Lemma 5.18. Suppose that α ∈ J 0
T for some T > 0, h(·) ∈ C([0, 1], g) is piecewise

C1, g(·) is a piecewise C2 horizontal path over [0, 1], and let c(s) := θ(g′(s)). Let
RN = RN (c, h) be as in Lemma 5.17 and ‖h‖∞ = sups∈[0,1] |h(s)| where | · | is any given
fixed norm on g, such that |A|2 = (A,A)H for all A ∈ H. Then there exist constants,
{CN (T )}

∞

N=1 such that limN→∞ CN (T )λ
N
= 0 for all λ > 0 and

|〈α,RN 〉| ≤ ‖α‖T ‖h‖∞CN (T )`H (g)
n. (5.34)

Proof. Let um(s) = ψms (c) and vm(s) = ψN−m−1
s,1 (c). Because g is horizontal, um(s) ∈

H⊗m and vm(s) ∈ H⊗(N−m−1) for each s ∈ [0, 1]. If w(s) := [c(s), h(s)], then

〈α,RN 〉 =

N−1∑
m=0

∫ 1

0
〈α, um(s)⊗ w(s)⊗ vm(s)〉 ds (5.35)

and we may find K <∞ such that∫ 1

0
|w(s)|g ds ≤ K‖h‖∞

∫ 1

0
|c(s)|H ds = K‖h‖∞`H (g) <∞. (5.36)

The integrability of w guarantees that the integrals in (5.35) and the integrals appearing
in the argument below all exist. Although um(s) and vm(s) lie in T (H) ⊂ T (g) the factor
w(s) may not lie in H . Since α is only continuous on tensor spaces over H we must
replace the factor w(s) before making estimates.
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Let P : T (g)→ T (H) be the projection operator constructed in Lemma 2.11 and let
L := P |g : g →

⊕r
k=1H

⊗k. We may write, for all A ∈ g, L(A) =
∑r
k=1 Lk(A) with

each Lk being a linear map from g into H⊗k. Since g is finite-dimensional, there exists
K1 <∞ such that |Lk(A)|H⊗k ≤ K1|A|g for k = 1, . . . , r and A ∈ g.With this notation,
(5.35) may be written as

〈α,RN 〉 =

N−1∑
m=0

∫ 1

0
〈α, um(s)⊗ L(w(s))⊗ vm(s)〉 ds

=

r∑
k=1

N−1∑
m=0

∫ 1

0
〈α, um(s)⊗ Lk(w(s))⊗ vm(s)〉 ds.

Using the estimate (5.11) and writing |αj | for |αj |qj , we find

N−1∑
m=0

|〈α, um(s)⊗ Lk(w(s))⊗ vm(s)〉|

≤

N−1∑
m=0

|αN−1+k| |um(s)|H⊗m |Lk(w(s))|H⊗k |vm(s)|H⊗(N−m−1)

≤

N−1∑
m=0

|αN−1+k|
`H (g|[0,s])

m

m!
K1|w(s)|g

`H (g|[s,1])
N−m−1

(N −m− 1)!

≤ |αN−1+k|K1|w(s)|g
`H (g)

N−1

(N − 1)!

where the binomial formula was used to obtain the last inequality. After integrating on s,
summing on k, and using (5.36) in the previous estimate, we find

|〈α,RN 〉| ≤ K1K
`H (g)

N

(N − 1)!
‖h‖∞

r∑
k=1

|αN−1+k|. (5.37)

By the definition (2.10) we see that |αj |qj ≤ (j !/T j )1/2‖α‖T , which combined with
(5.37) gives

|〈α,RN 〉| ≤ K1K
`H (g)

N

(N − 1)!
‖h‖∞‖α‖T

r∑
k=1

√
(N − 1+ k)!
T N−1+k ,

which proves the lemma with

CN (T ) := K1K
1

(N − 1)!

r∑
k=1

√
(N − 1+ k)!
T N−1+k . ut

We are now in a position to complete the proof of Theorem 5.16.

Proof of Theorem 5.16. As at the beginning of this section, let ct (s) := θ(g′t (s)) ∈ H

and ht (s) := θ(ġt (s)) ∈ g and recall from (5.26) that

ċt (s) = h
′
t (s)+ [ct (s), ht (s)]g.
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Let f (t) := 〈α,91(gt )〉 and

fN (t) =
〈
α,

N∑
n=0

9n1 (gt )
〉
=

〈
α,

N∑
n=0

ψn1 (ct )
〉

so that f (t) = limN→∞ fN (t). By Lemma 5.17 with v(s) := h′t (s) + [ct (s), ht (s)]g,
fN (t) is differentiable and

dfN (t)

dt
=

〈
α,

N∑
n=0

ψn1 (ct )⊗ ht (1)
〉
+ 〈α,RN (ct , ċt )〉. (5.38)

Because `H (gt ) and ‖ċt (·)‖∞ are bounded for t near zero, Lemma 5.18 may be used to
conclude that the remainder term 〈α,RN (ct , ċt )〉 goes to zero as N →∞ uniformly in a
neighborhood of t = 0. Moreover, it is easily verified that

lim
N→∞

〈
α,

N∑
n=0

ψn1 (ct )⊗ ht (1)
〉
= 〈α,ψ1(ct )⊗ ht (1)〉

with the above limit being uniform in t near zero. Hence we may conclude that f (t) is
differentiable near zero and that ḟ (t) = 〈α,91(ct )⊗ ht (1)〉. ut

6. Reconstruction of f from its Taylor coefficients

The purpose of this section is to complete the proof of the following theorem, which is
the main theorem of this paper.

Theorem 6.1. Let G be a connected, simply connected complex Lie group. Suppose that
q is a non-negative Hermitian form on the dual space g∗ and assume that Hörmander’s
condition holds (cf. Definition 2.6). Let ρt denote the heat kernel associated to (3.1). Then
the Taylor map f 7→ f̂ (e) is a unitary map from HL2(G, ρt (x) dx) onto J 0

t .

Proof. Since we have already proved the isometry property of the Taylor map in Theorem
4.2, it suffices to prove the map is surjective. In light of Proposition 4.3, it suffices to show
that for each α ∈ J 0

t there exists f ∈ H(G) such that f̂ (e) = α. But this is the content of
Theorem 6.13 below. ut

The remainder of this section is devoted to the proof of Theorem 6.13.

6.1. Holomorphic horizontal coordinates and paths

In this section, letG be a complex Lie group and g := Lie(G) be its complex Lie algebra.

Notation 6.2. For g, h ∈ G, let [g, h] := g−1h−1gh.
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Lemma 6.3. For 0 := (A1, . . . , An) ∈ gn and ε ∈ C \ {0} define

v0(ε) =
d

dt

∣∣∣∣
t=0

[
e

t

εn−1 A1 , [eεA2 , [eεA3 , . . . [eεAn−1 , eεAn ]]] . . .
]
. (6.1)

Then
lim
ε→0

v0(ε) = [0] (6.2)

where [0] is defined as in (2.19).

Proof. If X ∈ g and b ∈ G then

d

dt

∣∣∣∣
t=0

[etX, b] =
d

dt

∣∣∣∣
t=0
e−tXet (Ad

b−1 )X = (Adb−1 −I )X. (6.3)

Let
b = [eεA2 , [eεA3 , . . . [eεAn−1 , eεAn ]] . . . ]

and let 0′ = (A2, . . . , An). We assert that, for ε near 0, b = eB(ε) where

B(ε) = εn−1[0′]+ εnC(ε) (6.4)

and C(ε) is an analytic g-valued function of ε for ε near 0. This may be proven by induc-
tion on n with the help of the Baker–Campbell–Hausdorff formula [38, Theorem 2.15.4]
as follows. An application of [38, Theorem 2.15.4] shows

[eX, eY ] = e−Xe−Y eXeY = e[X,Y ]+R2(X,Y ) (6.5)

where R2(X, Y ) is an analytic function of X and Y defined in a neighborhood of 0 in
g× g and which satisfies

|R2(X, Y )| ≤ C2(|X| + |Y |)|X| |Y |.

We further assert that

[eB2 , [eB3 , . . . [eBn−1 , eBn ]] . . . ] = e[B2,[B3,...[Bn−1,Bn]]... ]+Rn−1(B2,...,Bn−1,Bn) (6.6)

where Rn−1(B2, . . . , Bn−1, Bn) is an analytic function of (B2, . . . , Bn−1, Bn) in a neigh-
borhood of 0 ∈ gn−1 which satisfies

|Rn−1(B2, . . . , Bn−1, Bn)| ≤ Cn−1

( n∑
i=2

|Bi |
)
|B2| . . . |Bn|. (6.7)

Indeed, assuming (6.6) and (6.7) hold, it follows by using (6.5) that

[eB1 [eB2 , . . . [eBn−1 , eBn ]] . . .] = e[B1,[B2,...[Bn−1,Bn]]...]+Rn(B1,B2,...,Bn−1,Bn)
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where

Rn(B1, B2, . . . , Bn−1, Bn) = [B1, Rn−1(B2, . . . , Bn−1, Bn)]
+ R2(B1, [B2, [B3, . . . [Bn−1, Bn]] . . . ]
+ Rn−1(B2, . . . , Bn−1, Bn)).

The function Rn is analytic for (B1, . . . , Bn) in a neighborhood of 0 ∈ gn and is easily
seen to satisfy

|Rn(B1, . . . , Bn)| ≤ Cn

( n∑
i=1

|Bi |
)
|B1| . . . |Bn|.

Formula (6.6), with Bi = εAi, implies B(ε) is an analytic function of ε in a neigh-
borhood of 0 such that

B(ε) = εn−1[0′]+O(εn).

Taking b = eB(ε) and X = ε−(n−1)A1 in (6.3) implies

v0(ε) = (e
− adB(ε) − I )ε−(n−1)A1 =

∞∑
k=1

1
k!
(− adB(ε))kε−(n−1)A1

= − ad[0′]A1 +O(ε) = [0]+O(ε). ut

Formula (6.4) can be viewed as a version of [28, Lemma 2.2.1]. Such a commutator iden-
tity frequently plays a role in subelliptic estimates and goes back at least to Hörmander
[20].

Notation 6.4. For 0 := (A1, . . . , An) ∈ gn and ε > 0, let φ0,ε : C→ G be defined by

φ0,ε(z) :=
[
e

z

εn−1 A1 , [eεA2 , [eεA3 , . . . [eεAn−1 , eεAn ]]] . . .
]
. (6.8)

The function φ(z) := φ0,ε(z) ∈ G is a holomorphic function of z whose derivative at
z = 0 in the direction w is given by

φ∗(w0) = wφ∗(10) = w
d

dt

∣∣∣∣
t=0
φ(t)

= w
d

dt

∣∣∣∣
t=0

[
e

t

εn−1 A1 , [eεA2 , [eεA3 , . . . [eεAn−1 , eεAn ]]] . . .
]

= w · v0(ε)→ [0]w as ε→ 0,

where wz refers to the complex number w as an element of Tz(C). For each 0 :=
(A1, . . . , An) ∈ gn, ε 6= 0, and z ∈ C we are going to define a piecewise C∞ hori-
zontal path, σ0,ε,z, which depends holomorphically on z as follows. First observe that[

ezε
−(n−1)A1 , [eεA2 , [eεA3 , . . . [eεAn−1 , eεAn ]]] . . .

]



972 Bruce K. Driver et al.

is the product of Nn := 3 · 2n−1
− 2 exponentials of the form eB1 . . . eBNn with each Bi

being an element from the set

S(0, ε, z) := {±εA1, . . . ,±εAn−1} ∪

{
±

z

εn−1An

}
. (6.9)

Hence if k = 1, . . . , Nn and s ∈ [(k − 1)/Nn, k/Nn], let

σ0,ε,z(s) := eB1 . . . eBk−1e(Nns−k+1)Bk . (6.10)

The following proposition summarizes what we have done.

Proposition 6.5. Assume that 0 ∈ H n. The path σ0,ε,z in (6.10) is a piecewise C∞

horizontal path from e to φ0,ε(z) which depends holomorphically on z ∈ C. More-
over, for s ∈ ((k − 1)/Nn, k/Nn), θ(σ ′0,ε,z(s)) = NnBk ∈ S(0, ε, z) (see (6.9)) and
hence θ(σ ′0,ε,z(s)) is either constant in z or depends on z linearly in each of the intervals
{((k − 1)/Nn, k/Nn) : k = 1, . . . , Nn}.

Let X := {Xj }mj=1 be an orthonormal basis for the Hörmander subspace H . For l =
m+ 1, . . . ,M := dim g, let nl ∈ N and 0l ∈ X nl be chosen so that

{Xj }
m
j=1 ∪ {[0l] : l = m+ 1, . . . ,M}

is a basis for g. We may apply Lemma 6.3 to find (and fix once and for all) an ε ∈ C \ {0}
sufficiently close to zero such that

{Xj }
m
j=1 ∪ {[Xl := v0l (ε)] : l = m+ 1, . . . ,M} (6.11)

is still a basis for g. For z ∈ C, let

φj (z) :=
{
ezXj if 1 ≤ j ≤ m,
φ0j ,ε(z) if m+ 1 ≤ j ≤ M, (6.12)

where φ0j ,ε has been defined in (6.8).

Notation 6.6 (Horizontal charts and paths). For z = (z1, . . . , zM) ∈ CM , let

ϕ(z) := φ1(z1)φ2(z2) . . . φM(zM) ∈ G

and let σz(s) ∈ G be the horizontal path defined, for s ∈ [(j − 1)/M, j/M], by

σz(s) = φ1(z1)φ2(z2) . . . φj−1(zj−1)σ0j ,ε,zj (Ms − j + 1).

Theorem 6.7. The function ϕ : CM → G is a local bi-holomorphism from an open
neighborhood, �, of 0 ∈ CM to an open neighborhood, U , of e ∈ G. The path σz(s) is
a piecewise C∞ horizontal path in G from e to ϕ(z) which depends holomorphically on
z ∈ CM . More precisely, there is a partition of [0, 1],

D = {0 = s0 < s1 < · · · < sN = 1},

such that for s ∈ (sl−1, sl), l ∈ {1, . . . , N}, either θ(σ ′z(s)) = X
′

l or θ(σ ′z(s)) = zjlX
′

l for
some jl ∈ {1, . . . ,M}, where each X′l ∈ H is a real multiple of one of the elements from
the orthonormal basis X ⊂ H.
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Proof. Since ϕ∗([ej ]0) = Xj for j = 1, . . . ,M where Xj are defined in (6.11), the first
assertion is a consequence of the inverse function theorem. The remaining assertions have
already been proved prior to the statement of the theorem. ut

6.2. Local existence of fα

Notation 6.8. We will want to consider α and its “translates” in various of the spaces J 0
t .

Noting that J 0
σ ⊂ J

0
s if 0 < s < σ , we define

J 0
+ :=

⋃
t>0

J 0
t . (6.13)

A consequence of Corollary 5.7 is that if α ∈ J 0
+ and ψ ∈ T+(H) then α ◦ Lψ ∈ J 0

+.

Theorem 6.9 (Local existence). Let � ⊂ CM and U ⊂ G be as in Theorem 6.7. For
each α ∈ J 0

+ and x ∈ G there exists f = fα ∈ H(xU) such that f̂ (x) = α. This function
has the additional property that

f̂ (xϕ(z)) = α ◦ L91(σz) for all z ∈ �. (6.14)

In particular, f̂ (y) ∈ J 0
+ for all y ∈ xU.

Proof. The proof will consist of showing that the function f : xU → C defined by

f (xϕ(z)) = f (xσz(1)) := 〈α,91(σz)〉 =: u(z) for all z ∈ �

is the desired function. By Proposition 5.10,

|〈α,9n1 (σz)〉| ≤ |αn|qn |9
n
1 (σz)|H⊗n ≤ |αn|qn

1
n!
Kn

where K := supz∈� `H (σz), and therefore
∞∑
n=0

|αn|qnK
n 1
n!
≤

( ∞∑
n=0

|αn|
2
qn

tn

n!

)1/2( ∞∑
n=0

K2n

n!tn

)1/2

= ‖α‖te
K2/2t .

Therefore the sum
∑
∞

n=0〈αn, 9
n
1 (σz)〉 defining u(z) is uniformly and absolutely con-

vergent. Moreover, it is easy to verify that each summand un(z) := 〈αn, 9n1 (σz)〉 is a
holomorphic polynomial in z of degree n and thus u(z) is holomorphic as well.

Using Theorem 5.16, we learn that

u∗wz =
d

dt

∣∣∣∣
t=0
u(z+ tw) =

d

dt

∣∣∣∣
t=0
〈α,91(σz+tw)〉

=

〈
α,91(σz)⊗ θ

(
d

dt

∣∣∣∣
t=0
σz+tw(1)

)〉
=

〈
α,91(σz)⊗ θ

(
d

dt

∣∣∣∣
t=0
ϕ(z+ tw)

)〉
= 〈α,91(σz)⊗ θ(ϕ∗wz)〉,

while on the other hand

u∗wz =
d

dt

∣∣∣∣
t=0
f (xϕ(z+ tw)) = 〈Df (xϕ(z)), θ(ϕ∗wz)〉.
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Comparing these two equations shows that

〈Df (xϕ(z)), θ(ϕ∗wz)〉 = 〈α,91(σz)⊗ θ(ϕ∗wz)〉

for all w ∈ CM and z ∈ �, which implies

〈Df (xϕ(z)), A〉 = 〈α,91(σz)⊗ A〉 for all z ∈ � and A ∈ g. (6.15)

By Proposition 5.6, αA := α ◦ RA is in J 0
+. With this notation, (6.15) reads

(Ãf )(xϕ(z)) = 〈αA, 91(σz)〉 for all A ∈ g.

Applying the above results with f replaced by Ãf and α replaced by αA, we learn that

(B̃Ãf )(xϕ(z)) = 〈(αA)B , 91(σz)〉 = 〈αA, 91(σz)⊗ B〉 = 〈α,91(σz)⊗ B ⊗ A〉.

Moreover, a simple induction argument now shows that

(Ã1 . . . Ãnf )(xϕ(z)) = 〈α,91(σz)⊗ A1 ⊗ · · · ⊗ An〉 for all Ai ∈ g,

which is equivalent to (6.14). In light of Corollary 5.7, the proof is complete. ut

6.3. Global construction of fα

In what follows, we will fix an inner product on g. Such a choice induces a unique left
invariant Riemannian metric on G. Fix δ > 0 such that the Riemannian ball U = URiem

δ

of radius δ and centered at e is geodesically convex, and such that there exists an open
neighborhood,�, of 0 inCM for which the results of Theorems 6.7 are valid. In particular,
for every α ∈ J 0

+ and x ∈ G there exists f ∈ H(xU) such that f̂ (x) = α by Theorem
6.9. The following two simple observations will be used repeatedly below: (1) A point
x ∈ G is in yU iff y ∈ xU. (2) If S is a non-empty finite subset of G such that

diam(S) := sup{dRiem(x, y) : x, y ∈ S} < δ,

then
⋂
a∈S(aU) is a non-empty, (pathwise) connected open subset of G containing S.

The latter holds because
⋂
a∈S(aU) is a non-empty, geodesically convex, open subset of

G containing S.

Theorem 6.10 (Analytic continuation). Suppose that g ∈ C([0, 1],G) is a path such
that g(0) = e. Then to each α ∈ J 0

+, there exists a unique family of functions,

{ft ∈ H(g(t)U) : 0 ≤ t ≤ 1}, (6.16)

satisfying:

(i) f̂0(e) = α,
(ii) if 0 ≤ a ≤ b ≤ 1 with diam(g([a, b])) < δ, then fs = ft on g(s)U ∩ g(t)U for all

s, t ∈ [a, b].

Moreover, f̂t (x) ∈ J 0
+ for all x ∈ g(t)U and all t ∈ [0, 1].

Proof. Uniqueness. Suppose that {kt ∈ H(g(t)U) : 0 ≤ t ≤ 1} is another collection of
holomorphic functions with the same properties as {ft : t ∈ [0, 1]} and let

T0 := sup{T ∈ [0, 1] : ft = kt for 0 ≤ t ≤ T }.
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Since holomorphic functions are determined by their Taylor coefficients and f̂0 = α =

k̂0, it follows that f0 = k0 on U. Moreover, if T > 0 is chosen so that g([0, T ]) ⊂ U,
then for 0 ≤ t ≤ T , we have ft = f0 = k0 = kt on g(t)U ∩ U , which is a non-empty
open subset of g(t)U. Since g(t)U is a connected open set it follows that ft = kt on all
of g(t)U. Hence we have shown T0 > 0.

Choose 0 < a < T0 ≤ b ≤ 1 such that diam(g([a, b])) < δ and b > T0 if T0 < 1.
Then for t ∈ [a, b], ft = fa and kt = ka on g(a)U ∩ g(t)U and fa = ka on g(a)U.
Therefore ft = kt on g(a)U ∩ g(t)U , which implies ft = kt on the connected open
set g(t)U. If T0 < 1, we would conclude that T0 ≥ b > T0, which is absurd. Hence
T0 = b = 1 and we conclude f1 = k1 and by the definition of T0 that ft = kt for
0 ≤ t < 1.

Existence. From Theorem 6.9, there exists f0 ∈ H(U) such that f̂0(e) = α and
f̂0(x) ∈ J

0
+ for all x ∈ J 0

+. If T > 0 is chosen so that diam(g([0, T ])) < δ, another
application of Theorem 6.9 shows there exists ft ∈ H(g(t)U) such that f̂t (g(t)) =
f̂0(g(t)) for all t ∈ [0, T ]. Since ft and f0 have the same derivatives at g(t), it follows
that ft = f0 in a neighborhood of g(t) and therefore on the connected open set g(t)U∩U.
Hence if s, t ∈ [0, T ], then fs = f0 on g(s)U ∩ U, and ft = f0 on g(t)U ∩ U , which
implies fs = ft on the non-empty open set g(s)U ∩ g(t)U ∩U. So again fs = ft on the
connected open set g(s)U ∩ g(t)U.

Let T0 be the supremum of all T ∈ [0, 1] such that there exists a (unique) family of
functions, ft ∈ H(g(t)U) for 0 ≤ t ≤ T , with the properties listed in the statement of
the theorem (with “1” replaced by T everywhere) including the assertion that f̂t (x) ∈ J 0

+

for all x ∈ g(t)U and all t ∈ [0, T ]. The previous paragraph shows that T0 > 0.
Suppose, for the sake of contradiction, that T0 < 1. Choose 0 ≤ T− < T0 < T+ ≤ 1

such that diam(g([T−, T+])) < δ. Applying Theorem 6.9 as above, we may find ft ∈
H(g(t)U) such that f̂t (g(t)) = f̂T−(g(t)) for all t ∈ [T−, T+]. Let us now suppose that
0 ≤ a ≤ b ≤ T+ with diam(g([a, b])) < δ and that a ≤ s ≤ t ≤ b. If t ≤ T−
then fs = ft on g(s)U ∩ g(t)U by definition of T0. If s, t ∈ [T−, T+], then arguing as
above, we see that fs = fT− on g(s)U ∩g(T−)U, and ft = fT− on g(t)U ∩g(T−)U, and
therefore fs = ft on g(s)U ∩g(t)U ∩g(T−)U , which implies fs = ft on g(s)U ∩g(t)U.
Finally, if a ≤ s ≤ T− ≤ t ≤ b, then fs = fT− on g(s)U ∩ g(T−)U, ft = fT− on
g(t)U ∩ g(T−)U and so again fs = ft on g(s)U ∩ g(t)U. But this shows T0 ≥ T+ > T0,
which is the desired contradiction and hence T0 = 1.

So far we have constructed a family of functions, {ft : 0 ≤ t < 1}, with the
desired properties. It only remains to extend this family to all t ∈ [0, 1] by defining
f1 ∈ H(g(1)U) so that f̂1(g(1)) = f̂T (g(1)), where T ∈ (0, 1) is chosen so that
diam(g([T , 1])) < δ. Arguing as above, the reader may verify that the family {ft : 0 ≤
t ≤ 1} so constructed satisfies the conclusions of the theorem. ut

Notation 6.11. When g ∈ C([0, 1],G) is a path such that g(0) = e and α ∈ J 0
+, write

f
g
t for ft ∈ H(g(t)U) as described in Theorem 6.10.

Theorem 6.12 (Monodromy theorem). Let α ∈ J 0
+ and g, h ∈ C([0, 1],G) be such

that g(0) = h(0) = e, g(1) = x = h(1), and dRiem(g(t), h(t)) < δ/2 for all t. Then
f
g

1 = f
h
1 on xU.
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Proof. Let vt := f gt , wt := f ht , and

T0 := sup{T ∈ [0, 1] : vt = wt on g(t)U ∩ h(t)U for all 0 ≤ t ≤ T }. (6.17)

Since v̂0(e) = ŵ0(e) we know that v0 = w0. Suppose that T > 0 is such that
diam(g([0, T ]) ∪ h([0, T ])) < δ and that t ∈ [0, T ]. Then vt = v0 on g(t)U ∩ U,
wt = w0 on h(t)U ∩U and hence vt = wt = v0 on g(t)U ∩h(t)U ∩U and thus vt = wt
on g(t)U ∩ h(t)U. This shows that T0 > 0.

Choose 0 ≤ a < T0 ≤ b ≤ 1 such that diam(g([a, b])) < δ/2, diam(h([a, b])) <
δ/2, and b > T0 if T0 < 1. Because vt = va on g(t)U ∩ g(a)U and wt = wa on
h(t)U ∩ h(a)U, and va = wa on g(a)U ∩ h(a)U, it follows that vt = wt on Ot :=
g(t)U ∩ g(a)U ∩ h(t)U ∩ h(a)U. Since, for t ∈ [a, b],

dRiem(h(t), g(a)) ≤ dRiem(h(t), h(a))+ dRiem(h(a), g(a)) < δ/2+ δ/2 = δ,

g(a) ∈ Ot so thatOt is a non-empty open set contained in the connected open set g(t)U∩
h(t)U. So again we conclude vt = wt on g(t)U ∩ h(t)U for all t ∈ [a, b]. Hence if
T0 < 1, we have shown T0 ≥ b > T0, which is a contradiction. Thus T0 = b = 1 and we
have shown v1 = w1 on g(1)U ∩ h(1)U = xU. ut

Theorem 6.13. Suppose that G is a simply connected complex Lie group. Then for each
α ∈ J 0

+, there exists a unique function fα ∈ H(G) such that f̂α(e) = α.

Proof. For any x ∈ G, we may choose a path g ∈ C([0, 1],G) joining e to x, i.e. such
that g(0) = e and g(1) = x. We then define fα(x) := f

g

1 (x). If h ∈ C([0, 1],G) is
another such path joining e to x, there is a homotopy, gt ∈ C([0, 1],G), of paths joining
e to x, which interpolates between g and h. By the Monodromy Theorem 6.12, one easily
sees that f gt1 is independent of t , and in particular f g1 = f

g0
1 = f

g1
1 = f

h
1 . This shows

the function fα is well defined.
Let V := URiem

δ/2 , y ∈ xV, h ∈ C([0, 1], xV ) be a path joining x to y, and

(h ∗ g)(t) =

{
g(2t) if t ∈ [0, 1/2],
h(2t − 1) if t ∈ [1/2, 1].

Since diam[(h ∗ g)([1/2, 1])] = diam[h([0, 1])] < δ, we know by property (ii) of Theo-
rem 6.10 that

f
h∗g

1 = f
h∗g

1/2 = f
g

1 on xU ∩ yU (6.18)

where we have used the (easily proved) fact that f h∗gt = f
g

2t for t ∈ [0, 1/2]. Evaluating
(6.18) at y shows that fα(y) = f

g

1 (y). Since y ∈ xV was arbitrary, we have fα = f
g

1 on
xV and hence fα is holomorphic on xV . Since x ∈ G was arbitrary, we have shown that
fα is holomorphic on all of G.

Taking x = e and g(t) ≡ e for all t ∈ [0, 1] in the above argument shows that
fα = f

g

1 = f
g

0 on V = eV . Therefore, by construction (see Theorem 6.10), f̂α(e) =

f̂
g

0 (e) = α. ut
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[20] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171
(1967) Zbl 0156.10701 MR 0222474

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0816.35044&format=complete
http://www.ams.org/mathscinet-getitem?mr=1155849
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0107.09102&format=complete
http://www.ams.org/mathscinet-getitem?mr=0157250
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1133.22008&format=complete
http://www.ams.org/mathscinet-getitem?mr=2376574
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0846.43001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1351644
http://www.ams.org/mathscinet-getitem?mr=1654507
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1158.22007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2461876
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0838.31001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1303354
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1041.46027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1742865
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0960.46026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1771796
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre02102800&format=complete
http://www.ams.org/mathscinet-getitem?mr=1895231
http://www.ams.org/mathscinet-getitem?mr=0860324
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0864.53025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1421823
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0908.17007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1618310
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0979.46052&format=complete
http://www.ams.org/mathscinet-getitem?mr=1915448
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0869.22006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1439519
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0838.22004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1274586
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0971.22008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1803077
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0156.10701&format=complete
http://www.ams.org/mathscinet-getitem?mr=0222474


978 Bruce K. Driver et al.
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