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Abstract. We present new constructions of Kähler metrics with constant scalar curvature on com-
plex surfaces, in particular on certain del Pezzo surfaces. Some higher-dimensional examples are
provided as well.

1. Introduction

The aim of this note is to present a new construction of Kähler metrics of constant scalar
curvature (CSC) on complex surfaces. In order to introduce our results, let us introduce
the terms “positive CSC” to mean “constant positive scalar curvature”, “zero CSC” for
“(constant) zero scalar curvature” and “negative CSC” for “constant negative scalar cur-
vature”.

Our construction gives rise to many families of examples, but in this introduction we
shall focus on

Xk := k-fold blow-up of CP1
× CP1.

We note that if k ≥ 1 then Xk can also be viewed as a k + 1-fold blow-up of CP2. Of
course, the above description of Xk does not fix its complex structure: this will depend
on the location of the centres of the blow-ups. Our first result gives positive CSC Kähler
metrics in a family of Kähler classes on Xk , for k = 6, 7, 8, and for certain choices of
complex structure. We note that if k ≤ 7 then Xk is Fano and the work of Tian [13] and
others gives positive Kähler–Einstein metrics on Xk . Our result is new in that it produces
CSC metrics on X8 as well as CSC metrics on X6 and X7 in Kähler classes that are
“arbitrarily far” from c1(X):

Theorem A. For k = 6, 7, 8, there exists a k-point blow-up X of CP1
× CP1 with no

non-trivial holomorphic vector field and the following properties. Let F = {x} ×CP1 be
a generic rational curve of CP1

× CP1. For every constant c > 0 and ε > 0, there exists
a Kähler metric ω of strictly positive constant scalar curvature on X such that∣∣∣∣ [ω] · F√

[ω]2
− c

∣∣∣∣ ≤ ε. (1.1)
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This theorem can be thought of as an exploration of the Kähler cone on certain del Pezzo
surfaces. We are asking the question: which Kähler classes can be realized by Kähler
metrics of strictly positive constant scalar curvature?

As we shall see later in Section 2 and Theorem C, where the tools used to construct
the metrics provided by Theorem A are explained, one can pin down the Kähler class of
the metrics up to a parameter ε. The inequality (1.1) is just a consequence of this fact. The
parameter is actually involved in the Arezzo–Pacard gluing theorem [1] used to produce
the metrics.

Since the geometric interpretation of the Kähler class expressed in an arbitrary basis
would be unclear, we prefer to give a formula (up to ε) later (cf. Section 2.2), once a
suitable formalism has been introduced.

Remark. For the KE metric on Xk , k = 6, 7, the number c takes the value

cein :=
[ωein] · F√

[ωein]2
=
c1(X) · F√
c2

1(X)

=
2

√
8− k

.

Remark. It is an observation of LeBrun (see, for example, [9]) that the hyperplane

H = {α ∈ H 2(X,R) : c1 · α = 0}

does not meet the Kähler cone of Xk unless k ≥ 9. It follows that if k ≤ 8, every Kähler
class [ω] satisfies c1(X) · [ω] > 0. Since this number represents, up to a factor of 4π , the
integral of the scalar curvature over X, it follows that any CSC Kähler metric on Xk must
be positive, whatever the Kähler class.

Now we turn to the case k ≥ 9. In [12], it was proved that there exist zero CSC Kähler
metrics on Xk in this case (the same result was previously known for k ≥ 14 [7]). In the
next result, we obtain CSC Kähler metrics of either sign:

Theorem B. There exists a nine-point blow-up X of CP1
× CP1 with no non-trivial

holomorphic vector field and the following properties:
(i) there is a scalar-flat Kähler metric on X;

(ii) for every c ∈ R and ε > 0, there exists a metric of constant scalar curvature ω on X
such that ∣∣∣∣ [ω] · c1(X)√

[ω]2
− c

∣∣∣∣ ≤ ε. (1.2)

In addition, any further blow-up of X admits metrics with the same properties.

As mentioned for Theorem A, the Kähler classes of the metrics provided in Theorem B
will be explicit, up to a parameter ε, once the tools used to construct the metrics are
introduced at Section 2 and Theorem C.

Part (i) of this theorem was proved in [12]. It plays in this discussion an analogous
role to the one played by Kähler–Einstein metrics in Theorem A, and corresponds to
c = csfk

= 0. Again, the new content of this theorem is that there are metrics of constant
scalar curvature that represent Kähler classes arbitrarily far from the hyperplaneH inside
H 2(X,R).
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Remark. Kähler metrics of constant scalar curvature admit a good perturbation theory:
if the class [ω] is represented by a CSC Kähler metric, then the same is true for all suffi-
ciently close Kähler classes, and also for all small pertubations of the complex structure, at
least ifX carries no non-zero holomorphic vector fields [8]. This applies to the KE metrics
on X6 and X7 to give non-Einstein CSC metrics in all classes sufficiently close to c1(X).
It also applies to give CSC Kähler metrics of either sign on X9, by perturbing a known
zero CSC metric. It seems very difficult, however, to extend this perturbation theory to
give more global results like Theorems A or B. A possible strategy to get larger pertuba-
tions could be to follow the lines of a recent beautiful work of Chen–LeBrun–Weber [4],
based on continuity method, that enables them to construct a particular extremal Kähler
metric conformal to an Einstein metric on CP2 blown up twice.

1.1. Strategy

Theorems A and B will be deduced from an extension of the constructions invented in [12]
and the recent gluing theorem of Arezzo–Pacard [1] for CSC Kähler metrics. The zero
CSC Kähler metrics in [12] were obtained by resolving the singularities of a zero CSC
orbifold. The gluing theorem in that work applied only to produce zero CSC Kähler met-
rics. The results of [1] allow us to work with CSC orbifolds of non-zero scalar curvature,
which are, however, constructed in almost exactly the same way as in [12]. Indeed, as will
be explained below, these orbifolds are twisted products of Riemann surfaces, where now
the scalar curvature of the factors can be chosen arbitrarily.

Remark. In §9(i) of their paper, Arezzo and Pacard make the following construction:
take a copy ofXk with no holomorphic vector field and Tian’s Kähler–Einstein metric (so
k ≤ 7). Their gluing theorem gives a positive CSC Kähler metric on the blow-up of Xk ,
that is to say, on Xk+1. If k = 7, then this proves Theorem A in the particular case c = 2,
k = 8.

We should point out that in contrast to this approach, our construction does not use
any result about the existence of Kähler–Einstein metrics on del Pezzo surfaces and may
be considered to be more elementary for this reason.

Remark. The gluing theorem of [1] is not specific to complex dimension 2. Accordingly,
in §6 we give some new but rather special higher-dimensional examples of negative CSC
Kähler metrics.

2. The factory

We review the construction of scalar-flat Kähler orbifold metrics of [12] and adapt it to
the case of Kähler metrics of constant scalar curvature.
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2.1. Orbifold Riemann surfaces

We start with a closed Riemann surface 6 of genus g with a finite set of orbifold points
P1, . . . , Pk , with local ramified cover of orders q1, . . . , qk > 1. Recall first the description
of the fundamental group of the punctured Riemann surface 6 = 6 \ {Pj }:

π1(6) = 〈a1, b1, . . . , ag, bg, l1, . . . , lk : [a1, b1][a2, b2] . . . [ag, bg]l1 . . . lk = 1〉.

Here the aj and bj are standard generators of π1(6) and lj is (the homotopy class of) a
small loop around Pj . The orbifold fundamental group is defined by

πorb
1 (6) = π1(6)/G

where G is the normal subgroup of π1(6) generated by lq1
1 , . . . , l

qk
k .

The orbifold Euler characteristic is defined by

χorb(6) := χ top(6)−

k∑
j=1

(
1−

1
qj

)
.

The question of whether 6 carries a CSC orbifold Kähler metric was considered by Tro-
yanov [14]. Let us call an orbifold Riemann surface good if its orbifold universal cover
admits a compatible Kähler metric of CSC κ1, say. By the Gauss–Bonnet theorem (applied
to the surface with boundary obtained by removing a small disc around each of the Pj ),
if 6 is good, then the sign of κ1 is the same as the sign of χorb(6). However, not every
orbifold Riemann surface is good: the tear-drop, which is S2 with one orbifold point of
any order≥ 2, is simply connected but admits no compatible metric of constant curvature.

The following summarizes the facts we shall need if the orbifold Euler characterstic
is non-positive:

Proposition 2.1.1. The orbifold Riemann surface 6 is always good if

χorb(6) ≤ 0.

Such a 6 carries no non-trivial holomorphic vector fields if χorb(6) < 0 or if χorb(6)

= 0 and there is at least one orbifold point.

Proof. The existence of metrics of constant scalar curvature is contained in [14]. The
statement about holomorphic vector fields follows either by lifting such a field to the
universal cover or from the orbifold version of the Hopf index theorem: a holomorphic
vector field must vanish at each of the orbifold points. ut

For good orbifolds with positive orbifold Euler characteristic, the universal cover must be
CP1 and the orbifold fundamental group must be one of the finite subgroups of SO(3):
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Proposition 2.1.2. Let 6 be a good orbifold with χorb(6) > 0. Then 6 is biholomor-
phic to CP1/0, where 0 is a finite subgroup of SO(3). There are either two marked
points of the same order q ≥ 2 or three marked points with orders {2, 2, q}, {2, 3, 3},
{2, 3, 4}, {2, 3, 5}. The corresponding groups are cyclic of order q, dihedral, tetrahedral,
octahedral, or icosahedral respectively.

Furthermore, 6 carries no non-trivial holomorphic vector fields if and only if G is
not cyclic.

Proof. We need only discuss the last part. The Euler vector field (z∂z in affine coordi-
nates) descends to the quotient if G is the cyclic group acting with fixed points at z = 0
and z = ∞. On the other hand, no non-trival holomorphic vector field on the sphere can
have three zeros, so none of the other orbifolds can admit such vector fields. ut

2.2. Desingularization of orbifold ruled surfaces

From now on we assume that 6 is a good orbifold Riemann surface and we endow 6

with an orbifold Kähler metric ω′κ1
of constant curvature κ1. Note that, just as for ordinary

Riemann surfaces, we have
6 = 6̃/πorb

1 (6)

where the fundamental group acts by isometries on the universal cover 6̃ which is given
by either H, E or CP1, endowed with its metric ω̃′κ1

of constant curvature κ1.
Let ω′′κ2

be the Fubini–Study metric with curvature κ2 > 0, on CP1. Let ρ : πorb
1 (6)

→ SU(2)/Z2 be a homomorphism. Then πorb
1 (6) acts isometrically on 6̃×CP1 endowed

with the product metric ω̃′κ1
+ω′′κ2

. Therefore it gives rise to a Kähler metric ωρ of constant
scalar curvature s = 2(κ1 + κ2) on the orbifold quotient

Mρ = 6 ×ρ CP1
= (6̃ × CP1)/πorb

1 (6).

As in the smooth case, the de Rham cohomology H 2
DR(Mρ) of the orbifold ruled

surface Mρ → 6 is given by H 2
DR(Mρ) = Rh⊕ Rf where f is the Poincaré dual of a

generic fibre F , and we have h · f = 1 and h2
= f 2

= 0.
By construction of the metric, its orbifold Kähler class � ∈ H 2

DR(Mρ) satisfies
� · f = 4π/κ2, and � · h = 2πχorb(6)/κ1 (by Gauss–Bonnet). We introduce v1 =

2πχorb(6)/κ1, which is the volume of the metric ω′κ1
. Similarly put v2 = 4π/κ2. It is

now easy to pin down the orbifold Kähler class:

� = v1f + v2h.

The idea now is to apply the results of [1] to obtain CSC Kähler metrics on the mini-
mal resolution of singularities, M̂ρ , say, ofMρ . We note that the constant s can be chosen
arbitrarily if 6 is hyperbolic, but must be positive otherwise. Here is the full statement,
which is parallel to Theorem D of [12].



984 Yann Rollin, Michael Singer

Theorem C. Let 6 be a good compact orbifold Riemann surface as above, carrying
no non-trivial holomorphic vector fields. Suppose that ρ : πorb

1 (6) → SU(2)/Z2 is a
homomorphism that is irreducible in the sense that the induced action of πorb

1 (6) fixes no
point of CP1. Equip Mρ with a twisted product metric of CSC s as above.

Then, for all ε > 0, the minimal resolution M̂ρ
π
→ Mρ carries a CSC Kähler metric ĝ

with scalar curvature ŝ such that |ŝ − s| < ε. Moreover, the Kähler class �̂ of ĝ satisfies
‖�̂− π∗�‖ < ε (where ‖ · ‖ is any Euclidean norm fixed a priori on H 2

DR(M̂ρ)).
In addition, any further blow-up of M̂ρ carries a CSC Kähler metric with analogous

properties.

Proof. We have already equipped Mρ with a Kähler orbifold metric of constant scalar
curvature s. On the other hand, for each finite cyclic subgroup G of U2 with the property
that G acts freely on S3, there is an asymptotically locally euclidean zero CSC Kähler
metric on the minimal resolution [3, 12]. If s = 0, we are in the situation of [12], so we
may as well assume that s 6= 0. We must check that the hypotheses of [1] are satisfied,
i.e. that Mρ has no non-trivial holomorphic vector fields. But this follows as in [12], for
we have placed ourselves in the situation where the base 6 has no non-zero holomorphic
vector fields.

Hence, we can indeed apply [1] to obtain CSC Kähler metrics g on M̂ρ . For suffi-
ciently small choices of the gluing parameter, g is very close to gρ , and the scalar curva-
ture of g will be very close to the number s.

To get the last statement, we again apply [1], this time gluing a copy of the Burns
metric at a smooth point. ut

Remark. The term “minimal” applied here is really unfortunate. According to its usual
meaning in complex surface theory, it means that there are no rational curves of self-
intersection −1. In this case, however, the proper transform of any singular fibre of Mρ

is always a (−1)-curve! The term “minimal” is justified by the fact that we are taking the
minimal resolution of each of the orbifold singularities separately. Only after doing so, is
it possible to blow down the (−1)-curves.

3. Stability of parabolic ruled surfaces

In order to make the results of the previous section more useful, we need a way to generate
representations ρ : πorb

1 (6) → SU(2)/Z2. A way to do this was introduced in [12],
through the notion of a (stable) parabolic ruled surface. We recall the main definitions
here:

A geometrically ruled surface

̂

M is by definition a minimal complex surface obtained
as

̂

M = P(E), where E → 6̂ is a holomorphic vector bundle of rank 2 over a smooth
Riemann surface 6̂. The induced map π :

̂

M→ 6̂ is called the ruling.
A parabolic structure on

̂

M consists of the following data:

• A finite set of distinct points P1, . . . , Pn in 6̂;
• for each j , a choice of point Qj ∈ Fj = π−1(Pj );
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• for each j , a choice of weight αj ∈ (0, 1) ∩Q.

A geometrically ruled surface with a parabolic structure will be called a parabolic ruled
surface.

If S ⊂

̂

M is a holomorphic section of π , we define its slope to be

µ(S) = S2
+

∑
Qj 6∈S

αj −
∑
Qj∈S

αj ;

we say that a parabolic ruled surface is stable if for every holomorphic section S, we have
µ(S) > 0.

3.1. Iterated blow-up of a parabolic ruled surface

Let

̂

M be a parabolic ruled surface. We shall now define a multiple blow-up 8 : M̂ →

̂

M
which is canonically determined by the parabolic structure of

̂

M.
In order to simplify the notation, suppose that the parabolic structure on

̂

M is reduced
to a single point P ∈ 6̂; let Q be the corresponding point in F = π−1(P ) and let
α = p/q be the weight, where p and q are two coprime integers, 0 < p < q. Denote the
Hirzebruch–Jung continued fraction expansion of α by

p

q
=

1

e1 −
1

e2 − · · ·
1
el

; (3.1)

define also
q − p

q
=

1

e′1 −
1

e′2 − · · ·
1
e′m

. (3.2)

These expansions are unique if, as we shall assume, the ej and e′j are all ≥ 2.

We give here a construction of the iterated blow-up M̂: the fibre F has self-inter-
section 0. The first step is to blow up Q, to get a diagram of the form

−1 �������� −1
(3.3)

By blowing up the intersection point of these two curves we get the diagram

−2 �������� −1 �������� −2
(3.4)
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Then we perform an iterated blow-up of one of the two intersections of the only (−1)-
curve in the diagram. Given α = p/q, there is a unique way (cf. [12, Proposition 2.1.1]) to
choose at each step which point has to be blown up in order to get the following diagram:

−e1 �������� −e2 �������� ___ �������� −el−1 �������� −el �������� −1 �������� −e′m ��������−e′m−1 �������� ___ �������� −e′2 �������� −e′1
where the (−e1)-curve is the proper transform of the original fibre F .

More generally, if

̂

M has more parabolic points, we perform the same operation for
every point and get a corresponding iterated blow-up 8 : M̂ →

̂

M.

3.2. The theorem of Mehta–Seshadri

We now give a practical method of using Theorem C. Given a parabolic ruled surfacê

M→ 6̂, we deduce a orbifold Riemann surface 6 by introducing an orbifold singularity
of order qj at every parabolic point Pj ∈ 6̂ of weight pj/qj . As a corollary of the Mehta–
Seshadri theorem [10], we have the following proposition.

Proposition 3.2.1. Let

̂

M→ 6̂ be a parabolically stable ruled surface. Then there exists
an irreducible representation ρ : πorb

1 (6)→ SU(2)/Z2 such that M̂ ' M̂ρ , where M̂ is
the iterated blow-up of the parabolic ruled surface

̂

M as described in Section 3.1 and M̂ρ

is the smooth resolution of the orbifold Mρ defined in Section 2.

Proof. This is a direct consequence of [12, Theorem 3.3.1]. ut

In conclusion we can reformulate Theorem C as follows.

Theorem D. Let

̂

M→ 6̂ be a parabolically stable ruled surface, with parabolic weights
αj = pj/qj where pj and qj are positive coprime integers. Let 6 be the orbifold ruled
surface deduced from 6̂ according to the parabolic structure. Then the conclusions (i)
and (ii) of Theorem C hold with M̂ρ replaced by M̂ .

4. The goods: proof of Theorems A and B

4.1. A stable parabolic bundle

Let 6 be CP1 with three orbifold points P1, P2, P3, each of weight 2. Then the orbifold
Euler characterstic is 1/2 and 6 is good, and we can equip 6 with a metric of CSC
κ1 > 0. Now, we consider the ruled surface π : CP1

× CP1
→ CP1 where π is, say, the

projection on the first factor. We pick a point Qj in the fibre π−1(Pj ), and give it weight
αj = 1/2.

Lemma 4.1.1. For a generic choice of points Q1,Q2,Q3, the parabolic ruled surfacê

M→ CP1 defined above is parabolically stable.

Proof. We just need to arrange that two points Qj never belong to the same constant
section of

̂

M→ CP1. ut
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4.2. Conclusion

The iterated blow-up M̂ of Theorem D in this case consists of performing two blow-ups in
each fibre, so that M̂ is a six-point blow-up of CP1

×CP1. Thus this result yields positive
CSC Kähler metrics on X6. By adjusting κ1 and κ2 and taking the gluing parameter to be
small enough, we can get any positive value of c in (1.1).

To deal with X7 and X8, we can use the last part of Theorem C to perform further
blow-ups on the previous example. Alternatively, we can replace one of the parabolic
weights by 1/3 or 1/4 in the above. The complex surface X8 can also be constructed by
adding a fourth parabolic point P4, and taking all weights equal to 1/2. It is readily seen
that for generic choices of the points Qj , the resulting parabolic ruled surfaces are stable.

Remark. We deliberately chose κ1 and κ2 so as to get CSC metrics that are far from
being Einstein. However, if we take κ1 = κ2 then it seems possible that with a little
more work this gluing construction might be adapted to give the KE metrics for (certain
complex structures on) X6 and X7!

It would also be interesting to try to extend the analysis to allow Mρ to carry non-
trivial holomorphic vector fields. This problem is actually a work in progress [11], based
on a refinement of a recent gluing theorem of Arezzo–Pacard [2] in the orbifold case.

4.3. Proof of Theorem B

The proof follows the same lines as in [12] (or as above), taking 6 to be CP1 with four
orbifold points of order 2, 2, 2, 3. The orbifold Euler characteristic is−1/6 and so we can
equipMρ with a CSC Kähler metric with normalized scalar curvature c1·[ω]/

√
[ω]2 equal

to any given real number. Applying Theorem D, we get the result claimed in Theorem B.

5. Explicit representations

Our use of the theory of stability to generate representations of the orbifold fundamental
group results in a certain loss of explicitness—one of the merits of gluing constructions
is that they give “nearly” explicit metrics, in the sense that for small values of the gluing
parameter, the glued metric is close to the original one. From this point of view, it seems
desirable to try to make explicit these representations, at least in a few examples, and this
section is devoted to such a task.

5.1. Platonic orbifold surfaces

Let 0 be one of the finite subgroups of SO(3) as in Proposition 2.1.2. Then there is a
canonical orbifold M = CP1

× CP1/0, where 0 acts diagonally on the product. If 0
is not cyclic, then this orbifold will not support any non-trivial holomorphic vector fields
and the resolution will carry a positive CSC Kähler metric.
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5.2. Representations of the fundamental group of the four-fold punctured sphere

Let6 be the orbifold Riemann surface used in the proof of Theorem B. We shall construct
representations of the orbifold fundamental group of 6. Let the points be denoted Pj ,
with orders 2, 2, 2, 3 respectively, and let lj denote the homotopy class of a small loop
around Pj . The orbifold fundamental group is

πorb
1 (6) = 〈l1, l2, l3, l4 : l1l2l3l4 = l21 = l

2
2 = l

2
3 = l

3
4 = 1〉.

Identifying SU(2) with the group of unit quaternions, we write down a family of repre-
sentations πorb

1 → SU(2)/Z2:

ρ(l1) = ±i, ρ(l2) = ±j, ρ(l3) = ±k exp(π(i cosφ + j sinφ)/3),
ρ(l4) = ± exp(−π(i cosφ + j sinφ)/3).

Denote by R1, R2, R3 and R4 the corresponding rotations of R3. Then R1, R2 and R3 are
half-turns, while R4 is a 2π/3-rotation (see Figure 1).

R1R2
R3

π
3

��

�
�
�
�
�
�
�
�
�
�

π
��
��
��
��

��
��

��

π

π

π
���������

����������������

R2

R1R2R3

2π
3hhhhhhhh

hhhhhhhhhhh

B
B

B
B

B
B φ

KK

R1

Fig. 1. A representation of the fundamental group of the four-fold punctured sphere.

This representation is irreducible and so gives rise to a CSC Kähler orbifold Mρ .
The corresponding minimal resolution M̂ρ is the nine-point blow-up of a minimal ruled
surface

̂

M → CP1. We do not know which ruled surface this is for general φ, but if
φ = 0, we sketch an argument explaining why

̂

M is isomorphic to CP1
×CP1, so that the

scalar-flat Kähler manifold M̂ρ is isomorphic to a nine-point blow-up of CP1
× CP1.
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Taking φ = 0 from now on, we note that the x-axis is stable under the action of ρ:
it is fixed pointwise by R1 and R4 and flipped by R2 and R3. Set Q1 = (1, 0, 0), Q2 =

(−1, 0, 0) and consider the Riemann surface

S := (CP1
\ {Pj })×ρ {Q1,Q2}.

This sits in M , and its closure S is a two-fold ramified cover p : S → 6. In S, there
are two orbifold singularities sitting over each of P1 and P4; on the other hand, the cover
is ramified over P2 and P3 and the corresponding points in S are smooth. Thus S is an
orbifold version of CP1, with two singular points of weight 2 and two singular points
of weight 3. Denote by N the associated orbifold ruled surface, and by N̂ its minimal
resolution.

Downstairs in M there are eight orbifold singularities, say,

Aj , Bj ∈ π
−1(Pj ).

Upstairs in N , P1 and P4 have been double-covered by points P±1 , P±4 and there are
accordingly singularities

A±1 , B
±

1 ∈ π
−1(P±1 ), A±4 , B

±

4 ∈ π
−1(P±4 ).

The double cover is ramified over P2 and P3, so the points A′2, A′3, B ′2, B ′3 corresponding
to A2, A3, B2, B3 are smooth. There is a commutative diagram

N

p∗π̄

�� ��>>>>>>>> N̂

���
�
�

oo

S
� � //

p
��>>>>>>>> M

π̄

��

M̂oo

6

where the dashed arrow is a meromorphic map which becomes a smooth ramified double
cover if the points A′2, A′3, B ′2, B ′3 are blown up.

The reason for passing to N is that it contains two parallel sections s1 and s2, defined
by s1(Q1) = Q1, s1(Q2) = Q2 and s2(Q1) = Q2, s2(Q2) = Q1; let Sj denote the

closure of sj (S) inN . Because the sj are parallel, S
2
j = 0. By a computation that we omit,

the proper transforms Ŝj of Sj in N̂ satisfy Ŝ1 · Ŝ2 = 0 and

Ŝ2
1 = Ŝ

2
2 = −2

(see Figure 2).
After a sequence of five blow-downs in a suitable order in M̂ (corresponding to ten

blow-downs on N̂ ) we obtain the configuration of curves shown in Figure 3.
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bS1
bS2�������� −2 �������� −1 �������� −2 �������� • P+

1

�������� −2 �������� −1 �������� −2 �������� • P−1

//

�������� −2 �������� −2 �������� −1 �������� −3 �������� • P+
4

�������� −2 �������� −2 �������� −1 �������� −3 �������� • P−4
−2 −2

CP1

Fig. 2. Configuration of curves in N̂ .

bS1
bS2�������� 0 ��������

�������� 0 ��������

�������� 0 ��������

��������
0

0 ��������
0

Fig. 3. Ten-point blow-
down of N̂ .

��������

−1

−2 �������� −1 �������� −2 ��������

−1

• P1

//

�������� −2 �������� −1 �������� −2 �������� • P4

Ŝ1 Ŝ2 CP1

Fig. 4. M̂ with five (−1)-curves blown down.

It is a minimal ruled surface with a divisorD satisfyingD ·F = 1 andD2
= 0, where

F is the class of a generic fibre. Therefore it is isomorphic to CP1
× CP1. Thus M̂ is a

five-point blow-up of the minimal resolution of (CP1
×CP1)/Z2, where the action of Z2

rotates each factor by an angle π .
It is easy to see that the latter complex surface is a four-point iterated blow-up of

CP1
× CP1. Consider the proper transforms Ŝ1 of S1 = (0 × CP1)/Z2 and Ŝ2 of S2 =

(CP1
× 0)/Z2. Then we have Ŝ1 · Ŝ2 = 0 and Ŝ2

1 = Ŝ2
2 = −1. Hence we have the
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configuration of curves shown in Figure 4 and after four blow-downs in a suitable order,
we obtain CP1

× CP1.

5.3. Representations of the fundamental group of the punctured torus

Let T be a compact elliptic curve with one marked point P of weight 2, and let 6 stand
for the corresponding orbifold Riemann surface. In terms of standard generators,

πorb
1 (6) = 〈a, b, l : [a, b]l = l2 = 1〉.

We define a representation ρ : πorb
1 (6)→ SU(2)/Z2 as follows:

ρ(a) = ±eπk/4i, ρ(b) = ±j, ρ(l) = ±k.

The corresponding rotations Ra , Rb, Rl are shown in Figure 5.

Rl

π

π
π

AAA

AA
AA

AA
AA

AA
AA

A

Rb

π/4

II

Ra

Fig. 5. A representation of the punctured torus.

Denote by M the CSC Kähler orbifold ruled surface arising from this representation,
by M̂ the minimal resolution, and by

̂

M→ T a minimal model for M̂ .
Then we have

Proposition 5.3.1. The surface M̂ is a double blow-up of

̂

M, and carries a CSC Kähler
metric. On the other hand, no smooth blow-down of M̂ admits a CSC Kähler metric.

We give a sketch of the proof of this. The existence of a metric on M̂ is ensured by
Theorem C. Consider, then, the non-existence statement. The geometrically ruled surfacê

M cannot admit a CSC Kähler metric for c2
1 = 0, but c1 6= 0. In M̂ the only curve that

can be blown down smoothly is in the fibre over P . Denote by X this blow-down.
As in the previous example, we can pass to a double cover by remembering the two

points on the unit sphere on the axis of Rl . We obtain a double cover N of M and a
corresponding minimal resolution N̂ . By considering the geometry of this double cover,
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one can show that the double cover X′ of X is a two-point blow-up of P(L1 ⊕ L2)→ T,
where the points now lie on the sections corresponding to L1 and L2. Such an X′ does
not admit a CSC Kähler metric by [9, Prop. 3.1], and so X cannot admit a CSC Kähler
metric either.

6. Higher-dimensional examples

Since the results of [1] apply in all dimensions, it is natural to try to extend the foregoing
results to higher dimensions. The main problem here is that very little appears to be known
about the following basic

Question 6.1. If G is a finite subgroup of Um acting freely on Cm \ 0, and X→ Cm/G
is a resolution of singularities, does there exist an asymptotically locally euclidean zero
CSC Kähler metric on X?

Joyce [6] proved that if X can be chosen to be a crepant resolution (i.e. c1(X) = 0),
then X does carry an ALE Ricci-flat metric. In dimensions 2 and 3, this is the case if and
only if G is (conjugate to) a subgroup of SU(m). In higher dimensions, however, it is not
known in general which singularities Cm/G admit crepant resolutions.

The other class of examples come from explicit constructions of Kähler metrics on
total spaces of line bundles, as described, for example, in [5] which contains an extensive
survey of the literature. The following result follows easily from the methods of that
paper, and is probably well known to many. We sketch the proof in order to make this
paper self-contained.

Theorem 6.2. If G = {1, ω, . . . , ωk−1
}, where ω = e2πi/k then there is a resolution X

of Cm+1/G that admits an asymptotically locally euclidean zero CSC Kähler metric.

Proof. We note that for this group G, we can take X to be the total space of O(−k) →
CPm. Indeed, the total space of O(−1) can be represented as U/C∗, where

U = {(w, z0, . . . , zm) ∈ C× (Cm \ 0)},

the action of C∗ is given by

t · (w, z0, . . . , zm) = (t
−1w, tz0, . . . , tzm),

and the map
β(w, z0, . . . , zm) 7→ (wz0, wz1, . . . , wzm)

is an invariant description of the blow-up of the origin of Cm+1. The action of the group
G lifts to the action

ωr(w, z0, z1, . . . , zm) = (ω
rw, z0, z1, . . . , zm)

on U , with quotient equal to the total space of O(−k).
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Following an Ansatz that goes back to Calabi, we seek a Kähler metric on X of the
form

ωf = ω0 + i∂∂̄f (t) (6.1)

where ω0 is the standard Kähler form on CPm and t is the logarithm of the fibre-distance
function.

To be more explicit, we work with affine coordinates (z1, . . . , zm) on CPm so that

ω0 = (i/2)∂∂̄ log(1+ |z1|
2
+ · · · + |zm|

2).

In the same coordinates, the fibre metric on O(−k) is just given by

hk = (1+ |z1|
2
+ · · · + |zm|

2)k.

Denote by w a holomorphic fibre coordinate, and set z = logw so that

2t = z+ z+ k logh. (6.2)

We have
i∂∂̄t = (ik/2)∂∂̄ logh = kω0

so that (6.1) can be written

ωf = (1+ kf ′(t))ω0 + f
′′(t)i∂t ∧ ∂̄ t .

As explained in [5], it is better to pass to momentum coordinates, so we introduce

τ = f ′(t) and ϕ(τ) = f ′′(t). (6.3)

The advantage of this is that the scalar curvature is given by a very simple formula which
we now derive. First of all,

ωm+1
f = (1+ kτ)mh−m−1ϕ(τ)ψ ∧ ψ (6.4)

where ψ is a holomorphic (m+ 1)-form, so that

ρ(ωf ) = −i∂∂̄ log[(1+ kτ)mh−m−1ϕ(τ)]

= 2(m+ 1)ω0 − i∂∂̄ log[(1+ kτ)mϕ(τ)]. (6.5)

Now for any function of u(τ),

i∂∂̄u(τ ) = kϕu′ω0 + ϕ(ϕu
′)′i∂t ∧ ∂̄ t (6.6)

where prime denotes differentiation with respect to τ . Applying this with

u(τ) = m log(1+ kτ)+ logϕ(τ)

we obtain
ρ(ωf ) = [2(m+ 1)− kϕu′]ω0 − ϕ(ϕu

′)′i∂t ∧ ∂̄ t . (6.7)
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The scalar curvature σ(ωf ) is given (up to a factor of 2) by

σ(ωf )ω
m+1
f = (m+ 1)ρ(ωf ) ∧ ωmf ,

which leads to the final formula

σ(ωf ) =
2m(m+ 1)

1+ kτ
−

1
(1+ kτ)m

d2

dτ 2 ((1+ kτ)
mϕ(τ)). (6.8)

Thus σ(ωf ) = 0 if

(1+ kτ)mϕ(τ) =
2
k2 (1+ kτ)

m+1
+ aτ + b (6.9)

where a and b are constants of integration. The boundary conditions for smoothness of
the metric at the zero section are

ϕ(0) = 0, ϕ′(0) = 2, (6.10)

which gives

P(τ) := (1+ kτ)mϕ(τ) =
2
k2

(
(1+ kτ)m+1

+ (k −m− 1)(1+ kτ)+m− k
)
.

Geometrically, we have repackaged the complex line bundle X as the total space of an
S1-bundle over CPm × [0,∞)τ ; to check that ωf is really a metric on this S1-bundle we
need that ϕ(τ) > 0 for all τ ∈ (0,∞). To see that this is the case, note that

P ′(τ ) = 0 if and only if (1+ kτ)m = 1−
k

m+ 1
,

and this latter equation cannot be satisfied if τ > 0. Since P ′(0) = 2, we see that
P ′(τ ) > 0 for all τ > 0, and since P(0) = 0 we have P(τ) > 0 for all τ > 0 as
claimed. Thus our zero CSC Kähler metric on X corresponds to the function

ϕ(τ) =
2
k2

(
(1+ kτ)+ (k −m− 1)(1+ kτ)1−m + (m− k)(1+ kτ)−m

)
. (6.11)

Finally, we check the asymptotics of this metric. For this, we return to the blow-up
map at the beginning of the proof. In the present coordinates, this is

x0 = w
1/k, x1 = w

1/kz1, . . . , xm = w
1/kzm, (6.12)

where (x0, x1, . . . , xm) are standard linear coordinates on Cm+1, and the fractional power
of w corresponds to the passage from O(−k) to its k-fold cover O(−1). The standard
Kähler form on Cm+1 is

η =
i

2
∂∂̄(|x0|

2
+ · · · + |xm|

2) =
i

2
∂∂̄(|w|2/kh) =

i

2
∂∂̄e2t/k. (6.13)
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Thus we can write η in the form (6.1)

η = ωf0 (6.14)

where
f0(t) =

1
2
e2t/k

− t/k. (6.15)

Denoting the corresponding variables (6.3) by τ0 and φ0, we have

1+ kτ0 = e
2t/k, ϕ0(τ0) =

2
k2 (1+ kτ0). (6.16)

We now use the relation
dt =

dτ0

ϕ0(τ0)
=

dτ

ϕ(τ)
(6.17)

to find an asymptotic expansion of f (t) for large t . Indeed, if we put

x = 1+ kτ0, y = 1+ kτ, y = x(1+ u(x)) (6.18)

we see that (6.17) gives the equation

x
du
dx
= (k −m− 1)x−m(1+ u)1−m + (m− k)x−m−1(1+ u)−m (6.19)

for u. This has a unique solution with u(x)→ 0 as x →∞, and we have

u(x) ∼
m+ 1− k

m
x−m +

k −m

m+ 1
x−m−1

+ · · · as x →∞. (6.20)

Using the relations (6.18) and (6.16), we find

1+ kf ′(t) = e2t/k
+
m+ 1− k

m
e2(1−m)t/k

+
k −m

m+ 1
e−2mt/k

+ · · · (6.21)

and so
f = |x|2 +

m+ 1− k
m

|x|2−2m
+
k −m

m+ 1
|x|−2m

+ · · · (6.22)

where the second term on the right must be replaced by k(2 − k) log |x| if m = 1. This
completes the proof that ωf is ALE. ut

We give two applications of this result:

Theorem 6.3. Let S1, . . . , Sm be compact Riemann surfaces, each admitting a holomor-
phic involution ιj with isolated fixed points. Suppose further that none of the Sj is CP1,
and that at least one is hyperbolic. Let ι = (ι1, . . . , ιm) be the product involution on
S = S1 × · · · × Sm. Then the minimal resolution M̂ of S/ι admits a negative CSC Kähler
metric.

In addition, any further blow-up of M̂ at finitely many points carries a CSC Kähler
metric with negative scalar curvature.
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Proof. Equip Sj with a metric of constant curvature κj . The product metric on S is not
Ricci-flat because there is at least one hyperbolic factor. Moreover, the orbifold S/ι has
no non-zero holomorphic vector fields. This is clear if each factor is hyperbolic, for then
S has no non-zero holomorphic fields. If one or more factors in the product are flat,
then M does have non-zero holomorphic vector fields, but none of them is preserved
by ι. Hence for any choice (κ1, . . . , κm), S/ι is an unobstructed CSC Kähler orbifold,
and every singularity is modelled on Cm/(±1). Theorem 6.2, with k = 2, now gives a
resolution of this singularity, and applying the desingularization theorem of [1] gives the
result. The scalar curvature of M̂ is negative since the sum of the κj ’s is negative.

For the last statement, the CSC Kähler metric on the blow-up is obtained by gluing
the ALE metric provided by Theorem 6.2, with k = 1. ut

Theorem 6.4. Let 6 be a good compact orbifold Riemann surface as defined in Sec-
tion 2.1, carrying no non-trivial holomorphic vector fields, and with orbifold points of
order 2 only. Suppose that ρ : πorb

1 (6) → SU(2)/Z2 is a homomorphism that is irre-
ducible in the sense that the induced action of πorb

1 (6) fixes no point of CP1.
Using the diagonal action of π1(6) on (CP1)m induced by ρ, define the twisted prod-

uct Mρ = 6 ×ρ (CP1)m. This is a complex orbifold with singularities modelled on
Cm+1/{±1}. Equip Mρ with a twisted product metric of CSC. Then the minimal resolu-
tion M̂ρ → Mρ carries a CSC Kähler metric.

In addition, any further blow-up of M̂ρ at finitely many points carries a CSC Kähler
metric.

Proof. Again we will use the ALE spaces of Theorem 6.2, with k = 2 and k = 1 (for the
last statement). In order to use the gluing theorem of [1], the only thing that needs to be
checked is thatMρ does not carry any non-trivial holomorphic vector field. The argument
is a straightforward generalization of the one given in [12] in the case m = 1. ut

Remark. In contrast to the previous theorem, by adjusting the curvatures of the base and
the fibre here, in the case where χorb(6) < 0, we can arrange for the scalar curvature
of M̂ρ to be positive, zero, or negative.
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