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Abstract. We prove that the Cayley graphs of SLy(Z/p"7Z) are expanders with respect to the
projection of any fixed elements in SL;(Z) generating a Zariski dense subgroup.

1. Introduction

The general setup considered in [7]] and [8]] and here is as follows.

Let S = {g1,..., gk} be a subset of SL;(Z) and A = (S) C SLy(Z) the sub-
group generated by S. We assume A is Zariski dense in SL;. According to the theo-
rem of Matthews—Vaserstein—Weisfeiler [21]], there is some integer go = go(S) such that
my(A) = SLy(g), assuming (g, qo) = 1. Here m,; denotes the reduction mod q. It was
conjectured in [19]], [[7]], [8]] that the Cayley graphs G(SL4(q), 7, (S)) form an expander
family, with expansion coefficient bounded below by a constant ¢ = ¢(S). Ford = 2, we
verified this conjecture in [3], [7], [8] provided g is assumed square free (in fact, for ¢
prime, even stronger results are obtained in [S]]). At the other end, there are moduli of the
form ¢ = p" where we fix p say and let n — oo. In [6] we established the conjecture
for such moduli in the case d = 2. The main goal of this paper is to extend the method to
the case d > 2 providing the first results towards the above conjecture in this setting. Our
main result is the following:

Theorem 1.1. Let S = {g1, ..., gk} be a finite subset of SLy(Z) generating a subgroup
A which is Zariski dense in SLg. Let p be a sufficiently large prime. Then the Cayley
graphs G(SLq(p™), mpn (S)) form an expander family as n — oo. The expansion coeffi-
cients are bounded below by a positive number c(S, p) > 0.

As in [5,16, 8], the proof, following the approach of Sarnak and Xue [25], is based on ex-
ploiting high multiplicity of nontrivial eigenvalues (the bound obtained in [6] is sufficient
for our purposes), together with the sharp upper bound on the number of short closed
geodesics. As in the preceding works, the starting point for the proof of the upper bound

J. Bourgain: School of Mathematics, IAS, Princeton, NJ 08540, USA;
e-mail: bourgain @math.ias.edu

A. Gamburd: Department of Mathematics, UCSC, Santa Cruz, CA 95064, USA, and Department
of Mathematics, Northwestern University, Evanston, IL 60208-2730, USA;
e-mail: agamburd @ucsc.edu



1058 Jean Bourgain, Alex Gamburd

is the appropriate sum-product estimate—in our case we need the extension of the sum-
product estimate for Z/ p"Z established in [3] to certain extension fields. This crucial in-
gredient, which is of independent interest, is obtained in the Appendix by the first author.
As in [6]], the proof relies on a “multi-scale” approach, reminiscent of the Solovay—Kitaev
algorithm in quantum computation [11]] (see [12}[13] for an SL;(Z/ p"Z) analogue, yield-
ing uniform polylog diameter bounds). The “multi-scale” structure in SL4(Z/p"7Z) is
encapsulated in the identity

(I + QA)I+ QOB) =1+ Q(A+ B) (mod 0?),

which allows for immediate exploitation of the sum structure. The exploitation of the
product structure is based on producing a large set of commuting elements, diagonalized
in the appropriate basis, and then proceeding by conjugation. To execute this argument
we need to produce elements outside of proper subvarieties, which is accomplished by
analyzing the random walk in SL;(Z) based on the generating set S and using the theory
of products of random matrices [2]] and effective Bézout theorem [[1]]. As in the preceding
works, the required upper bound is obtained from a measure convolution result which is
established using noncommutative product-set estimates due to Tao [26] 27].

We now turn to some consequences of Theorem|[I.1] Let us take the set S symmetric,

ie. S=1{g1,..., &, gfl, R g,:l}, to which we associate the probability measure
VvV = —
S| = ¢
ges

on SLy (8, denotes the Dirac measure at x). The theorem stated above has the following
implication, whose proof is analogous to the proof of Proposition 3.2 in [8]:

Corollary 1.1. Let S and v be as above. Let & be a nontrivial algebraic subvariety of
SL4(C). Then the convolution powers v'© of v satisfy

V(@) < e fort — oo (1.1
for some ¢ > 0 (in fact ¢ depends only on v and the degree of S).

Assume now ¢ a sufficiently large prime and G a proper subgroup of SL;(g). From
the work of Nori [22]] on the strong approximation property, it follows that G satisfies a
nontrivial algebraic equation mod ¢. We may then invoke Corollary [I.1]to obtain

Corollary 1.2. Let again S and v be as above and let q be a sufficiently large prime. Let
G be a proper subgroup of SLy(q). Denote 7y[v] also by v. There is an estimate

vO(G) < €™t fort <logg, (1.2)
where the constants c, C only depend on S.

Corollary [I.2]is of significance to establish the conjecture mentioned at the beginning for
other moduli g (besides g of the form ¢ = p” with fixed p). Recalling the approach in
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[5] (see also Section , the conjecture for SL;(q) (g prime say) will result by combining
Lemma [2.T)and Corollary [I.2]with a ‘product theorem’ in SLy(q), of the form

JA-A-Al > |A|'TE (1.3)

whenever A C SLy(g) generates the full group and |A| < |SLg(g)|'™%, with ¢ =
e(8) > 0.

Theorem 1.2. Assume (1.3) holds in SL4(p). Let S = {gi, ..., gk} be a finite subset
of SLy(Z) generating a subgroup A which is Zariski dense in SLy. Then the family of
Cayley graphs G(SLy(p), 7, (S)) forms an expander family as p — oo. The expansion
coefficients are bounded below by a positive number c(S) > 0.

The product theorem (I.3) was recently proven by Helfgott [16] for d = 3 and conse-
quently we have:

Theorem 1.3. Let S = {g1, ..., gk} be a finite subset of SL3(Z) generating a subgroup
A which is Zariski dense in SL3. Then the family of Cayley graphs G(SL3(p), 7,(S))
forms an expander family as p — oo. The expansion coefficients are bounded below by
a positive number c(S) > 0.

The special moduli ¢ = p” with fixed p turn out to be also of interest in relation to the
work of D. Long, A. Lubotzky and A. Reid [18]] on Heegaard genus and property t for
hyperbolic 3-manifolds. More precisely, let M be a finite volume hyperbolic 3-manifold.
From the result for the SL,(p") towers, one may then produce a nested cofinal family of
finite sheeted covers with positive infimal Heegaard gradient. [18] also puts forward the
conjecture that any finitely generated subgroup I' of GL(n, C) with semisimple Zariski
closure has a cofinal (nested) £ = {N;} of finite index normal subgroups for which I" has
property T with respect to L. It seems reasonable to believe that the moduli ¢ = p" and
the proof of our theorem may provide an approach to this last conjecture.

2. Measure convolution and approximate subgroups

Let v be a finitely supported symmetric probability measure on SL;(Z) whose support,
supp v, generates a Zariski dense subgroup. It is no restriction to assume this subgroup is
free. We will also denote by v the measure 77, [v] on SL4(Z,).

The following result is proven using the noncommutative Balog—Szemerédi—Gowers
theorem due to Tao (see [26, 27]). The argument is analogous to the one in the proof of
Proposition 2 in [J5]].

Lemma 2.1. Let G be a finite group with N = |G|. Suppose i € P(G) is a symmetric
probability measure on G and assume

liloe < N7 and ully > N~V 2.1
with y > 0 an arbitrary given constant. Assume further that

e pllz > N™8lell2 2.2
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with 0 < & < e(y). Then there exists a subset H C G with the following properties:

H = H™" and there exists a subset X C G with | X| < N¢' such that

H-HCX-HandH-H C H - X, 2.3)
w(xoH) > N~E for some xy € G, 2.4)
|H| < N'77, (2.5)

where &' ~ ¢.

Remark. In the terminology of [27], H satisfying 2.3) is called an ‘N g-approximate
subgroup’ of G. In particular, H satisfies the product set estimates

HY | =|H...H| <q“ Y|H| fors=>1. (2.6)
s-fold

We let G = SLy(Zy), g = p" with p fixed. Hence log N ~ n. Our measure p will
be obtained as an £-fold convolution © = v® =y % ... % v, where £ ~ n. Note that if
m ~ n, then 7,m (H) is an approximate subgroup in SL4(p™).

Assume p satisfies (2.1)—[2.2) and take H C G satisfying (2.3)-(2.5). Fix £9 < ¢ and
write

—e - -
N7 < u(xoH) = Z”(z Oy (yxoH),
yeG
implying
v (x H)y > N™¢  forsomex; € G. 2.7

Hence, since H and v are symmetric,

1)(2@0)(1_1'1_1) > Z v(’éo)(y)v(eo)(zy—l) > Z v(@o)(y)v(lo)(w—lxl—l)
yex1H,zeH 'H yex H, weH

@

= [ (x; H)] N7 2.8)

3. Preliminaries related to sum-product

The results in this section depend essentially on [3]. Fix w € Z. Denote by Z; =
Zgq % - -+ X ZLg the w-fold product ring. For ¢’ | g, let , : ZZ’ — qu, be the quotient
map. In what follows, ¢ = p” with p a fixed prime and n — oo.
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Proposition 3.1. Given § > 0, there are ¢, k > 0 and positive integers r,s < C(8) such
that the following holds. Let q1 | q with q1 < q° (q1 sufficiently large) and A C ZZ’ satisfy

7, (A)] > 4. 3.1
Then there are q2 | q and q3 | g2 and § € Z}]‘; such that

loggz < C(8)logqi, (3.2)

92 > 4143, (3.3)

mp(§) #0, 3.4

Ty (rA®) —rA®)) D q3£7Z,,. (3.5)

In (3.5), q36Zg, is the subset {q31§ | 0 <t < q2/q3} of Zy).

The following proposition (Proposition 1.4 from [6]) yields the conclusion of Proposition

BIforw = 1.

Proposition 3.2. Given § > 0, there is ¢ > 0 and positive integers r, s < C(8) such that
if q is as above, q1 | q, q1 < q° and A C Z satisfies

74, (A)] > ¢, (3.6)

then
gy rA® —rA®)) > q3Zqg,

for some divisors q> | g and g3 | g2 with

/

5/4
loggy < C(8)logq1, q2>q; gs.

Proof of Proposition We proceed by induction on w, the case w = 1 following from
Proposition Assume the statement is valid for w and A C Zg""l satisfies (3.6). Denote
by Py for I C {1,..., w + 1} the coordinate restriction. Rearranging the coordinates we
may assume
w10 8/2
|7Tq1(B)| >4 s ql/ ,

where B = Pyy,... ) (A). From the induction hypothesis, we obtain g2 | g, g3 | g and § €
Z(’fz such that

loggx < C(8)logqi, (3.7)

92 > 4195, (3.8)

7p(§) #0, (3.9

7y, (rB® —rB®) > g3£7,, (3.10)

with r, s < C(§).
Setting A| = rA®) —rA® it follows from that there is amap ¢ : Zg,/4; = A1
such that
g Pty (x) = q3x§ for x € Zg, q5. 3.11)
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We distinguish several cases.

Case 1: |nq22(Pw+1(cp(Zq2/q3)))| < (qz/qg)l/z. Clearly there are elements x1,xy €

Zgy/q; With x1 # x5 (modq') where ¢’ | ¢, (¢')* < g2/q3 and Py y1(p(x1) — @(x2)) =
0 (modqzz). Write x; — x2 = g4y with g4 | ¢’ and 7, (y) # 0. Hence for x € Zg, /4, We
have

Px)(px1) —p(x2)) € Ap - A1 — Ay - Ay,

and by construction

() (@(x1) — 9(x2)) = (P(1.... @) (P19 (x1) — P1....uy@(x2)), 0) (mod g3)
= (¢3qaxy&?, 0) (mod g2¢3),

where 7, (y€2) # 0 and
1/2
qi% . &2 (q_z) > g2,
4344 q3q q3
Thus the claim in the proposition holds in this case.

Case 2: |72 (Pur1(9(Zgy/q:)))| = (q2/g3)'/?. Tt follows that the set S = Py41(A})
satisfies

2
72 () > g7 > (g5)/ 4

(the last inequality by (3.7)). Apply Proposition [3.2 with § replaced by « /4C (8), and ¢,
by qzz. We assume here
@ < q- ke, (3.12)

where ¢(-) is the function from Proposition 3.2} Clearly (3.12) will hold if we assume

1 K
£ 2C<5)8<4C(8>)

in the assumption g1 < g°.
From Proposition [3.2] we obtain g5 | ¢, g6 | g5 with

K
1 2C[ ———=— )1 , 3.13
0ggs < (4C(6)> 0g g2 (3.13)
8C(§
g5 > qeq5" ", (3.14)
96Zqs = g5 (1S — 1 SOV) = 7y Py 1 (AP = 1 ATY), (3.19)

where r1, s1 < C(k/4C(5)).
Take again ¢’ | ¢ with (¢")> ~ ¢2/q3. We distinguish two further cases.

Case 2.1: The map ¢ : Zg,/4; — A is additive mod g3¢’. This means that

p(x+y) =9x) +@(y) (modgsq’) forx,y € Zy, /4.



Expansion and random walks in SL;(Z/p"Z): 11 1063

It follows that for x € Zg, /45,

¢(x) = xg(1) (mod g3q"), (3.16)
where
0=p(0) = %o(l) (mod g3¢). (3.17)
Also, by (3.11) we have
Pi..wo(1) = g3 (modg3q")  with ,(§) # 0. (3.18)

It follows from (3.17), (3.18) that (1) = ¢}&’, where ¢} | g3, 3¢’ | Z—iqg and 7, (§")
# 0. Hence, by (3:16)),
qézq,w//qég/ C Tg3q' (A1),
where q3q"/q5 > q' > qf/ 2 and the claim of Proposition is again verified.

Case 2.2: The map ¢ : Z,/q, — A1 is not additive mod g3¢’. Hence there are x1, x €
Zg, 45 such that

p(x1 +x2) # @(x1) + @(x2). (3.19)
Recalling (3:T1), we see that

¢ =1 +x2) — @) —ex2) = (921, ), (3.20)
where 7 € Z} and by (3.19) necessarily

a = Py1(p(x1 +x2) — p(x1) — ¢(x2)) # 0 (mod g3q”).

Let
a=gqa; with ¢lgzqg’ and mp(ar) #0. (3.21)
Clearly ¢ € Aj — A] — A} C3rA® —37A0),
Let s € Z4 be a sufficiently large integer (to be specified). Write, by (3.20) and

@21,

7 = (g0, (@)2a). (3.22)

At this point recall (3.13). Let z € Zg;. There is an element x € r{A\™> — r{A\" such
that

Tgs Pu+1(xX) = gez. (3.23)
Multiplying (3:22)), (3.23) we obtain
T(Gy2gs(XE*2) = (W(Gy245 (@52 0™ Ppi,.. oy (X)), (§)q6a)’2), (3.24)
where
x22 € (nAY — 1 A)GBra® — 346062, (3.25)

Take s, large enough to ensure that

(@)%q5 < ¢y (3.26)
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From (3:24) we obtain
T(@@y2q5(X5™) = (0,a7°)(@) 7 gz (3.27)
Recalling the definition of ¢” and g, condition (3:26) will hold if

2
@/a > a2,

hence, recalling (3:13) and (3.8), if

Yool X
w > peoc(3gg)

where the right-hand side of (3:27) is controlled as a function of §.
Putting g7 = (3)*2gs and g3 = (¢)*2q6, (3:23) and (3.27) give

48(0, ALy, C 704y (r'ASD — ' AS))

with 7, (ay) # 0,
2
q1 45 - qlk /8C(8)

qs8 46
and
10247 1 ¢ - Cle.s) < C(6)
log g,
by construction. This completes the proof of Proposition 3.1} O

We also need a generalization of Proposition replacing Z,» by O/P" with O the
maximal order of an algebraic extension K of Q (we assume [K : Q] bounded) and P a
prime divisor of p. Let e be the ramification index of P. Denote by 7, : O — O/P™
(m € Z4) the residue map.

Proposition 3.3. Let w € Z be given and consider the product ring O". Given § > 0
there are k > Qandr,s € Z4, r,s < C(8), such that the following holds. Let A C OY
satisfy

|7, (A)] > p™ (3.28)

or some sufficiently large ny € 7. Then there are ny, n3 € Z, and & € O¥ such that
Je (fi y larg + +

ny+kny <npy < C@)ny, (3.29)

me(§) # 0, (3.30)

T, ({XE | x € Z and 1,5 (x) = 0}) C 7y (rA®) — rA®). (3.31)

Once the case w = 1 is established, the same inductive argument as in the proof of

Proposition [3.1] applies. In the Appendix, we will recall the proof of Proposition [3.2] and
also give its generalization to O/P".
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4. Preliminaries on random walks

Results in this section rely essentially on the theory of random products in SL;(C) (see
[2]]). The next result is a generalization of Proposition 3.32 from [6] to SL;.

Proposition 4.1. Let v be a symmetric, finitely supported probability measure on SLy(Z)
such that (v) is Zariski dense. There is a constant ¢ = c¢(v) > 0 such that the following
holds. Let Q € Z. be a prime power and &, n € Maty(Z) satisfy

TréE=0, Trn=0, “.1)
wo) #0, 4.2)
oM # 0. 4.3)

Then forl € Z4 withl < clog Q (and large enough),
v ({g € SLa(Z) | Trgsg™'n =0 (mod Q)}) < ™, (4.4)
where QO = Q€ and C = C(d) € Z. is an appropriate constant.

Proof. The two key ingredients are a quantitative Bézout theorem (we will refer to the
result in [1]]) and the theory of random matrix products.
By (@.2) and (@.3) there are indices 1 < i, j, r, s < d such that

&j #0(mod Q) and 7,5 # 0 (mod Q). 4.5)

We assume i # j and r # s. The modifications of the argument below to deal with the
other cases are straightforward.
Let ||g]| < C for g € supp v and define

G =1{g €SL4(Z) | ligll < C} and Trgtg™'n = 0 (mod 0)},

so that (4.4) is equivalent to
(@) < e, (4.6)

For each g € G we introduce a quadratic polynomial f,(X,Y) € Z[X, Y], with

X = (Xap) 1<ap<d » Y = Yup) 1<a.p<d »

(e, B)#(, J) (o, B)#(r,s)
as follows:
fg(X, Y)
=Trg<€,' ®€/+ Z Xaﬂ(€a®€ﬂ))g71(€r®es+ Z Yo{ﬁ(eo[@eﬂ)).
(e, B)#(, J) (e, B)#(r,5)

4.7
By definition of G, the coefficients of f, are bounded by CdC]21 , hence
h(fy) < 2llogCy + Cy,
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where i (-) denotes the height. Also

s,‘mmfg@’—" (o, B) # i, ). 28

Sij Nrs

((a, B) # (1, S))) =0 (mod Q). (4.8)

In order to apply the theory of random matrix products, we “lift” our problem to C.
. . 2 2 .
We claim that there is a common zero (X, ¥) € C4 ~! x C?"~! to the system of equations

d
> Xoa =0, (4.9)
a=1
d
> Yuu =0, (4.10)
a=1
fo(X,Y)=0 forgeg. .11

Note that in (@.11) we may obviously replace G by N < 2(d? — 1) quadratic polynomials
Fi,..., Fy.

Assume the claim fails to hold. We invoke Theorem 5.1 from [[1]]. It follows that there
is an integer D € Zy and polynomials ¢’, ¢”, ¢1, ..., on € Z[X, Y] of degree at most
b < C(d) satisfying

D= (3 Xaa)¢' + (D You)o" + i Fii 4.12)
=1

with
log D, h(¢"), h(¢"), h(¢1) < Cq [max, h(F) < cl. (4.13)
<<

In order to get a contradiction, replace in (#.12)) the variables X,p (respectively Y,p) by

&up/&ij (respectively nqp/nrs) and multiply both sides by (&;; 77,S)b‘H to get an integer.
Recalling @.T) and (@.8) it follows that

(&jnrs)?T'D =0 (mod Q), (4.14)

and hence, by @]) and assuming C > 2(b + 1) + 1 in the definition of Q we obtain
D = 0 (mod Q). But this contradicts @.13)) by the restriction / < ¢ log Q for appropriate
¢ > 0. This proves the claim.

Letting (X, Y) be a solution of @#I)—@.11), consider the matrices X,Y € V C
Mat, (C) (where V denotes the traceless elements)

)~(=ei®ej+ Z Xop(eq ® ep), Y=e ®es + Z Yop(eq ® ep).
(. B)#G.J) (a.B)#(r,s)

Hence X, Y # 0 and by @-11),

TrgXg~ 'Y =0 forgeg. (4.15)
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Let p : SLy(C) — GL(V) be the representation by conjugation. Since (suppv) is a
Zariski dense subgroup, the theory of random matrix products implies

v lg | TrgXg 'Y =0} < e (4.16)
for some ¢ = ¢(v) > 0. Hence follows from (@.13). This proves Propositiond.1] O

The next result addresses the issue of simplicity of eigenvalues.

Proposition 4.2. Let v be as in Proposition[d.1] Let Q € Z (Q large). Forl > log Q,
v {g € SLy(Z) | Res(Py. P}) =0 (mod Q)} < 0™,

where ¢ = c(v) and Py denotes the characteristic polynomial of g.

Proof. Letly ~ log Q (to be specified). It will clearly suffice to prove that

w0 @ v™){(g1, g2) € SLa(Z) | Res(Py, Py) = 0 (mod Q) with g = g1Gga} < ™",

where G € SL;(Z) is arbitrary and the estimate is uniform in G.
We will follow the same strategy as for Proposition 4.1} Define

G = {(g1.82) € SLa(D) | ligill < C}” and Res(P, P}) = 0 (mod Q); g = g1Gg2}

with ¢ = c1(v). ~
The first step is to find some G € SL;(C) such that

P/

g1Gg2) =0 forall (g, g)€g. (4.17)

RCS(P gl G o’
Assume this is not possible. The equation det G = 1 and the equations are of degree
at most (2d — 1)d in matrix elements of G and have coefficients bounded by Céo, C, =
C f(d). Application of Bézout’s theorem leads then again to a contradiction, provided we
let log Q > C3ly with C3 ~ C,. Hence there is G € SLy(C) such that holds.

Next we use the theory of random matrix products. To complete the proof it will
suffice to show the following.

Lemma 4.1. Forl large enough we have an estimate

v @ vD{(g1, g2) € SL4(C) | g1Gga has multiple eigenvalues} < ¢~

whenever G € SL;(C), and the estimate is uniform in G with ¢ = c(v).

Proof. We prove simplicity of the largest eigenvalue of g1 Gg> with large probability in
(g1, g2) (large probability means an exceptional set of measure less than e~ c=cW)).
Reapplying the statement for the representation on the exterior powers /\k C¢ (which is
possible since we assume (v) is Zariski dense in SL;(C)) then gives the required conclu-
sion.
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According to Theorem 8’ in [14]], g1 is diagonalizable and

d
gr=Y Nv®u, (4.18)
i=1
where |v;| = 1 and (1/1)log |A/| ~ y, the i-th Lyapunov exponent.
Moreover y! > ... > y9 (only the simplicity of the top exponent y! is relevant for
what follows).
Next, by {.18)),
21Gg =) M (i ®g5G*v) = ' (11 ® g5G*v1) + S, (4.19)

where clearly || S| < [A?] g2l |G|l Set wy = g5G*vy. Then

(v, wr) = (g2v1, G*vy),

where the distribution of g» is governed by v(") independently of v (which depends

on gp).
Hence, with high probability, we may ensure

1l
(i, wi)l > e g2l 1G]

(r > O is a sufficiently small constant depending on y»/y1).
Take a unit vector £ such that |G¢|| = ||G||. Then by {.I8) we have

1 .
1G%l = 11, 68 = 5 (11 GEl = ) 111G¢ 1)
i>2
L -l I _ l—rl
> Ikll(e 1G] = dir2l 1G] > Se TG (4.20)

with high probability in gj. It follows that
(v, wi)| > e g2l 1G]

with high probability in (g1, g2)-
Multiplying (@.19) with an appropriate normalizing factor, we obtain a matrix

M=v®v +M,

where |v| = 1 = |v/| and

- A2
V) > e M e < e
Writing a matrix representation for M in a basis v = uy, u,...,ug with ua, ..., ug €

(v)*, we clearly obtain
1> My >e 3 =37 M|| > e,

Mij| < M| < e for (i) # (1. 1).
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Thus the characteristic polynomial Py, () of M has the form
Py (1) = det(t — M) = (t — Myt ™" + 0401772 + - + 6y,
where
1601, - - -, 16a—a| < cae™ /2. (4.21)

In view of (@.21) and letting v be small enough we conclude that the largest root p; of
Py satisfies
lp1 — M| < cae™ 2 M < e/

and is simple (cf. Lemma 13 in [14]]).
This concludes the proof of Lemma[4.T]and of Proposition 4.2} O

By a variant of the previous argument we obtain similarly

Proposition 4.3. Let v be as above. Let Q € Zy (Q large) and go € GL4(Z),log Q >
clog|lgoll (c an appropriate constant). For ] > log Q,

v {g € SLy(Z) | Res(Pygy. Pyy,) =0 (mod Q)} < Q7°.

5. Sets of commuting elements

Recall (2.8)),

v (H . H) > |G|_25/ > q_Zdzg/ > q_clg. (5.1)
We apply Propositions [.1] and F.3] Hence we may take en < m < Cen such that the
following properties hold:

V") (g € SLy(Z) | Res(Pygy, Pl ) = 0 (mod p™)} < p~" < ¢g~2C1¢ (5.2)

/
ngo
for m’ > m whenever go € GL4(Z), log | goll < cm, and also

v ({g € SLy(Z) | Trgég™'n =0 (mod 0)}) < e < g *€1¢ (5.3)

if Qlg,logQ > cm and &§,n € Maty(Z) satisfy Tré = 0 = Trn, mg(§) # 0 and

mo(m) # 0; here 0 |q and log O < log 0 < Clog Q.

Take Q so that holds. Fix some £ € Maty(Z), & # 0, |€|] < Q, such that
Tré = 0. From applied with m = 2l and consecutive applications of we
obtain elements g3, ..., g,2 € H - H such that

lgill <C™ B <i<d), det(l,& gkgy" ..., gpg,) # 0 (mod Q1)

for some Q1 | g with log Q1 < clog Q.
Take & =dg — (Trg)l with g # +1in H - H such that ||g|| < Q. We obtain

Lemma 5.1. There are elements g1, ..., 82 € H® and qq | q with gy < q¢ such that

llgill < ¢, (54)
det(1, g2, ..., gz2) # 0 (mod qo). (5.5)
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(Here and below, we denote by C various constants that may depend on v and possibly
also p.)
Setting g1 = 1, it follows from (3.3)) that the map

Maty(q) — Z3 : g — (Trggi) <i<q2 (5.6)

has multiplicity at most ¢©*.
Indeed, if g eMaty(Z) and Trgg; =0 (modg) fori=1, ..., d? then det(g1,...84,2)8
=0 (modq).
Fix some
£ K ey KL 5.7

Let
gon <ny <n and gqp = p". (5.8)

We apply Helfgott’s argument [15]] to construct sets of commuting elements. First, apply

(5.1) and (5.2) with [ = n; and m" = 2n;. Hence by and (5.8) we have
V@ (g € SLy(Z) | Res(Pyy;, Pyy,) =0 (mod p™) for 1 < i < d*} < 5471,

Invoking Kesten’s bound on random walks for the free group [17], we obtain by (3.7) and
(3-8) a subset H; C H - H N [|lg|l < C"] such that

|Hi| > g~ (suppv — D> > ¢f
Res(Pgy,, Py,) # 0 (mod p™) forg € Hyand 1 <i <d”.

Considering the trace map (5.6) with ¢ replaced by ¢; we obtain a set of elements
2 /
(ha)1<a<p C Hy - H® c H® with 8 > q‘csqf/d > qf such that

lhell < C"g* < C*M, (5.9)
Res(Py,, Pj.) # 0 (mod p™) (5.10)
Trhy # Trhy (modqy) ifa #o. (5.11)

Consider the conjugacy classes
Co = (ghag™" | g € H).

It follows from (5.11) that ., (Co), @ = 1,..., B, are disjoint subsets of 7 , (H)1?.
Hence, we may specify o such that

1 i .
774, (Ce)| < E|nq1<H“°>)| < g7 q% mg (H)| < gy “Img, (H)| (5.12)

(we use here the earlier observation on quotients of approximate groups).
Set h = hg. Considering the map g — ghg~! from 74, (H) t0 14, (Cy), it follows
from (3.12) that there is ¢ € H such that

g, ({g € H | ghg™" = gh(2)™" (modg)})| > ¢f.
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Hence the set
S={¢g€H -H|gh=hg (modg)}

satisfies
|74, ($)] > ¢qf. (5.13)

Diagonalize i € SL;(Z) considering if necessary an extension field K of Q. Let O be
the integers of K and P a prime ideal dividing (p). We assume P unramified (otherwise
some exponent adjustments are needed below). We replace Z, by O/P". A suitable base
change brings # into the form

h = wile; ®e;).

d
i=1
Recalling (5.10), it follows that ]_[i;,é (i — wj) ¢ P™ and hence

wi —pj ¢ P" fori # j (5.14)

(recall that m < Cen). Since g € S commutes with 2 (mod P"1), we obtain from (3.14)
a diagonal form

g= Zki(ei ® e;) (modP™™™),  where l_[)“' =1 (mod P*1™"™).

6. Application of the sum-product theorem

We carry on with the construction and notation from Section [5] Given elements g, h €
GL4(0O), define their commutator by

C(g,h) =ghg 'h~".
The following well-known property is essential:
Lemma 6.1. Let g = 1 (mod P™) and h = 1 (mod P™"). Then
C(g.h) =1+ [g, h] (mod P+ Fmintm.m)y 6.1)
where we write [g, h] = gh — hg.

Let S C H - H be the set obtained in Section Recall (5.13)), i.e. |y, (S)| > gf. We may

therefore produce ¢{ | g1, q; = p"1 and an element xo € S and a subset S’ C S such that
2d?

a/a; > ;" 6.2)

Ty, (8" = Ty (X0), (6.3)

7y (SHI > (g /a)’®  whenever g lqf.qf 141, (6.4)
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Considering the set S'(S’ )=, we obtain a set Q@ C Maty(Z) with the following properties:

1+qxesSSH ' cH® forx e, (6.5)
(@] > 0 if Q] ? (6.6)
1
It follows from (6.2)) that
C
ny—nj > Yk > m. 6.7)

After the base change from Section Q will be diagonalized mod P™! ~"~™ _Thus each
x € Q has a representation

x = oi(e; ®e;) (mod P17, (6.8)
where the o; € O satisfy
[ +gioi) =1 (mod P"1~™). (6.9)
Take next i
g=p" where n| <n <n, (6.10)

and assume & € Mat;(Z) satisfies

14+G6e HW, 6.11)
7p(8) #0, (6.12)
Tré = 0. (6.13)
According to Lemmal6.1]
C( +G&, 1 +qx) = 1+ Gqj[&, x] (mod P"+21), (6.14)

We may assume n > n1/2. Substituting the representation (6.8) in (6.14) then gives

CU+G&E 1+qix) =1+Gq] Y (0 — 0)&ij(ei ® ¢j) (mod P17 (6.15)
i#]

Note that since n} > n1/2, also by (6.9),
d ’
> 0; =0 (mod P" ™).
i=1

Therefore the map x — (0; —0;);; is one-to-one on 2 (mod Phyforl <1< ny—ny—m.
Define
A={(0; —0))izj | x € 2} CO", (6.16)

where w = d? — d.
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It follows from (6.6) and the preceding that for 1 <[ < n; —n|, —m we have

I71(A)| = |pi (A)| > p¢! 6.17)

for some ¢’ > 0.

Our aim is to apply Proposition [3.3]to the set A. In view of (6.17), condition (3:28)
from Proposition holds with n replaced by any sufficiently large Iy < ny —n| —m
and § = ¢’. In view of (6.7) we may take

Iy > c’'ny (6.18)
(to be specified).
From Proposition [3.3] we obtain l», I3 € Z, and some € O" such that
I3 +«l <l <cly, (6.19)
mi(n) # 0, (6.20)
pBZn € rA® — rA® (mod P?). 6.21)

Here r, s € Z4 and k, ¢ > 0 are constants.
Note that by (6.16) we may let n;; = 0.

Next we introduce the product sets A*) by iteration of the commutator formula (6.13).
Letx(D, ..., x® e Q. By ©-13),

CA+GE1+qixD) =14Gq] Y (0] = 0})&ij(e; D ¢j) (mod P"H"17™).
i#]

Replacing g by gg; and & by Zi#j (al.1 - Ujl)&j (e; @ e), it easily follows that

C(C(1+G&, 1+ q(x1), 14 g(x?)
= 1+G@)?[ Y0 = 0)gij (e @ e, xP | (mod prEmm =)
i#j
=143 ) _(o! = 0))(07 = o))&ij(ei ® ¢j) (mod P HM =),
i#]
By (6.5) and (6.11)), clearly
C(l+g&, 1+ qjxV)y e H1O
and
C(C(1+ &, 1+q;xD), 1+ ¢[xP) e HO,

It will be convenient to introduce the notation

H = JHY
s
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with the understanding that the exponent s remains bounded. Therefore
14G@) Y (0! = 0})(o] = o])ijei ®ej) € H' (mod P+,
i#]j

and carrying on, we conclude that

N
143G Y (0 — ohéi(ei ® e)) € H' (mod PAsnim=ni—m)
i#jr=1
‘We assume here that
At (s+Dn<n. (6.22)

Introducing sum/difference sets of the sets A is straightforward, as we certainly have

(1+G@D° e+ )™ = 143(q))° (@1 £ &) (mod P+ = =m),
In conclusion, we have proven that if T = (7;j);; isin rA®) — rA®) then
L+G(g])" Y mijkijlei ® ¢j) € H' (mod PPt m=m=m) (6.23)
i#]

Returning to (6.19)-(6.21), take /; ~ n; such that [ < ny —n} —m. From (6.21) and

(6:23) it then follows that
1+ pﬁ+sn’l+l3ZZ nij€ij(ei ® ej) C H (mOdPﬁ+Xn/1+[2)~
i#]

In the preceding we may replace £ by any conjugate &’ = gég~! with g € H - H; by

(6.11)) we have

g(1+g&)g e H®.

Defining 77 = 3_, . ; 1ij (e ® ¢;) € Matq(O), we have 7p (i) # 0 by (6:20) and Tr# = 0.
In order to ensure that for some m’ < Cem,

Y mijE e ®ej # 0 (mod P™), (6.24)
i#]j
we require
Tr(gég™ ') # 0 (mod P™). (6.25)

We apply Proposition[d.T|and more precisely statement (3.3) (taking an integral basis
for O, we first replace 7 by an element of Maty(Z)).
Recalling also that & satisfies (6.12), (6.13), the existence of the required g € H - H

satisfying (6.23) is clear.
Hence there is an element 8 € Mat,(Z) such that

Trp=0, mp(B)#0,
1+ pﬁ—i-sn’] +l3+m’ZIB cH (mod pﬁ+sn’|+lz)’

where m’ < Cen.
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-1

Replacing B by further conjugated gB8g~" with ¢ € H - H and reapplying (3.3) we

may obtain gi, ..., gs2_; € H - H such that
det(1, giBg;" (1 <i = d®) # 0 (mod p"") (6.26)

with m” < Cen. Since also
} d*—1 o
L p N i) € HY (mod pTHTiHE)
i=1

and by (6.26).

d*-1
p"'V = p" (¢ € Maty(Z) | Tre =0} € Y Z(giBg; ).

i=1

it follows that

1+ pﬁ+sn’1+l3+m’+m”v C H' (mod pﬁ+sn/|+12).
Recall that by (6.18) and (6.19),
b — 13>kl >cny,

and m’, m” < Cen.

Here eon < n; < 7 is arbitrary (cf. (6.10) and (5-8)) (subject to the condition (6.22))).
Since s is bounded by a constant we have proved
Lemma 6.2. Assume eon < n < n and & € V are such that

mp(E) #£0,  mp(1+plE) e H'.
Then for egn < ny < c(n —n) thereisn <n < n + Cny < n such that
1+ p"V c H' (mod p"Tlemly, (6.27)

where ¢, C are constants.

Note that if & € Maty(Z), m,(§) # 0 and mpn (1 + p'E) € H', then det(1 + p&) =
1 (mod p") and hence, assuming 271 < n,

Tré = 0 (mod p™). (6.28)
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Assume further that £ = 0 (modd) and Wri~te a = (1/d)Tré¢ € pﬁZ and &' =
§ —(1/d)Tré € V. Hence, by (6.28), 1 + p"&" € m i (H'). Applying now Lemma
with H replaced by 7,2 (H) and letting n; < cn be small enough to ensure that
i+ n; < 27, the conclusion remains valid.

Take gg | ¢ = p" with gg ~ ¢°° and define

Ho={x € H® | x =1 (mod dqo)}.

It easily follows from (5.1)) that
W (H - H))?

(dgo)®*

Hence for a suitable choice of Iy ~ & loggq, we get from (6.29) an element gy € H®
satisfying

v (o) > > g~ dgo) ™ > g7V (629)

go =1 (modgod), go#1,
lgoll < €™ < g
Therefore
go=1+gd&, g = pﬁ with egn < 1 < Ceon and 7, (&) # 0.

From the preceding discussion, we conclude the following, which is the main conclusion
of this section.

Lemma 6.3. Let ¢ < 8y < 1. There are q1 > q» dividing q such that q; < q%,
q1/q2 > qc‘so and for each 7 € V there is some g € H' satisfying

g =1+ g2z (modqy).

7. Completion of the proof
7.1. Proof of Theorem|[I]

With Lemma[6.3] at hand we may repeat the argument at the end of Section 6 in [6] and
show that there is g3 | ¢ with g3 < ¢€% such that if z € Maty(Z) satisfies
det(1 4+ g3z) = 1 (mod q)
then
1+ g3z € H (modgq).
Therefore, since H is an approximate subgroup,
ISLa(g)l' 7+ > p©°|H| > |H'| > |{x € SLa(g) | x = 1 (modg3)}|
_ISLa(g)]

~ |SLu(g3)|

Here y > 0 is given and letting ¢, §p be small enough, a contradiction follows.
Recapitulating all of the preceding, this provides us with the following analogue of
Proposition 6.1 in [6] for d > 2.

A2
> |SLy(q)lg 4%,
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Proposition 7.1. Let v be as in Section2land p be a given sufficiently large prime. For all
y > 0, there is C(y) > Osuch thatif q € Z+ is of the form q = p" (n large enough), then

I (VD)oo < g ISLa(g)| ™!

forl > C(y)loggq.

The proof of Theorem [I.1]is then completed by the argument of Section 8 in [6] (using
the multiplicity bound established in Section 7 of [6], which is clearly sufficient also in
the higher rank case).

7.2. Proof of Corollary[1.2)

Let G be a subgroup of SLy4(F,). Following Nori [22] let Gt denote the normal sub-
group of G generated by G N Uy(F)), where Uy(IF)) are the elements of SLy(IF)) of
order p. Denote by G the algebraic subgroup generated by the one-parameter groups
t — x' = exp(rlogx) for all x € G such that x? = 1. Theorem B in [22] states that
there is a constant ¢y (d) > 2d — 2 such that for all primes p > c(d), if G is a subgroup
of SLy4(F,) then Gt = G(FF,)*. So for all sufficiently large primes (depending only on
d), G is an algebraic subgroup of SL, defined over FF,.

Now a classical result of Jordan (see Theorem 8.29 in [23]]) asserts that every finite
subgroup X of SL;(C) has a commutative normal subgroup Y such that [X : Y] < c2(d),
where ¢, (d) is a constant depending only on d. If we let f denote the equations describ-
ing G(Fp), since we can regard G/ G as a subgroup of SL,(C), we conclude that for all
p > c1(d) the elements of G satisfy

fe(C 2@ yeadyy — ¢

Corollary [I.2] now follows from Corollary [I.1]

Appendix. Sum-product theorem for extension fields
by Jean Bourgain

A.l. Theorem[A ]

Let p be a large and fixed rational prime. Let O denote the integers in our extension K
of Q and let P be a prime divisor of (p) in O. Denote by d the degree of P and by e its
ramification. Our purpose is to establish a sum-product theorem in O/P", generalizing
the result from 3] for Z/p"Z.

In what follows, p is given and we let n — oo. We do not seek uniformity in p
although the statements (Theorem [A.T] Corollary [A.T) can be proven uniformly in p
(cf. [3D).

For large p, the sum-product and exponential sums results from [10, 9, [4] are re-
quired however, while in the present situation (p fixed), only elementary estimates (such
as Lemma[A-T|below) will be used.
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Since our problem is obviously local, we replace Q and K by their respective com-
pletions @, and Kp. Thus Kp is an extension of QQ, of degree de; Kp is the totally
ramified extension of its inertial field Q, C K! c Kp,[Kp : K1 = e and K! is a to-
tally unramified extension of Q, with [K! : Q,] = d. The Galois group Gal(K!/Q,) =
Gal(IF .« /Fp) is the cyclic group on d elements. Note that since p is large compared

with d, Kp is a tamely ramified extension of K/ .
Letuy, ..., ug be an integral basis for KT. We then get

O=0p=2ZyuP |1<i<d, 0= j<e
where Z,, stands for the p-adic integers, and
Ol =0pNK!' =Zplu; | 1 <i <dl.
Further, (p) = P¢ and
O/(p) =Fpa +FpaP+ -+ FaP.

Theorem A.1. Given 81,8, > 0, there are &, 53 > 0 such that the following holds. Let
A C O/p"O satisfy
m1(A) = O/p0O, (A.1)
|70, (A)] > P2 forallen < ny < n, (A.2)
where t, : O — O/ p" O denotes the quotient map and

|A| < p(l—él)nde.

Then
|A~A~A+A-A~A|>p”53|A|. (A.3)

Corollary A.1. Given § > 0 and t > O there are ¢ > 0 and ry,ry € Z4 such that the
Sfollowing holds. Let A C O/ p"O satisfy

m1(A) = O/ pO,

|70, (A)| > P’ forallen < ny < n.
Then letting m = [tn] we have
A" — A" D {x e O/p"O | my(x) =0}

We assume P is unramified, i.e. (p) = P. The modifications for the ramified case are
minor. The arguments below are in fact straightforward adaptations of [3]. Note however
that if P is ramified, assumption (A.T) may not be replaced by 7, (A) = O/P. Compared
with the case of subsets A C Z/p"Z, there is a problem when applying previous results
due to the possible failure of condition (as O/ pO has nontrivial subrings), and this
issue will have to be addressed.
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Proof of Corollary Write ¢ = p"“. In view of Theorem (which needs to be
iterated) and taking & = £(8, 81) small enough, we may ensure that [, A”1| > ¢! %! for
some rp, rp depending on § and ;.

Thus we may start from a set A| C O/p"O, |A1] > ¢'~% with §; > 0 arbitrary.
Define next

3 5.7
no = max{n’ | n’ such that m%_ax A1 N 7'[;,](5)| > p~ 319 Ay ).

Clearly

3dn’ 1-8

din=’) o pmadngl=h,

p

hence
n <48in and ng < 481n.

Take & € O/p™ O with
|Az| > p_%d’10|A1| where Ay = A ﬂrrn_ol(é). (A4)
Taking some element x € A;, we have
Ay =x+ p""B where B C O/p" "0, |A;| =|B].
Let 1 <m < n — ng. From the definition of ng we have, by @

3 3
m;lxlB ﬂnrzl(gﬂ < mEaX|A1 ﬂnn:_}_no(éﬂ < p_Id(’"+”0)|A1| < P_de|B|.

Apply then Lemmabelow with y; = y» = 3/4tothe set B C O/p" "0 Q. It follows
that

100B - B =0/p" ™0,
implying (since 0 € B)

100(A1 — A (A1 — A1) D 100(A2 — A2)(A2 — A) D {x € O/p" O |, (x) = 0}.

The claim follows with T = 867. O

A.2. LemmalA]l

Lemma A.1. Let y1, y» >0 withy) +y>>1and k € Z4 be such thatk >4/y; + y» — 1.
Let Aj, B; C O/p™O (1 <i <k) satisfy, forall 1 <m’ < m,

max [{x € A; | 7 (¥) = £}] < P A, (A.5)

max (x € Bi | my (x) = &) < pm By (A.6)
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Let v be the image measure on O/p™ QO of the normalized counting measure on
]_[le(A,- X B;) under the map

(X1, Y15 o Xks Vi) > X1y1+ -+ Xk ke
Then

max
§ely

1 1 md
v(i€)— —| < —, where q=p"°. (A7)
q qp

Proof. Denote by Tr : O — Z, the usual trace map and let e, (x) = 5 T for g = p"
and x € O/aO. Hence {e,m(z-) | z € O/p™O} is a complete set of additive characters
for O/p™O.

We establish with a standard exponential sum approach. Thus for & € O/p™O,

V(&)

1
= —=———{(x1, Y1, .., Xk, Yk) € AL X By X+ - X Ap X B | x1y1+- - -+ xp vk = €}
[TIAil1Bil
1 1
== Z epm(z(E—x1y1—-—xy) = —+F,
q [T1A:lB;l vieh e, q
zeO/p"O
where
1 1 k
Fs<- e L] Y em)| (A3)
q ZGO/me 1_[| l|| l| i=l1 XGAi,yEBi
z#0

Write z € O/p™O, z # 0, in the form z = p’”/w with0 < m' < mand w €
(O/p™ ™ O)*. Fix 0 < m’ < m and estimate (A = A;, B = B;)

(wn,lz%’; ‘Xe;ye R €pn-n’ (W) ‘ (A9)

Define
ME) = lx € A | Ty (@) = £} B pmdom—n'm g (A.10)
12(8) = I{x € B | Ty (1) = £}) &2 prdn=nr2 | (A.11)

Hence, by Cauchy—Schwarz and Parseval, we can bound (A.9) as follows:

BN =Y mEnmEe w wis)
§1.62

X (Z n1($1)2> v (Z‘Z n2(82)€ - (wE182) ‘2> v
£ &1 &
L8 pfdm%m/m |A|pm%wd<z 772(52)2)1/2
&

& p A BB 41 By (A.12)
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Substitution of (A.12)) in (A.8)) clearly gives the estimate

1 S pon D (i i 1 3 ps=bnm-n)
) 0<m’<m ) s>1
1
<—. (A.13)
P4
This proves (A.7). O

A.3. Regularization of the set

Returning to Theorem and A C O/p"O, we will perform several preliminary con-
structions before proceeding with the amplification process. The first step is a regulariza-
tion with respect to the natural tree structure O/ p"O — O/p" 'O — ... - O/pO by
passing to a large subset of A.

Fix a large integer T = T (1, §2). We may assume n to be a multiple of T (since p is
fixed and n — o0), writing

n=7Tn; and ¢ = piT™m.
The regularization process will lead to a subset B C A and sequences
mg €[Ts, T(s+1)[ and 1<K, < pdT
for 0 < s < ny, satisfying the following conditions:
If xem,(B), then |my_  (BXx))| =K, (A.14)
where we write B(x) = BN nn;sl({x}).
If Ky>1 and x €my(B), then |z, (B(x))|>2. (A.15)
|B| > (W)mw > g °D|A|  (for T large enough). (A.16)

The construction is straightforward, starting at the bottom of the tree O/p"O. We
detail the first step and leave the continuation to the reader.
Define
Q={5c0/p"" VO | Inz,, & NAl=1).

We distinguish two possibilities:
If |7Tilnl_1)(9) N Al > 1|A]| define

Ky-1=1 and my_1=Thn —1)

and let
Al=AN ﬂr_(ln]_n(ﬂ)-
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Hence
A1) =1 for& emru-n(AD, |Ail = Al

Assume next |7'rT_(1nl -1 (R)NA| < % |A|. From the definition of €2, we may then find some
m =my,—1 € [T(n; — 1), Tny[ such that
A
{x € A | {mue1(x) | x’ € Aand 7, (x) = 7, (x')} has at least 2 elements }| > %

(A.17)

and we take m € [T (n; — 1), Tn;[ as small as possible such that (A-17) holds. We may
then introduce A1 C A and a dyadic integer 1 < K,,,_1 < pdT such that

|[Tm(A1EN| =1 foré € mru,—1)(A1), (A.18)

[Tm+1(A1(E))] =2 for& e my(Ar), (A.19)

|AL N7, (&) = Kyy—1 for & € mu(Ay), (A.20)
|A]

[A] > W. (A.21)

In the next step, replace A by A1, consider T[T_(lnl—Z(E) N Ay for & € mrp,—2)(A1) and
introduce T(n) —2) < my,—2 < T(ny — 1), 1 < Ky,—2 < p?T and Ay C Ay similarly.
Note that for § € 77(,,—1)(A2) we have A1(§) = A2(§),andif & € T[mn172(A2)’ then by
construction

7m,,,_y (A2(EN] = |77 (0 —1) (A2(8))| = K -2, (A22)
which is condition (A14) with s = n; — 2.
Assume we have obtained the set B C A satisfying (A.T4)-(A.T6). Next, define

1k < p%52ms}. (A23)

s'<s

E:max{05s<n1

Thus there are £ € O/p™ O and B’ C B such that
Tms (B') = {€}, (A.24)
|B/| > p~2%m5|B|. (A.25)

Suppose mz > en. Then, by (A2), |7 (A)| > p®?"s and therefore by (A.16), (A.23),
we get

A+ Al 2 |A+ B'| > [ (A)]|B'] > p2¥mig=oM|4]. (A.26)
Assume (AJ) fails to hold, i.e.
JA-A-A+A-A-Al <q"AlL
Note that by the Pliinnecke—Ruzsa sumset inequalities we also have
FA-A-A—rA-A-Al < q"FA] (A.27)

for the r-fold sumset, assuming r is bounded.
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T(n—2) T -——=—=—=========——=—=——~

Mnq—2 B
Mny—24l f=== == =m— == ———m =1

T(nl—l)

Mnq—1

Mmp -1+l -

Tnw Lo ___L11_1I_

In particular, (A-26) implies

priams g—o(l) _ o)
or
msz = o(1)n
Therefore, certainly
ms; < en. (A.28)

Since (A-24) holds and taking some b’ € B” we have, for some A’ C O/p" " O,
B —b = pmgA/’
where by (A.16), (A.23)), (A.23),

|A'| = |B'| > ¢"°|Al

Define for 1 <s <n; — s,
my = msps — ms. (A.29)

Hence from (A:T4) and (AT3),
|7, (AT = Kyp5 forx € my (AD),

1T (A =2 if Kys = 2and x € T (A).
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From the definition (A.23)) of § it also follows that

i Ky 1 i} i} ls
|7 (A = |7, (B)] = H Ky = [y Ky S phSmsis—ms) — pzdom
l §<s/<5+s Hf/<§ KS/

Also, since p"™s A’ C A — A, it follows from and (A28) that
rA’ - A"+ Al < p2ms|r(A — AP . Al < g*oD)4].

We simplify notation at this point replacing K by K54 and ms by m}, (1 <s < ny —3).
Summarizing the relevant properties we have

[, (A))] > 2o, (A30)

[Tm, 1 (A’ (X)) = Ks forx € my (A", (A.31)

if Ky>1, then |mp,,, (A'(x)]>2forx €y, (A), (A.32)
IrA’ - A"~ Al <y ¢°V)A|  for any given r € Z,, (A33)
1A' > g7 DA| (A.34)

(letting ¢ be small enough).

The core of our argument is of course to obtain a lower bound on rA” - A’ - A that will
contradict (A-33)). Before proceeding, we need one more manipulation.

We construct further sequences k; = my;, ki = my where 5; < s/ < s;41, hence
ki <kj <kiy1 (i< j).

Take a sufficiently small § = §(81, §2) > 0 (to be specified) and let

R =[100/4]. (A.35)
Assume s; is obtained. Define
s; =min{s > s; | Ky > 2} (A.36)

if possible. Otherwise we terminate at j = i defining s; = n; — § — 1. Assuming s/ can
e _ ) . .

be defined by @), if s/ + R > ny —§ — 1, we terminate again at j = /. Assume now

si’ + R < ny — 5 — 1. There are two cases.

Case I: We have
1_6 d m_s —m s
| | K, < p( i s+R “i).

s{<s<s/+R
Then take s; 11 = s/ + R.

Case II: We have

s{<s<s!+R
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Then take s;+1 to be the smallest s > si’ + R such that

1=8)d(ms—m.y
[T ko <p" "™, (A37)
si<s'<s
This is possible unless
1=8)d(my, —5_1—my
[T &o=p'meme, (A38)

sj<s'<n;—§

in which case we can again terminate at i = j.
In Case II, it follows from the construction of s;4; that if mg_| < k < mgy with
si+ R <s" <s;qthenforall £ € Tm,, (A") we have

i (A'E)] = p~ 4 Pl (AE) = p D TT K

si<t<s'

—d(my—k)+d(m—m s)(1-8 1-28)d(k—m
> p (my —k)+d(m méi)( ) - [7( )d( mél_). (A.39)
Also, formy,,, 1 <k < myg,,, fromk —my > (R — 1T and (A33) we have
B3 a-28)dmg;,  —1—my)
T (A ENN = |, (ATEDI 7= p A
1-28)d (k—m /) —dT 1-38)d(k—m ,
p( )d( msi) - p( )d( msl_)’ (A.40)

so that (A-40) holds whenever my < k < my, .
From the preceding and (A.38), the construction terminates at i = j when either

[k <p'* (A.41)

tZSj

H K;>p

sJ’.gt<n17§

or (1-8)d( )
—o)d(my —5—1—my
1 (A.42)

Since the amplification performed in the next section will only relate to the levels m €
Ul-<j [mg, mg, 1, we need a lower bound on

[T [] Ki=lmm, @)= [, (A, (A43)
I<js{<t<siti '
If (A:4T)) holds, then obviously
&) > pTRIA > gD Al (A.44)
If (A.42) holds we argue as follows:

d(m —5—1—m /) @ —dmg—dm / @ —dm
1-8 -5 =¥ s 1-8 i 1—8—¢ !
a '>q"p T>Tq P
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ki e ___.
no branching
)
at least 2 branches
A e e A T
ki1 fp-------db A b

and hence

8
ms;z(81—8—8)n>?ln

if we let €, § be small enough.
Recalling (A:30), it also follows that

382my ls's
@ = p " > phoin,
Consequently, we introduce sequences kj < k. < k;1 (i < j) such that
it xem(A), then |mpy (A0 =2;
if kiy1 —k; >2RT andx € p(A”), then
7y (A )| = Ly < pUt= =k,

and for k; + RT < k < ki41,

k(A (x))] > pI=30dk=kD

1
i (AD)] = [T Li > patre=",

i<j

forT <k < ny (by@)-

1
i (A))] > prok

‘We may of course also assume

m(x) #0 forx e A'.

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)
(A.50)

(A51)

(A.52)

Indeed, since |, (A’)| > 2 and thus m,,, (A") # {0} we may replace A’ by the set

p‘ko{x € A’ | my,(x) = 0; mry+1(x) # 0} for some 0 < ko < m.
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A.4. The amplification

Recalling (A.T)), there is a subset C of a suitable sumset of A, with |C| = p?R7¢ such that
: 2RT ()
mrrlc : C — O/p~"" O is one-to-one, (A.53)

and moreover
morT+1(x) #0 forx € C. (A.54)

Let A"and k; < k] < ki1 (i < j)be as in Section[A.3] satisfying (A47)-(A50). Let
r € Z4,r =r(81, 82), be large enough (to be specified). Define

Q=(A xA xC) c(O/p"O),

the product set equipped with the normalized counting measure P.
Consider the map

QL= O/p"O: (X1, 91,21, -+ X, Yry 2r) = X1V1Z1 + -+ X Yr2e. (ASS)

Hence ¢(Q2) CrA’-A’-C CrA’-A’- A and our aim is to contradict (A.33) by establish-
ing a lower bound on |¢ (£2)|. Note that for k < n, (mx¢)(£) only depends on 7y (§). Let
i be the normalized counting measure on O/ p*© for k < n and E; the corresponding
expectation operator.

Define the density

do [P
F=F, = a2 (A.56)
dpn
and for k < n,
dmig (P)
Fr =Ex(F) = T (A57)
Mk
Fix i. The key estimate is a bound on
max  F,, (x) iy (dx"). (A.58)

T ()=

‘We will show that
@ <2, (A.59)

which means that, conditional on 7/, 7y, ¢ is almost uniformly distributed.

Let k = kjy1 and kK’ = k[. By (A:37),

Fr(x) = p"1QI7 (g € Q| mep(§) = x})I. (A.60)
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Hence
max_ F(x) we(dx) = p*0hQ™ 3 max |{E € Q| mp(€) = x}
T (x)=x’ . €(,)/pk,orrk/(x)=x
< p QT Y max|{E € Q| () = L andmp (€) = x)|

cemy(Q)
p(kfk )d|A/|72r|C|7r
> max|{x, e A,y e AU <s<r)|
X

X[, Xy €M (A)
V)oyL€mp (A) me(xiy1z1 + -+ X yrze) = X}

p M A ier
Yo maxify e m(A' (), ys € (A G <5 <7) |

Xseen X, €T (AT
Viooyemy (A xy1me(z1) + -+ Xy (ze) = x|

(A.61)

(for the last equality, we use the regular tree structure of A”).
We evaluate the inner max, in (A.61) by an exponential sum estimate. Thus

.
m3x|...|_|o/ oD DN NS DR () SEREN
ne(’)/pkO xsemp (A (x])) s=1
yseme(A'(y5))

with the notation from Lemma[AT] Note that (A-62)) has become independent of x. Sub-

stitution in (A.61) gives
’ r
< p X mAH T CIT Z ( Z ‘ Z epk(nxyz)D ) (A.63)

neQ/pkO x'emp (A xem(A'(x))
yemi(A')
zeC

(A.62)

Using Cauchy—Schwarz for the second summation we obtain

AB3) < p~ X (A) 7 (AD|C

YT Y epmma])”

neOQ/pkO x'emy (A xem(A'(x)))
yem (A"
zeC

< p K (AT A TP e (A2 )

x Z ( Z ‘ Z epk(n(X1—X2)yz)Dr/2. (A.64)

neQ/pkO x'empy(A’) xi,xeme(A'(x"))
yeA’
zeC
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Since T/ (x1 — x2) =0,
B = | (A" AP e (AD2 0772

x Z ( Z ‘ Z e,k (n(x —xz)yz)Drﬂ. (A.65)

ne@/pk=K © x'emp (A') xi,x€m (A (x")
yeA’, zeC

We now proceed to estimate, for x” € i/ (A”),

Z e e (n(x1 — x2)yz) (A.66)
xp,x€m (A (x))
yeA,zeC

using the properties (A-37)—(A31)) of A’

Recall that k" = k], k = k; 11 and |7 (A'(x"))| = L;. There are two cases.

CaseI: k — k' < 2RT. Since C satisfies (A:53) and 0 ¢ 7;(A’) by (A:32),

X1 — X2
Z epk—k/ <7) yz) =0

k/
zeC P

unless x; = xp (mod pk/H) or ;i (n) = 0 (since we assumed (p) prime). Recall that
|7k 41 (A’ (x))| > 2 according to (A:47). Hence, if 7ty (1) # 0,

@66 < |AICl Y ImA o))

€M 41 (A (X))

< A 1CI(me(A' P = (A D)D) < AT ICILEA = p~28T),
Substituting (A.66)) in (A-63) gives the contribution
m < 1+ (p(k*k/)d _ 1)(1 _ p72dRT)r/2 < 2’

provided we take
r=r(p,81,8) > p**t (A.67)
(this choice of r will also ensure that C C rA with C satisfying (A-53), (A:54)).

CaseIl: k — k' > 2RT. Let my_p(n) # 0 and write n = p™n; with0 <m < k — k’
and 1 € (O/p =% —"(©)*. We need to evaluate

X1 — X2
> epk_k/_m(m s yz). (A.68)

xp,x2€m (A'(x))
yeA’, zeC

Set
O<l=k—k-m<k—-Fk.
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If I < 2RT, we again invoke (A.53) to claim that Y .. e, (1 x‘p;,xz yz) = 0 unless

Tk—m(x1 —x2) = 0, hence my/1 1 (x1 — x2) = 0. The same calculation from Case I implies
that

[(AB8)| < |A'[IC] i (A (NP1 = p~2KT). (A.69)
Assume next [ > 2RT. Fix xo € A'(x'). For & € O/p' O define

1ot X — X0
r(E) = {XEﬂk(A (x") 7Tl<7 >=§}

M) =y e A" m(y) =&},
23(E) = 0,2 € A" x Clm(yz) = &}.

3

Hence
I(A68)| < | (A" (x"))] ‘Z e (MEENN(E)A3(E)|. (A.70)
£,§'
Since A’ is regular and [ > 2RT,
|7 (A" (x"))] —(1=38)di+dT . |tk (A" (x"))]
r1(8) ot e GO <p |k (A" (x))| < AN (A.71)
by applying (A:49) with k; = k', k; ;.1 = k and replacing k by k" + 1.
Also, by (A3T),
A(E) ~ 'A/|/ < pile. (A.72)
paT |7 (A7)

Recalling (A.54) we have C = (o<, <or7 Cla), Where
C) =1{z € C | m4(z) = 0 and 441 (2) # 0}
and
ICw)| = p~*“ICI.

Since the map O/p'O — O/p!O : x > zx has multiplicity p? for z € C(a), it follows
that

mE < Y Y HWyedlma=&I< ) |C<a>|(rn;}xx2<s’>)p“"

a<2RT zeC, a<2RT

B2 (| 4 arm)p 214 0] < p¥ A || (A73)

(since I > RT and (A35) with § < §3).
Returning to (A70), in view of (A-7T)) and (A:73), take § > 0 so as to ensure that

|4y i gy % (A.74)
— —-—= > —. .
8d 10d

Proceeding as in the proof of Lemma[AZ]] this gives

E)
(ET0) < |7 (A' (X)) PIA'| |ClpdaTia, (AT5)
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Hence using the estimates (A.69) and we see that in Case 2,

@ <1+ Z pd(k—k’—m)(l _ p—ZdRT)r
k—k'—2RT <m<k—k'

1
+ Z pd(k—k’—m)—foszrd(k—k’—m) <2
0<m<k—k'—=2RT

if we take r as in (A.67). This establishes (A-39).

Next we proceed with an entropy calculation. With k = k; 1 and k" = k., write

F
/ Fylog® Frduy < / Fylog® Fyduy + f Fylog™ F_;]:/ d

and

Fi Fie(x)
Frlogt — duy < log™ Fo (xX")duy
/ klog” itk = / (og (nkf&fﬂ;fx, o (x,))) e (x7) d g

5/( max Fk(x)> d,uk/@l (A.76)

T (x)=x'

Hence, letting j be as in Section[A.3]we have

Fi, Fy
/ij 10g+ij d'uEZ/FkiJrl 10g+ ﬁdﬂ‘l—Z/Fkl/lOg—i_ Edlj,

i<j i<j
9, J+log [T pt&i—. (A.77)

i<j

Next, set § = supp Fi;, = 7k, (¢(2)) C my;(rA”- A’ - A). Let 0 < y < 1 be a parameter.
Since [ Fi; djux; = 1, we have

1
1—y </ Fr. dug, < —/Fk.log+Fk. du
(Fiy>y/mg SN log™ (v /1u; (5)) ! !

@ : 1 logezjl—[pd(k;—ki)
log™ (v / i; (5))

i<j

and therefore

1—
< 14 ) V<ezjl_[pd(klffk,~).
10, ()

i<j
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Hence

i i i o\ —1/(d=y)
IS] = Pdk] Mk S) > ypdk/ (62] 1_[ pd(kl.fk,))

i<j
ak € d(ki—k,
> ptki Hp &=k (for appropriate )
logg ;'
—2j
_ € l_[pd(kiﬂfk,{)
logg ;_;
1/(1-5)
@ qfl/T(l_[ Li)
i<j
[A30)

= g | (AN,

Take & € O/ p*i O such that

@ nars 4
4 = Jm (AN
Clearly
|A’]
(r+ DA A" Al > | (rA - A A)|———
/ |7t (A)]

E® -
= g VT A | (AN

B39 @359 g~/ T—oMHg8i020| 4.

In order to satisfy (A:43) and (A.74), which are the only conditions on §, let

1
6 = —— min(dy, &7).
IOOdmm(l’ 2)

(A.78)

We obtain a contradiction to (A:33)) for 7' large enough. This proves Theorem[A T]

A.5. Proof of Proposition[3.3]

Let, : O — O/p"O be the projection. Let A C O with
1700, (A)] > p™.

We may construct 1 < ng < ny and B C A such that

ni—nog>dni /4, pOBCA—A, |mn(B)|>p"* form <n; —no.

Replacing A by B we can therefore assume

| (A)| > p?™  forallm < nj.

(A.79)
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Replacing further A by a multiplicative translate, we ensure moreover that 1 € A.
Let R be the subring of O generated by A (hence 1 € R). Replacing A by a sum-
product set, we may assume
71(A) = m1(R). (A.80)

Defining, form € Z,
A ={m(x) | p"x € R} C O/pO

we obtain an increasing sequence of subsets of O/pO with Ag = 71 (R).
Set
n=min{n € Z4 | A, # m1(R)}. (A.81)

It follows that if » < 7 and z € O with p"z € R then there is an element x € R with
Ti—n(x —2) =0.
Assume 1 < nj. Using sum-product estimates developed above we will prove in
Section that
77(A) D mi(p*R)  for k = [1/10], (A.82)

where A is a further sum-product set of A.
Also, by (A.8T), there is zg € O such that

p'z0 € R and m(z0) ¢ 71 (R). (A.83)

We make a few preliminary observations. Assume 741 (A) D miy1(R). Hence there is
a € Asuchthata — pzp € p"+1© and thus

1 (Arl)_;;”(’)) ¢ 71 (R). (A.84)
Note that by (A-82), also )

m(ﬂ#) D mi(R) (A.85)
and therefore _ )

T (%) 2 mi(R). (A.86)

Assume next that instead of (A.82) we have the stronger property
mi(A) D ma(R). (A.87)
Hence 7741 (A~) is a subset of ;41 (R) that certainly satisfies

|71 (A)] 1
lmic1(R)] p

as a consequence of (A.87).
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Passing to a further sum-product set A we may clearly ensure that ;41 (A)isa ring.
Since obviously ;41 (R) is generated by w41 (A) it follows that mj;+1(R) = 7741 (A),

which enables us to deduce (A.84)—(A.86) (replacing A by A).
Returning to (A-82), define

Anpro
B=""F>co (A88)
p
satisfying
Tji—k(B) = mji—k(R) (A.89)
by (A.82). In particular, there is an element § € B such that
Tk (1 =€) =0. (A.90)

Take n € O such that 1 = &n (recall that O are the integers of the completion) and let
Bj = nB. Hence By has a unit and by (A-89), also

Tji—k(B1) = ik (R). (A91)
Next, let R be the ring generated by Bj. By (A9])), also
ik (R) = mi—k(R1). (A.92)

Defining
my =min{m € Z, | 71 (Ry) # {m1(x) | x € O, p"x € R}

it follows from (A-92) and the definition of 72 that
m; >n—k.

Again, if m < mj and z € O, p™z € R; then there is an element x € R; with
Ty —m (x — 2) = 0. We distinguish two cases.

Casel:m; <n+1. Since m;—;(B1) = wi—r(R1) with k = [r/10], it easily follows that
3 -
7y (R1) = T, (By + BYY) = 70, (By).
This is condition (A-87) with A replaced by Bj. Therefore
él np™o
7T1 pm|

By (A-87) and (A-88) we easily deduce from (A:93) that

AN p™mO
T\ ——— ) 2 MR
p 2

) 2 m1(R). (A.93)

m

for some k +m| < my < my + ck < cn.
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Case 2: m| > n + 1. Again we get

i1 (B1) = Tap1 (RY). (A.94)
Returning to (A.83)), we claim that

Tis1(p"20) ¢ Tig1(RY).

Indeed, otherwise p"zo = x; + p"Tlz; = p'x| + p"t'z| for some xi,x] € Ry
and 71,7} € O, implying that m1(z0) = mi(x]) € m(R) (a contradiction). Hence
Tir1(R) € mit1(Ry) and thus

Tit1(A) € w1 (Ry).
This gives an element a € A such that
a=y+p™z (A.95)
withy € Rj,m3 <nandz; € O\ (R; + pO). By (A94),
y=b+p"7 withb € B,7 €O
and substituting in (A.93) gives
a=bi+p™z withzy € O\ (R + pO). (A.96)

Multiplying (A.96) with an appropriate bounded power &” of & introduced in (A.90)
we obtain N
at" =b+ p™z3 (A.97)

for some b in a sumset of B") and z3 € O \ (R + pO). Next multiply (A.97) with p™*
to get

Pt e A(AY —s(A) C A.

AN pmO
i (L) > m(R)

p4

Hence again

for some k < my4 < m3 + ck < cn. In conclusion, we see that there is some ms < cn
such that .

(A Nnp"™sO

T | —

p"s

) 2 m(R).

In particular, there is an element ¢ € 14 pO such that p"s¢ € A. Hence AA N p"™sO >
p"s¢ A and

_AAN PO
N
Property (A.79) therefore remains valid for the set A’ generating a ring R’ with

A D CA.

71 (R") 2 mi(R).
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Since |71 (R)| < |O/pO| < p?, the procedure has to terminate after at most d steps,
meaning that we obtain 7 > n; for which in particular (A-82) holds. Therefore there is
m < cn such that

Anp"
Tn, <_PO> > 7, (p*Z)  with k = [n1/10]. (A.98)

p m

Note that in the set A is a multiplicative translate of the original set so that (A.98))
corresponds to condition (3:31)) in Section 3]
This proves Proposition [3.3|up to verification of the assertion (A-82).

A.6. Subfield reduction

Our aim is to establish (A-82) for rings satisfying condition (A:101]) below and subsets

A C R satisfying (A.79) and (A-80), i.e.
mp(A) = mp(R), (A.99)
| (A)| > p®™  forallm < N, (A.100)
where our assumption on R is the following property:

Ifn < Nand x € O, p"x € R, then there is
y € Rsuch that w v—n(x —y) =0 (A.101)

(N plays the role of 7 in Section [A.3)).
Returning to the discussion at the beginning of Section[A:T] recall that

O=0p=2ZyuP|1<i<d, 0<j<el,
O'=0pNK!' =Z,lu; |1 <i <d],
O/pO ~Fpa +FpuP+---+F,aP.
We assume in what follows that

N> C(p,d), (A.102)

where C(p, d) is a suitable constant depending on p and d, as will be clear from the
considerations below.
For x € R write

Tp(x) =x0+X1P 4+ x 1P withxo, ..., xe_1 €Fpa. (A.103)

Hence 7, (xpd) = xo € 7mp(R) and it follows that 77,(R) contains the subfield Fy of Ide
generated by {xg | x € R}. Thus

7p(R) = Fy C mp(R). (A.104)
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Next, consider the set
S1={t €F,u | tP € mp2(R)}.

It follows from (A.104) that x; € S for all x € R in the representation (A.T03). Assume
S1 # {0}

Let t; € S1 \ {0} and consider the set Si = tl_lSl - Ide (which contains 1). Let F; be
the subfield of I .« generated by S}. Since 1 € S}, Fi will be obtained as a sumset of the

product set (S}) of S for any sufficiently large r € Z..
Note that if 51, ..., s, € S|, then

sinPenp2(R) (1<i<r)

and hence
ST .. .s,terr S ﬂpr+1(R).

Therefore
ttiP" € mpre1(R)  fort e Fi.

Taking r of the form r = 1 (mod e(p? — 1)) we get some integer r; € Z, such that
ttiPp"t € wper+2(R).

Therefore, if t € Fy, there is z € O such that
PP + 2P e R.

Since r; < C(p, d) it follows from (A.T01) and (A-102) that

(] P+ zP?) = 7, (tt1 P + zP?) € m,p(R).

Hence F11iP C mp2(R) and from the definition of Sy and F; we therefore obtain
mp2(R) = Fo + FinP.

If S = {0}, put t; = 0 and F; = IF,. Continuing the process, we obtain elements
Hyooohle_] € de and subfields Fy, Fi, ..., F,_1 of de such that

7p(R) = Fo 4+ FityP 4 - - 4 Fo_te P71 (A.105)

Let F; be the largest subfield among Fy, ..., F._1; t; # 0. Since t; F;P' C mp(R), we
have
1 Fip' C mpe-ni+e(R),

and again from (A:101)) and (A.102)), (A-6) implies

tl-eF,' C mp(R) = Fy.




1098 Jean Bourgain, Alex Gamburd

Hence F; = Fy, tf € Fy. Also, if 1j # 0 it follows from (A-T03) that F()thij C (R,
implying F; = Fy. Hence we may specify (A103) as
7p(R) = Fo + Foty P 4 - - - + Fote— P°7 1, (A.106)

where 7; = O or 1 € Fj.
Set
I={0<i<el|t; #0} CZ/eZ.

Ifi, j € I, then clearly o
fitﬂ)lﬂ € Tpetminii.j) (R). (A.107)

Define 0 < k < ebyi+ j =k (mode). If i + j = k, (A.107) implies #;;P* € 7,(R)
and hence 1;t; € 13 Fo. If i + j = e + k, then k < min(i, j) and (A:107), (A"T0T)) imply
titij € Ty ek+1 (R). In either case

titj € 1 Fp.

In particular, #z # O and it follows that / is an additive subgroup of Z/eZ. Therefore
(A"106) may be rewritten as

7y (R) = Fo+ tBFy+--- + 971971 Ry (A.108)

for some e |e, B = P¢/¢! and some 7 € Ide with 71 € Fy. Let Q, C K’ C K’ be
the subfield of K of degree [K’ : Qpl =[Fo : Fplandlet K1 = K'(zB) C Kp, hence
[K1: K'] = e1. Define

O1=K;Nn0O, O =Kno.
Hence by (A-108),

7p(R) = 1, (Oy). (A.109)

Remark. A subring R of 7,(O) is nor necessarily of the form 7,(O;) for the integers
in a subfield. Taking K = Q(p'/*) and R = F, + p1/2IF,, + p3/4]Fp C 7, (O) gives an
example. Thus to conclude (A-T09) we used (A-T0T) where N is sufficiently large.

Returning to the analysis of R, define
M =max{m € Z | wpm(R) C wpm(O1)}.

We claim that
M >N —1. (A.110)

Note that if I' C R is a set of representatives of 7,(R) then all elements in the set
[+ pI' +--- 4 p™ " C R are distinct mod p™. Therefore

|7wpm (R)| = [p (R)[™.
Conversely, from assumption (A.101) we get
7 (R)| = |7, (R)™  form < N. (A111)
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Since |7 (O1)| = |7,(OD|" = |7, (R)|™, it follows from (A%6) and (ATTT) that
7 (R) = 7, (O)). (A.112)

Assume (AT10) fails, thus

N> M+2. (A.113)
If (A"TT3) holds, (A-TTT) implies
|71 (R)] = |7, (R)IMH! = |01 (OV)],
and since we assume 7, m+1(R) ¢ 7 pm+1(O1), also
71 (O1) & 71 (R). (A.114)
Next, let y € O be such that
mp(y) € mp(O)* = Fy. (A.115)
Hence 7,(y") = 1,r = |Fp| — 1 and so
y' =14 p7 forsomez € Oy. (A.116)
Since 1 € R and 7,m () e 7 ,m (R), it follows that
w1 (V) € yuisi (R). (A.117)
Also, from (A.TT2), 7r,u (y) € 7, (R), hence there is some z € O such that
y+pMz=xeR. (A.118)
Taking the r-th power of (A-118)) we get clearly
ou (3 +ry" " lepM) € o (R),

and recalling (A:117)),

et (ry" "' z2pM) € mouen (R). (A.119)
From (A.101)) and assumption (A.T13), (A.119) implies
n,,(ryr_lz) € m,(R).

Since 7, (y) € mp(R), also

7y (rz) B19 mp(ry"z) € mp(R).
Finally, since (r, p) = 1, we conclude that

p(2) € Tp(R).
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Recalling (A.T18)), we have proved that
momet (y) € wome (R) if y € Oy satisfies (ATT3). (A.120)
Given y € 01, we may write
y=yo+By1 withyye O, m,(y) #0if yo #0, and y; € Oy. (A.121)

In particular, yo satisfies (A.-TT5) if yo # 0, and 7,m+1(y0) € 7,m+1 (R) by (A.120). Since
M () € M (R), there is an element x; € R such that M (x1 — y1) = 0 and hence

T g(y — Bx1) € Tou(R). (A.122)
Since 7w,m (B) € w,m(R) there is z € O such that
B+pMzeR, (A.123)
and therefore, taking the e;-th power, Ty (p + e pMy) e 7p2m (R) or
o (B pM2) € moom (R). (A.124)
From (AT01) and since N > M, (A124) implies
7p (B4 '2) € 1,y(R) = 7,(O1).

Therefore there is w € O such that 1~z + pw € Oy, implying that also z + fw €
K1 NO = O and 7g(z) € mg(R). Substitution in (A:123) shows that

B+ pMBz € R forsomez € O. (A.125)

Taking the e;-th power of (A.123) it follows that p(1 + p™ /)1 € R and

mom (e pM ') € mom (R). (A.126)
Since (A.T0T) also holds for n = M + 1, (A.126)) implies

7p(Z) € mp(R).
Let x’ € R and z” € O be such that
7 =x"+p7’

and substitute in (A-123)) to get

B(1+ pMx' 4+ pMT1") e R. (A.127)

Finally, multiplying both sides of by 1 — pMx’ € R gives B(1 + pM*17") e R
for some 7 € O and
7041 (B) € 7 a1 (R). (A.128)



Expansion and random walks in SL;(Z/p"Z): 11 1101

From (A.122)) and (A.128) we obtain
anﬂ(y) € ﬂpMﬂ(R)a

proving that
7 5(O1) C pu(R). (A.129)
Returning to (AT2T), it follows from (A129) that there is an element x, € R such
that 77, g (y1 — x2) = 0 and hence, assuming €] > 2, Tpmp2(y — Bx) € anﬂz(R). By
m, it follows that 7, g2(y) € 7,mg2(R) and therefore 7,m g2 (O1) C m,mp2(R).
Iteration gives 7 ,m+1(O1) C 7,m+1(R), contradicting (A.TT4).
Therefore we have proved that

M>N—1
and thus
7TpN—|(R) =7TpN—1(01). (A.130)
We now return to the set A C R satisfying (A.99) and (A-100). Since 7,(A) = 7,(R),

by (A101) we have

JTpN(R) = JTPN(A + pA+--- +pN_1A),
Incase N < C(p, d) this gives
npN(R) anN(A)

and hence certainly (A.82).

If N > C(p, d), (A.130) holds, reducing the problem to the integers O; in a number
field K. From Corollary @ in Section @ (see also the remarks at the end of Section
[A7T) it follows that

mn-1(A) D -1 (PFO) (A.131)

with k = [N/10] say and A a suitable sum-product set of A. Thus given y € p¥O; there
exista € A and z € O such that
y=a+pVlz
We have
mn (PN 2) € won (R) + 7w (pFOY) ELD 7, (R),

hence by (A-101),
7p(2) € mp(R) = mp(A).
Thus there is a € A such that v (p¥ 'z — pN~'a) = 0, while by (AT31) there is some
a; € A such that TN (pN~! —ay) = 0. Thus
TN (y) € TN (A —aja) € np;v(fi).
Therefore 7,v (p¥ R) = 7w (p*O1) C 7, (A), which is (A-82).
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