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Abstract. We prove that the Cayley graphs of SLd (Z/pnZ) are expanders with respect to the
projection of any fixed elements in SLd (Z) generating a Zariski dense subgroup.

1. Introduction

The general setup considered in [7] and [8] and here is as follows.
Let S = {g1, . . . , gk} be a subset of SLd(Z) and 3 = 〈S〉 ⊂ SLd(Z) the sub-

group generated by S. We assume 3 is Zariski dense in SLd . According to the theo-
rem of Matthews–Vaserstein–Weisfeiler [21], there is some integer q0 = q0(S) such that
πq(3) = SLd(q), assuming (q, q0) = 1. Here πq denotes the reduction mod q. It was
conjectured in [19], [7], [8] that the Cayley graphs G(SLd(q), πq(S)) form an expander
family, with expansion coefficient bounded below by a constant c = c(S). For d = 2, we
verified this conjecture in [5], [7], [8] provided q is assumed square free (in fact, for q
prime, even stronger results are obtained in [5]). At the other end, there are moduli of the
form q = pn where we fix p say and let n → ∞. In [6] we established the conjecture
for such moduli in the case d = 2. The main goal of this paper is to extend the method to
the case d > 2 providing the first results towards the above conjecture in this setting. Our
main result is the following:

Theorem 1.1. Let S = {g1, . . . , gk} be a finite subset of SLd(Z) generating a subgroup
3 which is Zariski dense in SLd . Let p be a sufficiently large prime. Then the Cayley
graphs G(SLd(pn), πpn(S)) form an expander family as n → ∞. The expansion coeffi-
cients are bounded below by a positive number c(S, p) > 0.

As in [5, 6, 8], the proof, following the approach of Sarnak and Xue [25], is based on ex-
ploiting high multiplicity of nontrivial eigenvalues (the bound obtained in [6] is sufficient
for our purposes), together with the sharp upper bound on the number of short closed
geodesics. As in the preceding works, the starting point for the proof of the upper bound
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is the appropriate sum-product estimate—in our case we need the extension of the sum-
product estimate for Z/pnZ established in [3] to certain extension fields. This crucial in-
gredient, which is of independent interest, is obtained in the Appendix by the first author.
As in [6], the proof relies on a “multi-scale” approach, reminiscent of the Solovay–Kitaev
algorithm in quantum computation [11] (see [12, 13] for an SLd(Z/pnZ) analogue, yield-
ing uniform polylog diameter bounds). The “multi-scale” structure in SLd(Z/pnZ) is
encapsulated in the identity

(I +QA)(I +QB) ≡ I +Q(A+ B) (modQ2),

which allows for immediate exploitation of the sum structure. The exploitation of the
product structure is based on producing a large set of commuting elements, diagonalized
in the appropriate basis, and then proceeding by conjugation. To execute this argument
we need to produce elements outside of proper subvarieties, which is accomplished by
analyzing the random walk in SLd(Z) based on the generating set S and using the theory
of products of random matrices [2] and effective Bézout theorem [1]. As in the preceding
works, the required upper bound is obtained from a measure convolution result which is
established using noncommutative product-set estimates due to Tao [26, 27].

We now turn to some consequences of Theorem 1.1. Let us take the set S symmetric,
i.e. S = {g1, . . . , gk, g

−1
1 , . . . , g−1

k }, to which we associate the probability measure

ν =
1
|S|

∑
g∈S

δg

on SLd (δx denotes the Dirac measure at x). The theorem stated above has the following
implication, whose proof is analogous to the proof of Proposition 3.2 in [8]:

Corollary 1.1. Let S and ν be as above. Let S be a nontrivial algebraic subvariety of
SLd(C). Then the convolution powers ν(`) of ν satisfy

ν(`)(S) < e−c` for `→∞ (1.1)

for some c > 0 (in fact c depends only on ν and the degree of S).

Assume now q a sufficiently large prime and G a proper subgroup of SLd(q). From
the work of Nori [22] on the strong approximation property, it follows that G satisfies a
nontrivial algebraic equation mod q. We may then invoke Corollary 1.1 to obtain

Corollary 1.2. Let again S and ν be as above and let q be a sufficiently large prime. Let
G be a proper subgroup of SLd(q). Denote πq [ν] also by ν. There is an estimate

ν(`)(G) < Cc−c` for ` < log q, (1.2)

where the constants c, C only depend on S.

Corollary 1.2 is of significance to establish the conjecture mentioned at the beginning for
other moduli q (besides q of the form q = pn with fixed p). Recalling the approach in
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[5] (see also Section 2), the conjecture for SLd(q) (q prime say) will result by combining
Lemma 2.1 and Corollary 1.2 with a ‘product theorem’ in SLd(q), of the form

|A · A · A| > |A|1+ε (1.3)

whenever A ⊂ SLd(q) generates the full group and |A| < |SLd(q)|1−δ , with ε =
ε(δ) > 0.

Theorem 1.2. Assume (1.3) holds in SLd(p). Let S = {g1, . . . , gk} be a finite subset
of SLd(Z) generating a subgroup 3 which is Zariski dense in SLd . Then the family of
Cayley graphs G(SLd(p), πp(S)) forms an expander family as p → ∞. The expansion
coefficients are bounded below by a positive number c(S) > 0.

The product theorem (1.3) was recently proven by Helfgott [16] for d = 3 and conse-
quently we have:

Theorem 1.3. Let S = {g1, . . . , gk} be a finite subset of SL3(Z) generating a subgroup
3 which is Zariski dense in SL3. Then the family of Cayley graphs G(SL3(p), πp(S))

forms an expander family as p → ∞. The expansion coefficients are bounded below by
a positive number c(S) > 0.

The special moduli q = pn with fixed p turn out to be also of interest in relation to the
work of D. Long, A. Lubotzky and A. Reid [18] on Heegaard genus and property τ for
hyperbolic 3-manifolds. More precisely, let M be a finite volume hyperbolic 3-manifold.
From the result for the SL2(p

n) towers, one may then produce a nested cofinal family of
finite sheeted covers with positive infimal Heegaard gradient. [18] also puts forward the
conjecture that any finitely generated subgroup 0 of GL(n,C) with semisimple Zariski
closure has a cofinal (nested) L = {Ni} of finite index normal subgroups for which 0 has
property τ with respect to L. It seems reasonable to believe that the moduli q = pn and
the proof of our theorem may provide an approach to this last conjecture.

2. Measure convolution and approximate subgroups

Let ν be a finitely supported symmetric probability measure on SLd(Z) whose support,
supp ν, generates a Zariski dense subgroup. It is no restriction to assume this subgroup is
free. We will also denote by ν the measure πq [ν] on SLd(Zq).

The following result is proven using the noncommutative Balog–Szemerédi–Gowers
theorem due to Tao (see [26, 27]). The argument is analogous to the one in the proof of
Proposition 2 in [5].

Lemma 2.1. Let G be a finite group with N = |G|. Suppose µ ∈ P(G) is a symmetric
probability measure on G and assume

‖µ‖∞ < N−γ and ‖µ‖2 > N−1/2+γ (2.1)

with γ > 0 an arbitrary given constant. Assume further that

‖µ ∗ µ‖2 > N−ε‖µ‖2 (2.2)
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with 0 < ε < ε(γ ). Then there exists a subset H ⊂ G with the following properties:

H = H−1 and there exists a subset X ⊂ G with |X| < Nε′ such that

H ·H ⊂ X ·H and H ·H ⊂ H ·X, (2.3)

µ(x0H) > N−ε
′

for some x0 ∈ G, (2.4)

|H | < N1−γ , (2.5)

where ε′ ∼ ε.

Remark. In the terminology of [27], H satisfying (2.3) is called an ‘Nε′ -approximate
subgroup’ of G. In particular, H satisfies the product set estimates

|H (s)
| = |H . . .H︸ ︷︷ ︸

s-fold

| < q(s−1)ε′
|H | for s ≥ 1. (2.6)

We let G = SLd(Zq), q = pn with p fixed. Hence logN ∼ n. Our measure µ will
be obtained as an `-fold convolution µ = ν(`) = ν ∗ · · · ∗ ν, where ` ∼ n. Note that if
m ∼ n, then πpm(H) is an approximate subgroup in SLd(pm).

Assume µ satisfies (2.1)–(2.2) and takeH ⊂ G satisfying (2.3)–(2.5). Fix `0 < ` and
write

N−ε
′ (2.4)
< µ(x0H) =

∑
y∈G

ν(`−`0)(y)ν(`0)(y−1x0H),

implying

ν(`0)(x1H) > N−ε
′

for some x1 ∈ G. (2.7)

Hence, since H and ν are symmetric,

ν(2`0)(H.H) ≥
∑

y∈x1H, z∈H−1H

ν(`0)(y)ν(`0)(zy−1) ≥
∑

y∈x1H,w∈H

ν(`0)(y)ν(`0)(w−1x−1
1 )

= [ν(`0)(x1H)]2 (2.7)
> N−2ε′ . (2.8)

3. Preliminaries related to sum-product

The results in this section depend essentially on [3]. Fix w ∈ Z+. Denote by Zwq =
Zq × · · · × Zq the w-fold product ring. For q ′ | q, let πq ′ : Zwq → Zw

q ′
be the quotient

map. In what follows, q = pn with p a fixed prime and n→∞.
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Proposition 3.1. Given δ > 0, there are ε, κ > 0 and positive integers r, s < C(δ) such
that the following holds. Let q1 | q with q1 < qε (q1 sufficiently large) andA ⊂ Zwq satisfy

|πq1(A)| > qδ1 . (3.1)

Then there are q2 | q and q3 | q2 and ξ ∈ Zwq2
such that

log q2 < C(δ) log q1, (3.2)
q2 > qκ1 q3, (3.3)
πp(ξ) 6= 0, (3.4)

πq2(rA
(s)
− rA(s)) ⊃ q3ξZq2 . (3.5)

In (3.5), q3ξZq2 is the subset {q3tξ | 0 ≤ t ≤ q2/q3} of Zwq2
.

The following proposition (Proposition 1.4 from [6]) yields the conclusion of Proposition
3.1 for w = 1.

Proposition 3.2. Given δ > 0, there is ε > 0 and positive integers r, s < C(δ) such that
if q is as above, q1 | q, q1 < qε and A ⊂ Zq satisfies

|πq1(A)| > qδ1, (3.6)

then
πq2(rA

(s)
− rA(s)) ⊃ q3Zq2

for some divisors q2 | q and q3 | q2 with

log q2 < C(δ) log q1, q2 > q
δ/4
1 q3.

Proof of Proposition 3.1. We proceed by induction on w, the case w = 1 following from
Proposition 3.2. Assume the statement is valid forw andA ⊂ Zw+1

q satisfies (3.6). Denote
by PI for I ⊂ {1, . . . , w + 1} the coordinate restriction. Rearranging the coordinates we
may assume

|πq1(B)| > q
w
w+1 δ

1 > q
δ/2
1 ,

where B = P{1,...,w}(A). From the induction hypothesis, we obtain q2 | q, q3 | q and ξ ∈
Zwq2

such that

log q2 < C(δ) log q1, (3.7)
q2 > qκ1 q3, (3.8)
πp(ξ) 6= 0, (3.9)

πq2(rB
(s)
− rB(s)) ⊃ q3ξZq2 (3.10)

with r, s < C(δ).
SettingA1 = rA

(s)
−rA(s), it follows from (3.10) that there is a map ϕ : Zq2/q3 → A1

such that
πq2P{1,...,w}ϕ(x) = q3xξ for x ∈ Zq2/q3 . (3.11)
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We distinguish several cases.

Case 1: |πq2
2
(Pw+1(ϕ(Zq2/q3)))| < (q2/q3)

1/2. Clearly there are elements x1, x2 ∈

Zq2/q3 with x1 6= x2 (mod q ′) where q ′ | q, (q ′)2 < q2/q3 and Pw+1(ϕ(x1) − ϕ(x2)) ≡

0 (mod q2
2 ). Write x1 − x2 = q4y with q4 | q

′ and πp(y) 6= 0. Hence for x ∈ Zq2/q3 , we
have

ϕ(x)(ϕ(x1)− ϕ(x2)) ∈ A1 · A1 − A1 · A1,

and by construction

ϕ(x)(ϕ(x1)− ϕ(x2)) = (P{1,...,w}ϕ(x)(P{1,...,w}ϕ(x1)− P{1,...,w}ϕ(x2)), 0) (mod q2
2 )

= (q2
3q4xyξ

2, 0) (mod q2q3),

where πp(yξ2) 6= 0 and

q2q3

q2
3q4
≥

q2

q3q ′
>

(
q2

q3

)1/2

> q
κ/2
1 .

Thus the claim in the proposition holds in this case.

Case 2: |πq2
2
(Pw+1(ϕ(Zq2/q3)))| ≥ (q2/q3)

1/2. It follows that the set S = Pw+1(A1)

satisfies
|πq2

2
(S)| > q

κ/2
1 > (q2

2 )
κ/4C(δ)

(the last inequality by (3.7)). Apply Proposition 3.2 with δ replaced by κ/4C(δ), and q1
by q2

2 . We assume here
q2

2 < qε(κ/4C(δ)), (3.12)

where ε(·) is the function from Proposition 3.2. Clearly (3.12) will hold if we assume

ε <
1

2C(δ)
ε

(
κ

4C(δ)

)
in the assumption q1 < qε.

From Proposition 3.2 we obtain q5 | q, q6 | q5 with

log q5 < 2C
(

κ

4C(δ)

)
log q2, (3.13)

q5 > q6q
κ/8C(δ)
2 , (3.14)

q6Zq5 = πq5(r1S
(s1) − r1S

(s1)) = πq5Pw+1(r1A
(s1)
1 − r1A

(s1)
1 ), (3.15)

where r1, s1 < C(κ/4C(δ)).
Take again q ′ | q with (q ′)2 ∼ q2/q3. We distinguish two further cases.

Case 2.1: The map ϕ : Zq2/q3 → A1 is additive mod q3q
′. This means that

ϕ(x + y) = ϕ(x)+ ϕ(y) (mod q3q
′) for x, y ∈ Zq2/q3 .
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It follows that for x ∈ Zq2/q3 ,

ϕ(x) = xϕ(1) (mod q3q
′), (3.16)

where
0 = ϕ(0) =

q2

q3
ϕ(1) (mod q3q

′). (3.17)

Also, by (3.11) we have

P1,...,wϕ(1) ≡ q3ξ (mod q3q
′) with πp(ξ) 6= 0. (3.18)

It follows from (3.17), (3.18) that ϕ(1) = q ′3ξ
′, where q ′3 | q3, q3q

′
|
q2
q3
q ′3 and πp(ξ ′)

6= 0. Hence, by (3.16),
q ′3Zq3q ′/q

′

3
ξ ′ ⊂ πq3q ′(A1),

where q3q
′/q ′3 ≥ q

′ > q
κ/2
1 and the claim of Proposition 3.1 is again verified.

Case 2.2: The map ϕ : Zq2/q3 → A1 is not additive mod q3q
′. Hence there are x1, x2 ∈

Zq2/q3 such that
ϕ(x1 + x2) 6= ϕ(x1)+ ϕ(x2). (3.19)

Recalling (3.11), we see that

ζ = ϕ(x1 + x2)− ϕ(x1)− ϕ(x2) = (q2η, a), (3.20)

where η ∈ Zwq and by (3.19) necessarily

a = Pw+1(ϕ(x1 + x2)− ϕ(x1)− ϕ(x2)) 6= 0 (mod q3q
′).

Let
a = q̄a1 with q̄ | q3q

′ and πp(a1) 6= 0. (3.21)

Clearly ζ ∈ A1 − A1 − A1 ⊂ 3rA(s) − 3rA(s).
Let s2 ∈ Z+ be a sufficiently large integer (to be specified). Write, by (3.20) and

(3.21),
ζ s2 = (q

s2
2 η

s2 , (q̄)s2a
s2
1 ). (3.22)

At this point recall (3.15). Let z ∈ Zq5 . There is an element x ∈ r1A
(s2)
1 − r1A

(s2)
1 such

that
πq5Pw+1(x) = q6z. (3.23)

Multiplying (3.22), (3.23) we obtain

π(q̄)s2q5(xζ
s2) = (π(q̄)s2q5(q

s2
2 η

s2P{1,...,w}(x)), (q̄)
s2q6a

s2
1 z), (3.24)

where
xζ s2 ∈ (r1A

(s2)
1 − r1A

(s2)
1 )(3rA(s) − 3rA(s))(s2). (3.25)

Take s2 large enough to ensure that

(q̄)s2q5 < q
s2
2 . (3.26)
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From (3.24) we obtain

π(q̄)s2q5(xζ
s2) = (o, a

s2
1 )(q̄)

s2q6z. (3.27)

Recalling the definition of q ′ and q̄, condition (3.26) will hold if

q2/q3 > q
2/s2
5 ,

hence, recalling (3.13) and (3.8), if

s2 >
4
κ
C(δ)C

(
κ

4C(δ)

)
,

where the right-hand side of (3.27) is controlled as a function of δ.
Putting q7 = (q̄)

s2q5 and q8 = (q̄)
s2q6, (3.25) and (3.27) give

q8(o, a
s2
1 )Zq7 ⊂ πq7(r

′A(s
′)
− r ′A(s

′))

with πp(a1) 6= 0,
q7

q8
=
q5

q6
> q

κ2/8C(δ)
1

and
log q7

log q1
, r ′, s′ < C(κ, δ) < C(δ)

by construction. This completes the proof of Proposition 3.1. ut

We also need a generalization of Proposition 3.1 replacing Zpn by O/Pn with O the
maximal order of an algebraic extension K of Q (we assume [K : Q] bounded) and P a
prime divisor of p. Let e be the ramification index of P . Denote by πm : O → O/Pm
(m ∈ Z+) the residue map.

Proposition 3.3. Let w ∈ Z+ be given and consider the product ring Ow. Given δ > 0
there are κ > 0 and r, s ∈ Z+, r, s < C(δ), such that the following holds. Let A ⊂ Ow
satisfy

|πn1(A)| > pδn1 (3.28)

for some sufficiently large n1 ∈ Z+. Then there are n2, n3 ∈ Z+ and ξ ∈ Ow such that

n3 + κn1 < n2 < C(δ)n1, (3.29)
πe(ξ) 6= 0, (3.30)

πn2({xξ | x ∈ Z and πn3(x) = 0}) ⊂ πn2(rA
(s)
− rA(s)). (3.31)

Once the case w = 1 is established, the same inductive argument as in the proof of
Proposition 3.1 applies. In the Appendix, we will recall the proof of Proposition 3.2 and
also give its generalization to O/Pn.
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4. Preliminaries on random walks

Results in this section rely essentially on the theory of random products in SLd(C) (see
[2]). The next result is a generalization of Proposition 3.32 from [6] to SLd .

Proposition 4.1. Let ν be a symmetric, finitely supported probability measure on SLd(Z)
such that 〈ν〉 is Zariski dense. There is a constant c = c(ν) > 0 such that the following
holds. Let Q ∈ Z+ be a prime power and ξ, η ∈ Matd(Z) satisfy

Tr ξ = 0, Tr η = 0, (4.1)
πQ(ξ) 6= 0, (4.2)
πQ(η) 6= 0. (4.3)

Then for l ∈ Z+ with l < c logQ (and large enough),

ν(l)({g ∈ SLd(Z) | Tr gξg−1η ≡ 0 (mod Q̄)}) < e−cl, (4.4)

where Q̄ = QC and C = C(d) ∈ Z+ is an appropriate constant.

Proof. The two key ingredients are a quantitative Bézout theorem (we will refer to the
result in [1]) and the theory of random matrix products.

By (4.2) and (4.3) there are indices 1 ≤ i, j, r, s ≤ d such that

ξij 6≡ 0 (modQ) and ηrs 6≡ 0 (modQ). (4.5)

We assume i 6= j and r 6= s. The modifications of the argument below to deal with the
other cases are straightforward.

Let ‖g‖ < C1 for g ∈ supp ν and define

G = {g ∈ SLd(Z) | ‖g‖ < Cl1 and Tr gξg−1η ≡ 0 (mod Q̄)},

so that (4.4) is equivalent to
ν(l)(G) < e−cl . (4.6)

For each g ∈ G we introduce a quadratic polynomial fg(X, Y ) ∈ Z[X, Y ], with

X = (Xαβ) 1≤α,β≤d
(α,β)6=(i,j)

, Y = (Yαβ) 1≤α,β≤d
(α,β)6=(r,s)

,

as follows:

fg(X, Y )

= Tr g
(
ei ⊗ ej +

∑
(α,β)6=(i,j)

Xαβ(eα ⊗ eβ)
)
g−1

(
er ⊗ es +

∑
(α,β)6=(r,s)

Yαβ(eα ⊗ eβ)
)
.

(4.7)

By definition of G, the coefficients of fg are bounded by CdC2l
1 , hence

h(fg) < 2l logC1 + Cd ,
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where h(·) denotes the height. Also

ξijηrsfg

(
ξαβ

ξij
((α, β) 6= (i, j)),

ηαβ

ηrs
((α, β) 6= (r, s))

)
≡ 0 (mod Q̄). (4.8)

In order to apply the theory of random matrix products, we “lift” our problem to C.
We claim that there is a common zero (X, Y ) ∈ Cd2

−1
×Cd2

−1 to the system of equations

d∑
α=1

Xαα = 0, (4.9)

d∑
α=1

Yαα = 0, (4.10)

fg(X, Y ) = 0 for g ∈ G. (4.11)

Note that in (4.11) we may obviously replace G by N ≤ 2(d2
− 1) quadratic polynomials

F1, . . . , FN .
Assume the claim fails to hold. We invoke Theorem 5.1 from [1]. It follows that there

is an integer D ∈ Z+ and polynomials ϕ′, ϕ′′, ϕ1, . . . , ϕN ∈ Z[X, Y ] of degree at most
b ≤ C(d) satisfying

D =
(∑

Xαα

)
ϕ′ +

(∑
Yαα

)
ϕ′′ +

N∑
l=1

Flϕl (4.12)

with
logD,h(ϕ′), h(ϕ′′), h(ϕl) < Cd max

1≤l≤N
h(Fl) < cν l. (4.13)

In order to get a contradiction, replace in (4.12) the variables Xαβ (respectively Yαβ ) by
ξαβ/ξij (respectively ηαβ/ηrs) and multiply both sides by (ξijηrs)b+1 to get an integer.
Recalling (4.1) and (4.8) it follows that

(ξijηrs)
b+1D ≡ 0 (mod Q̄), (4.14)

and hence, by (4.5) and assuming C ≥ 2(b + 1) + 1 in the definition of Q̄, we obtain
D ≡ 0 (modQ). But this contradicts (4.13) by the restriction l < c logQ for appropriate
c > 0. This proves the claim.

Letting (X, Y ) be a solution of (4.9)–(4.11), consider the matrices X̃, Ỹ ∈ V ⊂

Matd(C) (where V denotes the traceless elements)

X̃ = ei ⊗ ej +
∑

(α,β)6=(i,j)

Xαβ(eα ⊗ eβ), Ỹ = er ⊗ es +
∑

(α,β)6=(r,s)

Yαβ(eα ⊗ eβ).

Hence X̃, Ỹ 6= 0 and by (4.11),

Tr gX̃g−1Ỹ = 0 for g ∈ G. (4.15)
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Let ρ : SLd(C) → GL(V ) be the representation by conjugation. Since 〈supp ν〉 is a
Zariski dense subgroup, the theory of random matrix products implies

ν(l){g | Tr gX̃g−1Ỹ = 0} < e−cl (4.16)

for some c = c(ν) > 0. Hence (4.6) follows from (4.15). This proves Proposition 4.1. ut

The next result addresses the issue of simplicity of eigenvalues.

Proposition 4.2. Let ν be as in Proposition 4.1. Let Q ∈ Z+ (Q large). For l ≥ logQ,

ν(l){g ∈ SLd(Z) | Res(Pg, P ′g) ≡ 0 (modQ)} < Q−c,

where c = c(ν) and Pg denotes the characteristic polynomial of g.

Proof. Let l0 ∼ logQ (to be specified). It will clearly suffice to prove that

(ν(l0) ⊗ ν(l0)){(g1, g2) ∈ SLd(Z) | Res(Pg, P ′g) ≡ 0 (modQ) with g = g1Gg2} < e−cl0 ,

where G ∈ SLd(Z) is arbitrary and the estimate is uniform in G.
We will follow the same strategy as for Proposition 4.1. Define

G = {(g1, g2) ∈ SLd(Z) | ‖gi‖ < C
l0
1 and Res(Pg, P ′g) ≡ 0 (modQ); g = g1Gg2}

with c1 = c1(ν).
The first step is to find some G̃ ∈ SLd(C) such that

Res(P
g1G̃g2

, P ′
g1G̃g2

) = 0 for all (g1, g2) ∈ G. (4.17)

Assume this is not possible. The equation det G̃ = 1 and the equations (4.17) are of degree
at most (2d − 1)d in matrix elements of G̃ and have coefficients bounded by Cl02 , C2 =

C
c(d)
1 . Application of Bézout’s theorem leads then again to a contradiction, provided we

let logQ > C3l0 with C3 ∼ C2. Hence there is G̃ ∈ SLd(C) such that (4.17) holds.
Next we use the theory of random matrix products. To complete the proof it will

suffice to show the following.

Lemma 4.1. For l large enough we have an estimate

ν(l) ⊗ ν(l){(g1, g2) ∈ SLd(C) | g1Gg2 has multiple eigenvalues } < e−cl

whenever G ∈ SLd(C), and the estimate is uniform in G with c = c(ν).

Proof. We prove simplicity of the largest eigenvalue of g1Gg2 with large probability in
(g1, g2) (large probability means an exceptional set of measure less than e−cl, c = c(ν)).
Reapplying the statement for the representation on the exterior powers

∧k Cd (which is
possible since we assume 〈ν〉 is Zariski dense in SLd(C)) then gives the required conclu-
sion.
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According to Theorem 8′ in [14], g1 is diagonalizable and

g1 =

d∑
i=1

λivi ⊗ vi, (4.18)

where |vi | = 1 and (1/l) log |λi | ∼ γ i , the i-th Lyapunov exponent.
Moreover γ 1 > · · · > γ d (only the simplicity of the top exponent γ 1 is relevant for

what follows).
Next, by (4.18),

g1Gg2 =
∑

λi(vi ⊗ g
∗

2G
∗vi) = λ

1(v1 ⊗ g
∗

2G
∗v1)+ S, (4.19)

where clearly ‖S‖ . |λ2
| ‖g2‖ ‖G‖. Set w1 = g

∗

2G
∗v1. Then

〈v1, w1〉 = 〈g2v1,G
∗v1〉,

where the distribution of g2 is governed by ν(l) independently of v1 (which depends
on g1).

Hence, with high probability, we may ensure

|〈v1, w1〉| > e−τ l‖g2‖ ‖G
∗v1‖

(τ > 0 is a sufficiently small constant depending on γ2/γ1).
Take a unit vector ξ such that ‖Gξ‖ = ‖G‖. Then by (4.18) we have

‖G∗v1‖ ≥ |〈v1,Gξ〉| =
1
|λ1|

(
‖g1Gξ‖ −

∑
i≥2

|λi | ‖Gξ‖
)

>
1
|λ1|

(e−τ l‖G‖ |λ1
| − d|λ2| ‖G‖) >

1
2
e−τ l‖G‖ (4.20)

with high probability in g1. It follows that

|〈v1, w1〉| > e−3τ l
‖g2‖ ‖G‖

with high probability in (g1, g2).
Multiplying (4.19) with an appropriate normalizing factor, we obtain a matrix

M = v ⊗ v′ + M̃,

where |v| = 1 = |v′| and

〈v, v′〉 > e−3τ l, ‖M̃‖ . e3τ l |λ
2
|

|λ1|
< e−cl .

Writing a matrix representation for M in a basis v = u1, u2, . . . , ud with u2, . . . , ud ∈

(v′)⊥, we clearly obtain

1 > M11 > e−3τ l
− e3τ l

‖M̃‖ > e−4τ l,

|Mij | ≤ e
3τ l
‖M̃‖ < e−cl/2 for (i, j) 6= (1, 1).
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Thus the characteristic polynomial PM(t) of M has the form

PM(t) = det(t −M) = (t −M11)t
d−1
+ θd−2t

d−2
+ · · · + θ0,

where
|θ0|, . . . , |θd−2| < cde

−cl/2. (4.21)

In view of (4.21) and letting τ be small enough we conclude that the largest root ρ1 of
PM satisfies

|ρ1 −M11| . cde
−cl/2/Md−1

11 < e−cl/3

and is simple (cf. Lemma 13 in [14]).
This concludes the proof of Lemma 4.1 and of Proposition 4.2. ut

By a variant of the previous argument we obtain similarly

Proposition 4.3. Let ν be as above. Let Q ∈ Z+ (Q large) and g0 ∈ GLd(Z), logQ >

c log ‖g0‖ (c an appropriate constant). For l ≥ logQ,

ν(l){g ∈ SLd(Z) | Res(Pgg0 , P
′
gg0
) ≡ 0 (modQ)} < Q−c.

5. Sets of commuting elements

Recall (2.8),
ν(2l0)(H ·H) > |G|−2ε′ > q−2d2ε′ > q−C1ε. (5.1)

We apply Propositions 4.1 and 4.3. Hence we may take εn < m < Cεn such that the
following properties hold:

ν(m
′)
{g ∈ SLd(Z) | Res(Pgg0 , P

′
gg0
) ≡ 0 (modpm)} < p−cm < q−2C1ε (5.2)

for m′ > m whenever g0 ∈ GLd(Z), log ‖g0‖ < cm, and also

ν(m)({g ∈ SLd(Z) | Tr gξg−1η ≡ 0 (mod Q̄)}) < e−cm < q−2C1ε (5.3)

if Q | q, logQ > cm and ξ, η ∈ Matd(Z) satisfy Tr ξ = 0 = Tr η, πQ(ξ) 6= 0 and
πQ(η) 6= 0; here Q̄ | q and logQ < log Q̄ < C logQ.

Take Q so that (5.3) holds. Fix some ξ ∈ Matd(Z), ξ 6= 0, ‖ξ‖ < Q, such that
Tr ξ = 0. From (5.1) applied with m = 2l0 and consecutive applications of (5.3) we
obtain elements g3, . . . , gd2 ∈ H ·H such that

‖gi‖ < Cm (3 ≤ i ≤ d2), det(1, ξ, g2ξg
−1
2 , . . . , gd2ξg

−1
d2 ) 6= 0 (modQ1)

for some Q1 | q with logQ1 ≤ c logQ.
Take ξ = dg − (Tr g)1 with g 6= ±1 in H ·H such that ‖g‖ < Q. We obtain

Lemma 5.1. There are elements g1, . . . , gd2 ∈ H (6) and q0 | q with q0 < qCε such that

‖gi‖ < qCε, (5.4)
det(1, g2, . . . , gd2) 6≡ 0 (mod q0). (5.5)
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(Here and below, we denote by C various constants that may depend on ν and possibly
also p.)

Setting g1 = 1, it follows from (5.5) that the map

Matd(q)→ Zdq : g 7→ (Tr ggi)1≤i≤d2 (5.6)

has multiplicity at most qCε.
Indeed, if g∈Matd(Z) and Tr ggi≡0 (mod q) for i=1, . . . , d2 then det(g1, . . . gd2)g

≡ 0 (mod q).
Fix some

ε � ε0 � 1. (5.7)

Let
ε0n < n1 < n and q1 = p

n1 . (5.8)

We apply Helfgott’s argument [15] to construct sets of commuting elements. First, apply
(5.1) and (5.2) with l0 = n1 and m′ = 2n1. Hence by (5.7) and (5.8) we have

ν(2n1){g ∈ SLd(Z) | Res(Pggi , P
′
ggi
) ≡ 0 (modpm) for 1 ≤ i ≤ d2

} < 1
2q
−C1ε.

Invoking Kesten’s bound on random walks for the free group [17], we obtain by (5.7) and
(5.8) a subset H1 ⊂ H ·H ∩ [‖g‖ < Cn1 ] such that

|H1| >
1
2q
−C1ε(supp ν − 1)2n1 > qc1

Res(Pggi , P
′
ggi
) 6≡ 0 (modpm) for g ∈ H1 and 1 ≤ i ≤ d2.

Considering the trace map (5.6) with q replaced by q1 we obtain a set of elements

(hα)1≤α≤β ⊂ H1 ·H
(6)
⊂ H (8) with β > q−Cεq

c/d2

1 > qc
′

1 such that

‖hα‖ < Cn1qCε < C2n1 , (5.9)
Res(Phα , P

′

hα
) 6≡ 0 (modpm) (5.10)

Trhα 6≡ Trhα′ (mod q1) if α 6= α′. (5.11)

Consider the conjugacy classes

Cα = {ghαg
−1
| g ∈ H }.

It follows from (5.11) that πq1(Cα), α = 1, . . . , β, are disjoint subsets of πq1(H)
(10).

Hence, we may specify α such that

|πq1(Cα)| ≤
1
β
|πq1(H

(10))| < q−c
′

1 qCε|πq1(H)| < q−c1 |πq1(H)| (5.12)

(we use here the earlier observation on quotients of approximate groups).
Set h = hα . Considering the map g 7→ ghg−1 from πq1(H) to πq1(Cα), it follows

from (5.12) that there is ḡ ∈ H such that

|πq1({g ∈ H | ghg
−1
≡ ḡh(ḡ)−1 (mod q1)})| > qc1 .
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Hence the set
S = {g ∈ H ·H | gh = hg (mod q1)}

satisfies
|πq1(S)| > qc1 . (5.13)

Diagonalize h ∈ SLd(Z) considering if necessary an extension fieldK of Q. LetO be
the integers of K and P a prime ideal dividing (p). We assume P unramified (otherwise
some exponent adjustments are needed below). We replace Zq by O/Pn. A suitable base
change brings h into the form

h =

d∑
i=1

µi(ei ⊗ ei).

Recalling (5.10), it follows that
∏
i 6=j (µi − µj ) /∈ Pm and hence

µi − µj /∈ Pm for i 6= j (5.14)

(recall that m < Cεn). Since g ∈ S commutes with h (modPn1 ), we obtain from (5.14)
a diagonal form

g =
∑

λi(ei ⊗ ei) (modPn1−m), where
∏

λi = 1 (modPn1−m).

6. Application of the sum-product theorem

We carry on with the construction and notation from Section 5. Given elements g, h ∈
GLd(O), define their commutator by

C(g, h) = ghg−1h−1.

The following well-known property is essential:

Lemma 6.1. Let g ≡ 1 (modPm) and h ≡ 1 (modPm′). Then

C(g, h) ≡ 1+ [g, h] (modPm+m
′
+min(m,m′)), (6.1)

where we write [g, h] = gh− hg.

Let S ⊂ H ·H be the set obtained in Section 5. Recall (5.13), i.e. |πq1(S)| > qc1 . We may
therefore produce q ′1 | q1, q ′1 = p

n′1 and an element x0 ∈ S and a subset S′ ⊂ S such that

q1/q
′

1 > q
c/2d2

1 , (6.2)
πq ′1
(S′) = πq ′1

(x0), (6.3)

|πq ′′1
(S′)| > (q ′′1 /q

′

1)
c/8 whenever q ′1 | q

′′

1 , q
′′

1 | q1. (6.4)
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Considering the set S′(S′)−1, we obtain a set� ⊂ Matd(Z)with the following properties:

1+ q ′1x ∈ S
′(S′)−1

⊂ H (4) for x ∈ �, (6.5)

|πQ(�)| > Qc/8 if Q |
q1

q ′1
. (6.6)

It follows from (6.2) that

n1 − n
′

1 >
c

2d2 n1 � m. (6.7)

After the base change from Section 5, � will be diagonalized modPn1−n
′

1−m. Thus each
x ∈ � has a representation

x =
∑

σi(ei ⊗ ei) (modPn1−n
′

1−m), (6.8)

where the σi ∈ O satisfy ∏
(1+ q ′1σi) = 1 (modPn1−m). (6.9)

Take next
q̃ = pñ where n1 < ñ < n, (6.10)

and assume ξ ∈ Matd(Z) satisfies

1+ q̃ξ ∈ H (4), (6.11)
πp(ξ) 6= 0, (6.12)
Tr ξ = 0. (6.13)

According to Lemma 6.1,

C(1+ q̃ξ, 1+ q ′1x) = 1+ q̃q ′1[ξ, x] (modP ñ+2n′1). (6.14)

We may assume n′1 > n1/2. Substituting the representation (6.8) in (6.14) then gives

C(1+ q̃ξ, 1+ q ′1x) = 1+ q̃q ′1
∑
i 6=j

(σi − σj )ξij (ei ⊗ ej ) (modP ñ+n1−m). (6.15)

Note that since n′1 > n1/2, also by (6.9),

d∑
i=1

σi ≡ 0 (modPn1−n
′

1−m).

Therefore the map x 7→ (σi−σj )i 6=j is one-to-one on� (modP l) for 1 ≤ l ≤ n1−n
′

1−m.
Define

A = {(σi − σj )i 6=j | x ∈ �} ⊂ Ow, (6.16)

where w = d2
− d .
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It follows from (6.6) and the preceding that for 1 ≤ l ≤ n1 − n
′

1 −m we have

|πl(A)| = |πP l (A)| > pc
′l (6.17)

for some c′ > 0.
Our aim is to apply Proposition 3.3 to the set A. In view of (6.17), condition (3.28)

from Proposition 3.3 holds with n1 replaced by any sufficiently large l1 < n1 − n
′

1 − m

and δ = c′. In view of (6.7) we may take

l1 > c′′n1 (6.18)

(to be specified).
From Proposition 3.3 we obtain l2, l3 ∈ Z+ and some η ∈ Ow such that

l3 + κl1 < l2 < cl1, (6.19)
π1(η) 6= 0, (6.20)

pl3Zη ∈ rA(s) − rA(s) (modP l2). (6.21)

Here r, s ∈ Z+ and κ, c > 0 are constants.
Note that by (6.16) we may let ηii = 0.
Next we introduce the product setsA(s) by iteration of the commutator formula (6.15).

Let x(1), . . . , x(s) ∈ �. By (6.15),

C(1+ q̃ξ, 1+ q ′1x
(1)) = 1+ q̃q ′1

∑
i 6=j

(σ 1
i − σ

1
j )ξij (ei ⊕ ej ) (modP ñ+n1−m).

Replacing q̃ by q̃q ′1 and ξ by
∑
i 6=j (σ

1
i − σ

1
j )ξij (ei ⊕ ej ), it easily follows that

C(C(1+ q̃ξ, 1+ q ′1x
(1)), 1+ q ′1x

(2))

= 1+ q̃(q ′1)
2
[∑
i 6=j

(σ 1
i − σ

1
j )ξij (ei ⊗ ej ), x

(2)
]
(modP ñ+n1+n

′

1−m)

= 1+ q̃(q ′1)
2
∑
i 6=j

(σ 1
i − σ

1
j )(σ

2
i − σ

2
j )ξij (ei ⊗ ej ) (modP ñ+n1+n

′

1−m).

By (6.5) and (6.11), clearly

C(1+ q̃ξ, 1+ q ′1x
(1)) ∈ H (16)

and
C(C(1+ q̃ξ, 1+ q ′1x

(1)), 1+ q ′1x
(2)) ∈ H (40).

It will be convenient to introduce the notation

H ′ =
⋃
s

H (s)
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with the understanding that the exponent s remains bounded. Therefore

1+ q̃(q̃1)
2
∑
i 6=j

(σ 1
i − σ

1
j )(σ

2
i − σ

2
j )ξij (ei ⊗ ej ) ∈ H

′ (modP ñ+n1+n
′

1−m),

and carrying on, we conclude that

1+ q̃(q̃1)
s
∑
i 6=j

s∏
r=1

(σ ri − σ
r
j )ξij (ei ⊗ ej ) ∈ H

′ (modP ñ+sn
′

1+(n1−n
′

1−m)).

We assume here that
ñ+ (s + 1)n1 < n. (6.22)

Introducing sum/difference sets of the sets A(s) is straightforward, as we certainly have

(1+ q̃(q ′1)
sζ1)(1+ q̃(q ′1)

sζ2)
±1
= 1+ q̃(q ′1)

s(ζ1 ± ζ2) (modP ñ+sn
′

1+(n1−n
′

1−m)).

In conclusion, we have proven that if τ = (τij )i 6=j is in rA(s) − rA(s) then

1+ q̃(q ′1)
s
∑
i 6=j

τij ξij (ei ⊗ ej ) ∈ H
′ (modP ñ+sn

′

1+(n1−n
′

1−m)). (6.23)

Returning to (6.19)–(6.21), take l1 ∼ n1 such that l2 ≤ n1− n
′

1−m. From (6.21) and
(6.23) it then follows that

1+ pñ+sn
′

1+l3Z
∑
i 6=j

ηij ξij (ei ⊗ ej ) ⊂ H
′ (modP ñ+sn

′

1+l2).

In the preceding we may replace ξ by any conjugate ξ ′ = gξg−1 with g ∈ H · H ; by
(6.11) we have

g(1+ q̃ξ )g−1
∈ H (8).

Defining η̄ =
∑
i 6=j ηij (ei⊗ ej ) ∈ Matd(O), we have πP (η̄) 6= 0 by (6.20) and Tr η̄ = 0.

In order to ensure that for some m′ < Cεm,∑
i 6=j

ηij ξ
′

ij ei ⊗ ej 6= 0 (modPm
′

), (6.24)

we require
Tr(gξg−1η̄) 6= 0 (modPm

′

). (6.25)

We apply Proposition 4.1 and more precisely statement (5.3) (taking an integral basis
for O, we first replace η̄ by an element of Matd(Z)).

Recalling also that ξ satisfies (6.12), (6.13), the existence of the required g ∈ H · H
satisfying (6.25) is clear.

Hence there is an element β ∈ Matd(Z) such that

Trβ = 0, πp(β) 6= 0,

1+ pñ+sn
′

1+l3+m
′

Zβ ⊂ H ′ (modpñ+sn
′

1+l2),

where m′ < Cεn.
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Replacing β by further conjugated gβg−1 with g ∈ H · H and reapplying (5.3) we
may obtain g1, . . . , gd2−1 ∈ H ·H such that

det(1, giβg−1
i (1 ≤ i ≤ d2)) 6≡ 0 (modpm

′′

) (6.26)

with m′′ < Cεn. Since also

1+ pñ+sn
′

1+l3+m
′
d2
−1∑
i=1

Z(giβg−1
i ) ⊂ H ′ (modpñ+sn

′

1+l2)

and by (6.26),

pm
′′

V = pm
′′

{ζ ∈ Matd(Z) | Tr ζ = 0} ⊂
d2
−1∑
i=1

Z(giβg−1
i ),

it follows that

1+ pñ+sn
′

1+l3+m
′
+m′′V ⊂ H ′ (modpñ+sn

′

1+l2).

Recall that by (6.18) and (6.19),

l2 − l3 > κl1 > cn1,

and m′, m′′ < Cεn.
Here ε0n < n1 < ñ is arbitrary (cf. (6.10) and (5.8)) (subject to the condition (6.22)).

Since s is bounded by a constant we have proved

Lemma 6.2. Assume ε0n < ñ < n and ξ ∈ V are such that

πp(ξ) 6= 0, πpn(1+ pñξ) ∈ H ′.

Then for ε0n < n1 < c(n− ñ) there is ñ < n̄ < ñ+ Cn1 < n such that

1+ pn̄V ⊂ H ′ (modpn̄+[cn1]), (6.27)

where c, C are constants.

Note that if ξ ∈ Matd(Z), πp(ξ) 6= 0 and πpn(1 + pñξ) ∈ H ′, then det(1 + pñξ) ≡
1 (modpn) and hence, assuming 2ñ < n,

Tr ξ ≡ 0 (modpñ). (6.28)
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Assume further that ξ ≡ 0 (mod d) and write a = (1/d)Tr ξ ∈ pñZ and ξ ′ =

ξ − (1/d)Tr ξ ∈ V . Hence, by (6.28), 1 + pñξ ′ ∈ πp2ñ(H ′). Applying now Lemma
6.2 with H replaced by πp2ñ(H) and letting n1 < cñ be small enough to ensure that
n̄+ n1 < 2ñ, the conclusion (6.27) remains valid.

Take q0 | q = p
n with q0 ∼ q

ε0 and define

H0 = {x ∈ H
(4)
| x ≡ 1 (mod dq0)}.

It easily follows from (5.1) that

ν(4l0)(H0) ≥
(ν(2l0)(H ·H))2

(dq0)d
2 > q−Cε(dq0)

−d2
> q−(d

2
+1)ε0 . (6.29)

Hence for a suitable choice of l0 ∼ ε0 log q, we get from (6.29) an element g0 ∈ H
(4)

satisfying

g0 ≡ 1 (mod q0d), g0 6= 1,

‖g0‖ < Cl0 < qCε0 .

Therefore

g0 = 1+ q̃dξ0, q̃ = p
ñ with ε0n < ñ < Cε0n and πp(ξ0) 6= 0.

From the preceding discussion, we conclude the following, which is the main conclusion
of this section.

Lemma 6.3. Let ε � δ0 � 1. There are q1 > q2 dividing q such that q1 < qδ0 ,
q1/q2 > qcδ0 and for each z ∈ V there is some g ∈ H ′ satisfying

g ≡ 1+ q2z (mod q1).

7. Completion of the proof

7.1. Proof of Theorem 1.1

With Lemma 6.3 at hand we may repeat the argument at the end of Section 6 in [6] and
show that there is q3 | q with q3 < qCδ0 such that if z ∈ Matd(Z) satisfies

det(1+ q3z) = 1 (mod q)

then
1+ q3z ∈ H

′ (mod q).
Therefore, since H is an approximate subgroup,

|SLd(q)|1−γ+Cε > pCε|H | > |H ′| > |{x ∈ SLd(q) | x ≡ 1 (mod q3)}|

=
|SLd(q)|
|SLd(q3)|

> |SLd(q)|q−Cd
2δ0 .

Here γ > 0 is given and letting ε, δ0 be small enough, a contradiction follows.
Recapitulating all of the preceding, this provides us with the following analogue of

Proposition 6.1 in [6] for d ≥ 2.
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Proposition 7.1. Let ν be as in Section 2 and p be a given sufficiently large prime. For all
γ > 0, there is C(γ ) > 0 such that if q ∈ Z+ is of the form q = pn (n large enough), then

‖πq(ν
(l))‖∞ < qγ |SLd(q)|−1

for l > C(γ ) log q.

The proof of Theorem 1.1 is then completed by the argument of Section 8 in [6] (using
the multiplicity bound established in Section 7 of [6], which is clearly sufficient also in
the higher rank case).

7.2. Proof of Corollary 1.2

Let G be a subgroup of SLd(Fp). Following Nori [22] let G+ denote the normal sub-
group of G generated by G ∩ Ud(Fp), where Ud(Fp) are the elements of SLd(Fp) of
order p. Denote by G̃ the algebraic subgroup generated by the one-parameter groups
t 7→ xt = exp(t log x) for all x ∈ G such that xp = 1. Theorem B in [22] states that
there is a constant c1(d) ≥ 2d − 2 such that for all primes p > c1(d), if G is a subgroup
of SLd(Fp) then G+ = G̃(Fp)+. So for all sufficiently large primes (depending only on
d), G+ is an algebraic subgroup of SLd defined over Fp.

Now a classical result of Jordan (see Theorem 8.29 in [23]) asserts that every finite
subgroup X of SLd(C) has a commutative normal subgroup Y such that [X : Y ] ≤ c2(d),
where c2(d) is a constant depending only on d. If we let fG denote the equations describ-
ing G̃(Fp), since we can regardG/G+ as a subgroup of SLd(C), we conclude that for all
p > c1(d) the elements of G satisfy

fG(C(x
c2(d), yc2(d))) = 0.

Corollary 1.2 now follows from Corollary 1.1.

Appendix. Sum-product theorem for extension fields
by Jean Bourgain

A.1. Theorem A.1

Let p be a large and fixed rational prime. Let O denote the integers in our extension K
of Q and let P be a prime divisor of (p) in O. Denote by d the degree of P and by e its
ramification. Our purpose is to establish a sum-product theorem in O/Pn, generalizing
the result from [3] for Z/pnZ.

In what follows, p is given and we let n → ∞. We do not seek uniformity in p
although the statements (Theorem A.1, Corollary A.1) can be proven uniformly in p
(cf. [3]).

For large p, the sum-product and exponential sums results from [10, 9, 4] are re-
quired however, while in the present situation (p fixed), only elementary estimates (such
as Lemma A.1 below) will be used.
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Since our problem is obviously local, we replace Q and K by their respective com-
pletions Qp and KP . Thus KP is an extension of Qp of degree de; KP is the totally
ramified extension of its inertial field Qp ⊂ KI

⊂ KP , [KP : KI ] = e and KI is a to-
tally unramified extension of Qp with [KI : Qp] = d. The Galois group Gal(KI /Qp) =
Gal(Fpd /Fp) is the cyclic group on d elements. Note that since p is large compared
with d , KP is a tamely ramified extension of KI .

Let u1, . . . , ud be an integral basis for KI . We then get

O = OP = Zp[uiPj | 1 ≤ i ≤ d, 0 ≤ j < e]

where Zp stands for the p-adic integers, and

OI = OP ∩KI
= Zp[ui | 1 ≤ i ≤ d].

Further, (p) = Pe and

O/(p) ' Fpd + FpdP + · · · + FpdPe−1.

Theorem A.1. Given δ1, δ2 > 0, there are ε, δ3 > 0 such that the following holds. Let
A ⊂ O/pnO satisfy

π1(A) = O/pO, (A.1)

|πn1(A)| > pδ2n1 for all εn < n1 < n, (A.2)

where πn : O→ O/pnO denotes the quotient map and

|A| < p(1−δ1)nde.

Then
|A · A · A+ A · A · A| > pnδ3 |A|. (A.3)

Corollary A.1. Given δ > 0 and τ > 0 there are ε > 0 and r1, r2 ∈ Z+ such that the
following holds. Let A ⊂ O/pnO satisfy

π1(A) = O/pO,
|πn1(A)| > pδn1 for all εn < n1 < n.

Then letting m = [τn] we have

r2A
r1 − r2A

r1 ⊃ {x ∈ O/pnO | πm(x) = 0}.

We assume P is unramified, i.e. (p) = P . The modifications for the ramified case are
minor. The arguments below are in fact straightforward adaptations of [3]. Note however
that if P is ramified, assumption (A.1) may not be replaced by πp(A) = O/P . Compared
with the case of subsets A ⊂ Z/pnZ, there is a problem when applying previous results
due to the possible failure of condition (A.1) (as O/pO has nontrivial subrings), and this
issue will have to be addressed.
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Proof of Corollary A.1. Write q = pnd . In view of Theorem A.1 (which needs to be
iterated) and taking ε = ε(δ, δ1) small enough, we may ensure that |r2Ar1 | > q1−δ1 for
some r1, r2 depending on δ and δ1.

Thus we may start from a set A1 ⊂ O/pnO, |A1| > q1−δ1 with δ1 > 0 arbitrary.
Define next

n0 = max{n′ | n′ such that max
ξ
|A1 ∩ π

−1
n′
(ξ)| > p−

3
4 dn
′

|A1|}.

Clearly

pd(n−n
′) > p−

3
4 dn
′

q1−δ1 ,

hence
n′ < 4δ1n and n0 < 4δ1n.

Take ξ ∈ O/pn0O with

|A2| > p−
3
4 dn0 |A1| where A2 = A1 ∩ π

−1
n0
(ξ). (A.4)

Taking some element x̄ ∈ A2, we have

A2 = x̄ + p
n0B where B ⊂ O/pn−n0O, |A2| = |B|.

Let 1 ≤ m ≤ n− n0. From the definition of n0 we have, by (A.4),

max
ξ
|B ∩ π−1

m (ξ)| ≤ max
ξ
|A1 ∩ π

−1
m+n0

(ξ)| ≤ p−
3
4 d(m+n0)|A1| < p−

3
4 dm|B|.

Apply then Lemma A.1 below with γ1 = γ2 = 3/4 to the set B ⊂ O/pn−n0O. It follows
that

100B · B = O/pn−n0O,

implying (since 0 ∈ B)

100(A1 − A1)(A1 − A1) ⊃ 100(A2 − A2)(A2 − A2) ⊃ {x ∈ O/pnO |π2n0(x) = 0}.

The claim follows with τ = 8δ1. ut

A.2. Lemma A.1

Lemma A.1. Let γ1, γ2>0 with γ1+γ2>1 and k ∈ Z+ be such that k>4/γ1 + γ2 − 1.
Let Ai, Bi ⊂ O/pmO (1 ≤ i ≤ k) satisfy, for all 1 ≤ m′ ≤ m,

max
ξ
|{x ∈ Ai | πm′(x) = ξ}| < p−dm

′γ1 |Ai |, (A.5)

max
ξ
|{x ∈ Bi | πm′(x) = ξ}| < p−dm

′γ2 |Bi |. (A.6)
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Let ν be the image measure on O/pmO of the normalized counting measure on∏k
i=1(Ai × Bi) under the map

(x1, y1, . . . , xk, yk) 7→ x1y1 + · · · + xkyk.

Then

max
ξ∈Zq

∣∣∣∣ν(ξ)− 1
q

∣∣∣∣ < 1
qp
, where q = pmd . (A.7)

Proof. Denote by Tr : O→ Zp the usual trace map and let ea(x) = e
2πi
a

Tr x for a = pm

and x ∈ O/aO. Hence {epm(z · ) | z ∈ O/pmO} is a complete set of additive characters
for O/pmO.

We establish (A.7) with a standard exponential sum approach. Thus for ξ ∈ O/pmO,

ν(ξ)

=
1∏
|Ai | |Bi |

|{(x1, y1, . . . , xk, yk) ∈ A1×B1×· · ·×Ak×Bk | x1y1+· · ·+xkyk = ξ}|

=
1

q
∏
|Ai ||Bi |

∑
xi∈Ai , yi∈Bi
z∈O/pmO

epm(z(ξ−x1y1−· · ·−xkyk)) =
1
q
+F,

where

F ≤
1
q

∑
z∈O/pmO

z 6=0

1∏
|Ai | |Bi |

k∏
i=1

∣∣∣ ∑
x∈Ai , y∈Bi

epm(zxy)

∣∣∣. (A.8)

Write z ∈ O/pmO, z 6= 0, in the form z = pm
′

w with 0 ≤ m′ < m and w ∈
(O/pm−m′O)∗. Fix 0 ≤ m′ < m and estimate (A = Ai, B = Bi)

max
(w,p)=1

∣∣∣ ∑
x∈A,y∈B

e
pm−m

′ (wxy)

∣∣∣. (A.9)

Define

η1(ξ) = |{x ∈ A | πm−m′(x) = ξ}|
(A.5)
< p−d(m−m

′)γ1 |A|, (A.10)

η2(ξ) = |{x ∈ B | πm−m′(x) = ξ}|
(A.6)
< p−d(m−m

′)γ2 |B|. (A.11)

Hence, by Cauchy–Schwarz and Parseval, we can bound (A.9) as follows:

(A.9) =
∣∣∣∑
ξ1,ξ2

η1(ξ1)η2(ξ2)epm−m′ (wξ1ξ2)

∣∣∣
×

(∑
ξ1

η1(ξ1)
2
)1/2(∑

ξ1

∣∣∣∑
ξ2

η2(ξ2)epm−m′ (wξ1ξ2)

∣∣∣2)1/2

(A.10)
< p−d

m−m′

2 γ1 |A|p
m−m′

2 d
(∑
ξ2

η2(ξ2)
2
)1/2

(A.11)
< p−d(γ1+γ2)

m−m′

2 +d
m−m′

2 |A| |B|. (A.12)
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Substitution of (A.12) in (A.8) clearly gives the estimate

1
q

∑
0≤m′<m

pd(m−m
′
−1)(pd − 1)p−

k
2 (m−m

′)(γ1+γ2−1)d <
1
q

∑
s≥1

pds(1−
k
2 (γ1+γ2−1))

<
1
pq
. (A.13)

This proves (A.7). ut

A.3. Regularization of the set

Returning to Theorem A.1 and A ⊂ O/pnO, we will perform several preliminary con-
structions before proceeding with the amplification process. The first step is a regulariza-
tion with respect to the natural tree structure O/pnO→ O/pn−1O→ · · · → O/pO by
passing to a large subset of A.

Fix a large integer T = T (δ1, δ2). We may assume n to be a multiple of T (since p is
fixed and n→∞), writing

n = T n1 and q = pdT n1 .

The regularization process will lead to a subset B ⊂ A and sequences

ms ∈ [T s, T (s + 1)[ and 1 ≤ Ks ≤ pdT

for 0 ≤ s < n1, satisfying the following conditions:

If x ∈ πms (B), then |πms+1(B(x))| = Ks, (A.14)

where we write B(x) = B ∩ π−1
ms
({x}).

If Ks > 1 and x ∈ πms (B), then |πms+1(B(x))| ≥ 2. (A.15)

|B| >

(
1

10T 2 logpd

)n1

|A| > q−o(1)|A| (for T large enough). (A.16)

The construction is straightforward, starting at the bottom of the tree O/pnO. We
detail the first step and leave the continuation to the reader.

Define
� = {ξ ∈ O/pT (n1−1)O | |π−1

T (n1−1)(ξ) ∩ A| = 1}.

We distinguish two possibilities:
If |π−1

T (n1−1)(�) ∩ A| ≥
1
2 |A| define

Kn1−1 = 1 and mn1−1 = T (n1 − 1)

and let
A1 = A ∩ π

−1
T (n1−1)(�).
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Hence
|A1(ξ)| = 1 for ξ ∈ πT (n1−1)(A1), |A1| ≥

1
2 |A|.

Assume next |π−1
T (n1−1)(�)∩A| <

1
2 |A|. From the definition of�, we may then find some

m = mn1−1 ∈ [T (n1 − 1), T n1[ such that

|{x ∈ A | {πm+1(x
′) | x′ ∈ A andπm(x) = πm(x′)} has at least 2 elements }| >

|A|

4T
(A.17)

and we take m ∈ [T (n1 − 1), T n1[ as small as possible such that (A.17) holds. We may
then introduce A1 ⊂ A and a dyadic integer 1 ≤ Kn1−1 < pdT such that

|πm(A1(ξ))| = 1 for ξ ∈ πT (n1−1)(A1), (A.18)
|πm+1(A1(ξ))| ≥ 2 for ξ ∈ πm(A1), (A.19)

|A1 ∩ π
−1
m (ξ)| = Kn1−1 for ξ ∈ πm(A1), (A.20)

|A1| >
|A|

4T logpdT
. (A.21)

In the next step, replace A by A1, consider π−1
T (n1−2(ξ) ∩ A1 for ξ ∈ πT (n1−2)(A1) and

introduce T (n1 − 2) ≤ mn1−2 < T (n1 − 1), 1 ≤ Kn1−2 < pdT and A2 ⊂ A1 similarly.
Note that for ξ ∈ πT (n1−1)(A2) we have A1(ξ) = A2(ξ), and if ξ ∈ πmn1−2(A2), then by
construction

|πmn1−1(A2(ξ))| = |πT (n1−1)(A2(ξ))| = Kn1−2, (A.22)

which is condition (A.14) with s = n1 − 2.
Assume we have obtained the set B ⊂ A satisfying (A.14)–(A.16). Next, define

s̄ = max
{

0 ≤ s < n1

∣∣∣ ∏
s′<s

Ks′ < p
1
2 δ2ms

}
. (A.23)

Thus there are ξ ∈ O/pms̄O and B ′ ⊂ B such that

πms̄ (B
′) = {ξ}, (A.24)

|B ′| > p−
1
2 δ2ms̄ |B|. (A.25)

Suppose ms̄ > εn. Then, by (A.2), |πms̄ (A)| > pδ2ms̄ and therefore by (A.16), (A.25),
we get

|A+ A| ≥ |A+ B ′| ≥ |πms̄ (A)| |B
′
| > p

1
2 δ2ms̄q−o(1)|A|. (A.26)

Assume (A.3) fails to hold, i.e.

|A · A · A+ A · A · A| < q0+
|A|.

Note that by the Plünnecke–Ruzsa sumset inequalities we also have

|rA · A · A− rA · A · A| �(r) q
0+
|A| (A.27)

for the r-fold sumset, assuming r is bounded.
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•

Assume obtained the set B ⊂ A satisfying (A.24) -(A.26). Next,
define

(A.35) s̄ = max{0 ≤ s < n1 |
∏

s′<s

Ks′ < p
1
2
δ2ms}.

Thus there are ξ ∈ O/pms̄O and B′ ⊂ B such that

(A.36) πms̄(B
′) = {ξ},

(A.37) |B′| > p−
1
2
δ2ms̄|B|.

Suppose ms̄ > εn. Then, by (A.2), |πms̄(A)| > pδ2ms̄ and therefore by
(A.26), (A.37), we get

(A.38) |A + A| ≥ |A + B′| ≥ |πms̄(A)||B′| > p
1
2
δ2ms̄q−o(1)|A|.

Assume (A.4) fails, i.e.

(A.39) |A · A · A + A · A · A| < q0+|A|.
Note that by Plunnecke-Ruzsa sum-set inequalities we also have

(A.40) |rA · A · A− rA · A · A| ¿(r) q0+|A|
for the r-fold sumset, assuming r bounded.

In particular, (A.38) implies

p
1
2
δ2ms̄q−o(1) < qo(1)

In particular, (A.26) implies

p
1
2 δ2ms̄q−o(1) < qo(1)

or
ms̄ = o(1)n.

Therefore, certainly
ms̄ ≤ εn. (A.28)

Since (A.24) holds and taking some b′ ∈ B ′ we have, for some A′ ⊂ O/pn−ms̄O,

B ′ − b′ = pms̄A′,

where by (A.16), (A.25), (A.28),

|A′| = |B ′| > q−ε|A|.

Define for 1 ≤ s < n1 − s̄,
m′s = ms̄+s −ms̄ . (A.29)

Hence from (A.14) and (A.15),

|πm′
s+1
(A′(x))| = Ks+s̄ for x ∈ πm′s (A

′),

|πm′
s+1
(A′(x))| ≥ 2 if Ks+s̄ ≥ 2 and x ∈ πm′s (A

′).
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From the definition (A.23) of s̄ it also follows that

|πm′s (A
′)| = |πms̄+s (B

′)| =
∏

s̄≤s′<s̄+s

Ks′ =

∏
s′<s̄+s Ks′∏
s′<s̄ Ks′

> p
1
2 δ2(ms̄+s−ms̄ ) = p

1
2 δ2m

′
s .

Also, since pms̄A′ ⊂ A− A, it follows from (A.27) and (A.28) that

|rA′ · A′ · A| < p2dms̄ |r(A− A)(2) · A| < q2ε+o(1)
|A|.

We simplify notation at this point replacing Ks by Ks̄+s and ms by m′s (1 ≤ s < n1 − s̄).
Summarizing the relevant properties we have

|πms (A
′)| > p

1
2 δ2ms , (A.30)

|πms+1(A
′(x))| = Ks for x ∈ πms (A

′), (A.31)
if Ks > 1, then |πms+1(A

′(x))| ≥ 2 for x ∈ πms (A
′), (A.32)

|rA′ · A′ · A| �(r) q
o(1)
|A| for any given r ∈ Z+, (A.33)

|A′| > q−o(1)|A| (A.34)

(letting ε be small enough).
The core of our argument is of course to obtain a lower bound on rA′ ·A′ ·A that will

contradict (A.33). Before proceeding, we need one more manipulation.
We construct further sequences ki = msi , k

′

i = ms′i
where si ≤ s′i < si+1, hence

ki ≤ k
′

i < ki+1 (i < j ).
Take a sufficiently small δ = δ(δ1, δ2) > 0 (to be specified) and let

R = [100/δ]. (A.35)

Assume si is obtained. Define

s′i = min{s ≥ si | Ks ≥ 2} (A.36)

if possible. Otherwise we terminate at j = i defining s′i = n1 − s̄ − 1. Assuming s′i can
be defined by (A.36), if s′i + R ≥ n1 − s̄ − 1, we terminate again at j = i. Assume now
s′i + R < n1 − s̄ − 1. There are two cases.

Case I: We have ∏
s′i≤s<s

′
i+R

Ks < p
(1−δ)d(ms′

i
+R−ms′

i
)
.

Then take si+1 = s
′

i + R.

Case II: We have ∏
s′i≤s<s

′
i+R

Ks ≥ p
(1−δ)d(ms′

i
+R−ms′

i
)
.
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Then take si+1 to be the smallest s ≥ s′i + R such that∏
s′i≤s

′<s

Ks′ < p
(1−δ)d(ms−ms′

i
)
. (A.37)

This is possible unless ∏
s′i≤s

′<n1−s̄

Ks′ > p
(1−δ)d(mn1−s̄−1−ms′

i
)
, (A.38)

in which case we can again terminate at i = j .
In Case II, it follows from the construction of si+1 that if ms′−1 ≤ k < ms′ with

s′i + R ≤ s
′ < si+1 then for all ξ ∈ πms′

i

(A′) we have

|πk(A
′(ξ))| ≥ p−d(ms′−k)|πms′ (A

′(ξ))| = p−d(ms′−k)
∏

s′i≤t<s
′

Kt

≥ p
−d(ms′−k)+d(ms′−ms′

i
)(1−δ)

> p
(1−2δ)d(k−ms′

i
)
. (A.39)

Also, for msi+1−1 ≤ k < msi+1 , from k −ms′i
≥ (R − 1)T and (A.35) we have

|πk(A
′(ξ))| ≥ |πmsi+1−1(A

′(ξ))|
(A.39)
> p

(1−2δ)d(msi+1−1−ms′
i
)

> p
(1−2δ)d(k−ms′

i
)−dT

> p
(1−3δ)d(k−ms′

i
)
, (A.40)

so that (A.40) holds whenever ms′i ≤ k ≤ msi+1 .
From the preceding and (A.38), the construction terminates at i = j when either∏

t≥sj

Kt < pdT R, (A.41)

or ∏
s′j≤t<n1−s̄

Kt > p
(1−δ)d(mn1−s̄−1−ms′

j
)
. (A.42)

Since the amplification performed in the next section will only relate to the levels m ∈⋃
i<j [ms′i , msi+1 ], we need a lower bound on∏

i<j

∏
s′i≤t<si+1

Kt = |πmsj (A
′)| = |πms′

j

(A′)|. (A.43)

If (A.41) holds, then obviously

(A.43) > p−dT R|A′| > q−o(1)|A|. (A.44)

If (A.42) holds we argue as follows:

q1−δ1 > q−δp
d(mn1−s̄−1−ms′

j
) (A.29)
> q1−δp

−dms̄−dms′
j

(A.28)
> q1−δ−εp

−dms′
j ,
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and for k′i + RT < k ≤ ki+1

(A.72) |πk(A
′(x))| > p(1−3δ)d(k−k′i)

(A.73) |πkj
(A′)| =

∏
i≤j

Li > p
1
4
δ1δ2n

(A.74) |πk(A
′)| > p

1
4
δ2k for T < k < n1 (by (A.49)).
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ki

k′i + 1

ki+1

k′i

no branching

at least 2 branches

︸ ︷︷ ︸
Li

•

•

• •

We may of course also assume

(A.75) π1(x) 6= 0 for x ∈ A′.

Indeed, since |πm1(A
′)| ≥ 2 and thus πm1(A

′) 6= {0} we may replace A′

by p−k0{x ∈ A′ |πk0(x) = 0; πk0+1(x) 6= 0} for some 0 ≤ k0 < m1.

A.4. The Amplification. Recalling (A.1), there is a subset C of a
suitable sumset of A, |C| = p2RTd such that

(A.76) π2RT |C : C → O/p2RTO is one-to one,

and ensuring moreover

(A.77) π2RT+1(x) 6= 0 for x ∈ C.

Let A′ and ki ≤ k′i < ki+1 (i ≤ j) be as in section A.3, satisfying
(A.69) - (A.73). Let r ∈ Z+, r = r(δ1, δ2) be large enough (to be
specified). Denote

Ω = (A′ × A′ × C)r ⊂ (O/pnO)3r

the product set equipped with normalized counting measure P.

and hence

ms′j
≥ (δ1 − δ − ε)n >

δ1

2
n (A.45)

if we let ε, δ be small enough.
Recalling (A.30), it also follows that

(A.43) ≥ p
1
2 δ2ms′

j > p
1
4 δ1δ2n. (A.46)

Consequently, we introduce sequences k1 ≤ k
′

i < ki+1 (i < j ) such that

if x ∈ πk′i
(A′), then |πk′i+1(A

′(x))| ≥ 2; (A.47)

if ki+1 − k
′

i > 2RT and x ∈ πk′i (A
′), then

|πki+1(A
′(x))| = Li < p(1−δ)d(ki+1−k

′
i ), (A.48)

and for k′i + RT < k ≤ ki+1,

|πk(A
′(x))| > p(1−3δ)d(k−k′i ), (A.49)

|πkj (A
′)| =

∏
i≤j

Li > p
1
4 δ1δ2n, (A.50)

|πk(A
′)| > p

1
4 δ2k for T < k < n1 (by (A.30)). (A.51)

We may of course also assume

π1(x) 6= 0 for x ∈ A′. (A.52)

Indeed, since |πm1(A
′)| ≥ 2 and thus πm1(A

′) 6= {0} we may replace A′ by the set
p−k0{x ∈ A′ | πk0(x) = 0;πk0+1(x) 6= 0} for some 0 ≤ k0 < m1.
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A.4. The amplification

Recalling (A.1), there is a subsetC of a suitable sumset ofA, with |C| = p2RT d , such that

π2RT |C : C → O/p2RTO is one-to-one, (A.53)

and moreover

π2RT+1(x) 6= 0 for x ∈ C. (A.54)

Let A′ and ki ≤ k′i < ki+1 (i ≤ j ) be as in Section A.3, satisfying (A.47)–(A.50). Let
r ∈ Z+, r = r(δ1, δ2), be large enough (to be specified). Define

� = (A′ × A′ × C)r ⊂ (O/pnO)3r ,

the product set equipped with the normalized counting measure P.
Consider the map

φ : �→ O/pnO : (x1, y1, z1, . . . , xr , yr , zr)→ x1y1z1 + · · · + xryrzr . (A.55)

Hence φ(�) ⊂ rA′ ·A′ ·C ⊂ rA′ ·A′ ·A and our aim is to contradict (A.33) by establish-
ing a lower bound on |φ(�)|. Note that for k ≤ n, (πkφ)(ξ) only depends on πk(ξ). Let
µk be the normalized counting measure on O/pkO for k ≤ n and Ek the corresponding
expectation operator.

Define the density

F = Fn =
dφ(P)
dµn

(A.56)

and for k ≤ n,

Fk = Ek(F ) =
dπkφ(P)
dµk

. (A.57)

Fix i. The key estimate is a bound on∫
max

πki+1 (x)=x
′
Fki+1(x) µk′i

(dx′). (A.58)

We will show that

(A.58) < 2, (A.59)

which means that, conditional on πk′i , πki+1φ is almost uniformly distributed.
Let k = ki+1 and k′ = k′i . By (A.57),

Fk(x) = p
kd
|�|−1

|{ξ ∈ � | πkφ(ξ) = x}|. (A.60)
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Hence∫
max

πk′ (x)=x
′
Fk(x) µk′(dx

′) = p(k−k
′)d
|�|−1

∑
x′∈O/pk′O

max
πk′ (x)=x

′
|{ξ ∈ � | πkφ(ξ) = x}|

≤ p(k−k
′)d
|�|−1

∑
ζ∈πk′ (�)

max
x
|{ξ ∈ � | πk′(ξ) = ζ andπkφ(ξ) = x}|

= p(k−k
′)d
|A′|−2r

|C|−r

×

∑
x′1,...,x

′
r∈πk′ (A

′)

y′1,...y
′
r∈πk′ (A

′)

z1,...,zr∈C

max
x
|{xs ∈ A

′(x′s), ys ∈ A
′(y′s) (1 ≤ s ≤ r) |

πk(x1y1z1 + · · · + xryrzr) = x}|

= p(k−k
′)d
|πk(A

′)|−2r
|C|−r

×

∑
x′1,...,x

′
r∈πk′ (A

′)

y′1,...y
′
r∈πk′ (A

′)

z1,...,zr∈C

max
x
|{xs ∈ πk(A

′(x′s)), ys ∈ πk(A
′(y′s))(1 ≤ s ≤ r) |

x1y1πk(z1)+ · · · + xryrπk(zr) = x}|

(A.61)

(for the last equality, we use the regular tree structure of A′).
We evaluate the inner maxx in (A.61) by an exponential sum estimate. Thus

max
x
| . . . | ≤

1
|O/pkO|

∑
η∈O/pkO

∣∣∣ ∑
xs∈πk(A

′(x′s ))

ys∈πk(A
′(y′s ))

epk

(
η

r∑
s=1

xsyszs

)∣∣∣ (A.62)

with the notation from Lemma A.1. Note that (A.62) has become independent of x. Sub-
stitution in (A.61) gives

≤ p−k
′d
|πk(A

′)|−2r
|C|−r

∑
η∈O/pkO

( ∑
x′∈πk′ (A

′)

y∈πk(A
′)

z∈C

∣∣∣ ∑
x∈πk(A

′(x′))

epk (ηxyz)

∣∣∣)r . (A.63)

Using Cauchy–Schwarz for the second summation we obtain

(A.63) ≤ p−k
′d
|πk(A

′)|−3r/2
|πk′(A

′)|r/2|C|−r/2

×

∑
η∈O/pkO

( ∑
x′∈πk′ (A

′)

y∈πk(A
′)

z∈C

∣∣∣ ∑
x∈πk(A

′(x′))

epk (ηxyz)

∣∣∣2)r/2

≤ p−k
′d
|πk(A

′)|−r |A′|−r/2|πk′(A
′)|r/2|C|−r/2

×

∑
η∈O/pkO

( ∑
x′∈πk′ (A

′)

∣∣∣ ∑
x1,x2∈πk(A

′(x′))
y∈A′

z∈C

epk (η(x1 − x2)yz)

∣∣∣)r/2. (A.64)
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Since πk′(x1 − x2) = 0,

(A.64) = |πk(A′)|−r |A′|−r/2|πk′(A′)|r/2|C|−r/2

×

∑
η∈O/pk−k′O

( ∑
x′∈πk′ (A

′)

∣∣∣ ∑
x1,x2∈πk(A

′(x′))
y∈A′, z∈C

epk (η(x1 − x2)yz)

∣∣∣)r/2. (A.65)

We now proceed to estimate, for x′ ∈ πk′(A′),∑
x1,x2∈πk(A

′(x′))
y∈A′,z∈C

epk (η(x1 − x2)yz) (A.66)

using the properties (A.37)–(A.51) of A′.
Recall that k′ = k′i , k = ki+1 and |πk(A′(x′))| = Li . There are two cases.

Case I: k − k′ ≤ 2RT . Since C satisfies (A.53) and 0 /∈ π1(A
′) by (A.52),∑

z∈C

e
pk−k

′

(
η
x1 − x2

pk
′
yz

)
= 0

unless x1 ≡ x2 (modpk
′
+1) or πk−k′(η) = 0 (since we assumed (p) prime). Recall that

|πk′+1(A
′(x′))| ≥ 2 according to (A.47). Hence, if πk−k′(η) 6= 0,

(A.66) ≤ |A′| |C|
∑

t∈πk′+1(A
′(x′))

|πk(A
′(t))|2

≤ |A′| |C|(|πk(A
′(x′))|2 − |πk(A

′(x′))|) ≤ |A′| |C|L2
i (1− p

−2dRT ).

Substituting (A.66) in (A.65) gives the contribution

(A.65) ≤ 1+ (p(k−k
′)d
− 1)(1− p−2dRT )r/2 < 2,

provided we take
r = r(p, δ1, δ2) > p4dRT (A.67)

(this choice of r will also ensure that C ⊂ rA with C satisfying (A.53), (A.54)).

Case II: k − k′ > 2RT . Let πk−k′(η) 6= 0 and write η = pmη1 with 0 ≤ m < k − k′

and η1 ∈ (O/pk−k
′
−mO)∗. We need to evaluate∑

x1,x2∈πk(A
′(x′))

y∈A′, z∈C

e
pk−k

′−m

(
η1
x1 − x2

pk
′
yz

)
. (A.68)

Set
0 < l = k − k′ −m ≤ k − k′.
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If l ≤ 2RT , we again invoke (A.53) to claim that
∑
z∈C epl (η1

x1−x2
pk
′ yz) = 0 unless

πk−m(x1−x2) = 0, hence πk′+1(x1−x2) = 0. The same calculation from Case I implies
that

|(A.68)| < |A′| |C| |πk(A′(x′))|2(1− p−2dRT ). (A.69)

Assume next l > 2RT . Fix x0 ∈ A
′(x′). For ξ ∈ O/plO define

λ1(ξ) =

∣∣∣∣{x ∈ πk(A′(x′)) ∣∣∣∣ πl(x − x0

pk
′

)
= ξ

}∣∣∣∣,
λ2(ξ) = |{y ∈ A

′
| πl(y) = ξ}|,

λ3(ξ) = |{(y, z) ∈ A
′
× C |πl(yz) = ξ}|.

Hence
|(A.68)| ≤ |πk(A′(x′))|

∣∣∣∑
ξ,ξ ′

epl (η1ξξ
′)λ1(ξ)λ3(ξ

′)

∣∣∣. (A.70)

Since A′ is regular and l > 2RT ,

λ1(ξ) ∼
pdT

|πk(A
′(x′))|

|πk′+l(A
′(x′))|

< p−(1−3δ)dl+dT
|πk(A

′(x′))| <
|πk(A

′(x′))|

p(1−4δ)dl (A.71)

by applying (A.49) with k′i = k
′, ki+1 = k and replacing k by k′ + l.

Also, by (A.51),

λ2(ξ) ∼
pdT

|A′|

|πl(A′)|
< p−

1
4 lδ2 |A′|. (A.72)

Recalling (A.54) we have C =
⋃

0≤a≤2RT C(a), where

C(a) = {z ∈ C | πa(z) = 0 and πa+1(z) 6= 0}

and
|C(a)| = p

−ad
|C|.

Since the map O/plO→ O/plO : x 7→ zx has multiplicity pad for z ∈ C(a), it follows
that

λ3(ξ) ≤
∑

a≤2RT

∑
z∈C(a)

|{y ∈ A′ | πl(yz) = ξ}| ≤
∑

a≤2RT

|C(a)|(max
ξ ′
λ2(ξ

′))pad

(A.72)
< (1+ 2RT )p−

1
4 lδ2 |A′| |C| ≤ p−

1
8 δ2l |A′| |C| (A.73)

(since l > RT and (A.35) with δ < δ2
2).

Returning to (A.70), in view of (A.71) and (A.73), take δ > 0 so as to ensure that

1− 4δ +
1
8
δ2

d
> 1+

δ2

10d
. (A.74)

Proceeding as in the proof of Lemma A.1, this gives

(A.70) ≤ |πk(A′(x′))|2|A′| |C|p−d
l
2
δ2

10d . (A.75)
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Hence using the estimates (A.69) and (A.75) we see that in Case 2,

(A.65) ≤ 1+
∑

k−k′−2RT≤m<k−k′
pd(k−k

′
−m)(1− p−2dRT )r

+

∑
0≤m<k−k′−2RT

pd(k−k
′
−m)− 1

40 δ2rd(k−k
′
−m) < 2

if we take r as in (A.67). This establishes (A.59).
Next we proceed with an entropy calculation. With k = ki+1 and k′ = k′i , write

∫
Fk log+ Fk dµk ≤

∫
Fk′ log+ Fk′ dµk′ +

∫
Fk log+

Fk

Fk′
dµk

and ∫
Fk log+

Fk

Fk′
dµk ≤

∫ (
log+

(
max

πk′ (x)=x
′

Fk(x)

Fk′(x
′)

))
Fk′(x

′) dµk′

≤

∫ (
max

πk′ (x)=x
′
Fk(x)

)
dµk′

(A.59)
< 2. (A.76)

Hence, letting j be as in Section A.3 we have

∫
Fkj log+ Fkj dµ ≤

∑
i<j

∫
Fki+1 log+

Fki+1

Fk′i

dµ+
∑
i<j

∫
Fk′i

log+
Fk′i

Fki
dµ

(A.76)
< 2j + log

∏
i<j

pd(k
′
i−ki ). (A.77)

Next, set S = suppFkj = πkj (φ(�)) ⊂ πkj (rA
′
· A′ · A). Let 0 < γ < 1 be a parameter.

Since
∫
S
Fkj dµkj = 1, we have

1− γ <
∫

[Fkj>γ/µkj (S)]
Fkj dµkj <

1
log+(γ /µkj (S))

∫
Fkj log+ Fkj dµ

(A.77)
≤

1
log+(γ /µkj (S))

log e2j
∏
i<j

pd(k
′
i−ki )

and therefore (
γ

µkj (S)

)1−γ

< e2j
∏
i<j

pd(k
′
i−ki ).
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Hence

|S| = pdkjµkj (S) > γpdkj
(
e2j

∏
i<j

pd(k
′
i−ki )

)−1/(1−γ )

> pdkj
e−2j

log q

∏
i<j

pd(ki−k
′
i ) (for appropriate γ )

=
e−2j

log q

∏
i<j

pd(ki+1−k
′
i )

(A.48)
> q−1/T

(∏
i<j

Li

)1/(1−δ)

(A.50)
> q−1/T

|πkj (A
′)|1/(1−δ). (A.78)

Take ξ ∈ O/pkjO such that

|π−1
kj
(ξ) ∩ A′| ≥

|A′|

|πkj (A
′)|
.

Clearly

|(r + 1)A′ · A′ · A| ≥ |πkj (rA
′
· A′ · A)|

|A′|

|πkj (A
′)|

(A.78)
> q−1/T

| |A′| |πkj (A
′)|δ/(1−δ)

(A.34),(A.50)
> q−1/T−o(1)+ 1

4d δ1δ2δ|A|.

In order to satisfy (A.45) and (A.74), which are the only conditions on δ, let

δ =
1

100d
min(δ1, δ2).

We obtain a contradiction to (A.33) for T large enough. This proves Theorem A.1.

A.5. Proof of Proposition 3.3

Let πn : O→ O/pnO be the projection. Let A ⊂ O with

|πn1(A)| > pδn1 .

We may construct 1 ≤ n0 < n1 and B ⊂ A such that

n1 − n0 > δn1/4, pn0B ⊂ A− A, |πm(B)| > pδm/4 form < n1 − n0.

Replacing A by B we can therefore assume

|πm(A)| > pδm for all m ≤ n1. (A.79)
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Replacing further A by a multiplicative translate, we ensure moreover that 1 ∈ A.
Let R be the subring of O generated by A (hence 1 ∈ R). Replacing A by a sum-

product set, we may assume
π1(A) = π1(R). (A.80)

Defining, for m ∈ Z+,

3m = {π1(x) | p
mx ∈ R} ⊂ O/pO

we obtain an increasing sequence of subsets of O/pO with 30 = π1(R).
Set

n̄ = min{n ∈ Z+ | 3n 6= π1(R)}. (A.81)

It follows that if n ≤ n̄ and z ∈ O with pnz ∈ R then there is an element x ∈ R with
πn̄−n(x − z) = 0.

Assume n̄ < n1. Using sum-product estimates developed above we will prove in
Section A.6 that

πn̄(Ã) ⊃ πn̄(p
kR) for k = [n̄/10], (A.82)

where Ã is a further sum-product set of A.
Also, by (A.81), there is z0 ∈ O such that

pn̄z0 ∈ R and π1(z0) /∈ π1(R). (A.83)

We make a few preliminary observations. Assume πn̄+1(Ã) ⊃ πn̄+1(R). Hence there is
ã ∈ Ã such that ã − pn̄z0 ∈ p

n̄+1O and thus

π1

(
Ã ∩ pn̄O
pn̄

)
* π1(R). (A.84)

Note that by (A.82), also

π1

(
Ã ∩ pn̄O
pn̄

)
⊃ π1(R) (A.85)

and therefore

π1

(
Ã ∩ pn̄O
pn̄

)
) π1(R). (A.86)

Assume next that instead of (A.82) we have the stronger property

πn̄(Ã) ⊃ πn̄(R). (A.87)

Hence πn̄+1(Ã) is a subset of πn̄+1(R) that certainly satisfies

|πn̄+1(Ã)|

|πn̄+1(R)|
>

1
pd

as a consequence of (A.87).
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Passing to a further sum-product set ˜̃A we may clearly ensure that πn̄+1(
˜̃
A) is a ring.

Since obviously πn̄+1(R) is generated by πn̄+1(A) it follows that πn̄+1(R) = πn̄+1(
˜̃
A),

which enables us to deduce (A.84)–(A.86) (replacing Ã by ˜̃A).
Returning to (A.82), define

B =
Ã ∩ pkO
pk

⊂ O (A.88)

satisfying

πn̄−k(B) = πn̄−k(R) (A.89)

by (A.82). In particular, there is an element ξ ∈ B such that

πn̄−k(1− ξ) = 0. (A.90)

Take η ∈ O such that 1 = ξη (recall that O are the integers of the completion) and let
B1 = ηB. Hence B1 has a unit and by (A.89), also

πn̄−k(B1) = πn̄−k(R). (A.91)

Next, let R1 be the ring generated by B1. By (A.91), also

πn̄−k(R) = πn̄−k(R1). (A.92)

Defining
m1 = min{m ∈ Z+ | π1(R1) 6= {π1(x) | x ∈ O, pmx ∈ R1}}

it follows from (A.92) and the definition of n̄ that

m1 ≥ n̄− k.

Again, if m ≤ m1 and z ∈ O, pmz ∈ R1 then there is an element x ∈ R1 with
πm1−m(x − z) = 0. We distinguish two cases.

Case 1:m1 ≤ n̄+1. Since πn̄−k(B1) = πn̄−k(R1) with k = [n̄/10], it easily follows that

πm1(R1) = πm1(B1 + B
(3)
1 ) = πm1(B̃1).

This is condition (A.87) with A replaced by B1. Therefore

π1

(
B̃1 ∩ p

m1O
pm1

)
) π1(R). (A.93)

By (A.87) and (A.88) we easily deduce from (A.93) that

π1

(
Ã ∩ pm2O
pm2

)
) π1(R)

for some k +m1 ≤ m2 < m1 + ck < cn̄.
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Case 2: m1 > n̄+ 1. Again we get

πn̄+1(B̃1) = πn̄+1(R1). (A.94)

Returning to (A.83), we claim that

πn̄+1(p
n̄z0) /∈ πn̄+1(R1).

Indeed, otherwise pn̄z0 = x1 + p
n̄+1z1 = pn̄x′1 + p

n̄+1z′1 for some x1, x
′

1 ∈ R1
and z1, z

′

1 ∈ O, implying that π1(z0) = π1(x
′

1) ∈ π1(R) (a contradiction). Hence
πn̄+1(R) * πn̄+1(R1) and thus

πn̄+1(A) * πn̄+1(R1).

This gives an element a ∈ A such that

a = y + pm3z1 (A.95)

with y ∈ R1, m3 ≤ n̄ and z1 ∈ O \ (R1 + pO). By (A.94),

y = b̃1 + p
n̄+1z′ with b̃1 ∈ B̃1, z

′
∈ O

and substituting in (A.95) gives

a = b̃1 + p
m3z2 with z2 ∈ O \ (R1 + pO). (A.96)

Multiplying (A.96) with an appropriate bounded power ξ r of ξ introduced in (A.90)
we obtain

aξ r = b̃ + pm3z3 (A.97)

for some b̃ in a sumset of B(r) and z3 ∈ O \ (R1 + pO). Next multiply (A.97) with prk

to get

pm3+rkz3 ∈ A(Ã)
r
− s(Ã)r ⊂

˜̃
A.

Hence again

π1

(
Ã ∩ pm4O
pm4

)
) π1(R)

for some k ≤ m4 < m3 + ck < cn̄. In conclusion, we see that there is some m5 < cn̄

such that

π1

(
Ã ∩ pm5O
pm5

)
) π1(R).

In particular, there is an element ζ ∈ 1+ pO such that pm5ζ ∈ Ã. Hence AÃ∩ pm5O ⊃
pm5ζA and

A′ =
ÃA ∩ pm5O

pm5
⊃ ζA.

Property (A.79) therefore remains valid for the set A′ generating a ring R′ with

π1(R
′) ) π1(R).
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Since |π1(R)| ≤ |O/pO| < pd , the procedure has to terminate after at most d steps,
meaning that we obtain n̄ ≥ n1 for which in particular (A.82) holds. Therefore there is
m < cn1 such that

πn1

(
Ã ∩ pmO
pm

)
⊃ πn1(p

kZ) with k = [n1/10]. (A.98)

Note that in (A.98) the set A is a multiplicative translate of the original set so that (A.98)
corresponds to condition (3.31) in Section 3.

This proves Proposition 3.3 up to verification of the assertion (A.82).

A.6. Subfield reduction

Our aim is to establish (A.82) for rings satisfying condition (A.101) below and subsets
A ⊂ R satisfying (A.79) and (A.80), i.e.

πp(A) = πp(R), (A.99)

|πm(A)| > pδm for all m ≤ N, (A.100)

where our assumption on R is the following property:

If n < N and x ∈ O, pnx ∈ R, then there is
y ∈ R such that πpN−n(x − y) = 0 (A.101)

(N plays the role of n̄ in Section A.5).
Returning to the discussion at the beginning of Section A.1, recall that

O = OP = Zp[uiPj | 1 ≤ i ≤ d, 0 ≤ j < e],

OI = OP ∩KI
= Zp[ui | 1 ≤ i ≤ d],

O/pO ' Fpd + FpdP + · · · + FpdPe−1.

We assume in what follows that

N > C(p, d), (A.102)

where C(p, d) is a suitable constant depending on p and d , as will be clear from the
considerations below.

For x ∈ R write

πp(x) = x0 + x1P + · · · + xe−1Pe−1 with x0, . . . , xe−1 ∈ Fpd . (A.103)

Hence πp(xp
d
) = x0 ∈ πp(R) and it follows that πp(R) contains the subfield F0 of Fpd

generated by {x0 | x ∈ R}. Thus

πP (R) = F0 ⊂ πp(R). (A.104)
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Next, consider the set
S1 = {t ∈ Fpd | tP ∈ πP2(R)}.

It follows from (A.104) that x1 ∈ S1 for all x ∈ R in the representation (A.103). Assume

S1 6= {0}.

Let t1 ∈ S1 \ {0} and consider the set S′1 = t
−1
1 S1 ⊂ Fpd (which contains 1). Let F1 be

the subfield of Fpd generated by S′1. Since 1 ∈ S′1, F1 will be obtained as a sumset of the
product set (S′1)

(r) of S′1 for any sufficiently large r ∈ Z+.
Note that if s1, . . . , sr ∈ S′1, then

si t1P ∈ πP2(R) (1 ≤ i ≤ r)

and hence
s1 . . . sr t

r
1P

r
∈ πPr+1(R).

Therefore
t t r1P

r
∈ πPr+1(R) for t ∈ F1.

Taking r of the form r ≡ 1 (mod e(pd − 1)) we get some integer r1 ∈ Z+ such that

t t r1Pp
r1 ∈ πPer1+2(R).

Therefore, if t ∈ F1, there is z ∈ O such that

pr1(tt r1P + zP
2) ∈ R.

Since r1 < C(p, d) it follows from (A.101) and (A.102) that

πp(tt
r
1P + zP

2) = πp(tt1P + zP2) ∈ πp(R).

Hence F1t1P ⊂ πP2(R) and from the definition of S1 and F1 we therefore obtain

πP2(R) = F0 + F1t1P.

If S1 = {0}, put t1 = 0 and F1 = Fp. Continuing the process, we obtain elements
t1, . . . , te−1 ∈ Fpd and subfields F0, F1, . . . , Fe−1 of Fpd such that

πp(R) = F0 + F1t1P + · · · + Fe−1te−1Pe−1. (A.105)

Let Fi be the largest subfield among F0, . . . , Fe−1; ti 6= 0. Since tiFiP i ⊂ πp(R), we
have

tei Fip
i
⊂ πP(e−1)i+e (R),

and again from (A.101) and (A.102), (A.6) implies

tei Fi ⊂ πP (R) = F0.
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Hence Fi = F0, t
e
i ∈ F0. Also, if tj 6= 0 it follows from (A.105) that F0Fj tjPj ⊂ πp(R),

implying Fj = F0. Hence we may specify (A.105) as

πp(R) = F0 + F0t1P + · · · + F0te−1Pe−1, (A.106)

where tj = 0 or tej ∈ F0.
Set

I = {0 ≤ i < e | ti 6= 0} ⊂ Z/eZ.

If i, j ∈ I , then clearly
ti tjP i+j ∈ πPe+min(i,j)(R). (A.107)

Define 0 ≤ k < e by i + j ≡ k (mod e). If i + j = k, (A.107) implies ti tjPk ∈ πp(R)
and hence ti tj ∈ tkF0. If i + j = e + k, then k < min(i, j) and (A.107), (A.101) imply
ti tjPk ∈ πpmck+1(R). In either case

ti tj ∈ tkF0.

In particular, tk 6= 0 and it follows that I is an additive subgroup of Z/eZ. Therefore
(A.106) may be rewritten as

πp(R) = F0 + τβF0 + · · · + τ
e1−1βe1−1F0 (A.108)

for some e1 | e, β = Pe/e1 and some τ ∈ Fpd with τ e1 ∈ F0. Let Qp ⊂ K ′ ⊂ KI be
the subfield of KI of degree [K ′ : Qp] = [F0 : Fp] and let K1 = K

′(τβ) ⊂ KP , hence
[K1 : K ′] = e1. Define

O1 = K1 ∩O, O′ = K ′ ∩O.

Hence by (A.108),
πp(R) = πp(O1). (A.109)

Remark. A subring R of πp(O) is nor necessarily of the form πp(O1) for the integers
in a subfield. Taking K = Q(p1/4) and R = Fp + p1/2Fp + p3/4Fp ⊂ πp(O) gives an
example. Thus to conclude (A.109) we used (A.101) where N is sufficiently large.

Returning to the analysis of R, define

M = max{m ∈ Z+ | πpm(R) ⊂ πpm(O1)}.

We claim that
M ≥ N − 1. (A.110)

Note that if 0 ⊂ R is a set of representatives of πp(R) then all elements in the set
0 + p0 + · · · + pm−10 ⊂ R are distinct modpm. Therefore

|πpm(R)| ≥ |πp(R)|
m.

Conversely, from assumption (A.101) we get

|πpm(R)| = |πp(R)|
m for m ≤ N. (A.111)
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Since |πpm(O1)| = |πp(O1)|
m
= |πp(R)|

m, it follows from (A.6) and (A.111) that

πpM (R) = πpM (O1). (A.112)

Assume (A.110) fails, thus
N ≥ M + 2. (A.113)

If (A.113) holds, (A.111) implies

|πpM+1(R)| = |πp(R)|
M+1
= |πpn+1(O1)|,

and since we assume πpM+1(R) * πpM+1(O1), also

πpM+1(O1) * πpn+1(R). (A.114)

Next, let y ∈ O1 be such that

πp(y) ∈ πp(O′)∗ = F ∗0 . (A.115)

Hence πp(yr) = 1, r = |F0| − 1 and so

yr = 1+ pz′ for some z′ ∈ O1. (A.116)

Since 1 ∈ R and πpM (z
′) ∈ πpM (R), it follows that

πpM+1(y
r) ∈ πpM+1(R). (A.117)

Also, from (A.112), πpM (y) ∈ πpM (R), hence there is some z ∈ O such that

y + pMz = x ∈ R. (A.118)

Taking the r-th power of (A.118) we get clearly

πp2M (y
r
+ ryr−1zpM) ∈ πp2M (R),

and recalling (A.117),
πpM+1(ry

r−1zpM) ∈ πpM+1(R). (A.119)

From (A.101) and assumption (A.113), (A.119) implies

πp(ry
r−1z) ∈ πp(R).

Since πp(y) ∈ πp(R), also

πp(rz)
(A.116)
= πp(ry

rz) ∈ πp(R).

Finally, since (r, p) = 1, we conclude that

πp(z) ∈ πp(R).
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Recalling (A.118), we have proved that

πpM+1(y) ∈ πpM+1(R) if y ∈ O1 satisfies (A.115). (A.120)

Given y ∈ O1, we may write

y = y0 + βy1 with y0 ∈ O′, πp(y0) 6= 0 if y0 6= 0, and y1 ∈ O1. (A.121)

In particular, y0 satisfies (A.115) if y0 6= 0, and πpM+1(y0) ∈ πpM+1(R) by (A.120). Since
πpM (y1) ∈ πpM (R), there is an element x1 ∈ R such that πpM (x1 − y1) = 0 and hence

πpMβ(y − βx1) ∈ πpMβ(R). (A.122)

Since πpM (β) ∈ πpM (R) there is z ∈ O such that

β + pMz ∈ R, (A.123)

and therefore, taking the e1-th power, πp2M (p + e1β
e1−1pMz) ∈ πp2M (R) or

πp2M (β
e1−1pMz) ∈ πp2M (R). (A.124)

From (A.101) and since N > M , (A.124) implies

πp(β
e1−1z) ∈ πp(R) = πp(O1).

Therefore there is w ∈ O such that βe1−1z + pw ∈ O1, implying that also z + βw ∈
K1 ∩O = O1 and πβ(z) ∈ πβ(R). Substitution in (A.123) shows that

β + pMβz′ ∈ R for some z′ ∈ O. (A.125)

Taking the e1-th power of (A.125) it follows that p(1+ pMz′)e1 ∈ R and

πp2M (e1p
M+1z′) ∈ πp2M (R). (A.126)

Since (A.101) also holds for n = M + 1, (A.126) implies

πp(z
′) ∈ πp(R).

Let x′ ∈ R and z′′ ∈ O be such that

z′ = x′ + pz′′

and substitute in (A.125) to get

β(1+ pMx′ + pM+1z′′) ∈ R. (A.127)

Finally, multiplying both sides of (A.127) by 1− pMx′ ∈ R gives β(1+ pM+1z′′′) ∈ R

for some z′′′ ∈ O and
πpM+1(β) ∈ πpM+1(R). (A.128)



Expansion and random walks in SLd (Z/pnZ): II 1101

From (A.122) and (A.128) we obtain

πpMβ(y) ∈ πpMβ(R),

proving that
πpMβ(O1) ⊂ πpMβ(R). (A.129)

Returning to (A.121), it follows from (A.129) that there is an element x2 ∈ R such
that πpMβ(y1 − x2) = 0 and hence, assuming e1 ≥ 2, πpMβ2(y − βx2) ∈ πpMβ2(R). By
(A.128), it follows that πpMβ2(y) ∈ πpMβ2(R) and therefore πpMβ2(O1) ⊂ πpMβ2(R).

Iteration gives πpM+1(O1) ⊂ πpM+1(R), contradicting (A.114).
Therefore we have proved that

M ≥ N − 1

and thus
πpN−1(R) = πpN−1(O1). (A.130)

We now return to the set A ⊂ R satisfying (A.99) and (A.100). Since πp(A) = πp(R),
by (A.101) we have

πpN (R) = πpN (A+ pA+ · · · + p
N−1A).

In case N < C(p, d) this gives

πpN (R) = πpN (Ã)

and hence certainly (A.82).
If N > C(p, d), (A.130) holds, reducing the problem to the integers O1 in a number

field K1. From Corollary A.1 in Section A.1 (see also the remarks at the end of Section
A.1) it follows that

πpN−1(Ã) ⊃ πpN−1(p
kO1) (A.131)

with k = [N/10] say and Ã a suitable sum-product set of A. Thus given y ∈ pkO1 there
exist ã ∈ Ã and z ∈ O such that

y = ã + pN−1z.

We have
πpN (p

N−1z) ∈ πpN (R)+ πpN (p
kO1)

(A.130)
= πpN (R),

hence by (A.101),
πp(z) ∈ πp(R) = πp(A).

Thus there is a ∈ A such that πpN (p
N−1z−pN−1a) = 0, while by (A.131) there is some

a1 ∈ Ã such that πpN (p
N−1
− a1) = 0. Thus

πpN (y) ∈ πpN (Ã− a1a) ∈ πpN (Ã).

Therefore πpN (p
kR) = πpN (p

kO1) ⊂ πpN (Ã), which is (A.82).
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