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Abstract. We study deformations of quaternionic hyperbolic lattices in larger quaternionic hyper-
bolic spaces and prove local rigidity results. On the other hand, surface groups are shown to be
more flexible in quaternionic hyperbolic plane than in complex hyperbolic plane.
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1. Introduction

1.1. 4-dimensional lattices

Lattices in Sp(n, 1), n ≥ 2, when mapped to Sp(m, 1), cannot be deformed. This follows
from K. Corlette’s archimedean superrigidity theorem [5]. What about lattices in Sp(1, 1),
i.e. in 4-dimensional hyberbolic space?

In this note we prove local rigidity of uniform lattices of Sp(1, 1) when mapped to
Sp(2, 1). In complex hyperbolic geometry, such rigidity results were first discovered by
D. Toledo [22]. In [8, 9], W. Goldman and J. Millson gave a local explanation of this
phenomenon. Our main result is an exact quaternionic analogue of theirs.

Start with a uniform lattice 0 in Sp(1, 1). There is an easy manner to deform the em-
bedding ρ0 : 0→ Sp(1, 1)→ Sp(2, 1). Indeed, since Sp(2, 1) contains Sp(1, 1)×Sp(1),
it also contains many copies of Sp(1, 1)×U(1). If H 1(0,R) 6= 0, which happens some-
times (see [17]), the trivial representation 0 → U(1) can be continuously deformed to a
nontrivial representation ρ1. All such representations give rise to actions on quaternionic
hyperbolic plane which stabilize a quaternionic line. Therefore, only deformations which
do not stabilize any quaternionic line should be of interest.

Theorem 1.1. Let 0 ⊂ Sp(1, 1) be a lattice. Embed 0 into Sp(2, 1) as a subgroup which
stabilizes a quaternionic line.
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If 0 is uniform in Sp(1, 1), then every small deformation of 0 in Sp(2, 1) again sta-
bilizes a quaternionic line.

If 0 is not uniform in Sp(1, 1), then every small deformation of 0 in Sp(2, 1) preserv-
ing parabolics again stabilizes a quaternionic line.

Toledo’s theorem inaugurated a series of global rigidity results by A. Domic and
D. Toledo [6], K. Corlette [4], M. Burger, A. Iozzi and A. Wienhard [3]. By global rigid-
ity, we mean the following: a certain characteristic number of representations, known as
Toledo invariant, is maximal if and only if the representation stabilizes a totally geodesic
complex hypersurface. It is highly expected that such a global rigidity should hold in
quaternionic hyperbolic spaces, but we have been unable to prove it. Note that since
Sp(1, 1) = Spin(4, 1)0, there exist uniform lattices in Sp(1, 1) which are isomorphic
to Zariski dense subgroups of Sp(4, 1) (see Section 7).

Question. Let 0 ⊂ Sp(1, 1) be a uniform lattice. Embed 0 into Sp(3, 1). Can one deform
0 to a Zariski dense subgroup?

1.2. 3-dimensional lattices

Uniform lattices in 3-dimensional real hyperbolic space can sometimes be deformed non-
trivially in 4-dimensional real hyperbolic space (see [21, Chapter 6], or [2]). Nevertheless,
when they act on quaternionic plane, all small deformations stabilize a quaternionic line,
although the action on this line can be deformed nontrivially.

Theorem 1.2. Let 0 ⊂ Spin(3, 1)0 be a lattice. Embed Spin(3, 1)0 into Spin(4, 1)0 =
Sp(1, 1) and then into Sp(2, 1) in the obvious manner. This produces a discrete subgroup
of Sp(2, 1) stabilizing a quaternionic line.

If 0 is uniform in Spin(3, 1)0, then every small deformation of 0 in Sp(2, 1) again
stabilizes a quaternionic line.

If 0 is not uniform in Spin(3, 1)0, then every small deformation of 0 preserving
parabolics again stabilizes a quaternionic line.

If the assumption on parabolics is removed, nonuniform lattices in Spin(3, 1)0 can be
deformed within Spin(3, 1)0 (see [21, Chapter 5]).

Question. Let 0 be a nonuniform lattice in Spin(3, 1)0. Map it to Sp(2, 1) via Spin(4, 1)0

= Sp(1, 1). Can one deform 0 to a Zariski dense subgroup?

1.3. 2-dimensional lattices

Uniform lattices in real hyperbolic plane, when mapped to SU(2, 1) using the embedding
SO(2, 1)→ SU(2, 1), can be deformed to discrete Zariski dense subgroups of SU(2, 1).
On the other hand, lattices mapped via SU(1, 1) and SU(2, 1) are more rigid, as shown
by W. Goldman and J. Millson [9]. This fact has been recently extended to higher rank
groups by M. Burger, A. Iozzi and A. Wienhard [3].
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It turns out that this form of rigidity of surface groups does not apply to the group
Sp(2, 1).

Theorem 1.3. Let 0 be the fundamental group of a closed surface of genus > 1.

(1) View 0 as a uniform lattice in SO(2, 1). Map SO(2, 1)→ Sp(2, 1). This gives rise
to a representation into Sp(2, 1) which can be deformed to a discrete Zariski dense
representation.

(2) View 0 as a uniform lattice in SU(1, 1). Map SU(1, 1)→ Sp(1, 1)→ Sp(2, 1). This
gives rise to a representation into Sp(2, 1) fixing a quaternionic line. Then there exist
small deformations which do not stabilize any quaternionic line.

Whereas in the first case, explicit examples of deformations are provided by Thurston’s
bending construction, the existence of Zariski dense deformations in the second case fol-
lows from rather general principles. It would be interesting to visualize some of them.

1.4. Plan of the paper

Section 2 gives a cohomological criterion for non-Zariski dense subgroups to remain
non-Zariski dense after deformation. The necessary cohomology vanishing is obtained in
Section 3. Theorem 1.1 is proved in Section 4, Theorem 1.2 in Section 5. The statements
for nonuniform lattices are proved in Section 6. Section 7 describes how lattices in Lie
subgroups can sometimes be bent to become Zariski dense. The proof of Theorem 1.3 is
completed in Section 8. We end with a remark on non-Zariski dense discrete subgroups
in Section 9.

2. A relative Weil theorem

Let 0 be a finitely generated group, and G be a Lie group with Lie algebra g. The char-
acter variety χ(0,G) is the quotient of the space Hom(0,G) of homomorphisms of 0 to
G by the action of G by postcomposing homomorphisms with inner automorphisms. In
[23], A. Weil shows that a sufficient condition for a homomorphism ρ : 0→ G to define
an isolated point in the character variety is that the first cohomology group H 1(0, gρ)
vanishes. In this section, we state a relative version of Weil’s theorem.

Let H ⊂ G be an algebraic subgroup of G. Let χ(0,H,G) ⊂ χ(0,G) be the set of
conjugacy classes of homomorphisms 0 → G which fall into conjugates of H . In other
words, χ(0,H,G) is the set of G-orbits of elements of Hom(0,H) ⊂ Hom(0,G). If
ρ ∈ Hom(0,H), the representation gρ = ad ◦ ρ on the Lie algebra g of G leaves the
Lie algebra h of H invariant, and thus defines a quotient representation, which we shall
denote by gρ/hρ .

Proposition 2.1. Let H ⊂ G be real Lie groups, with Lie algebras h and g. Let 0 be a
finitely generated group. Let ρ : 0→ H be a homomorphism. Assume thatH 1(0, gρ/hρ)
= 0. Then χ(0,H,G) is a neighborhood of the G-conjugacy class of ρ in χ(0,G). In
other words, homomorphisms 0→ G which are sufficiently close to ρ can be conjugated
into H .
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Proof. Hom(0,G) is topologized as a subset of the space G0 of arbitrary maps 0→ G.
Let 8 : G0 → G0×0 be the map which to a map f : 0 → G associates 8(f ) :
0 × 0→ G defined by

8(f )(γ, γ ′) = f (γ γ ′−1)f (γ )f (γ ′).

In other words, a map f ∈ G0 is a homomorphism if and only if 8(f ) = 1.
Consider the map 9 : G × H0

→ G0 which sends g ∈ G and f : 0 → H to the
map 9(g, f ) : 0→ G defined by

9(g, f )(γ ) = g−1f (γ )g.

We need to prove that the image of 9 contains a neighborhood of ρ in 8−1(1).
The cohomological assumption gives information on the differentials of 8 and 9.

The differential Dρ8 is equal to −d1 where d1 denotes the coboundary C1(0, gρ) →
C2(0, gρ). The differential of 9 at g = e and f = ρ is given by

D(e,ρ)9(v, η) = −d0v + η,

where d0 denotes the coboundary C0(0, gρ) → C1(0, gρ). Since 8(9(g, f ))(γ, γ ′) =
g−18(f )(γ, γ ′)g it follows that for all f ∈ H0 , Dρ8 ◦D(e,ρ)9 = 0. Conversely, if we
assume that H 1(0, gρ/hρ) = 0, then any θ ∈ C1(0, gρ) such that Dρ8(θ) takes values
in the subalgebra h can be written θ = −d0v + η where v ∈ g and η ∈ C1(0, hρ), i.e. θ
belongs to the image of D(e,ρ)9.

Clearly, Hom(0,G) and Hom(0,H) are real analytic varieties. To analyze a neigh-
borhood of ρ in them, it is sufficient to analyze real analytic or even formal curves
t 7→ ρ(t). In coordinates for G (in which H appears as a linear subspace), such a curve
admits a Taylor expansion

ρ(t) =

∞∑
n=0

aj t
j ,

where a0 = ρ and for j ≥ 1, aj ∈ C1(0, gρ) is a 1-cochain. Then 8(ρ(t)) = 1 for all t .
Expanding this as a Taylor series gives

1 = 8(ρ)+Dρ8(a1)t + (Dρ8(a2)+D
2
ρ8(a1, a1))t

2
+ · · · ,

which implies that

Dρ8(a1) = 0, Dρ8(a2)+D
2
ρ8(a1, a1) = 0, . . .

The first equation says that a1 is a cocycle. So is a1 mod h, therefore there exist v ∈ g
and b1 ∈ Z

1(0, hρ) such that a1 = −d0v + b1. Let t 7→ g(t) be an analytic curve in
G with Taylor expansion g(t) = 1 + vt + · · · . Then the Taylor expansion of ρ1(t) =

g(t)−1ρ(t)g(t) takes the form ρ1(t) = 1+ b1t + · · · . In other words, up to conjugating,
we arranged to bring the first term of the expansion of ρ(t) into h.

The second equation now reads Dρ8(a2) + D
2
ρ8(b1, b1) = 0. This implies that

Dρ8(a2) takes its values in h. Therefore there exist v′ ∈ g and b2 ∈ Z
1(0, hρ) such



Local rigidity in quaternionic hyperbolic space 1145

that a2 = −d0v
′
+b2. Conjugating ρ1(t) by an analytic curve inG with Taylor expansion

1+v′t2+· · · kills v′ and replaces a2 with b2 in the expansion of ρ1(t). Inductively, one can
bring all terms of the expansion of ρ(t) into h. The resulting curve belongs to Hom(0,H).
This shows that in a neighborhood of ρ, Hom(0,G) coincides with G−1 Hom(0,H)G.
Passing to the quotient, χ(0,H,G) coincides with χ(0,G) in a neighborhood of the
conjugacy class of ρ. ut

3. A cohomology vanishing result

3.1. Preliminaries

For basic information on quaternionic hyperbolic space and surveys, see [11, 14, 19].
We regard Hn as a right module over H by right multiplication. Viewing H = C ⊕

jC = C2, left multiplication by H gives C-linear endomorphisms of C2. So H∗ =
GL1 H ⊂ GL2 C. Similarly (x1 + iy1 + j (z1 + iw1), . . . , xn + iyn + j (zn + iwn))

is identified with (x1+ iy1, . . . , xn+ iyn; z1+ iw1, . . . , zn+ iwn) so that Hn
= C2n and

GLn H ⊂ GL2n C.
A C-linear map φ : Hn

→ Hn is H-linear exactly when it commutes with j : φ(vj) =
φ(v)j . Then it follows that

GLn H = {A ∈ GL2n C : AJ = J Ā}, where J =

[
0 −In
In 0

]
.

Any element in GLn H can be written as α + jβ where α and β are 2n× 2n complex
matrices. If we write a vector in Hn in the form X + jY where X, Y ∈ Cn, the action of
α + jβ on it is

αX − β̄Y + j (ᾱY + βX).

So a matrix α + jβ in GLn H corresponds to the matrix
[
α −β̄
β ᾱ

]
in GL2n C.

In this paper, we fix a quaternionic Hermitian form 〈 〉 of signature (n, 1) on Hn+1 as

〈v,w〉 =

n∑
i=1

v̄iwi − v̄n+1wn+1.

Then the Lie group Sp(n, 1,H) = Sp(n, 1), which is the set of matrices preserving this
Hermitian form, is

{A ∈ GLn+1 H : A∗J ′A = J ′}, where J ′ =

[
In 0
0 −1

]
.

It is easy to see that its Lie algebra sp(n, 1) is the set of matrices of the form[
Im H Y

X sp(n− 1, 1)

]
,
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where Y +X∗Jn = 0, X, Y ∈ Hn and Jn =
[
In−1 0

0 −1

]
. So we get

sp(n, 1) = Im H⊕Hn
⊕ sp(n− 1, 1).

Note that the adjoint action of the subgroup
[

Sp(1) 0
0 Sp(n−1,1)

]
preserves this decom-

position. The action on the Hn component is the standard action,

Sp(n− 1, 1)Hn Sp(1)−1.

Identifying Hn+1 with C2n+2 as above, it is easy to see that Sp(n, 1,H) is exactly
equal to U(2n, 2)∩Sp(2n+2,C), i.e. to the set of unitary matrices satisfying AJ = J Ā.
Indeed, the symplectic form with respect to the standard basis of C2n+2 is

[ 0 A
−A 0

]
and

A =
[
In 0
0 −1

]
.

We will often complexify real Lie algebras. For any M ∈ gl(2n,C), one can write

M = 1
2 (M − JM̄J )− i

( 1
2 (iM + iJ M̄J )

)
.

So it is easy to see that gl(n,H) = {A ∈ gl(2n,C) : AJ = J Ā} is complexified to
gl(2n,C). It is well known that u(2n, 2)⊗R C = gl(2n+2,C) and sp(2n+2,C)⊗R C =
sp(2n+ 2,C)× sp(2n+ 2,C). From these, we obtain

sp(n, 1)⊗R C = sp(2n+ 2,C).

We are particularly interested in

sp(1, 1)⊗R C = sp(4,C).

The quaternionic hyperbolic n-space H n
H in the unit ball model is{

(x1, . . . , xn)

∣∣∣ xi ∈ H,
∑
|xi |

2 < 1
}
.

It can also be described as a hyperboloid model

{X ∈ Hn+1 : 〈X,X〉 = −1}/∼

where X ∼ Y iff X = Y Sp(1). Then the isometry group of H n
H is P Sp(n, 1) which is a

noncompact real semisimple Lie group.
A point X in the unit ball model can be mapped to [X, 1] in the hyperboloid model.

Then it is easy to see that the subgroup of the form[
Sp(n− 1) 0

0 Sp(1, 1)

]
stabilizes a quaternionic line (0, . . . , 0,H) in the ball model. In fact, we have
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Lemma 3.1. The stabilizer of a quaternionic line {(0,H)} in Sp(2, 1) is of the form[
Sp(1) 0

0 Sp(1, 1)

]
.

Furthermore, a parabolic element in SO(4, 1) = Sp(1, 1) stabilizing the quaternionic
line {(0,H)} is of the form in P Sp(2, 1)Sp(1) 0

0
[

a λ− a

a − λ 2λ− a

]
where a ≥ 1 is a positive real number, λ ∈ Sp(1) with Re λ = 1/a. These elements
constitute the parabolic elements in the center {(t, 0)} of the Heisenberg group. A general
parabolic element fixing a point (0, 1) at infinity and not stabilizing the quaternionic line
{(0,H)} is of the form ∗ x −x

∗ ∗ ∗

∗ ∗ ∗


with x 6= 0. These elements are parabolic elements which do not belong to the center of
the Heisenberg group.

Proof. The quaternionic line {(0,H)} in the hyperboloid model has coordinate (0,H, 1).
To fix this line, it is not difficult to see that the matrix should have the form of A =[
∗ 0 0
∗ ∗ 0
∗ ∗ ∗

]
. Since its inverse J ′A∗J ′ also fixes the quaternionic line, it should have the form

as in the claim.
Now to prove the second claim, note that the matrix should satisfy the equationSp(1) 0 0

0 a b

0 c d

 (0, 1, 1) = λ(0, 1, 1) for λ ∈ Sp(1).

Also it should satisfy A∗J ′A = J ′. From these, we obtain

a + b = λ, c + d = λ, |a|2 − |c|2 = |d|2 − |b|2 = 1, āb − c̄d = 0.

Then we get ā(λ−a)− c̄(λ−c) = 0. So (ā− c̄)λ = |a|2−|c|2 = 1, and we get c = a−λ.
Now we divide A by a since a is nonzero. Note that Aa−1 represents the same element
in P Sp(2, 1). Then we can assume that a is a positive real number, by conjugating A if
necessary. The fact that Re λ = 1/a follows from the other two equations. So the result
follows. In the Heisenberg group {(t, z) | t ∈ Im H, z ∈ H}, the center {(t, 0)} is the
(ideal) boundary of the quaternionic line {(0,H)}. So these parabolic elements stabilizing
the quaternionic line belong to the center. See [12].

To prove the last claim, we just note that A(0, 1, 1) = λ(0, 1, 1) should be satis-
fied. The parabolic elements not stabilizing the quaternionic line {(0,H)} should have
nonzero x by the first case. ut



1148 Inkang Kim, Pierre Pansu

3.2. Raghunathan’s theorem

In this section we collect information concerning finite-dimensional representations of
so(5,C), which will be necessary for our main theorem. The basic theorem we will make
use of is due to M. S. Raghunathan [20].

Theorem 3.2. Let G be a connected semisimple Lie group. Let 0 ⊂ G be a uniform
irreducible lattice and ρ : (0 ⊂ G)→ Aut(E) a simple nontrivial linear representation.
Then H 1(0;E) = 0 except possibly when g = so(n + 1, 1) (resp. g = su(n, 1)) and
the highest weight of ρ is a multiple of the highest weight of the standard representation
of so(n + 1, 1) (resp. of the standard representation of su(n, 1) or of its contragredient
representation).

In this theorem, Raghunathan used Matsushima–Murakami’s result where L2-cohomol-
ogy is applied. We observe that as long as we use L2-cohomology, this theorem still holds
for non–uniform lattices. This issue will be dealt with in Section 6.

3.3. Standard representation of sp(4,C)

In the previous section, we used the symplectic form with respect to the standard basis
of C4

Q =

 0
1 0
0 −1

−1 0
0 1 0

 .
Then the Lie algebra sp(4,C) consists of the complex matrices

[
A B
C D

]
such that

At
[

1 0
0 −1

]
+

[
1 0
0 −1

]
D = 0,

Ct
[
−1 0
0 1

]
+

[
1 0
0 −1

]
C = 0,

B t
[

1 0
0 −1

]
+

[
−1 0
0 1

]
B = 0.

An obvious choice of a Cartan subalgebra h is
x 0
0 y

0

0
−x 0
0 −y

 .
Let L1, L2 ∈ h∗ be defined by L1(x, y) = x, L2(x, y) = y. Then the natural action

of sp(4,C) on C4 has the four standard basis vectors e1, e2, e3, e4 as eigenvectors with
weights L1, L2,−L1,−L2. The highest weight is L1.
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3.4. Representation of so(5,C)

We shall use the isomorphism of sp(4,C) to so(5,C). It arises from the following geo-
metric construction.

Let V = C4 and ω be the symplectic form defined as before. Then

∧2
V ∗ ⊗

∧2
V ∗→ C, α ⊗ β 7→

α ∧ β

ω ∧ ω
,

is a nondegenerate quadratic form P on
∧2

V ∗. Here since both α ∧ β and ω ∧ ω are
4-forms, there is a constant c so that α ∧ β = cω ∧ ω, so the quotient should be under-
stood as such a constant. Take the orthogonal complement W of Cω with respect to this
quadratic form. Any matrix A acts on 2-forms as follows: Aα(v,w) = α(Av,Aw). Then
Sp(4,C) leaves W invariant and acts orthogonally on it. This gives a map from Sp(4,C)
to SO(5,C) = SO(W), which turns out to be an isomorphism.

Next, we relate the choice of Cartan subalgebra for sp(4,C) made in the preceding
paragraph to the standard choice for so(5,C).

We first compute the Lie algebra isomorphism derived from the group isomorphism.
Let z1, z2, z3, z4 be standard coordinates of C4 so that dz1 ∧ dz3 + dz4 ∧ dz2 = ω.

Let
ω6 = ω,

ω5 = dz1 ∧ dz2 + dz3 ∧ dz4,

ω4 = dz1 ∧ dz4 + dz2 ∧ dz3,

ω1 = i(dz1 ∧ dz4 − dz2 ∧ dz3),

ω2 = i(dz1 ∧ dz2 − dz3 ∧ dz4),

ω3 = i(dz1 ∧ dz3 − dz4 ∧ dz2).

This is an orthonormal basis of
∧2

V ∗.
Let At ∈ Sp(4,C) so that A0 = I and d

dt

∣∣
t=0At = X ∈ sp(4,C). Then for 1-forms

α, β, one can figure out the action of X on 2-forms: X(α ⊗ β) = d
dt

∣∣
t=0At (α ⊗ β) =

(Xα)⊗ β + α ⊗ (Xβ). Then

X(α ∧ β) = (Xα) ∧ β + α ∧ (Xβ).

To make computation easier, we choose a basis of W as

v1 =
ω1 + iω4
√

2
, v3 =

ω1 − iω4
√

2
, v2 =

ω2 + iω5
√

2
, v4 =

ω2 − iω5
√

2
, v5 = ω3.

With respect to this basis, the symmetric bilinear form P has P(v1, v3) = 1 = P(v2, v4)

= P(v5, v5) and P(vi, vj ) = 0 for all other pairs. With respect to this P , one can easily
see that a Cartan subalgebra of so(5,C) = so(W ;P) can be chosen as the set of matrices
of the form 

x 0 0 0 0
0 y 0 0 0
0 0 −x 0 0
0 0 0 −y 0
0 0 0 0 0

 .
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Let (x, y, z, w) denote a diagonal matrix in sp(4,C). Then one can easily compute
that

(1, 0,−1, 0)v1 = v1, (1, 0,−1, 0)v3 = −v3,

(1, 0,−1, 0)v2 = v2, (1, 0,−1, 0)v4 = −v4, (1, 0,−1, 0)v5 = 0.

Similarly

(0, 1, 0,−1)v1 = −v1, (0, 1, 0,−1)v3 = v3,

(0, 1, 0,−1)v2 = v2, (0, 1, 0,−1)v4 = −v4, (0, 1, 0,−1)v5 = 0.

So the element
[ 1 0 0 0

0 0 0 0
0 0 −1 0
0 0 0 0

]
in a Cartan subalgebra of sp(4,C) corresponds to an element

in a Cartan subalgebra of so(5,C),

h1 =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0

 .
Similarly 

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 corresponds to h2 =


−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

 .
This representation under the isomorphism to sp(4,C) is different from the standard

representation of so(5,C) on C5 as we will see below.

Lemma 3.3. The highest weight of the standard representation of so(5,C) on C5 is not
a multiple of the highest weight of the representation coming from sp(4,C) on C4.

Proof. With respect to the symmetric bilinear form P as before, a Cartan subalgebra of
so(5,C) is the set of diagonal matrices (x, y,−x,−y, 0) as noted above. Then the stan-
dard representation of so(5,C) on C5 has eigenvectors, the standard basis e1, e2, e3, e4,

e5, with eigenvalues L1, L2,−L1,−L2, 0. This has the highest weight L1.
The standard representation of sp(4,C) on C4 has the highest weight L1 as we saw

in the previous section. Note that the Cartan subalgebra of sp(4,C) is generated by the
diagonal matrices (1, 0,−1, 0) and (0, 1, 0,−1) with dual basis L1 and L2. Then under
the isomorphism from sp(4,C) to so(Cω⊥), these two diagonal matrices are mapped to
the diagonal matrices h1 = (1, 1,−1,−1, 0) and h2 = (−1, 1, 1,−1, 0). Let L′1, L

′

2 be
the images of L1, L2 under this isomorphism. Then in terms of the standard dual basis
L1, L2 of the Cartan subalgebra of so(5,C),

L′1 =
L1 + L2

2
, L′2 =

L2 − L1

2
.
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So the representation coming from the standard representation of sp(4,C) on C4 has
highest weight L1+L2

2 . Actually this is the highest weight of the spin representation. ut

Corollary 3.4. Let 0 ⊂ Sp(1, 1) be a uniform lattice. Then H 1(0,H2) = 0 where H2

denotes the standard representation of Sp(1, 1) restricted to 0.

Proof. View H2 as C4 with Sp(1, 1) acting on it. If we complexify the real Lie algebra
sp(1, 1), we get sp(4,C). Since the standard representation of sp(4,C) on C4 is different
from the standard representation of so(5,C) on C5 with highest weight L1, Theorem 3.2
(Theorem 1 of Raghunathan [20]) applies, and H 1(0,H2) = 0. ut

4. Proof of Theorem 1.1 (uniform case)

Let 0 ⊂ Sp(1, 1) be a uniform lattice. Denote by ρ the embedding 0 → Sp(1, 1) →
Sp(2, 1). Let G = Sp(2, 1), H =

[
Sp(1) 0

0 Sp(1,1)

]
⊂ G. As was seen in Section 3.1, the

adjoint representation of G restricted to H splits as a direct sum sp(2, 1) = sp(1) ⊕
H2
⊕ sp(1, 1), thus g/h = H2, restricted to Sp(1, 1), is the standard representation of

Sp(1, 1). Corollary 3.4 asserts that H 1(0,H2) vanishes. Therefore H 1(0, gρ/hρ) = 0.
According to Proposition 2.1, this implies that homomorphisms 0→ Sp(2, 1) which are
close enough to ρ can be conjugated into H , i.e. leave a quaternionic line invariant.

Since the subgroup of the formSp(1) 0 0
0 I 0
0 0 Sp(1, 1)


stabilizes a quaternionic line (0, . . . , 0,H) in the ball model, we obtain

Corollary 4.1. Let 0 ⊂ Sp(1, 1) be a uniform lattice. Embed 0 into Sp(n, 1) as a sub-
group which stabilizes a quaternionic line. Then every small deformation of 0 in Sp(n, 1)
stabilizes a quaternionic line.

5. 3-manifold case

In this section, we prove Theorem 1.2 for uniform 3-dimensional hyperbolic lattices. Let
0 ⊂ Spin(3, 1)0 be a uniform lattice. According to Proposition 2.1, local deformations of
the standard representation ρ0 : 0→ Spin(3, 1)0 → Spin(4, 1)0 = Sp(1, 1)→ Sp(2, 1)
which do not stabilize a quaternionic line are encoded inH 1(0,H2). We want to show that
this first cohomology is zero. The complexified Lie algebra of SO(3, 1) is so(4,C). In the
notations of Section 3, the symmetric bilinear form P has a basis v1, v2, v3, v4 such that
P(v1, v3) = P(v2, v4) = 1 and P(vi, vj ) = 0 for all other pairs. The Cartan subalgebra
of so(4,C) is the set of diagonal matrices (x, y,−x,−y). Then as in Lemma 3.3, the
standard representation of so(4,C) on C4 has a character which is not a multiple of the
character of the representation coming from so(4,C) ⊂ sp(4,C). Then by Raghunathan’s
Theorem 3.2, H 1(0,H2) = 0. Proposition 2.1 ensures that neighboring homomorphisms
0→ Sp(2, 1) stabilize a quaternionic line.
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6. Nonuniform lattices

We used Raghunathan’s theorem [20] to prove our main theorem when 0 is a uniform
lattice. In this section we discuss how it generalizes, with restrictions, to nonuniform
lattices.

The key point is whether Matsushima–Murakami’s vanishing theorem that Raghu-
nathan used still holds in the nonuniform case. To apply Matsushima–Murakami’s theo-
rem, one has to use L2-cohomology.

Recall that under the subgroup
[

Sp(1) 0
0 Sp(1,1)

]
, the adjoint representation of Sp(2, 1)

splits as a direct sum sp(2, 1) = sp(1)⊕H2
⊕sp(1, 1). Let ρ denote the representation of

Sp(1, 1) corresponding to the H2 summand. LetM = H 4
R/0 be a finite volume manifold.

View 0 as a subgroup of Sp(1, 1), and denote by ρ0 the restriction of ρ to 0. Let E be the
associated flat bundle over M with fiber H2. It is well known that

H 1(0, ρ0) = H
1
dR(M,E)

where H 1
dR(M,E) is the de Rham cohomology of smooth E-valued differential forms

over M . We will denote this de Rham cohomology by H 1(M,E).
In Matsushima–Murakami’s proof, specific metrics on fibers of E, depending on base

points, are used. More precisely, fix a maximal compact subgroup K of Sp(1, 1). Let
sp(1, 1) = t ⊕ p be the corresponding Cartan decomposition. Fix a positive definite
metric 〈 , 〉F on H2 so that ρ(K) is unitary and ρ(p) is hermitian symmetric. Then, for
two elements v, w in the fiber over a point g ∈ G, one defines

〈v,w〉 = 〈ρ(g)−1v, ρ(g)−1w〉F .

Here is a concrete construction of such a metric on H2. As before, H1,1
= H2 is equipped

with the signature (1, 1) metric

Q = |q1|
2
− |q2|

2.

Then for each negative H-line L in H1,1, there exists a positive definite H-Hermitian
metric defined by −Q|L ⊕ Q|L⊥ where L⊥ is the orthogonal complement of L with
respect to Q.

A unit speed ray in H 4
R = H 1

H in terms of H1,1 coordinates can be written as lt =
{q1 = δtq2} where δt = (et − 1)/(et + 1), 0 ≤ t ≤ ∞. Note that here we normalize
the metric so that its sectional curvature is −1. This can be easily computed considering
a unit speed ray r(t) in a ball model emanating from the origin, and r(t) corresponds to
the point (r(t), 1) in the hyperboloid model.

Now we want to know how the metric varies along lt as t → ∞. Let v = (v1, v2)

∈ H1,1. It is easy to see that

bt =

(
1√

1− δ2
t

,
δt√

1− δ2
t

)
, at =

(
δt√

1− δ2
t

,
1√

1− δ2
t

)
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are unit vectors on l⊥t , lt respectively. Then the lt component and l⊥t component of v are
respectively (

δtv2 + δ
2
t v1

1− δ2
t

,
v2 + δtv1

1− δ2
t

)
,

(
δtv2 + v1

1− δ2
t

,
δ2
t v2 + δtv1

1− δ2
t

)
.

Hence it is easy to calculate the square of the length of v on lt , which is

1+ δ2
t

1− δ2
t

[|v1|
2
+|v2|

2]+2
δt

1− δ2
t

(v1v2+v2v1) =
2δt

1− δ2
t

|v1+v2|
2
+

1− δt
1+ δt

(|v1|
2
+|v2|

2).

In conclusion, the square of the length of v grows like et |v|2 along the ray lt in general.
But for v1 + v2 = 0, it grows like e−t |v|2 along the ray. This is the case when the
deformation consists in parabolic elements fixing a point (0, 1) (in the ball model) and
not stabilizing the quaternionic line {(0,H)}. See Lemma 3.1. These estimates will be
used below.

LetM = M≥ε ∪M≤η be the thick-thin decomposition ofM so that η > ε andM≤η is
a standard cusp part of M . Assume for simplicity that the cuspidal part is connected. It is
well known thatM≤η is homeomorphic to T ×R+ with ds2

= e−2rds2
T +dr

2 where T is
a flat closed 3-manifold, r denotes distance from T × {0}, and M≥ε ∩M≤η is T × [0, 1].

Let π : T × R+→ T be the projection on the first factor. Since H k(T ) = H k(M≤η)

via π∗, we want to deduce that L2H k(M≤η) = H k(T ), to show that H k(M≤η) =

L2H k(M≤η). Let α be a k-form on T . Then |π∗α| ∼ er/2|α|ekr where r is the distance
from the boundary of the thin part. Here er/2 comes from the fiber metric and ekr comes
from the base metric. Then

‖π∗α‖2
L2 =

∫
|α|2e2kr+re−3r dsT dr ≤ ‖α‖

2
L2(T )

× C <∞

if 2k + 1 < 3. So the pull-back form π∗α is always an L2-form on M≤η if α is a 0-form.
So we have obtained

Lemma 6.1. For a finite volume real 4-dimensional hyperbolic manifold M ,

H 0(M≤η, E) = L
2H 0(M≤η, E).

Proof. For any α ∈ H ∗(T ,E) = H ∗(M≤η, E), its pull-back π∗α is an L2-form on M≤η
for ∗ = 0 as noted above. So any element in H 0(M≤η, E) has an L2-representative. ut

Unfortunately, we cannot conclude that H 1(M,E) = L2H 1(M,E). This hinders a gen-
eralization of our theorem to nonuniform lattices. Our generalization involves a restriction
on the representation.

Proposition 6.2. LetM be a finite volume hyperbolic 3-manifold such thatM = H 3
R/0.

Then all small deformations of 0 ⊂ SO(3, 1) ⊂ Sp(1, 1) preserving parabolicity still sta-
bilize a quaternionic line. The same thing holds for a finite volume hyperbolic 4-manifold.
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Proof. We give a proof only in dimension 3, since the 4-dimensional case can be obtained
by the same method. Since M has finite volume, its boundary consists of tori Ti . Let
ρ0 : π1(M)→ Spin(3, 1)0 ⊂ Sp(1, 1) ⊂ Sp(2, 1) be a natural representation.

If ρt (π1(∂M)) is parabolic for all small t , then by Lemma 3.1, it can contribute to
the H2 summand of sp(2, 1). But in this case, it can be represented by an L2-form. The
argument goes briefly as follows.

Let ρt : π1(M) → Sp(2, 1) be a one-parameter family of deformations so that
ρt (π1(∂M)) is all parabolic. Let N be the ε-thick part of M . Then ∂N consists of tori
and the universal cover of it in H 3

R are horospheres. Fix a component of ˜∂N which is
a horosphere H corresponding to a component T of ∂N . Conjugating ρt by gt which
depends smoothly on t if necessary, we may assume that ρt (π1(T )) leaves invariant a
common horosphere H ′ in H 2

H. Such a choice of gt is possible by the following argu-
ment. Let a be an element in π1(T ) such that all ρt (a) are parabolic. The subset P of
Sp(2, 1) consisting of the parabolic elements is a smooth manifold at ρ0(a), and the map
from P to ∂H 2

H associating to each element in P its unique fixed point is smooth in a
neighborhood of ρ0(a).

We may assume thatH ′ is based at (0, 1) (in the ball model). Then by Lemma 3.1, the
contribution of this deformation to the H2 summand is contained in the subset {(x, y) |
x + y = 0} ⊂ H2. This will help us out.

Let ω be a differential form representing the infinitesimal deformation d
dt
ρt on this

cusp. Since ρt (π1(T )) fixes (0, 1), ω takes its values in the subalgebra s ⊂ sp(2, 1) of
Killing fields on H 2

H which vanish at (0, 1) and which are tangent to the horospheres
centered at (0, 1). Therefore the norm of vectors of s decays along a geodesic pointing to
(0, 1), with rate controlled by the maximal sectional curvature (in our case, which is the
direction away from a quaternionic line, −1/4). In our situation, we are only concerned
with the subspace {(v1, v2) | v1 + v2 = 0} ⊂ H2. So along the ray the squared norm
decays like e−r |v|2 asymptotically.

Then integrating along a geodesic ray, we see that the 1-form ω defined on the cusp
is in L2 on the cusp. In more detail, let the cusp be T × [0,∞) with coordinates (x, y, r),
and the metric ds2

= e−2rds2
T + dr

2. Then the volume form on this cusp is e−2rdST dr .
Note that we take a metric on H 3

R whose sectional curvature is −1. Then along [0,∞),
the orthonormal basis is

{
er ∂
∂x
, er ∂

∂y
, ∂
∂r

}
. Then at (x, y, r), the norm of ω is∣∣∣∣ω(er ∂∂x

)∣∣∣∣2 + ∣∣∣∣ω(er ∂∂y
)∣∣∣∣2

since ω(∂/∂r) = 0. So∫
T×[0,∞)

‖ω‖2 dVol =
∫
∞

0
e−re2re−2r

∫
T

‖ωT ‖
2 dST dr <∞

where e−r comes from the norm decay on {(v1, v2) | v1 + v2 = 0}, and e2r comes
from the decay of the metric on H 3

R along the ray (one should take an orthonormal basis
{er ∂

∂x
, er ∂

∂y
, ∂
∂r
} along the ray).
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We do this for each cusp of M . Let ωi be a 1-form which is an L2-representative of
the deformation d

dt
ρt on the i-th cusp of M . Let α be a global 1-form representing the

deformation d
dt
ρt . Then

ωi = α + dφi

where φi is a function defined on the i-th cusp. Let φ be the union of the φi , and ξ be a
smooth function so that ξ = 1 on cusps and 0 outside cusps. Let

ω′ = α + d(ξφ) = α + φdξ + ξdφ.

Then on each cusp, ω′ = α + dφi = ωi . Thus ω′ is in L2 and [ω′] = [α].
Now again we can use Matsushima–Murakami’s result for this case. See [15, 16] for

a similar argument in complex hyperbolic space.
So we have proved the theorem. ut

We wonder whether the theorem holds without the assumption of preserving parabolicity.

7. Bending representations

Let G be an algebraic group. The Zariski closure of a subgroup H of G(R) is denoted
by H̄ .

Let X be a compact orientable hyperbolic n-manifold which splits into two submani-
folds with totally geodesic boundary V andW , exchanged by an involution that fixes their
common boundary. Such manifolds exist in all dimensions [17]. Then 0 = π1(X) splits
as an amalgamated sum 0 = A ?C B where A = π1(V ), B = π1(W) and C = π1(∂V ).
Here, Ā = B̄ = PO(n, 1)0 and C̄ = PO(n− 1, 1)0.

Now embed PO(n, 1)0 into a larger group G. Let c belong to the centralizer ZG(C).
Consider the subgroup 0c = A?C cBc−1. When c is chosen along a curve in ZG(C), one
obtains a special case of W. Thurston’s bending deformation [21, Chapter 6]. In this sec-
tion, we analyze the Zariski closure of 0c in caseG = P Sp(m, 1) is the isometry group of
m-dimensional quaternionic hyperbolic space, m ≥ n and PO(n, 1)0 → P Sp(n, 1) →
P Sp(m, 1) in the obvious manner.

7.1. The first bending step

We find it convenient to use a geometric language, and establish a dictionary between
subgroups of G = P Sp(m, 1) and totally geodesic subspaces of X = Hm

H .

Lemma 7.1. The subgroup of G that leaves Y = H n
R ⊂ X invariant is the normalizer of

H = PO(n, 1)0 in G.

Proof. If aHa−1
= H , then a maps the orbit Y of H to itself. Conversely, Y is the only

orbit of H in X which is totally geodesic. If a ∈ G normalizes H , then a maps Y to
itself. ut
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Second, let us determine the space of available parameters for bending, i.e. elements
which commute with C.

Lemma 7.2. Let m ≥ n ≥ 2. Let L = PO(n − 1, 1)0 ⊂ PO(n, 1)0 ⊂ P Sp(n, 1) ⊂
P Sp(m, 1) = G. Let C ⊂ L be a Zariski dense subgroup. Then the centralizer ZG(C)
consists of isometries which fix P = H n−1

R pointwise. As a matrix group, ZG(C) =
Sp(m− n+ 1)Sp(1).

Proof. Clearly, ZG(C) = ZG(L). We know that L stabilizes the totally geodesic sub-
space P = H n−1

R of the symmetric space X = Hm
H of G. If a ∈ G centralizes L, then

a normalizes it, thus it maps P to itself, by Lemma 7.1. Furthermore, the restriction of
a to P belongs to the center of Isom(P ) = L, thus is trivial. In other words, a fixes
each point of P . Conversely, isometries of X which fix every point of P centralize L
and thus C. Indeed, L is generated by geodesic symmetries with respect to points of P ,
and these commute with isometries fixing P . To get the matrix expression of ZG(C),
view X as a subset of quaternionic projective m-space. Then for every vector y ∈ Rn,
extended with zero entries to give a vector in Rm+1, there exists a quaternion q(y) such
that a(y) = yq(y). This implies that a lifted as a matrix in Sp(m, 1) is block diagonal,

a =

[
qIn 0
0 D

]
,

with blocks of sizes n and m − n + 1 respectively, q ∈ Sp(1) and D ∈ Sp(m − n + 1).
This product group maps to a subgroup of P Sp(m, 1) which is traditionally denoted by
Sp(m− n+ 1)Sp(1). ut

The dictionary continues with a correspondence between Zariski closures in simple
groups and totally geodesic hulls in symmetric spaces.

Lemma 7.3. Let Y1, . . . , Yk be totally geodesic subspaces of a symmetric space X. Then
Isom(Yj ) naturally embeds into G = Isom(X). Furthermore, the Zariski closure of⋃
j Isom(Yj ) equals Isom(Z) where Z is the smallest totally geodesic subspace of X

containing
⋃
j Yj .

Proof. For x ∈ X, let ιx denote the geodesic symmetry through x. Since X is symmetric,
ιx is an isometry. Such involutions generate Isom(X). If Y ⊂ X is totally geodesic,
then Y is invariant under all ιy , y ∈ Y . Therefore Y is again a symmetric space, with
isometry group generated by the restrictions to Y of the ιy . In particular, the subgroup of
G generated by the ιy , y ∈ Y , is isomorphic to Isom(Y ).

If γ is a geodesic joining points x ∈ Yi and y ∈ Yj , then ιx and ιy leave γ invariant.
Their restrictions to γ generate an infinite dyadic group. The Zariski closure of this group
contains all ιz where z ∈ γ . Therefore the Zariski closure of Isom(Yi)∪Isom(Yj ) contains
ιz for all z belonging to the union of all geodesics intersecting both Yi and Yj . Since
the totally geodesic closure Z is obtained by iterating this operation, one concludes that
the Zariski closure of

⋃
j Isom(Yj ) contains Isom(Z). Conversely, since Isom(Z) is an

algebraic subgroup in G, it is contained in the Zariski closure. ut
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Lemma 7.4. Let Y = H n
R ⊂ H

n
H = X. Let Z be a totally geodesic subspace of X such

that Y ( Z ( X. Assume that Z contains a(Y ) where a ∈ G fixes pointwise a hyperplane
P of Y but does not leave Y invariant. Then there is an isometry of X fixing Y pointwise
and mapping Z to H n

C.

Proof. View the restriction of TX to Y as a vector bundle with connection ∇ on Y . Then
T Z|Y is a parallel subbundle, therefore, for y ∈ Y , TyZ is invariant under the holonomy
representation Hol(∇, y), which we now describe.

View Y as a sheet of the hyperboloid in Rn+1. Then a point y represents a unit vector,
still denoted by y, in Rn+1. View X as a subset of quaternionic projective space. Then
the point y also represents the quaternionic line Hy it generates. Such lines form the
tautological quaternionic line bundle τ over X, a subbundle of the trivial bundle Hn+1

equipped with the orthogonally projected connection. As a connected vector bundle,
TX = HomH(τ, τ⊥). When restricted to Y , τ comes with the parallel section y. There-
fore TX|Y = τ⊥ = T Y ⊗H. In other words, TX|Y splits as a direct sum of four parallel
subbundles, each of which is isomorphic to T Y . It follows that Hol(∇, y) is the direct
sum of four copies of the holonomy of the tangent connection, which is the full special
orthogonal group SO(n). One of these copies is TyY , the other are its images under an
orthonormal basis (I, J,K) of imaginary quaternions acting on the right.

Let us show that Z contains a copy of H n
C. Let a ∈ G fix a hyperplane P ⊂ Y

pointwise. According to Lemma 7.2, Fix(P ) = Sp(1)Sp(1), so a is given by two unit
quaternions q and d . Pick an origin y ∈ P . Let u ∈ TyY be a unit vector orthogonal to P .
On TyX = TyY ⊗ H, a acts by the identity on TyP and maps u to duq−1. Since u is a
real vector, a(u) = udq−1

∈ TyY ⊕ (TyY )i where i = Im(dq−1). Up to conjugating by
an element of the Sp(1) subgroup of G that fixes Y pointwise, one can assume that i is
proportional to I , i.e. TyZ contains uI . By assumption, uI /∈ TyY . By SO(n)-invariance,
TyZ contains TyY ⊕ (TyY )I = TyH n

C, therefore Z contains Y ′ = H n
C.

Now T Z|Y ′ is a parallel subbundle of TX|Y ′ , thus TyZ isU(n)-invariant. UnderU(n),
TyX splits into only two summands. Since Z 6= X, TyZ = TyY ′, i.e. Z = Y ′. ut

Along the way, we proved the following.

Lemma 7.5. Let Y ′ = H n
C ⊂ H n

H = X. Let Z be a totally geodesic subspace of X
containing Y ′. Then either Z = X or Z = Y ′.

Corollary 7.6. After bending in P Sp(n, 1), a Zariski dense subgroup of PO(n, 1)0 be-
comes Zariski dense in a conjugate of PU(n, 1).

Proof. Let 0 = A ?C B be Zariski dense in PO(n, 1)0, with C being Zariski dense in
PO(n − 1, 1)0. In other words, 0 leaves Y = H n

R invariant, and C leaves P = H n−1
R

invariant. Lemma 7.2 allows us to select an a ∈ ZG(C) which does not map Y to itself.
Lemma 7.4 shows that the smallest totally geodesic subspace of X = H n

H containing Y
and a(Y ) is congruent toH n

C. According to Lemma 7.3, this means that the bent subgroup
A ?C aBa

−1 is Zariski dense in a conjugate of PU(n, 1). ut

Therefore, to obtain a Zariski dense subgroup in P Sp(m, 1), m ≥ n, one must bend
several times.
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7.2. Further bending steps

We shall use compact hyperbolic manifolds which contain several disjoint separating to-
tally geodesic hypersurfaces. Again, such manifolds exist in all dimensions (see [17]).
In low dimensions, a vast majority of known examples of compact hyperbolic mani-
folds have this property (they fall into infinitely many distinct commensurability classes,
see [1]). Given such a manifold, bending can be performed several times in a row. The
next lemmas show that at each step, the Zariski closure strictly increases.

Lemma 7.7. Let X′ = H n
H. Let Z be a totally geodesic subspace of X = Hm

H such that
X′ ( Z ( X. Then Z is a quaternionic subspace. Furthermore, there exists an a ∈ G
fixing X′ pointwise which does not map Z into itself.

Proof. Otherwise, Z would be Sp(m− n)-invariant. In particular, for x ∈ X′, TxZ would
be Sp(m − n)-invariant. Since Sp(m − n) acts irreducibly on (TxX′)⊥, Z must be equal
to X′ or X, a contradiction. As Z is a negatively curved symmetric space containing H n

H,
n ≥ 2, it is a quaternionic subspace. ut

Proposition 7.8. Let M be a compact hyperbolic n-manifold. Let m ≥ n. Assume that
M contains N disjoint separating totally geodesic hypersurfaces. Let 0 = π1(M) ⊂

PO(n, 1)0 → P Sp(m, 1). If N ≥ m− n+ 2, then 0 can be continuously deformed to a
Zariski dense subgroup of P Sp(m, 1).

Proof. According to Corollary 7.6, a first bending in PU(n, 1) provides us with a Zariski
dense subgroup of PU(n, 1).

A second bending in P Sp(n, 1) gives a Zariski dense subgroup of P Sp(n, 1). Indeed,
the fixator of H n−1

R is an Sp(1)Sp(1) which contains an element a which does not map
H n

C to itself. By Lemma 7.5, no proper totally geodesic subspace ofH n
H contains bothH n

C
and a(H n

C). Lemma 7.3 implies that the bent subgroup is Zariski dense.
A third series of bendings gives a Zariski dense subgroup of P Sp(m, 1). Lemma 7.7

allows us to inductively select a parameter a which strictly increases the dimension of the
totally geodesic hull. After at most m − n more steps, the subgroup obtained is Zariski
dense, thanks to Lemma 7.3. ut

7.3. Bending along laminations

Since we need to bend surfaces of genus as low as 2, which do not admit pairs of disjoint
separating closed geodesics, we describe W. Thurston’s general construction of bending
along totally geodesic laminations, which does not require the leaves to be separating. We
stick to the special case of totally real, totally geodesic 2-planes of H 2

H.
Let Y = H 2

R ⊂ H 2
H = X. If ` ⊂ Y is a geodesic, the subgroup Fix(`) of Isom(X)

that fixes ` pointwise is conjugate to Sp(1)Sp(1). The Lie algebras of these subgroups
form an Im H⊕ Im H-bundle B over the space L of geodesics in Y . Pick once and for all
an arbitrary Borel trivialization of this bundle. A lamination on Y is a closed subset of L



Local rigidity in quaternionic hyperbolic space 1159

consisting of pairwise nonintersecting geodesics. A measured lamination on Y is the data
of a lamination λ and a transverse Im H⊕Im H-valued measure. By a transverse measure,
we mean the data, for each continuous curve c : [a, b]→ Y which crosses all geodesics
of λ in the same direction, of a finite Borel Im H ⊕ Im H-valued measure µc on [a, b],
with the following compatibility: if a curve c′ : [a, b] → Y can be deformed to c by
sliding along λ, then µc′ = µc. A discrete collection of geodesics, with an Im H⊕ Im H-
valued Dirac mass at each geodesic, is a simple example of a measured lamination. Since
only such laminations will ultimately be used, we shall not discuss nondiscrete measured
laminations further.

The Lie algebra bundle B is a subbundle of the trivial bundle with fiber the Lie algebra
sp(2, 1). Therefore, for every transversal curve c, the measure µc can be pushed forward
to yield an sp(2, 1)-valued measure on [a, b]. This measure integrates into a continuous
map [a, b]→ Sp(2, 1) (see for example [7]). We denote the resulting element of Sp(2, 1)
by
∫
µc. If c = c1c2 is obtained by traversing a first curve c1 and then a second curve c2,

then the Chasles rule
∫
µc1c2 = (

∫
µc1)(

∫
µc2) holds, which allows one to extend the

definition to curves which are piecewise transversal. Define a map f : Y → X as follows.
Pick an origin o ∈ Y . Given y ∈ Y , join o to y with a piecewise transversal curve cy and
set f (y) = (

∫
µcy )y. One checks that f (y) does not depend on the choice of piecewise

transversal curve.
For instance, in the case of a discrete lamination, f is piecewise isometric and totally

geodesic away from the support of λ. At each geodesic ` of the lamination, f bends, i.e.
the totally geodesic pieces of the surface f (Y ) at either side of ` meet at a Fix(`)-angle
equal to exp(µ(`)). The general case is best understood by considering limits of discrete
measured laminations.

Let ρ : 0 → Sp(2, 1) be an isometric action of a group 0 which leaves Y and
the measured lamination invariant. Then, for every piecewise transversal curve c, and
γ ∈ 0,

∫
µρ(γ )(c) = ρ(γ )(

∫
µc)ρ(γ )

−1. For γ ∈ 0, let ρλ(γ ) = (
∫
µcγ )ρ(γ ), where

cγ is a piecewise transversal curve joining o to ρ(γ )o. Then ρλ : 0 → Sp(2, 1) is a
homomorphism which stabilizes f (Y ), and f is equivariant. Indeed, let c1 (resp. c2) be a
piecewise transversal curve joining o to ρ(γ1)o (resp. to ρ(γ2)o). Then c1ρ(γ1)(c2) joins
o to ρ(γ1γ2)o and

ρλ(γ1γ2) =

(∫
µc1ρ(γ1)(c2)

)
ρ(γ1γ2) =

(∫
µc1

)(∫
µρ(γ1)(c2)

)
ρ(γ1γ2)

=

(∫
µc1

)
ρ(γ1)

(∫
µc2

)
ρ(γ−1

1 )ρ(γ1γ2) = ρλ(γ1)ρλ(γ2).

If y ∈ Y and γ ∈ 0, let cy (resp. cγ ) be a piecewise transversal curve joining o to y (resp.
to ρ(γ )o). Then cγ ρ(γ )(cy) joins o to ρ(γ )y, thus

f (ρ(γ )y) =

(∫
µcγ ρ(γ )(cy )

)
ρ(γ )y =

(∫
µcγ

)(∫
µρ(γ )(cy )

)
ρ(γ )y

=

(∫
µcγ

)
ρ(γ )

(∫
µcy

)
ρ(γ )−1ρ(γ )y = ρλ(γ )f (y).
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Proposition 7.9. Let 6 be a closed hyperbolic surface with fundamental group 0. Map
0 → SO(2, 1) → Sp(2, 1). There exist measured laminations λ on 6 which make the
bent group ρλ(0) Zariski dense in Sp(2, 1).

Proof. As a lamination, take the lifts to Y = 6̃ of two disjoint closed geodesics in 6.
A transversal measure in this case is simply the data of elements aj ∈ Fix( j̀ ) for two
lifts `1, `2. Note that the components of the complement of the two geodesics in 6 are
not simply connected. In other words, each component of the complement of the support
of the lifted lamination on Y is stabilized by a subgroup of 0 which is Zariski dense in
SO(2, 1). It follows that the Zariski closure of ρλ(0) contains SO(2, 1). It also contains
the conjugates of SO(2, 1) by the two isometries a1 and a2.

According to Lemma 7.3, the Zariski closure of ρλ(0) contains the isometry group
of the totally geodesic hull Z of Y ∪ a1(Y ) ∪ a2(Y ). As in the proof of Proposition 7.8,
bending by a1 gives a group which is Zariski dense in a conjugate of PU(2, 1), bending
by a1 and a2 gives a group which is Zariski dense in P Sp(2, 1). ut

8. Flexibility of Fuchsian surface groups

In this section, we investigate homomorphisms of a surface group into Sp(2, 1) in a
neighborhood of the embedding via SU(1, 1) and Sp(1, 1). We shall call them Fuch-
sian, to distinguish them from the bendable homomorphisms arising from the embedding
via SO(2, 1).

8.1. Second order calculations

Let S be a compact Riemann surface with genus > 1 and ρ0 : π1(S) = 0 ⊂ SU(1, 1)→
Sp(1, 1) ⊂ Sp(2, 1) be a standard representation fixing a quaternionic line in H 2

H. Since
H 1(π1(S),H2) 6= 0, Proposition 2.1 does not apply. We have to investigate which in-
finitesimal deformations represented by elements in H 1(π1(S), sp(2, 1)) are integrable.

The second order integrability condition for infinitesimal deformations at φ of repre-
sentations of a group 0 in a Lie group G can be expressed in terms of the cup-product, a
symmetric bilinear map

[·, ·] : H 1(0, gAdφ)→ H 2(0, gAdφ).

For u ∈ Z1(0, gAdφ),

[u, u](α, β) = [u(α),Adφ(α)u(β)].

It is well known [18] that for a representation φ from 0 to a reductive group G, if
there exists a smooth path φt in Hom(0,G) which is tangent to u ∈ Z1(0, gAdφ), then
[u, u] = 0. According to Theorem 3 in [8], for surface groups, this necessary condition is
also sufficient.
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Theorem 8.1 (W. Goldman). Let S be a closed surface, and let G be a reductive group.
Let φ : π1(S)→ G be a representation such that the Zariski closure of φ(π1(S)) is also
reductive. Then for any u ∈ Z1(π1(S), gAdφ), [u, u] = 0 if and only if there exists an
analytic path t 7→ φt in Hom(π1(S),G) which is tangent to u.

8.2. Splitting of the cup-product map

The centralizer of SU(1, 1) in Sp(2, 1) is Sp(1)×U(1), where Sp(1) is the centralizer of
Sp(1, 1) and U(1) ⊂ Sp(1, 1) is the centralizer of SU(1, 1) in Sp(1, 1). Then by Poincaré
duality,

H 2(π1(S), sp(2, 1)) = H 0(π1(S), sp(2, 1)) = sp(1)⊕ u(1).

Let u ∈ H 1(π1(S), sp(2, 1)) split as u = usp(1) + usp(1,1) + uH2 . Since sp(1, 1)
and sp(1) commute, [usp(1), usp(1,1)] = 0. Since the subspace H2

⊂ sp(2, 1) is Sp(1) ×
Sp(1, 1)-invariant, [usp(1), uH2 ] and [usp(1,1), uH2 ] belong toH 2(π1(S),H2) = 0. There-
fore

[u, u] = [usp(1), usp(1)]+ [usp(1,1), usp(1,1)]+ [uH2 , uH2 ].

As both sp(1) and sp(1, 1) are subalgebras, [usp(1), usp(1)] belongs to H 2(π1(S), sp(1))
= sp(1), and [usp(1,1), usp(1,1)] to H 2(π1(S), sp(1, 1)) = u(1). On the other hand,
[uH2 , uH2 ] has nontrivial components [uH2 , uH2 ]u(1) and [uH2 , uH2 ]sp(1) on both
H 2(π1(S), sp(1, 1)) and H 2(π1(S), sp(1)).

8.3. Homomorphisms to Sp(1)

In the special case of the trivial representation to Sp(1), the cup-product map can be
computed.

Lemma 8.2. Let S be a closed surface. Let π1(S) act trivially on sp(1). The quadratic
map H 1(π1(S), sp(1))→ H 2(π1(S), sp(1)), u 7→ [u, u], is onto.

Proof. Here, H 1(π1(S), sp(1)) ' H 1(π1(S),R) ⊗ sp(1)). If a, b ∈ H 1(π1(S),R) and
q, q ′ ∈ sp(1), then

[a ⊗ q, b ⊗ q ′] = a ^ b ⊗ [q, q ′].

For every q ′′ ∈ sp(1), there exist q, q ′ ∈ sp(1) such that [q, q ′] = q ′′. Poincaré duality
implies that there exist a, b ∈ H 1(π1(S),R) such that a ^ b 6= 0. Therefore the cup-
product map is onto. ut
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8.4. Homomorphisms to Sp(1, 1)

A similar statement applies to H 1(π1(S), sp(1, 1)).

Lemma 8.3. Let S be a closed hyperbolic surface. View π1(S) as a subgroup of SU(1, 1)
⊂ Sp(1, 1). The quadratic map H 1(π1(S), sp(1, 1)) → H 2(π1(S), sp(1, 1)) = u(1),
u 7→ [u, u], is onto.

Proof. sp(1, 1) consists of quaternionic 2×2 matrices
(
a b
b̄ d

)
with a, d imaginary quater-

nions. The complex matrices in sp(1, 1) form the subalgebra u(1, 1) = su(1, 1) ⊕ u(1),
where u(1) consists of complex imaginary multiples of the unit matrix. As a U(1, 1)-
invariant projection sp(1, 1)→ u(1) = R, we can use the linear form

πu(1)

(
a b

b̄ d

)
=

1
2

Re e(i(a + d)).

Let W denote the set of matrices of the form j
(
z w
−w t

)
, where z,w, t ∈ C. Then W is a

U(1, 1)-invariant complement of u(1, 1) in sp(1, 1). Given two elements X = j
(
z w
−w t

)
and X′ = j

(
z′ w′

−w′ t ′

)
in W , one computes

πu(1)([X,X′]) = − Im(z̄z′ + t̄ t ′ − 2w̄w′).

This is a symplectic structure on W (viewed as a real vector space). From Poincaré
duality for local coefficient systems, it follows that the quadratic form πu(1)([·, ·]) on
H 1(π1(S),W) is nondegenerate. In particular, it is onto. A fortiori, the quadratic form
[·, ·] on H 1(π1(S), sp(1, 1)) is onto. ut

8.5. Flexibility of certain Fuchsian surface groups

A surface group in SU(n, 1) is Fuchsian if it stabilizes a complex line in complex hyper-
bolic space. Let us extend the terminology. Say a surface group in Sp(n, 1) is Fuchsian
if it stabilizes a complex line in quaternionic hyperbolic space. Note that every complex
line is contained in a unique quaternionic line.

It is well known that Fuchsian groups in SU(2, 1) (or, more generally, SU(n, 1))
cannot be deformed to Zariski dense groups. We show that when SU(2, 1) is embedded
in the larger group Sp(2, 1), this rigidity property fails. We make essential use of the main
result of [8].

Proposition 8.4. Let S be a compact Riemann surface with genus > 1 and ρ0 : π1(S) =

0 ⊂ SU(1, 1) → Sp(1, 1) ⊂ Sp(2, 1) be a standard representation fixing a quater-
nionic line in H 2

H. Then there exist local deformations of ρ0 which do not stabilize any
quaternionic line.
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Proof. Let u ∈ H 1(π1(S),H2) be nonzero. According to Lemmas 8.2 and 8.3, there
exist v ∈ H 1(π1(S), sp(1)) and w ∈ H 1(π1(S), sp(1, 1)) such that [v, v] = −[u, u]sp(1)
and [w,w] = −[u, u]u(1). Then x = u+ v + w ∈ H 1(π1(S), g) is nonzero and satisfies
[x, x] = 0. According to Goldman’s Theorem 8.1, there exists an analytic curve t 7→ ρt in
Hom(π1(S),G), starting at ρ0, whose initial speed is a representative of the cohomology
class x. Since x /∈ H 1(π1(S), sp(1)⊕ sp(1, 1)), for t 6= 0 small, ρt cannot be conjugated
to the subgroup Sp(1, 1)Sp(1), i.e., does not stabilize any quaternionic line. ut

Proof of Theorem 1.3. Proposition 8.4 is statement (2) of Theorem 1.3. Statement (1)
of Theorem 1.3 is a consequence of the bending construction. For surfaces of sufficiently
high genus, one can apply Proposition 7.8. In low genus, one has to bend along a geodesic
lamination (see Proposition 7.9). ut

9. Discrete representations

Proposition 9.1. Let 0 be a uniform lattice in Sp(1, 1). Let ρ : 0 → Sp(2, 1) be a
discrete and faithful homomorphism. Then either

• ρ is standard, i.e. it stabilizes a quaternionic line, or
• the image is Zariski dense.

Proof. Suppose ρ(0) is not Zariski dense. Then it cannot be contained in a parabolic
subgroup of Sp(2, 1) since 0 is not solvable. So it must stabilize a totally geodesic sub-
space of H 2

H (see [13]). If it stabilizes a quaternionic line, it is a standard representation,
by Mostow rigidity. Suppose it stabilizes H 2

C. Then H 2
C/ρ(0) is a manifold. If it is not

closed, the cohomological dimension of 0 cannot be 4, which contradicts 0 being a uni-
form lattice in Sp(1, 1). So H 2

C/ρ(0) is a closed manifold, which implies that H 2
C and

H 4
R are quasi-isometric, which is impossible, again by a result of G. D. Mostow. ut

We suspect that there is no Zariski dense discrete faithful group ρ(0).
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