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Abstract. A quantitative version of the sharp Sobolev inequality in W1,p(Rn), 1 < p < n, is
established with a remainder term involving the distance from the family of extremals.

1. Introduction and main result

A sharp form of the standard Sobolev inequality in Rn, n ≥ 2, tells us that if 1 < p < n

and p∗ = np/(n− p), then

S(p, n)‖f ‖Lp∗ (Rn) ≤ ‖∇f ‖Lp(Rn) (1.1)

for every function f from the homogeneous Sobolev space W 1,p(Rn) of functions f ∈
Lp
∗

(Rn) such that ∇f ∈ Lp(Rn). Here

S(p, n) =
√
π n1/p

(
n− p

p − 1

)(p−1)/p(
0(n/p)0(1+ n− n/p)

0(1+ n/2)0(n)

)1/n

is the best possible constant in (1.1), and ‖∇f ‖Lp(Rn) stands for the Lp(Rn) norm of
the length |∇f | of the gradient ([Au, Ta]). A family of extremals in (1.1) is given by the
functions ga,b,x0 : Rn→ [0,∞) defined as

ga,b,x0(x) =
a

(1+ b|x − x0|p
′
)(n−p)/p

for x ∈ Rn (1.2)

for some a 6= 0, b > 0, x0 ∈ Rn. Here, p′ = p/(p − 1), the Hölder conjugate of p.
In fact, as pointed out by the recent contribution [CNV], functions having the form (1.2)
are the only ones attaining equality in (1.1) for every p ∈ (1, n). Incidentally, note that,
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when p = 2, the classical result of [GNN], applied to the Euler equation of the functional
‖∇f ‖L2(Rn)/‖f ‖L2? (Rn), can alternatively be used to derive this characterization of the
extremals in (1.1).

The objective of the present paper is to strengthen inequality (1.1) by an additional
term on the left-hand side which accounts for the deviation of f from extremals. More
precisely, we establish a quantitative version of inequality (1.1), with a remainder term
depending on the (normalized) distance of f from the family of extremals (1.2) given by

λ(f ) = inf
a,b,x0

{
‖f − ga,b,x0‖

p∗

Lp
∗
(Rn)

‖f ‖
p∗

Lp
∗
(Rn)

: ‖ga,b,x0‖Lp
∗
(Rn) = ‖f ‖Lp∗ (Rn)

}
(1.3)

if f 6= 0, and λ(0) = 0.

Theorem 1. Let n ≥ 2 and let 1 < p < n. Then there exist positive constants α and κ ,
depending only on p and n, such that

S(p, n)‖f ‖Lp∗ (Rn)(1+ κλ(f )
α) ≤ ‖∇f ‖Lp(Rn) (1.4)

for every f ∈ W 1,p(Rn).

In analogy with the terminology of [Fu, Ha, HHW, FMP1, FMP2], we will refer to λ(f )
as the asymmetry of f . Notice that one could alternatively consider the quantity defined
as

d(f ) = inf
a, b, x0

‖f − ga,b,x0‖Lp
∗
(Rn)

‖f ‖Lp∗ (Rn)

if f 6= 0, and d(0) = 0. It is obvious that d(f ) ≤ λ(f )1/p
∗

; on the other hand, one can
check that λ(f )1/p

∗

≤ 2d(f ). Therefore, inequality (1.4) is equivalent to

S(p, n)‖f ‖Lp∗ (Rn)(1+ κd(f )
θ ) ≤ ‖∇f ‖Lp(Rn) (1.5)

with θ = p∗α, up to changing the value of κ .
Inequality (1.5) gives a positive answer to a question raised by Brezis and Lieb in

[BL], which has been settled in [BE] in the special case when p = 2 in the even stronger
form with ‖f − ga,b,x0‖L2? (Rn) replaced by ‖∇f −∇ga,b,x0‖L2(Rn) in (1.3). The method
of [BE] heavily rests upon the Hilbert space structure of W 1,2(Rn) and on the eigenvalue
properties of a weighted Laplacian in Rn. Such an approach, which has been employed to
deal with other related problems involving Sobolev spaces endowed with a Hilbert space
structure ([Lo, BWW]), does not seem suitable for extensions to the general case where
p 6= 2. Following the lines traced in [Au] and [Ta], we have instead to resort to cer-
tain methods of geometric flavor, exploiting such tools as isoperimetric inequalities and
symmetrizations. Developments of these results led to quantitative forms of isoperimetric
([Fu, Ha, FMP1]), isocapacitary ([HHW, FMP3]) and Sobolev inequalities ([Ci1, FMP2,
Ci2]) in the spirit of (1.4).

To be more specific, the proof of Theorem 1 basically consists of three steps, each
step amounting to an extension of inequality (1.4) to a broader class of functions. After
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starting with spherically symmetric functions, we proceed with n-symmetric functions,
i.e. functions which are symmetric about n orthogonal hyperplanes, and we eventually
conclude with arbitrary Sobolev functions. This strategy can be clarified by the following
considerations.

The operation of spherically symmetric rearrangement, which associates with any
nonnegative function f ∈ W 1,p(Rn) the spherically symmetric equidistributed function
f ? ∈ W 1,p(Rn) (see (3.2)), satisfies

‖f ?‖Lp∗ (Rn) = ‖f ‖Lp∗ (Rn)

and
‖∇f ?‖Lp(Rn) ≤ ‖∇f ‖Lp(Rn) (1.6)

([BZ, Ka, Ta]). As a consequence,

‖∇f ?‖Lp(Rn) − S(p, n)‖f
?
‖Lp(Rn) ≤ ‖∇f ‖Lp(Rn) − S(p, n)‖f ‖Lp∗ (Rn) (1.7)

and
‖∇f ‖Lp(Rn) − ‖∇f

?
‖Lp(Rn) ≤ ‖∇f ‖Lp(Rn) − S(p, n)‖f ‖Lp∗ (Rn) (1.8)

for every f ∈ W 1,p(Rn). In view of (1.7) and (1.8), the underlying idea in the proof
of inequality (1.4) is to split the problem: first, establishing the inequality in the class
of spherically symmetric functions; second, estimating the Lp

∗

distance of f from (a
suitable translate of) f ? in terms of ‖∇f ‖Lp(Rn) − ‖∇f ?‖Lp(Rn).

Even in the special class of spherically symmetric functions, the derivation of (1.4) is
not straightforward. Actually, standard proofs of the one-dimensional Bliss inequality, to
which (1.1) reduces when restricted to spherically symmetric functions, do not seem suit-
able for modifications yielding stability results. A more flexible approach to the relevant
one-dimensional inequality, which can be successfully extended to provide a quantita-
tive version, follows instead on specializing a mass transportation technique employed
in [CNV] (see also [LYZ]). The resulting estimate, whose proof also requires a sharp ver-
sion of a trace Sobolev inequality from [MV], is contained in Theorem 2, and settles the
first of the two steps outlined above.

Major problems arise in the attempt at estimating the asymmetry of f in terms of
the left-hand side of (1.8). Indeed, this is just impossible, without additional assump-
tions on f , as demonstrated by simple examples where ‖∇f ‖Lp(Rn) almost agrees with
‖∇f ?‖Lp(Rn), without f being close to any translate of f ?. The presence of plateaus in
the graph of f , or more generally, of large sets where |∇f ?| is small, is responsible for
this phenomenon (see e.g. [BZ, CF2]). A key observation to overcome this obstacle is that
a bound for the distance of f from f ? via ‖∇f ‖Lp(Rn)−‖∇f ?‖Lp(Rn) can be restored if
f is already known to enjoy certain partial symmetry properties. It is at this stage that the
class of n-symmetric functions comes into play. Indeed, on the one hand, the distance of
f from f ? can actually be estimated by ‖∇f ‖Lp(Rn) − ‖∇f ?‖Lp(Rn) if f is a priori as-
sumed to be n-symmetric (Theorem 3), thus enabling us to establish (1.4) in this class of
functions (Corollary 4). On the other hand, any function f ∈ W 1,p(Rn) can be replaced,
through a careful construction exploiting reflection arguments, by a suitable n-symmetric
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function in such a way that ‖∇f ‖Lp(Rn) − S(p, n)‖f ‖Lp∗ (Rn) and λ(f ) do not increase
and decrease, respectively, too much (Theorem 6). This fact, combined with the former
step, easily leads to the conclusion of Theorem 1. Let us emphasize that the reduction
to n-symmetric functions, although related to a similar construction employed in [FMP1,
FMP2], entails the overcoming of serious new obstacles in the present setting, mainly due
to the nonlinear growth of the functional ‖∇f ‖p

Lp(Rn).
We conclude this section by noting that, in view of the results of [BE] and [FMP2],

the question arises of the optimal exponent α in equality (1.4). Furthermore, the result
of [BE] also leaves open the problem of whether the distance of f from the family of
extremals in Lp

∗

(Rn) can be replaced by the distance in W 1,p(Rn) in Theorem 1.

2. A quantitative Bliss inequality

In the present section, Theorem 1 will be established in the special class of spherically
symmetric functions. Notice that the Sobolev inequality (1.1), restricted to this class of
functions, is equivalent to the one-dimensional Bliss inequality

S(p, n)

(
nωn

∫
∞

0
u(r)p

∗

rn−1 dr

)1/p∗

≤

(
nωn

∫
∞

0
(−u′(r))prn−1 dr

)1/p

(2.1)

for every decreasing, locally absolutely continuous function u : [0,∞)→ [0,∞), where
ωn is the measure of the unit ball in Rn. The extremals in (2.1) have the form

va,b(r) =
a

(1+ brp′)(n−p)/p
for r ≥ 0, (2.2)

for some a > 0, b > 0 ([Bl, CNV, LYZ, Ta]). Thus, on setting, with a slight abuse of
notation,

λ(u) = inf
{∫∞

0 |u(r)− va,b(r)|
p∗rn−1 dr∫

∞

0 u(r)p
∗
rn−1 dr

:∫
∞

0
va,b(r)

p∗rn−1 dr =

∫
∞

0
u(r)p

∗

rn−1 dr, a, b > 0
}
,

Theorem 1 for spherically symmetric functions is equivalent to the following quantitative
Bliss inequality.

Theorem 2. Let n ≥ 2 and let 1 < p < n. Then there exist constants β and κ such that

S(p, n)

(
nωn

∫
∞

0
u(r)p

∗

rn−1 dr

)1/p∗

(1+ κλ(u)β)

≤

(
nωn

∫
∞

0
(−u′(r))prn−1 dr

)1/p

(2.3)

for every decreasing, locally absolutely continuous function u : [0,∞)→ [0,∞).
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In the proof of Theorem 2, we shall make use of the notation

δ(u) =
(nωn

∫
∞

0 (−u′(r))prn−1 dr)1/p

S(p, n)(nωn
∫
∞

0 u(r)p
∗
rn−1 dr)1/p

∗
− 1, (2.4)

so that (2.3) can be rewritten as

λ(u) ≤ Cδ(u)1/β , (2.5)

where C = κ−1/β .

Proof of Theorem 2. Approximation, rescaling and normalization arguments allow us to
assume that u is continuously differentiable, with support equal to [0, 1], and that

nωn

∫
∞

0
u(r)p

∗

rn−1 dr = 1.

Moreover, for the time being, we assume that

δ(u) ≤ ε(p, n) (2.6)

for some positive constant ε(p, n) < 1, to be chosen later. Let us set

v(r) = va,1(r) for r > 0,

where a is such that

nωn

∫
∞

0
v(r)p

∗

rn−1 dr = 1. (2.7)

Owing to (2.6) and (2.7), the equation∫ r

0
u(s)p

∗

sn−1 ds =

∫ T (r)

0
v(s)p

∗

sn−1 ds (2.8)

implicitly defines a strictly increasing function T : [0, 1) → [0,∞) such that T ∈
C1(0, 1), T (0) = 0, limr→1− T (r) = ∞, and

u(r)p
∗

= v(T (r))p
∗

M(r)n−1T ′(r) for r ∈ (0, 1), (2.9)

where M : (0, 1)→ (0,∞) is given by

M(r) =
T (r)

r
for r ∈ (0, 1).

In particular, equation (2.9) entails that∫ 1

0
h(T (r))u(r)p

∗

rn−1 dr =

∫
∞

0
h(r)v(r)p

∗

rn−1 dr (2.10)

for every Borel function h : [0,∞)→ [0,∞]. In the terminology of the theory of mass
transportation, by which the present proof is inspired, the function T can be regarded as
a transport map carrying the density u(r)p

∗

rn−1 into v(r)p
∗

rn−1.
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Notice that when T (r) = kr for some k > 0, one has u(r) = k(n−p)/pv(kr), that
is, u is an extremal function in the Bliss inequality (2.1). Thus, our plan is to show that,
if δ(u) is small, then an interval [r1, r2] ⊆ [0, 1] can be chosen in such a way that T (r)
is close to some linear function kr for r ∈ [r1, r2], and simultaneously the integral of
u(r)p

∗

rn−1 outside [r1, r2] is small. These facts will enable us to conclude that u is close
to k(n−p)/pv(kr) in Lp

∗

(rn−1 dr).
For ease of presentation, we accomplish the proof in several steps.

Step I. Mass transportation proof of Bliss inequality. We begin by giving a proof of the
Bliss inequality relying on the mass transportation approach of [CNV] (see also [LYZ]).
Set p] = p(n − 1)/(n − p), the optimal exponent in the trace inequality in Rn. Owing
to (2.10) and (2.9) we have∫
∞

0
v(r)p

]

rn−1 dr =

∫
∞

0
v(r)−p

∗/nv(r)p
∗

rn−1 dr =

∫ 1

0
v(T (r))−p

∗/nu(r)p
∗

rn−1 dr

=

∫ 1

0

(
M(r)n−1T ′(r)

u(r)p
∗

)1/n

u(r)p
∗

rn−1 dr

=

∫ 1

0
M(r)1/n

′

T ′(r)1/nu(r)p
]

rn−1 dr. (2.11)

By Young’s inequality,∫ 1

0
M(r)1/n

′

T ′(r)1/nu(r)p
]

rn−1 dr ≤
1
n

∫ 1

0
(T ′(r)+ (n− 1)M(r))u(r)p

]

rn−1 dr

=
1
n

∫ 1

0
(rn−1T (r))′u(r)p

]

dr

=
p]

n

∫ 1

0
T (r)(−u′(r))u(r)p

]
−1rn−1 dr. (2.12)

The last equality can be justified as follows. By Hölder’s inequality and (2.10),

∫ 1

0
T (r)(−u′(r))u(r)p

]
−1rn−1 dr

≤

(∫ 1

0
(−u′(r))prn−1 dr

)1/p(∫ 1

0
T (r)p

′

u(r)p
∗

rn−1 dr

)1/p′

=

(∫ 1

0
(−u′(r))prn−1 dr

)1/p(∫ ∞
0

v(r)p
∗

rp
′
+n−1 dr

)1/p′

. (2.13)

In particular, ∫ 1

0
T (r)(−u′(r))u(r)p

]
−1rn−1 dr <∞. (2.14)
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Since u is bounded, an integration by parts yields∫ R

0
(rn−1T (r))′u(r)p

]

dr = Rn−1T (R)u(R)p
]

+ p]
∫ R

0
T (r)(−u′(r))u(r)p

]
−1rn−1 dr (2.15)

for 0 < R < 1. Observe now that, since u(1) = 0,∫ 1

R

T (r)(−u′(r))u(r)p
]
−1rn−1 dr ≥ T (R)Rn−1

∫ 1

R

−u′(r)u(r)p
]
−1 dr

=
T (R)Rn−1u(R)p

]

p]
.

Hence by (2.14) it follows that T (R)u(R)p
]
→ 0 as R → 1, so that the last equality

in (2.12) follows on passing to the limit in (2.15).
Now, define ζ : [0,∞)→ [0,∞) as

ζ(t) = t + (n− 1)− nt1/n for t ≥ 0,

and set

C0 = p
]

(∫
∞

0
v(r)p

∗

rp
′
+n−1 dr

)1/p′

,

a constant depending only on p and n. Formulas (2.11)–(2.13) entail that∫ 1

0
ζ

(
T ′(r)

M(r)

)
M(r)u(r)p

]

rn−1 dr ≤ C0

(∫ 1

0
(−u′(r))prn−1 dr

)1/p

− n

∫
∞

0
vp

]

rn−1 dr. (2.16)

One can easily verify that

C0

(∫
∞

0
(−v′(r))prn−1 dr

)1/p

= n

∫
∞

0
vp

]

rn−1 dr.

Consequently, recalling (2.7), a direct calculation shows that

n

∫
∞

0
v(r)p

]

rn−1 dr =
C0S(p, n)

(nωn)1/p

In conclusion, (2.16) tells us that∫ 1

0
ζ

(
T ′(r)

M(r)

)
M(r)u(r)p

]

rn−1 dr ≤
C0S(p, n)

(nωn)1/p
δ(u) (2.17)

for every u as in the statement. Notice that if δ(u) = 0 then (2.17) gives T ′(r)/M(r) = 1
for all r ∈ (0, 1); hence T (r) = kr and as observed above this implies that u is as in (2.2).
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This observation was a crucial point in [CNV]. In our case, instead, we have to extract a
quantitative information from (2.17) by proving that if δ(u) is small then T (r) is close to
a suitable linear function of r .

Step II. A lower bound for u(r)p
]
rn−1. We now prove a bound for u(r)p

]
rn−1 from

below in a suitable subinterval of (0, 1), and we combine it with (2.9) to derive an integral
estimate on such intervals involving T and T ′. A key ingredient here is a trace inequality
from [MV, Theorem 1.3], which, in the one-dimensional case, tells us that(

nωn

∫ r

0
u(s)p

∗

sn−1 ds

)p/p∗
≤

nωn

S(p, n)p

∫ r

0
(−u′(s))psn−1 ds + C1(u(r)

p]rn−1)p/p
]

(2.18)

and(
nωn

∫ 1

r

u(s)p
∗

sn−1 ds

)p/p∗
≤

nωn

S(p, n)p

∫ 1

r

(−u′(s))psn−1 ds + C1(u(r)
p]rn−1)p/p

]

(2.19)

for every 0 < r < 1, for some constant C1 > 0. Set

γ (r) = nωn

∫ r

0
u(s)p

∗

sn−1 ds for r ∈ [0, 1].

Adding up inequalities (2.18) and (2.19) implies that

γ (r)p/p
∗

+ (1− γ (r))p/p
∗

≤ (1+ δ(u))p + 2C1(u(r)
p]rn−1)p/p

]

≤ 1+ C2δ(u)+ 2C1(u(r)
p]rn−1)p/p

]

(2.20)

for some positive constant C2. Notice that the second inequality holds owing to (2.6). On
setting

ψ(t) = tp/p
∗

+ (1− t)p/p
∗

− 1 for t ∈ [0, 1],

inequality (2.20) reads

(ψ(γ (r))− C2δ(u))
p]/p
≤ C3u(r)

p]rn−1 for r ∈ [0, 1], (2.21)

with C3 = (2C1)
p]/p. It is easily seen that there exists a positive constant C4 such that, if

0 < ε < 1/C4, then

ψ(t) ≥ 3ε for t ∈ [(4ε)p
∗/p, 1− (4ε)p

∗/p]. (2.22)

Hence, given any ε ∈ (0, 1/C4), on denoting by r1 and r2 the positive numbers satisfying

γ (r1) = (4ε)p
∗/p, γ (r2) = 1− (4ε)p

∗/p, (2.23)
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and assuming that
δ(u) ≤ ε/C2, (2.24)

we get
(2ε)p

]/p
≤ C3u(r)

p]rn−1 for r ∈ [r1, r2]. (2.25)

On the other hand, owing to (2.22) and (2.24), inequality (2.21) entails that

(ψ(γ (r))/2)p
]/p
≤ C3u(r)

p]rn−1 for r ∈ [r1, r2]. (2.26)

Since γ ′(r) = nωnu(r)p
∗

rn−1 for r > 0, we infer from (2.26) and (2.9) that

C5
γ ′(r)

ψ(γ (r))p
]/p
≥ u(r)p

∗
−p]
= u(r)p

∗/n

= v(T (r))p
∗/nM(r)1/n

′

T ′(r)1/n for every r ∈ [r1, r2],

for some positive constant C5. Hence,∫ r2

r1

v(T (r))p
∗/nM(r)1/n

′

T ′(r)1/n dr ≤ C6 (2.27)

for some constant C6.

Step III. An integral bound for |T ′ −M|. The task of the present step is to provide an
estimate for

∫ r2
r1
|T ′(r)−M(r)| dr . Our starting point is the inequality∫ r2

r1

M(r)ζ

(
T ′(r)

M(r)

)
dr ≤ C7

δ(u)

εp
]/p
, (2.28)

which follows from (2.17) and (2.25) and holds for some positive constant C7. Since
ζ ′(1) = ζ(1) = 0 and ζ ′′(t) = (1/n′)t−2+1/n, a decreasing function, by Taylor’s formula
we have

ζ(t) ≥
1

2n′
min{1, t−2+1/n

}(t − 1)2 for t ≥ 0.

Thus, inequality (2.28) tells us that

2C7n
′
δ(u)

εp
]/p
≥

∫ r2

r1

(T ′(r)−M(r))2

M(r)
min

{
1,
(
M(r)

T ′(r)

)2−1/n}
dr. (2.29)

Define
I = {r ∈ [r1, r2] : T ′(r) ≤ M(r)}, J = [r1, r2] \ I.

By (2.29), Hölder’s inequality and (2.27),

2C7n
′
δ(u)

εp
]/p
≥

∫
J

(T ′(r)−M(r))2

T ′(r)2v(T (r))p
∗/n

v(T (r))p
∗/nT ′(r)1/nM(r)1/n

′

dr

≥
1
C6

(∫
J

|T ′(r)−M(r)|

T ′(r)v(T (r))p
∗/2n v(T (r))

p∗/nT ′(r)1/nM(r)1/n
′

dr

)2

=
1
C6

(∫
J

|T ′(r)−M(r)|v(T (r))p
∗/2n

(
M(r)

T ′(r)

)1/n′

dr

)2

. (2.30)
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From (2.8) we deduce that

ap
∗ T (r)n

n
≥

∫ T (r)

0
v(s)p

∗

sn−1 ds =

∫ r

0
u(s)p

∗

sn−1 ds ≥ u(r)p
∗ rn

n
for r ≥ 0,

whence, by (2.9),

T ′(r)v(T (r))p
∗

≤ ap
∗

M(r) for r ≥ 0. (2.31)

Coupling (2.30) and (2.31) implies that

C8

√
δ(u)

εp
]/p
≥

∫
J

|T ′(r)−M(r)|v(T (r))p
∗(1−1/2n) dr

≥ v(T (r2))
p∗(1−1/2n)

∫
J

|T ′(r)−M(r)| dr. (2.32)

Now, observe that

v(T (r2))
p∗
=

ap
∗

(1+ T (r2)p
′
)n
≥
ap
∗

2n
min

{
1,

1
T (r2)p

′n

}
. (2.33)

Formula (2.23) can be used to deduce that

(4ε)n/(n−p) = nωn

∫ 1

r2

u(s)p
∗

sn−1 ds = nωn

∫
∞

T (r2)
v(s)p

∗

sn−1 ds

= nωna
p∗
∫
∞

T (r2)

sn−1

(1+ sp′)n
ds

≤ nωna
p∗
∫
∞

T (r2)
sn−1−np′ ds = (p − 1)ωnap

∗

T (r2)
−n/(p−1),

whence

T (r2) ≤
C9

ε(p−1)/(n−p) (2.34)

for some constant C9. From (2.33), combined with (2.34), we infer that

v(T (r2))
p∗
≥
ap
∗

εp
∗

2n Cp
′n

9

provided that ε < ε(p, n) for a sufficiently small ε(p, n). From this inequality and (2.32)
one gets ∫

J

|T ′(r)−M(r)| dr ≤ C10

√
δ(u)

εp
]/p+(2−1/n)p∗

. (2.35)
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As far as
∫
I
|T ′(r)−M(r)| dr is concerned, by (2.29) and (2.27) again one has

2C7n
′
δ(u)

εp
]/p
≥

∫
I

(T ′(r)−M(r))2

T ′(r)2v(T (r))p
∗/n

(
T ′(r)

M(r)

)2−1/n

v(T (r))p
∗/nT ′(r)1/nM(r)1/n

′

dr

≥
1
C6

(∫
I

|T ′(r)−M(r)|

(
v(T (r))p

∗

T ′(r)

M(r)

)1/2n

dr

)2

=
1
C6

(∫
I

|T ′(r)−M(r)|

(
u(r)p

∗

rn

T (r)n

)1/2n

dr

)2

. (2.36)

Note that in the last inequality we have made use of (2.9). Inasmuch as T (r) ≤ T (r2) for
r ∈ I , inequalities (2.36), (2.34) and (2.25) ensure that

εp
∗/2n

∫
I

|T ′(r)−M(r)| dr ≤ C11

√
δ(u)/εp

]/p (2.37)

for some positive constant C11. Coupling (2.35) and (2.37) yields∫ r2

r1

|T ′(r)−M(r)| dr ≤ C12
√
δ(u)/εω0 (2.38)

for some positive constant C12 where

ω0 =
p]

p
+

(
2−

1
n

)
p∗.

Step IV. Conclusion. Here, we single out the extremal (2.2) to be used in estimating λ(u).
Set k = M(r2) and define v0 = [0,∞)→ [0,∞) as

v0(r) = k
(n−p)/pv(kr) for r ≥ 0.

Clearly, v0 is an extremal function in the Bliss inequality, still fulfilling
nωn

∫
∞

0 v0(r)
p∗rn−1 dr = 1. Consequently, by (2.23), there exists a constant C13 such

that

λ(u)≤ nωn

∫
∞

0
|u(r)− v0(r)|

p∗rn−1 dr

≤ C13

(
εn/(n−p) +

∫
∞

r2

v0(r)
p∗rn−1 dr +

∫ r1

0
v0(r)

p∗rn−1 dr

+

∫ r2

r1

|u(r)− v0(r)|
p∗rn−1 dr

)
. (2.39)

The point is to estimate the last three integrals. As far as the first one is concerned, owing
to (2.23) one has∫

∞

r2

v0(r)
p∗rn−1 dr = kn

∫
∞

r2

v(kr)p
∗

rn−1 dr =

∫
∞

kr2

v(r)p
∗

rn−1 dr

=

∫
∞

T (r2)
v(r)p

∗

rn−1 dr =
1
nωn
−

∫ r2

0
u(r)p

∗

rn−1 dr =
(4ε)n/(n−p)

nωn
. (2.40)
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Next, we have ∫ r1

0
v0(r)

p∗rn−1 dr =

∫ r1M(r2)

0
v(r)p

∗

rn−1 dr. (2.41)

If M(r1) ≤ M(r2), then

M(r2)r1 = T (r1)+ r1(M(r2)−M(r1)) = T (r1)+ r1

∫ r2

r1

T ′(r)−M(r)

r
dr

≤ T (r1)+

∫ r2

r1

|T ′(r)−M(r)| dr ≤ T (r1)+ C12
√
δ(u)/εω0 , (2.42)

where we have exploited (2.38) in the last inequality. Consequently, (2.41), (2.42) and
(2.23) tell us that∫ r1

0
v0(r)

p∗rn−1 dr ≤ (4ε)p
∗/p
+ ap

∗

∫ T (r1)+C12
√
δ(u)/εω0

T (r1)

rn−1

(1+ rp′)n
dr

≤ C14(ε
p∗/p
+
√
δ(u)/εω0) (2.43)

for some positive constant C14. Inequality (2.43) continues to hold even if M(r2) ≤
M(r1), since M(r2)r1 = T (r1)M(r2)/M(r1), and hence, by (2.41) and (2.23),

nωn

∫ r1

0
v0(r)

p∗rn−1 dr ≤ nωn

∫ T (r1)

0
v(r)p

∗

rn−1 dr = nωn

∫ r1

0
u(r)p

∗

rn−1 dr

= (4ε)p
∗/p.

The estimate for the last integral in (2.39) is the most delicate. Thanks to (2.9),∫ r2

r1

|u(r)− v0(r)|
p∗rn−1 dr =

∫ r2

r1

|u(r)− k(n−p)/pv(kr)|p
∗

rn−1 dr

=

∫ r2

r1

|(v(T (r))p
∗

M(r)n−1T ′(r))1/p
∗

− (knv(kr)p
∗

)1/p
∗

|
p∗rn−1 dr

≤

∫ r2

r1

|v(T (r))p
∗

M(r)n−1T ′(r)− knv(kr)p
∗

|rn−1 dr

≤

∫ r2

r1

v(T (r))p
∗

T (r)n−1
|T ′(r)−M(r)| dr +

∫ r2

r1

v(T (r))p
∗

|M(r)n − kn|rn−1 dr

+ kn
∫ r2

r1

|v(T (r))p
∗

− v(kr)p
∗

|rn−1 dr. (2.44)

Since v(T (r))p
∗

T (r)n−1 is bounded from above in terms of p and n only, one has,
by (2.38), ∫ r2

r1

v(T (r))p
∗

T (r)n−1
|T ′(r)−M(r)| dr ≤ C15

√
δ(u)/εω0 (2.45)
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for some constant C15. The boundedness of v(T (r))p
∗

T (r)n−1 again implies that∫ r2

r1

v(T (r))p
∗

|M(r)n − kn|rn−1 dr ≤ C16

∫ r2

r1

|M(r)n − kn|

M(r)n−1 dr

≤ nC16

∫ r2

r1

|M(r)−M(r2)|
max{M(r)n−1,M(r2)

n−1
}

M(r)n−1 dr (2.46)

for some constant C16. By (2.34),

M(r2)

M(r)
=
T (r2)

T (r)

r

r2
≤
T (r2)

T (r)
≤
T (r2)

T (r1)
≤

C9

ε(p−1)/(n−p)T (r1)
for r ∈ [r1, r2],

and, by (2.23),

(4ε)p
∗/p

nωn
=

∫ T (r1)

0
v(r)p

∗

rn−1 dr = ap
∗

∫ T (r1)

0

rn−1

(1+ rp′)n
dr ≤

ap
∗

n
T (r1)

n,

whence
M(r2)

M(r)
≤

C17

εp/(n−p)
for r ∈ [r1, r2], (2.47)

for some constant C17. Combining (2.46) and (2.47) yields∫ r2

r1

v(T (r))p
∗

|M(r)n − kn|rn−1 dr ≤
C18

εp
]

∫ r2

r1

|M(r)−M(r2)| dr (2.48)

for some constant C18. On the other hand,∫ r2

r1

|M(r)−M(r2)| dr ≤

∫ r2

r1

dr

∫ r2

r

|T ′(t)−M(t)|

t
dt

=

∫ r2

r1

|T ′(t)−M(t)|

t
dt

∫ t

r1

dr ≤

∫ r2

r1

|T ′(t)−M(t)| dt. (2.49)

Thus, thanks to (2.48), (2.49) and (2.38),∫ r2

r1

v(T (r))p
∗

|M(r)n − kn|rn−1 dr ≤ C19

√
δ(u)/εω0+2p] (2.50)

for some constant C19. Finally, since the function vp
∗

is Lipschitz continuous in [0,∞)
(with Lipschitz constant not exceeding np′ap

∗

),

|v(T (r))p
∗

− v(M(r2)r)
p∗
| ≤ np′ap

∗

r|M(r)−M(r2)| for r ≥ 0.

Hence, via (2.34), (2.49) and (2.38), we get∫ r2

r1

|v(T (r))p
∗

− v(kr)p
∗

|knrn−1 dr ≤ np′ap
∗

T (r2)
n

∫ r2

r1

|M(r)−M(r2)| dr

≤
np′ap

∗

Cn9

εn(p−1)/(n−p)

∫ r2

r1

|M(r)−M(r2)| dr ≤
np′ap

∗

Cn9

εn(p−1)/(n−p)

∫ r2

r1

|T ′(r)−M(r)| dr

≤ C20

√
δ(u)/εω0+2p] (2.51)
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for some constant C20. Combining (2.44), (2.45), (2.50) and (2.51) tells us that∫ r2

r1

|u(r)− v0(r)|
p∗rn−1 dr ≤ C21

√
δ(u)/εω1 , (2.52)

where
ω1 = ω0 + 2p].

From (2.39), (2.40), (2.43) and (2.52) we conclude that

λ(u) ≤ C22{ε
n/(n−p)

+
√
δ(u)/εω1}

for some constant C22. The choice

εω1+2n/(n−p)
= δ(u),

which is compatible with (2.24) provided that (2.6) holds for a sufficiently small ε(p, n),
yields

λ(u) ≤ C23δ(u)
ω, (2.53)

where
ω =

n

(n− p)ω1 + 2n
and C23 is a suitable constant. Obviously, inequality (2.53) continues to hold for some
constant even if (2.6) is violated, if δ(u) ≥ ε(p, n). Actually, since λ(u) ≤ 2p

∗

,

δ(u) ≥ ε(p, n) ≥ ε(p, n)2−p
∗/ωλ(u)1/ω.

This proves (2.5) with

β =
1
ω
= 3+ 4p −

3p + 1
n

. (2.54)

ut

3. The case of n-symmetric functions

As recalled in the Introduction, the Pólya–Szegö inequality (1.6) does not enjoy the sta-
bility property which would immediately imply Theorem 1 via the one-dimensional The-
orem 2 and from inequality (1.8). Indeed, although equality trivially holds in (1.6) when-
ever f is spherically symmetric, the sole gap between ‖∇f ‖Lp(Rn) and ‖∇f ?‖Lp(Rn) is
not sufficient to estimate the asymmetry of f measured as a distance (in some integral
norm) of f from a (translate of) f ?. Such a distance, in any Lq norm with 1 ≤ q < p∗,
can actually be estimated if information on the measure of the sets {|∇f ?| < ε} is also
retained, as recently shown in [CEFT]. In fact, this result could be used to prove a weaker
form of Theorem 1, for functions supported in sets of finite measure and with p∗ in def-
inition (1.3) replaced by any smaller exponent. The full version of Theorem 1 requires,
instead, the quantitative Pólya–Szegö principle for n-symmetric functions contained in
Theorem 3 below. We say that a function f : Rn → R is k-symmetric, with 1 ≤ k ≤ n,
if there exist k mutually orthogonal hyperplanes such that f is symmetric with respect to
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each of them. Moreover, if f : Rn→ [0,∞) is any measurable function satisfying

|{x : f (x) > t}| <∞ for t > 0, (3.1)

its spherically symmetric rearrangement f ? : Rn→ [0,∞) is given by

f ?(x) = sup{t ≥ 0 : |{f > t}| > ωn|x|
n
} for x ∈ Rn. (3.2)

Theorem 3. Let n ≥ 2 and let 1 < p < n. Set q = max{p, 2}. Then there exists a
positive constant C such that∫

Rn
|f − f ?|p

∗

≤ C

(∫
Rn
|f |p

∗

)p/n(∫
Rn
|∇f ?|p

)1/q ′(∫
Rn
|∇f |p −

∫
Rn
|∇f ?|p

)1/q

(3.3)

for every nonnegative f ∈ W 1,p(Rn) which is symmetric with respect to the coordinate
hyperplanes.

It is clear that, up to a rigid motion, the inequality of Theorem 3 holds for any n-symmetric
function.

Thanks to inequalities (1.7) and (1.8), a combination of Theorems 2 and 3 easily
yields inequality (1.4) for n-symmetric functions.

Corollary 4. Let n ≥ 2 and let 1 < p < n. Then there exists a constant κ > 0 such
that (1.4) holds for every nonnegative n-symmetric function f ∈ W 1,p(Rn), with α = β,
where β is as in (2.54).

In analogy with (2.4) (and again with a slight abuse of notation), we define

δ(f ) =
‖∇f ‖Lp(Rn)

S(p, n)‖f ‖Lp∗ (Rn)
− 1

for f ∈ W 1,p(Rn). Inequality (1.4) can then be written as

λ(f ) ≤ Cδ(f )1/α,

where C = (1/κ)1/α .

Proof of Corollary 4. We may assume, without loss of generality, that ‖f ‖Lp∗ (Rn) = 1
and f is symmetric with respect to the coordinate hyperplanes; in fact, both δ(f ) and λ(f )
are invariant under rescaling, multiplication by a constant and rigid motions. Suppose, for
the time being, that δ(f ) ≤ 1/S(p, n). Then

S(p, n) ≤ ‖∇f ?‖Lp(Rn) ≤ ‖∇f ‖Lp(Rn) ≤ 1+ S(p, n). (3.4)

We have

λ(f )1/p
∗

≤ λ(f ?)1/p
∗

+ ‖f − f ?‖Lp∗ (Rn)

≤ C((‖∇f ?‖Lp∗ (Rn) − S(p, n))
1/βp∗

+ ‖∇f ?‖
p/q ′p∗

Lp(Rn)(‖∇f ‖
p

Lp(Rn) − ‖∇f
?
‖
p

Lp(Rn))
1/qp∗) (3.5)
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for some constant C, where the first inequality is just a consequence of the triangle in-
equality, and the second one follows from Theorems 2 and 3. Inequalities (3.4) ensure
that

‖∇f ‖
p

Lp(Rn) − ‖∇f
?
‖
p

Lp(Rn) ≤ C(‖∇f ‖Lp(Rn) − ‖∇f
?
‖Lp(Rn)) (3.6)

for some constant C. Combining (3.5), (3.6), (1.7) and (1.8) yields

λ(f )1/p
∗

≤ C(δ(f )1/βp
∗

+ δ(f )1/qp
∗

)

for some constant C. Hence, inequality (1.4) follows with α = β, since β > q by (2.54).
If δ(f ) > 1/S(p, n), the assertion is a straightforward consequence of the inequality
λ(f ) ≤ 2p

∗

. ut

The following estimate for the distance between functions in Lq(Rn) involving the mea-
sure of the symmetric difference of their level sets will be exploited in the proof of Theo-
rem 3.

Lemma 5. Let q ≥ 1. Given any nonnegative functions f, g ∈ Lq(Rn), set

Et = {f > t} 4 {g > t},

where 4 stands for the symmetric difference of sets. Then∫
Rn
|f − g|q ≤ q

∫
∞

0
|Et |t

q−1 dt. (3.7)

Proof. The layer-cake formula and Fubini’s theorem yield∫
Rn
|f − g|q =

∫
Rn
|f (x)− g(x)|q−1

∣∣∣∣∫ ∞
0
χ
{f>t}

(x) dt −

∫
∞

0
χ
{g>t}

(x) dt

∣∣∣∣ dx
≤

∫
Rn
|f (x)− g(x)|q−1

∫
∞

0
|χ
{f>t}

(x)− χ
{g>t}

(x)| dt dx

=

∫
∞

0

∫
Et

|f (x)− g(x)|q−1 dx dt.

Here χ
G

denotes the characteristic function of the set G. Thus, since∫
Et

|f − g|q−1
=

∫
{g≤t<f }

|f − g|q−1
+

∫
{f≤t<g}

|f − g|q−1

≤

∫
{g≤t<f }

f q−1
+

∫
{f≤t<g}

gq−1

for any t ≥ 0, one has∫
Rn
|f − g|q ≤

∫
∞

0

∫
{g≤t<f }

f (x)q−1 dx dt +

∫
∞

0

∫
{f≤t<g}

g(x)q−1 dx dt. (3.8)
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Now,∫
∞

0

∫
{g≤t<f }

f (x)q−1 dx dt =

∫
∞

0

∫
Rn
χ
{g≤t<f }

(x)

∫
∞

0
χ

[0,f (x)q−1]
(s) ds dx dt

=

∫
∞

0

∫
Rn

∫
∞

0
χ
{f>max{t,s1/(q−1)}; t≥g}

(x) ds dx dt.

(3.9)
Another application of Fubini’s theorem ensures that∫
∞

0

∫
Rn

∫
∞

0
χ
{f>max{t,s1/(q−1)}; t≥g}

(x) ds dx dt

=

∫
∞

0

∫
Rn

∫ tq−1

0
χ
{g≤t<f }

(x) ds dx dt +

∫
Rn

∫
∞

0

∫
∞

tq−1
χ
{f>s1/(q−1); t≥g}

(x) ds dt dx

=

∫
∞

0
tq−1
|{g ≤ t < f }| dt +

∫
Rn

∫
∞

0

∫ s1/(q−1)

0
χ
{f>s1/(q−1); t≥g}

(x) dt ds dx

≤

∫
∞

0
tq−1
|{g ≤ t < f }| dt +

∫
Rn

∫
∞

0

∫ s1/(q−1)

0
χ
{g≤s1/(q−1)<f }

(x) dt ds dx

=

∫
∞

0
tq−1
|{g ≤ t < f }

∣∣ dt + ∫ ∞
0

s1/(q−1)∣∣{g ≤ s1/(q−1) < f }| ds. (3.10)

The change of variable s = τ q−1 in the last integral yields∫
∞

0
s1/(q−1)∣∣{g ≤ s1/(q−1) < f }

∣∣ ds = (q − 1)
∫
∞

0
τ q−1∣∣{g ≤ τ < f }

∣∣ dτ.
Thus, combining (3.9) and (3.10) entails that∫

∞

0

∫
{g≤t<f }

f (x)q−1 dx dt ≤ q

∫
∞

0
tq−1∣∣{g ≤ t < f }

∣∣ dt. (3.11)

Since |Et | = |{g ≤ t < f }|+|{f ≤ t < g}| for t ≥ 0, inequality (3.7) follows from (3.8),
from (3.11) and from an analogous estimate for the second integral on the right-hand side
of (3.8). ut

Proof of Theorem 3. Assume, without loss of generality, that ‖f ‖Lp∗ (Rn) = 1. By the
coarea formula,

µ(t) =
∣∣{f > t} ∩ {∇f = 0}

∣∣+ ∫ ∞
t

∫
{f=s}

dH n−1

|∇f |
ds for t > 0,

where H n−1 denotes the (n−1)-dimensional Hausdorff measure (see e.g. [BZ] or [CF1]).
Hence,

−µ′(t) ≥

∫
{f=t}

dH n−1

|∇f |
for a.e. t > 0. (3.12)
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One has
H n−1({f = t}) = P({f > t}) for a.e. t > 0,

where P stands for perimeter in the sense of geometric measure theory (see e.g. [BZ,
equation (19)]). Then an application of the coarea formula again, Hölder’s inequality
and (3.12) entail that∫

Rn
|∇f |p =

∫
∞

0

∫
{f=t}

|∇f |p−1dH n−1 dt ≥

∫
∞

0

H n−1({f = t})p(∫
{f=t}

dH n−1

|∇f |

)p−1 dt

≥

∫
∞

0

H n−1({f = t})p

(−µ′(t))p−1 dt =

∫
∞

0

P({f > t})p

(−µ′(t))p−1 dt. (3.13)

The quantitative isoperimetric inequality of [FMP1] tells us that there exists a constant
κ0, depending only on n, such that

nωn|E|
1/n′

[
1+ κ0

(
inf
{
|E 4 B|

|E|
: B ball, |B| = |E|

})2]
≤ P(E) (3.14)

for every measurable subset of Rn having finite measure and perimeter. If, in addition, E
is symmetric about n orthogonal hyperplanes containing 0, then

inf
{
|E 4 B|

|E|
: B ball, |B| = |E|

}
≥

1
2n
|E 4 E?|

|E|
, (3.15)

where E? denotes the ball, centered at 0, such that |E?| = |E| (see [FMP1, Lemma
2.2]). Since f is n-symmetric, so are its level sets {f > t} for t > 0; moreover, the ball
{f > t}? agrees with {f ? > t} for every t > 0. Consequently, from (3.13) and from (3.14)
and (3.15) applied with E = {f > t}, we deduce that∫

Rn
|∇f |p ≥ (nω

1/n
n )p

∫
∞

0

µ(t)p/n
′

(−µ′(t))p−1

(
1+

κ0

4n

(
|Ft |

µ(t)

)2)p
dt, (3.16)

where we have set Ft = {f > t} 4 {f ? > t} for t > 0. Now, note that when (3.13)
is applied with f replaced by f ?, equality holds in the first equality because |∇f ?| is
constant on {f ? = t} for a.e. t > 0, and equality holds in the second inequality since
also (3.12) turns into an equality in this case (see e.g. [CF1, Lemma 3.2]). Thus, inasmuch
as P({f ? > t}) = nω

1/n
n µ(t)1/n

′

for a.e. t > 0, one has∫
Rn
|∇f ?|p = (nω

1/n
n )p

∫
∞

0

µ(t)p/n
′

(−µ′(t))p−1 dt. (3.17)

Since (1+ s)p ≥ 1+ ps for s ≥ 0, we infer from (3.16) and (3.17) that∫
Rn
|∇f |p −

∫
Rn
|∇f ?|p ≥ κ

∫
∞

0

(
|Ft |

µ(t)

)2
µ(t)p/n

′

(−µ′(t))p−1 dt (3.18)
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for some positive constant κ . By Lemma 5,∫
Rn
|f − f ?|p

∗

≤ p∗
∫
∞

0
|Ft |t

p∗−1 dt. (3.19)

The point is thus to estimate the right-hand side of (3.19) in terms of the right-hand side
of (3.18). We have

1 =
∫

Rn
f p
∗

≥

∫
{f>t}

f p
∗

≥ tp
∗

µ(t) for t > 0,

whence µ(t)p/ntp
∗
−p
≤ 1 for every t > 0. Thus, by (3.19) and by Hölder’s inequality,∫

Rn
|f − f ?|p

∗

≤ p∗
∫
∞

0

|Ft |

µ(t)
µ(t)1−p/ntp−1 dt

≤ p∗
(∫
∞

0

(
|Ft |

µ(t)

)p
µ(t)p/n

′

(−µ′(t))p−1 dt

)1/p(∫ ∞
0

−µ′(t)

µ(t)p/n
tp dt

)1/p′

. (3.20)

We claim that there exists a constant C such that∫
∞

0

−µ′(t)

µ(t)p/n
tp dt ≤ C

∫
Rn
|∇f ?|p. (3.21)

To verify (3.21), fix any ϑ ∈ (1/p′, 1/n′). Then

tp =

(∫ t

0
ds

)p
≤

(∫ t

0

(−µ′(s))

µ(s)ϑp
′
ds

)p−1(∫ t

0

µ(s)ϑp

(−µ′(s))p−1 ds

)
≤

1
((ϑp′ − 1)µ(t)ϑp′−1)p−1

∫ t

0

µ(s)ϑp

(−µ′(s))p−1 ds,

by Hölder’s inequality. Therefore,∫
∞

0

(−µ′(t))tp

µ(t)p/n
dt ≤

1
(ϑp′ − 1)p−1

∫
∞

0

(−µ′(t))

µ(t)ϑp+1−p/n′

(∫ t

0

µ(s)ϑp

(−µ′(s))p−1 ds

)
dt

=
1

(ϑp′ − 1)p−1

∫
∞

0

µ(s)ϑp

(−µ′(s))p−1

(∫
∞

s

(−µ′(t))

µ(t)ϑp+1−p/n′ dt

)
ds

≤
1

(ϑp′ − 1)p−1(p/n′ − ϑp)

∫
∞

0

µ(s)p/n
′

(−µ′(s))p−1 ds. (3.22)

Inequality (3.21) follows from (3.22) and (3.17). Combining (3.20) and (3.21) yields∫
Rn
|f − f ?|p

∗

≤ C‖∇f ?‖
p−1
Lp(Rn)

(∫
∞

0

(
|Ft |

µ(t)

)p
µ(t)p/n

′

(−µ′(t))p−1 dt

)1/p

. (3.23)
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When 1 < p < 2, by Hölder’s inequality,∫
∞

0

(
|Ft |

µ(t)

)p
µ(t)p/n

′

(−µ′(t))p−1 dt

≤

(∫
∞

0

(
|Ft |

µ(t)

)2
µ(t)p/n

′

(−µ′(t))p−1 dt

)p/2(∫ ∞
0

µ(t)p/n
′

(−µ′(t))p−1 dt

)1−p/2

, (3.24)

and (3.3) follows via (3.23), (3.24), (3.17) and (3.18). If, instead, p ≥ 2, then(
|Ft |

µ(t)

)p
≤ 2p−2

(
|Ft |

µ(t)

)2

for t > 0, (3.25)

and (3.3) follows from (3.23), (3.25) and (3.18). ut

4. Proof of Theorem 1

The task of the present section is to accomplish the symmetrization process which we
alluded to in Section 1, showing that the proof of inequality (1.4) can always be reduced
to the special case of n-symmetric functions dealt with in Corollary 4. This is the content
of the following result.

Theorem 6. Let n ≥ 2 and let 1 < p < n. Then there exists a positive constant C such
that for every nonnegative function f ∈ W 1,p(Rn) there exists a nonnegative n-symmetric
function f̂ such that

λ(f ) ≤ Cλ(f̂ ), δ(f̂ ) ≤ Cδ(f )1/βp
∗

, (4.1)

where β is given by (2.54).

Once Theorem 6 is established, Theorem 1 quite easily follows from Corollary 4.

Proof of Theorem 1. Consider first the case where f is nonnegative. Then, by Theorem 6,
there exists an n-symmetric function f̂ satisfying (4.1). Inequality (1.4) holds with f
replaced by f̂ , by Corollary 4. Owing to (4.1), inequality (1.4) continues to hold with
α = β2p∗ for f as well.

Let us now remove the sign assumption on f . Consider any function f ∈ W 1,p(Rn),
which, without loss of generality, can be assumed to satisfy ‖f ‖Lp∗ (Rn) = 1 and δ(f )
≤ 1. We claim that there exists a constant C such that

min
{∫
{f<0}

|f |p
∗

,

∫
{f>0}

|f |p
∗

}
≤ Cδ(f ). (4.2)

Actually, the Sobolev inequality (1.1) applied to max{f, 0} and min{f, 0} yields

S(p, n)p
(∫
{f≷0}

|f |p
∗

)p/p∗
≤

∫
{f≷0}

|∇f |p,



Sharp Sobolev inequality 1125

whence(∫
{f>0}

|f |p
∗

)p/p∗
+

(∫
{f<0}

|f |p
∗

)p/p∗
≤

1
S(p, n)p

∫
Rn
|∇f |p = (1+ δ(f ))p.

(4.3)
Since the function s 7→ (sp/p

∗

+ (1 − s)p/p
∗

)1/p − 1 is concave in [0, 1], there exists a
constant κ such that

(sp/p
∗

+ (1− s)p/p
∗

)1/p − 1 ≥ κ min{s, 1− s}.

Thus, inasmuch as
∫
{f<0} |f |

p∗
= 1−

∫
{f>0} |f |

p∗ , one can infer from (4.3) that

δ(f ) ≥

[(∫
{f>0}

|f |p
∗

)p/p∗
+

(∫
{f<0}

|f |p
∗

)p/p∗]1/p

− 1

≥ κ min
{∫
{f<0}

|f |p
∗

,

∫
{f>0}

|f |p
∗

}
,

that is, (4.2). Now, to fix ideas, assume that the minimum in (4.2) is
∫
{f<0} |f |

p∗ , the other
case being completely analogous. By applying (1.4) to |f | and observing that δ(f ) =
δ(|f |), from (4.2) we have

λ(f ) ≤ 2p
∗
−1
(
λ(|f |)+

∫
Rn

∣∣f − |f |∣∣p∗) ≤ C(δ(f )1/α + δ(f )) ≤ Cδ(f )1/α
for a suitable constant C. Hence, the result easily follows. ut

The remaining part of the paper is devoted to the proof of Theorem 6. The argument
relies upon some delicate constructions, and is split into separate lemmas. We begin by
showing that, when dealing with functions f which are symmetric about orthogonal hy-
perplanes intersecting in some lower dimensional affine space S, the quantity λ(f ) can
be essentially replaced by the expression

λ(f |S)

= inf
{
‖f − ga,b,x0‖

p∗

Lp
∗
(Rn)

‖f ‖
p∗

Lp
∗
(Rn)

: ‖ga,b,x0‖Lp
∗
(Rn) = ‖f ‖Lp∗ (Rn), a ∈ R, b > 0, x0 ∈ S

}
.

Lemma 7. Let n ≥ 2, 1 < p < n and f be a nonnegative function from W 1,p(Rn).
Assume that f is k-symmetric, and let S be the intersection of the k hyperplanes of sym-
metry. Then

λ(f |S) ≤ 3p
∗

λ(f ).

The proof of Lemma 7 in turn relies upon the technical results contained in Lemmas 8–10
below.
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Lemma 8. Let ϕ : R → [0,∞) be increasing on (−∞, 0) and decreasing on (0,∞).
Define 8 : [0,∞)→ [0,∞] as

8(h) =

∫
R
A(|ϕ(t)− ϕ(t − h)|) dt for h ≥ 0,

where A : [0,∞)→ [0,∞) is a l.s.c. increasing function. Then 8 is decreasing.

Proof. First of all, we may assume that A is continuous, since any l.s.c. increasing func-
tion can be approximated pointwise by an increasing sequence of continuous increasing
functions. Then, since |min{t,M} − min{s,M}| ≤ |t − s| for any M > 0 and s, t ∈ R,
we may reduce to the case when ϕ is bounded. A simple approximation argument then
shows that we may also assume that there exist l1 < 0 < l2 such that ϕ is constant both
in (−∞, l1] and in [l2,∞), and that ϕ is continuous. The function 8 is trivially affine
and increasing in [l2 − l1,∞), thus we may focus on the interval [0, l2 − l1]. For every
h1 ∈ (0, l2 − l1), there exists t1 ∈ (0, h1) satisfying ϕ(t1) = ϕ(t1 − h1); moreover,
ϕ(t) ≥ ϕ(t − h1) if t < t1 and ϕ(t) ≤ ϕ(t − h1) if t > t1. Let h2 ∈ (h1, l2 − l1]. On the
one hand, ∫ t1

−∞

A(|ϕ(t)− ϕ(t − h1)|) dt =

∫ t1

−∞

A(ϕ(t)− ϕ(t − h1)) dt

≤

∫ t1

−∞

A(|ϕ(t)− ϕ(t − h2)|) dt,

since ϕ(t − h2) ≤ ϕ(t − h1) ≤ ϕ(t) whenever t ≤ t1. On the other hand,∫
∞

t1

A(|ϕ(t)− ϕ(t − h1)|) dt =

∫
∞

t1

A(ϕ(t − h1)− ϕ(t)) dt

=

∫
∞

t1+h2−h1

A(ϕ(s − h2)− ϕ(s + h1 − h2)) ds

≤

∫
∞

t1+h2−h1

A(|ϕ(s − h2)− ϕ(s)|) ds.

Thus,∫
R
A(|ϕ(t)− ϕ(t − h1)|) dt ≤

∫
(−∞,t1)∪(t1+h2−h1,∞)

A(|ϕ(t)− ϕ(t − h2)|) dt

≤

∫
R
A(|ϕ(t)− ϕ(t − h2)|) dt,

and the conclusion follows. ut

Lemma 9. Let f : Rn → [0,∞) be any spherically symmetric function. Given any
y ∈ Rn, define fy : Rn→ [0,∞) as

fy(x) = f (x − y) for x ∈ Rn.
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If A is as in Lemma 8, then∫
Rn
A(|fy(x)− fw(x)|) dx ≤

∫
Rn
A(|fy(x)− fz(x)|) dx (4.4)

for every y, z ∈ Rn and for every w lying on the segment joining y and z.

Proof. Without loss of generality, we may assume y = 0 in (4.4); then set ν = z/|z|,
whence z = |z|ν and w = |w|ν. Denote by H the hyperplane orthogonal to ν and
containing 0. Then∫

Rn
A(|f (x)− fw(x)|) dx =

∫
H

∫
R
A(|f (x + tν)− f (x − w + tν)|) dt dH n−1(x)

=

∫
H

∫
R
A(|f (x + tν)− f (x + (t − |w|)ν)|) dt dH n−1(x). (4.5)

Fix any x ∈ H , and define ϕ : R→ [0,∞) by

ϕ(t) = f (x + tν) for t ∈ R.

Clearly, the function ϕ satisfies the assumptions of Lemma 8. Hence,∫
R
A(|ϕ(t)− ϕ(t − h1)|) dt ≤

∫
R
A(|ϕ(t)− ϕ(t − h2)|) dt if 0 < h1 ≤ h2. (4.6)

On applying (4.6) with h1 = |w| and h2 = |z| we get∫
R
A(|f (x + tν)− f (x + (t − |w|)ν)|) dt ≤

∫
R
A(|f (x + tν)− f (x + (t − |z|)ν)|) dt.

Combining this inequality with (4.5) yields the conclusion. ut

We now want to prove that, when f is positive, the infima defining λ(f ) and λ(f |S) are
attained; this proof closely resembles the proof of Lemma B.1 in [FMP2], and we will
obtain it in two steps.

Lemma 10. Let 1 < p < n and let f be any nonnegative function from Lp
∗

(Rn). Then
λ(f ) is a minimum. The same holds true for λ(f |S) with any affine subspace S of Rn.

Proof. We only give the proof for λ(f ), the other case being analogous; we also assume
without loss of generality that ‖f ‖Lp∗ (Rn) = 1.

The proof is in two steps; notice that the sign assumption on f plays a role only in
Step II.

Step I. If λ(f ) < 2, then λ(f ) is a minimum. Let us consider a minimizing sequence for
λ(f ), given by the functions

gh(x) =
ah

(1+ bh|x − xh|p
′
)(n−p)/p

.



1128 A. Cianchi et al.

Up to a subsequence, we may assume that bh converges to b ∈ [0,∞]; our first goal is to
check that b 6= 0 and b 6= ∞. Indeed, for any ε > 0 there is a positive constant ρ = ρ(ε)
converging to 0 as ε→ 0 such that for any z ∈ Rn one has∫

B(z,ε)

|f |p
∗

≤ ρ,

∫
B(0,1/ε)

|f |p
∗

≥ 1− ρ.

Assume, by contradiction, that b = ∞. Then∫
{|x−xh|>ε}

|gh(x)|
p∗ dx ≤ ε

provided that h is large enough depending on ε. Thus, for any such h,

‖f − gh‖
p∗

Lp
∗
(Rn) = ‖f − gh‖

p∗

Lp
∗
({|x−xh|>ε})

+ ‖gh − f ‖
p∗

Lp
∗
({|x−xh|≤ε})

≥ ((1− ρ)1/p
∗

− ε1/p∗)p
∗

+ ((1− ε)1/p
∗

− ρ1/p∗)p
∗

. (4.7)

Passing to the limit as h→∞ in (4.7) we would get

λ(f ) ≥ ((1− ρ)1/p
∗

− ε1/p∗)p
∗

+ ((1− ε)1/p
∗

− ρ1/p∗)p
∗

.

Hence, letting ε→ 0, we get λ(f ) ≥ 2, which contradicts the assumption. Next suppose,
again by contradiction, that b = 0. Then∫

{|x|<1/ε}
|gh(x)|

p∗ dx ≤

∫
{|x−xh|<1/ε}

|gh(x)|
p∗ dx ≤ ε

if h is large enough, depending on ε. Analogously to (4.7), we have

‖f − gh‖
p∗

Lp
∗
(Rn) = ‖f − gh‖

p∗

Lp
∗
({|x|<1/ε})

+ ‖gh − f ‖
p∗

Lp
∗
({|x|≥1/ε})

≥ ((1− ρ)1/p
∗

− ε1/p∗)p
∗

+ ((1− ε)1/p
∗

− ρ1/p∗)p
∗

,

and we reach the same contradiction as above.
Now, since bh → b ∈ (0,∞), and ‖gh‖Lp∗ (Rn) = 1 for every h, we see that ah → a

for some a ∈ R\{0}. Let us now show that, again up to a subsequence, there exists x̄ ∈ Rn
such that xh → x̄. In order to prove this fact, it suffices to exclude that |xh| → ∞. We
argue by contradiction again and observe that, if this is the case, then for every L > 0,∫

{|x−xh|≤L}

|f (x)|p
∗

dx ≤
1
L

if h is large enough depending on L; for any fixed ε > 0, since b ∈ (0,∞) we can choose
L so large that ∫

{|x−xh|≤L}

|gh(x)|
p∗ dx ≥ 1− ε
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for every h. Therefore, similarly to (4.7), we deduce that

‖f − gh‖
p∗

Lp
∗
(Rn) ≥

(
(1− ε)1/p

∗

−
1

L1/p∗

)p∗
+

((
1−

1
L

)1/p∗

− ε1/p∗
)p∗

,

whence we get the contradiction λ(f ) ≥ 2 on letting ε go to 0 and thus L to∞. Since
gh converges to ga,b,x̄ in Lp

∗

(Rn), the latter function is a minimizer in the definition of
λ(f ).

Step II. λ(f ) < 2. Set g = ga,1,0, where a is the positive number such that ‖g‖Lp∗ (Rn)
= 1. Set F = {f < g} and G = {g < f }. Then

|f − g| = g − f ≤ g in F , |f − g| = f − g < f in G.

Note that the strict inequality above holds since g is strictly positive. Thus

λ(f ) ≤

∫
Rn
|f − g|p

∗

=

∫
F

|f − g|p
∗

+

∫
G

|f − g|p
∗

<

∫
F

gp
∗

+

∫
G

f p
∗

<

∫
Rn
gp
∗

+

∫
Rn
f p
∗

= 2,

and the assertion follows. ut

We are now ready to prove Lemma 7.

Proof of Lemma 7. We may assume, without loss of generality, that ‖f ‖Lp∗ (Rn) = 1. Let

a, b, x0, according to Lemma 10, be such that λ(f ) = ‖f − ga,b,x0‖
p∗

Lp
∗
(Rn). Denote by

z0 be the orthogonal projection of x0 on S, and let y0 be the point obtained by reflecting
x0 with respect to S. We have

λ(f |S)1/p
∗

≤ ‖f − ga,b,z0‖Lp
∗
(Rn)

≤ ‖f − ga,b,x0‖Lp
∗
(Rn) + ‖ga,b,x0 − ga,b,z0‖Lp

∗
(Rn)

= λ(f )1/p
∗

+ ‖ga,b,x0 − ga,b,z0‖Lp
∗
(Rn).

By Lemma 9, ‖ga,b,x0 − ga,b,z0‖Lp
∗
(Rn) ≤ ‖ga,b,x0 − ga,b,y0‖Lp

∗
(Rn). On the other hand,

the symmetries of f entail that λ(f ) = ‖f − ga,b,y0‖Lp
∗
(Rn). Hence,

‖ga,b,x0 − ga,b,y0‖Lp
∗
(Rn) ≤ ‖f − ga,b,y0‖Lp

∗
(Rn) + ‖ga,b,x0 − f ‖Lp∗ (Rn) = 2λ(f )1/p

∗

.

Therefore λ(f |S)1/p
∗

≤ 3λ(f )1/p
∗

. ut

The contribution of Lemma 11 below is in the same direction as Lemma 7, and provides
an estimate for λ(f |H) in terms of λ(f ), when H is a hyperplane splitting f in two
functions having the same Lp

∗

norm. In what follows, we denote by H+ and H− the two
half-spaces into which Rn is split byH . Moreover, we denote by TH : Rn→ Rn the map
which associates to any x ∈ Rn the point TH (x) obtained by reflecting x with respect
to H .
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Lemma 11. Let f be any nonnegative function from W 1,p(Rn), and let H be any hyper-
plane such that ∫

H+
f p
∗

=

∫
H−

f p
∗

=
1
2

∫
Rn
f p
∗

.

Then there exists a constant C such that

λ(f |H) ≤ Cλ(f )1/p
∗

(4.8)

and ∫
Rn
|f ◦ TH − f |

p∗
≤ C‖f ‖

p∗

Lp
∗
(Rn)λ(f )

1/p∗ . (4.9)

Proof. We may assume, without loss of generality, that ‖f ‖Lp∗ (Rn) = 1. By Lemma 10,

let a, b, x0 be such that λ(f ) = ‖f − ga,b,x0‖
p∗

Lp
∗
(Rn), and denote ga,b,x0 simply by g0.

Let x be the projection of x0 on H , and set g = ga,b,x . Then

λ(f |H) ≤

∫
Rn
|f − g|p

∗

≤ 2p
∗
−1
{
λ(f )+

∫
Rn
|g0 − g|

p∗
}
. (4.10)

Let us now consider the half-spaces K± = (x0 − x)+H
±. Clearly

1
2
=

∫
K±
g
p∗

0 =

∫
H±

f p
∗

=

∫
H±

gp
∗

.

On interchanging K+ with K− if necessary, we may also assume that K+ ⊆ H+ and
H− ⊆ K−. Thus∫

H−
|g0 − g|

p∗
=

∫
K+
|g0 − g|

p∗
≤

∫
H+
|g0 − g|

p∗ ,

whence ∫
Rn
|g0 − g|

p∗
≤ 2

∫
H+
|g0 − g|

p∗ . (4.11)

One has g0(x) ≥ g(x) for x ∈ K+, and hence |g0(x)− g(x)|
p∗
≤ g0(x)

p∗
− g(x)p

∗

for
the same values of x. Thus,∫

K+
|g0 − g|

p∗
≤

∫
K+
g
p∗

0 −

∫
K+
gp
∗

=
1
2
−

∫
H−

g
p∗

0 =

∫
H−

f p
∗

−

∫
H−

g
p∗

0

≤ C (‖f ‖Lp∗ (H−) − ‖g0‖Lp∗ (H−)) ≤ C‖f − g0‖Lp∗ (H−)

≤ Cλ(f )1/p
∗

(4.12)

for some positive constant C. Note that we have made use of the fact that
∫
K+
gp
∗

=∫
H−

g
p∗

0 , by symmetry. On the other hand, by symmetry again,∫
H+\K+

|g0 − g|
p∗
≤ 2p

∗
−1
∫
H+\K+

(g
p∗

0 + g
p∗) = 2p

∗

∫
H+\K+

g
p∗

0 .
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We have ∫
H+\K+

g
p∗

0 =

∫
H+

g
p∗

0 −
1
2
=

∫
H+

g
p∗

0 −

∫
H+

f p
∗

,

whence, as in (4.12), one gets ∫
H+\K+

g
p∗

0 ≤ Cλ(f )
1/p∗ . (4.13)

Thus, (4.8) follows from (4.10)–(4.13). As far as (4.9) is concerned, if a, b and x̂ ∈ H
are chosen, thanks to Lemma 10, in such a way that

λ(f |H) = ‖f − ga,b,x̂‖Lp∗ (Rn),

then, by (4.8),∫
H±
|f ◦ TH − f |

p∗
≤ 2p

∗
−1
(∫

H+
|f ◦ TH − ga,b,x̂ |

p∗
+

∫
H+
|f − ga,b,x̂ |

p∗
)

= 2p
∗
−1
∫

Rn
|f − ga,b,x̂ |

p∗
= 2p

∗
−1λ(f |H) ≤ Cλ(f )1/p

∗

. ut

Our next result can be regarded as a qualitative version of Theorem 1, and enables us to
restrict our attention to the case where λ(f ) does not exceed some arbitrarily prescribed
constant depending only on p and n.

Lemma 12. Let n ≥ 2 and let 1 < p < n. For every ε > 0 there exists δ̄ > 0 such that
if f ∈ W 1,p(Rn) and δ(f ) ≤ δ̄, then λ(f ) ≤ ε.

Proof. Assume, by contradiction, that there exists a sequence {fh} ⊆ W 1,p(Rn) such that
limh→∞ δ(fh) = 0 but limh→∞ λ(fh) > 0. On normalizing, if necessary, we may assume
that ‖fh‖Lp∗ (Rn) = 1 for every h ∈ N. Since limh→∞ ‖∇fh‖Lp∗ (Rn) = S(p, n), the
concentration-compactness method of Lions ([Li]) can be applied (as in [St]) to show that
there exists a subsequence of rescaled-translated functions f̃h(x) = r

n/p∗

h fh(rh(x − xh))

such that f̃h → f strongly in Lp
∗

(Rn) for some f ∈ W 1,p(Rn). Notice that λ(f̃h) =
λ(fh), δ(f̃h) = δ(fh) and the functional f 7→ λ(f ) is strongly continuous on Lp

∗

(Rn).
Hence, λ(f ) = limh→∞ λ(fh) > 0. On the other hand, by lower semicontinuity, 0 =
limh→∞ δ(fh) ≥ δ(f ), that is, δ(f ) = 0. Consequently, since the functions in (1.2)
are the only optimal functions in (1.1) as proved in [CNV], one obtains λ(f ) = 0, a
contradiction. ut

Before going into the details of the proof of Theorem 6, we briefly outline it. A pre-
liminary step consists in associating with any function f another function f̃ symmetric
about a hyperplane, with the same Lp

∗

norm as f , and such that λ(f ) ≤ Cλ(f̃ ) and
δ(f̃ ) ≤ 2δ(f ). To this end, a first natural attempt could consist in selecting a hyperplane
H in Rn having the property that the restrictions of f to the two half-spaces bounded
by H have equal Lp

∗

norms, and then, by reflecting these two restrictions, to define
two candidates f̃ which are symmetric about H . Via this construction, one certainly has
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δ(f̃ ) ≤ 2δ(f ) for both choices of f̃ , but, unfortunately, the inequality λ(f ) ≤ Cλ(f̃ )

may fail for both of them, whatever C is. To see this, consider for instance the hyperplane
H = {x1 = 0} and the function f given by

f (x) =

{
ga′,b′,0(x) if x1 ≤ 0,
ga′′,b′′,0(x) otherwise, (4.14)

where ga,b,x0 are the extremal functions defined in (1.2), and a′ 6= a′′ and b′ 6= b′′ are
chosen in such a way that

∫
{x1<0} f

p∗
=
∫
{x1>0} f

p∗ . On reflecting f with respect to H
one has either f̃ = ga′,b′,0, or f̃ = ga′′,b′′,0, and hence λ(f̃ ) = 0 < λ(f ). Note, however,
that this is not the case if f is reflected with respect to a hyperplane orthogonal toH . This
observation gives a hint on how to repair this shortcoming. Indeed, one can prove that if
f and H are such that Cλ(f̃ ) < λ(f ) for a sufficiently large constant C = C(n, p),
then f and H are nearly in the situation of (4.14), and one can show that the functions f̃
constructed by reflecting f with respect to any hyperplane H ′ orthogonal to H actually
satisfy λ(f ) ≤ Cλ(f̃ ). Thus, a function f̃ symmetric about a hyperplane and fulfilling
our requirements can always be constructed.

An iteration of this construction produces an (n− 1)-symmetric function still satisfy-
ing these requirements. This is the content of Lemma 13 below. However, this argument
cannot be applied as a final step to obtain an n-symmetric function. Indeed, in order to
preserve the symmetries already achieved, at any step the two orthogonal hyperplanes
between which we choose have to be orthogonal to all the hyperplanes selected at the
previous steps. But once n− 1 hyperplanes of symmetry have been fixed, no room is left
to choose two more orthogonal hyperplanes. Due to this problem, the accomplishment of
the last symmetry requires a more delicate argument. Such an argument also relies upon
Corollary 4, and its use, which seems indispensable at this stage, explains the presence
of the exponent 1/βp∗ in estimate (4.1). We start from a function f which is already
symmetric about n − 1 orthogonal hyperplanes, one of which we call H . Consider an
hyperplane H̃ orthogonal to the n − 1 hyperplanes of symmetry of f , and such that the
restrictions of f to the two half-spaces bounded by H have equal Lp

∗

norms. If one of
the two functions f̃ obtained on reflecting these restrictions with respect to H̃ has the
property that λ(f ) ≤ Cλ(f̃ ), then we are done. Otherwise, we already know that f is
nearly as in (4.14). We then consider the two orthogonal hyperplanes H ′ and H ′′ such
that the angles between H ′ and H and between H ′′ and H̃ have aperture π/4, and more-
over H ′ ∩ H ′′ = H ∩ H̃ , up to translations. Since the function f is far from having the
form (4.14) both with H = H ′ and with H = H ′′, a double reflection argument with
respect to H ′ and H ′′ yields a function f̃ fulfilling λ(f ) ≤ Cλ(f̃ ). Furthermore, since
H ′ and H ′′ are orthogonal to the first n− 2 hyperplanes, the first n− 2 symmetries of f
are preserved for f̃ . The symmetry about H is obviously lost, but f̃ is symmetric both
about H ′ and about H ′′, and hence f̃ is actually n-symmetric.

Lemma 13. Let n ≥ 2 and let 1 < p < n. Then there exists a positive constant C having
the following property. For every nonnegative function f ∈ W 1,p(Rn) there exists an
(n− 1)-symmetric function f̃ ∈ W 1,p(Rn) such that

λ(f ) ≤ Cλ(f̃ ), δ(f̃ ) ≤ 2n−1δ(f ). (4.15)
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Proof. As usual, we may assume that ‖f ‖Lp∗ (Rn) = 1. Moreover we may suppose
that δ(f ) ≤ δ̄ for some positive constant δ̄ (depending only on p and n) to be chosen
later. Indeed, if δ(f ) ≥ δ̄, one can pick a spherically symmetric function g, indepen-
dent of f , such that 0 < δ(g) ≤ 2n−1δ̄. Thus δ(g) ≤ 2n−1δ(f ), and λ(f ) ≤ 2p

∗

≤

(2p
∗

/λ(g))λ(g) ≤ Cλ(g), and hence the first inequality in (4.15) is fulfilled with f̃ = g.
If δ(f ) ≤ δ̄, fixing any coordinate direction ek with 1 ≤ k ≤ n, consider a hyperplane

Hk orthogonal to ek and the corresponding half-spaces H+k and H−k , having the property
that ∫

H+k

f p
∗

=

∫
H−k

f p
∗

=
1
2
.

For simplicity, denote by Tk : Rn→ Rn the reflection THk with respect to Hk , and define

f+k (x) =

{
f (x) if x ∈ H+k ,
f (Tk(x)) if x ∈ H−k ;

f−k (x) =

{
f (Tk(x)) if x ∈ H+k ,
f (x) if x ∈ H−k .

(4.16)

Clearly, f±k are nonnegative functions from W 1,p(Rn), symmetric about Hk , and satisfy-
ing ‖f±k ‖Lp∗ (Rn) = 1. Moreover,

‖∇f ‖Lp(Rn) =

(∫
H+k

|∇f+k |
p
+

∫
H−k

|∇f−k |
p

)1/p

=

(
1
2

∫
Rn
|∇f+k |

p
+

1
2

∫
Rn
|∇f−k |

p

)1/p

≥
1
2
(‖∇f+k ‖Lp(Rn) + ‖∇f

−

k ‖Lp(Rn)).

In particular,
max{δ(f+k ), δ(f

−

k )} ≤ 2δ(f ). (4.17)

Denote by g+k and g−k two functions realizing the minima in λ(f±k |Hk), again thanks to
Lemma 10. Then

λ(f ) ≤

∫
Rn
|f − g+k |

p∗
=

∫
H+k

|f+k − g
+

k |
p∗
+

∫
H−k

|f−k − g
+

k |
p∗

≤ 2p
∗
−1
(
λ(f+k |Hk)+ λ(f

−

k |Hk)

2
+

∫
H−k

|g+k − g
−

k |
p∗
)

≤ 2p
∗
−23p

∗

(
λ(f+k )+ λ(f

−

k )+

∫
H−k

|g+k − g
−

k |
p∗
)
. (4.18)

Note that, in the last inequality, we have applied Lemma 7 to f±k . Now, we claim that
there exist positive constants C and δ̄ having the following property: whenever δ(f ) ≤ δ̄
and 1 ≤ i < j ≤ n, there exists k ∈ {i, j} such that∫

H−k

|g+k − g
−

k |
p∗
≤ C

(∫
H+k

|f+k − g
+

k |
p∗
+

∫
H−k

|f−k − g
−

k |
p∗
)
. (4.19)
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Observe that once this claim is established, (4.15) will follow. Indeed, take i = 1 and
j = 2 and suppose (up to relabelling the indices) that (4.19) holds with k = 1. Then
from (4.18) and (4.17) applied with k = 1, we infer that

λ(f ) ≤ C′(λ(f+1 )+ λ(f
−

1 )), max{δ(f+1 ), δ(f
−

1 )} ≤ 2δ(f )

for some constant C′. In particular, at least one of the functions f±1 , denote it by f1,
satisfies λ(f ) ≤ 2C′λ(f1) and δ(f1) ≤ 2δ(f ). Moreover, f1 is 1-symmetric and satisfies
‖f1‖Lp∗ (Rn) = 1. Then one can repeat the argument starting from f1, and obtain a 2-
symmetric function f2 fulfilling λ(f ) ≤ 4C′2λ(f2) and δ(f2) ≤ 4δ(f ). On iterating this
procedure, (4.15) follows.

We now have to prove our claim. The crucial observation is that, when δ is sufficiently
small, all the functions g±k , 1 ≤ k ≤ n, are close to each other in the Lp

∗

norm, in the
sense that there is a constant C0 such that∫

Rn
|gσi − g

τ
j |
p∗
≤ C0

∫
H σ
i ∩H

τ
j

|gσi − g
τ
j |
p∗ for every 1 ≤ i < j ≤ n, σ, τ ∈ {+,−}.

(4.20)

To verify (4.20), let us begin by noting that there exist constants % and C1 such that if

(i)
∫
Rn g

p∗

a,b,x0
=
∫
Rn g

p∗

c,d,y0
= 1,

(ii) I and J are two orthogonal half-spaces with x0 ∈ ∂I and y0 ∈ ∂J ,

(iii)
∫
I∩J

g
p∗

a,b,x0
≥ 1/8 and

∫
I∩J

g
p∗

c,d,y0
≥ 1/8,

(iv)
∫
Rn |ga,b,x0 − gc,d,y0 |

p∗
≤ %,

then ∫
Rn
|ga,b,x0 − gc,d,y0 |

p∗
≤ C1

∫
I∩J

|ga,b,x0 − gc,d,y0 |
p∗ .

Since (4.20) is a consequence of this assertion with the choice ga,b,x0 = g
σ
i , gc,d,y0 = g

τ
j ,

I = H σ
i and J = H τ

j we only have to check that (i)–(iv) are fulfilled in the present
situation.

Properties (i), (ii) hold by construction. The choice of δ̄ comes into play in connection
with conditions (iii) and (iv). Actually condition (iii) is easily seen to hold provided that
λ(f ) is sufficiently small, and we may suppose that this is the case, thanks to Lemma 12,
since we are assuming that δ(f ) ≤ δ̄. Inequality (iv) relies upon Lemmas 11 and 12.
Indeed,

‖gσi − g
τ
j ‖Lp

∗
(Rn) ≤ ‖g

σ
i − f

σ
i ‖Lp

∗
(Rn) + ‖f

σ
i − f ‖Lp∗ (Rn) + ‖f − f

τ
j ‖Lp

∗
(Rn)

+ ‖f τj − g
τ
j ‖Lp

∗
(Rn). (4.21)

By (4.9), ∫
Rn
|f σi − f |

p∗
=

1
2

∫
Rn
|f ◦ Ti − f |

p∗
≤ Cλ(f )1/p

∗

,
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and hence the second and the third norm on the right-hand side of (4.21) can be made
arbitrarily small, owing to Lemma 12, by a suitable choice of δ̄. The same assertion holds
also for the other two norms, inasmuch as∫

Rn
|gσi − f

σ
i |
p∗
≤ 2p

∗
−1(λ(f |Hi)+ ‖f − f

σ
i ‖

p∗

Lp
∗
(Rn)) ≤ Cλ(f )

1/p∗

for some constant C, by (4.8). Inequality (4.20) is thus established. It only remains to
make use of (4.20) to prove the claim concerning (4.19). To fix ideas, suppose that i = 1
and j = 2. Set, for k = 1, 2,

hk = g
+

k χH+
k

+ g−k χH−
k

.

By (4.20),∫
Rn
|h1−h2|

p∗
≥

∫
H+1 ∩H

+

2

|h1−h2|
p∗
=

∫
H+1 ∩H

+

2

|g+1 −g
+

2 |
p∗
≥

1
C0

∫
Rn
|g+1 −g

+

2 |
p∗ .

A similar chain with H+1 ∩H
+

2 replaced by H−1 ∩H
+

2 yields∫
Rn
|h1 − h2|

p∗
≥

1
C0

∫
Rn
|g−1 − g

+

2 |
p∗ .

In conclusion, ∫
Rn
|g+1 − g

−

1 |
p∗
≤ 2p

∗
−1C0

∫
Rn
|h1 − h2|

p∗ . (4.22)

An analogous argument tells us that∫
Rn
|g+2 − g

−

2 |
p∗
≤ 2p

∗
−1C0

∫
Rn
|h1 − h2|

p∗ .

On the other hand,∫
Rn
|h1 − h2|

p∗
≤ 2p

∗
−1
(∫

Rn
|h1 − f |

p∗
+

∫
Rn
|h2 − f |

p∗
)

= 2p
∗
−1
(∫

H+1

|g+1 − f
+

1 |
p∗
+

∫
H−1

|g−1 − f
−

1 |
p∗

+

∫
H+2

|g+2 − f
+

2 |
p∗
+

∫
H−2

|g−2 − f
−

2 |
p∗
)
. (4.23)

Combining (4.22)–(4.23) ensures that (4.19) holds for an appropriate constant C, with
either k = 1 or k = 2. ut
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Proof of Theorem 6. We may assume that ‖f ‖Lp∗ (Rn) = 1 and, by Lemma 13, that f is
(n − 1)-symmetric. As in the proof of that lemma, we may also suppose that δ(f ) does
not exceed a constant δ̄ to be chosen later. Finally, up to an isometry, we may assume that
f is symmetric about the last n− 1 coordinate hyperplanes and that∫

{x1>0}
f p
∗

=
1
2
.

Let f+ and f− be defined as in (4.16), with H1 = {x1 = 0}; denote by C0 a (sufficiently
large) positive constant to be chosen later. By (4.17),

max{δ(f+), δ(f−)} ≤ 2δ(f ).

Thus, if either λ(f ) ≤ C0λ(f
+), or λ(f ) ≤ C0λ(f

−), inequality (4.1) immediately
follows, with either f̂ = f+ or f̂ = f−, since both f+ and f− are n-symmetric.
Therefore, we may focus on the case where

λ(f ) ≥ C0 max{λ(f+), λ(f−)}. (4.24)

Consider the set Q = {x ∈ Rn : |x1| ≤ x2} and define the function f̂ : Rn→ [0,∞) as

f̂ (x) =


f (x) if x ∈ Q,
f (R1(x)) if x ∈ R1(Q),

f̂ (R2(x)) if x ∈ R2(Q ∪ R1(Q)),

where R1, R2 : Rn → Rn denote the reflections with respect to the hyperplanes {x ∈
Rn : x2 = x1} and {x ∈ Rn : x2 = −x1}, respectively; notice that f̂ is symmetric with
respect to the hyperplanes {x1 = ±x2} and {xi = 0} for 3 ≤ i ≤ n, hence n-symmetric.
Moreover, on setting Q+ = {x ∈ Q : x1 > 0} and Q− = {x ∈ Q : x1 < 0}, one has

f̂ = f+ in Q+, f̂ = f− in Q−.

We claim that if C0 is sufficiently large, then there exists a constant C such that (4.1)
holds. Let us begin by proving the first inequality: obviously

∫
Rn f̂

p∗
≤ 2 so that, on

denoting by ĝ, g+ and g− functions having the form (1.2), at which the infima in the
definitions of λ(f̂ |{0}), λ(f+|{0}) and λ(f−|{0}) are attained, we have

3p
∗

λ(f̂ ) ≥ λ(f̂ |{0}) =

∫
Rn |f̂ − ĝ|

p∗∫
Rn f̂

p∗
= 4

∫
Q
|f − ĝ|p

∗∫
Rn f̂

p∗

≥ 2
(∫

Q+
|f+ − ĝ|p

∗

+

∫
Q−
|f− − ĝ|p

∗

)
= 2

(∫
Q+
|f+ − ĝ|p

∗

+

∫
Q+
|f− − ĝ|p

∗

)
≥

1
2p∗−2

∫
Q+
|f+ − f−|p

∗

.

Observe that the first inequality holds thanks to Lemma 7. We are going to show that∫
Q+
|f+ − f−|p

∗

≥
λ(f )

4p∗+2 , (4.25)
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provided that C0 is large enough, whence the first inequality in (4.1) follows. One has

‖f+ − f−‖Lp∗ (Q+) ≥
1
2
‖f+ − f−‖Lp∗ (Q)

≥
1
2

(
‖g+ − g−‖Lp∗ (Q) − ‖f

+
− g+‖Lp∗ (Q) − ‖f

−
− g−‖Lp∗ (Q)

)
. (4.26)

Moreover,∫
Q

|f± − g±|p
∗

≤

∫
Rn
|f± − g±|p

∗

= λ(f±|{0}) ≤ 3p
∗

λ(f±) ≤
3p
∗

C0
λ(f ), (4.27)

where we have exploited Lemma 7 and (4.24). From (4.26) and (4.27) we get

‖f+ − f−‖Lp∗ (Q+) ≥
1
2

(
‖g+ − g−‖Lp∗ (Q) − 2

(
3p
∗

C0
λ(f )

)1/p∗)
. (4.28)

On the other hand, owing to (4.27),

λ(f ) ≤

∫
Rn
|f − g+|p

∗

=
1
2

∫
Rn
|g+ − f+|p

∗

+
1
2

∫
Rn
|g+ − f−|p

∗

≤
3p
∗

2C0
λ(f )+ 2p

∗
−2
(

3p
∗

C0
λ(f )+

∫
Rn
|g+ − g−|p

∗

)
.

Thus, ∫
Rn
|g+ − g−|p

∗

≥
1

2p∗−2

(
1−

3p
∗

C0

(
1
2
+ 2p

∗
−2
))
λ(f ) ≥

1
2p∗

λ(f ) (4.29)

if C0 is sufficiently large. Coupling (4.28) and (4.29) yields (4.25), provided that C0 is
large enough.

Let us now prove the second inequality in (4.1). One has∣∣∣∣‖f ‖Lp∗ (Q+) − 1
81/p∗

∣∣∣∣ = ∣∣‖f+‖Lp∗ (Q+) − ‖g+‖Lp∗ (Q+)∣∣ ≤ ‖f+ − g+‖Lp∗ (Q+).
Since there exists a constant C such that |sp

∗

− rp
∗

| ≤ C|s− r| for r, s ∈ [0, 1], we have∣∣∣∣∫
Q+
f p
∗

−
1
8

∣∣∣∣ ≤ C‖f+ − g+‖Lp∗ (Q+) ≤ Cλ(f+|{0})1/p∗ ≤ Cλ(f+)1/p∗
≤ Cδ(f+)1/βp

∗

≤ Cδ(f )1/βp
∗

(4.30)

for a suitable constantC. Note that the third inequality relies on Lemma 7, whereas Corol-
lary 4 plays a role in the fourth one. The same estimate also holds inQ−, U+ = {x2 > 0,
x1 > 0} \Q and U− = {x2 > 0, x1 < 0} \Q. As a consequence,∣∣∣∣∫Rn

f̂ p
∗

− 1
∣∣∣∣ ≤ Cδ(f )1/βp∗ . (4.31)
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As far as the gradient of f̂ is concerned, we obviously have∫
Rn
|∇f̂ |p = 4

∫
Q

|∇f̂ |p = 4
(∫
{x2>0}

|∇f |p −

∫
U+∪U−

|∇f |p
)
. (4.32)

Since f is symmetric about the hyperplane {x2 = 0},∫
{x2>0}

|∇f |p =
1
2

∫
Rn
|∇f |p = S(p, n)p

(1+ δ(f ))p

2
≤ S(p, n)p

(1+ Cδ(f ))
2

.

(4.33)

Here, we have made use of the fact that δ(f ) ≤ δ̄. Applying the Sobolev inequality (1.1)
to the function obtained by reflecting f|U+ first with respect to {x2 = x1}, then with
respect to {x1 = 0}, and finally with respect to {x2 = 0}, and keeping in mind (4.30), we
have ∫

U+
|∇f |p ≥ 8−1+p/p∗S(p, n)p

(∫
U+
f p
∗

)p/p∗
≥ 8−1+p/p∗S(p, n)p

(
1
8
− Cδ(f )1/βp

∗

)p/p∗
≥ S(p, n)p

(
1
8
− Cδ(f )1/βp

∗

)
,

provided that δ̄ is small enough. An analogous estimate holds for
∫
U−
|∇f |p. Combining

these estimates with (4.32) and (4.33) tells us that∫
Rn
|∇f̂ |p ≤ 4

(
S(p, n)p(1+ Cδ(f ))

2
− 2S(p, n)p

(
1
8
− Cδ(f )1/βp

∗

))
≤ S(p, n)p(1+ Cδ(f )1/βp

∗

).

Therefore, from (4.31) we conclude that

δ(f̂ ) =
‖∇f̂ ‖Lp(Rn

S(p, n)‖f̂ ‖Lp∗ (Rn)
− 1 ≤

S(p, n)(1+ Cδ(f )1/βp
∗

)

S(p, n)(1− Cδ(f )1/βp∗)
− 1 ≤ Cδ(f )1/βp

∗

,

which is the second inequality in (4.1). ut
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