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Abstract. The Rosen fractions form an infinite family which generalizes the nearest-integer con-
tinued fractions. In this paper we introduce a new class of continued fractions related to the Rosen
fractions, the α-Rosen fractions. The metrical properties of these α-Rosen fractions are studied.

We find planar natural extensions for the associated interval maps, and show that their domains
of definition are closely related to the domains of the ‘classical’ Rosen fractions. This unifies and
generalizes results of diophantine approximation from the literature.
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1. Introduction

Although David Rosen [Ros] introduced as early as 1954 an infinite family of continued
fractions which generalize the nearest-integer continued fraction, it is only very recently
that the metrical properties of these so-called Rosen fractions have been investigated; see
e.g. [Schm], [N2], [GH] and [BKS]. In this paper we will introduce α-Rosen fractions, and
study their metrical properties for special choices of α. These choices resemble Nakada’s
α-expansions, in fact for q = 3 these are Nakada’s α-expansions; see also [N1]. To
be more precise, let q ∈ Z, q ≥ 3, and λ = λq = 2 cosπ/q. Then we define for
α ∈ [1/2, 1/λ] the map Tα : [λ(α − 1), λα]→ [λ(α − 1), λα) by

Tα(x) :=
∣∣∣∣1x
∣∣∣∣− λ⌊∣∣∣∣ 1

xλ

∣∣∣∣+ 1− α
⌋
, x 6= 0, (1)

and Tα(0) := 0. Here, bξc denotes the floor (or entier) of ξ , i.e., the greatest integer
smaller than or equal to ξ . In order to have positive digits, we demand that α ≤ 1/λ.
Setting d(x) =

⌊∣∣ 1
xλ

∣∣+ 1− α
⌋

(with d(0) = ∞), ε(x) = sgn(x), and more generally

εn(x) = εn = ε(T
n−1
α (x)) and dn(x) = dn = d(T

n−1
α (x)) (2)
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for n ≥ 1, one obtains for x ∈ Iq,α := [λ(α − 1), αλ] an expression of the form

x =
ε1

d1λ+
ε2

d2λ+ · · · +
εn

dnλ+ T nα (x)

,

where εi ∈ {±1, 0} and di ∈ N ∪ {∞}. Setting

Rn

Sn
=

ε1

d1λ+
ε2

d2λ+ · · · +
εn

dnλ

=: [ ε1 : d1, ε2 : d2, . . . , εn : dn ], (3)

we will show in Section 2.3 that
lim
n→∞

Rn

Sn
= x,

and for convenience we will write

x =
ε1

d1λ+
ε2

d2λ+ · · ·

=: [ ε1 : d1, ε2 : d2, . . . ]. (4)

We call Rn/Sn the nth α-Rosen convergent of x, and (4) the α-Rosen fraction of x.
The case α = 1/2 yields the Rosen fractions, while the case α = 1/λ is the Rosen

fraction equivalent of the classical regular continued fraction expansion (RCF). In case
q = 3 (and 1/2 ≤ α ≤ 1/λ), the above defined α-Rosen fractions are in fact Nakada’s α-
expansions (and the case α = 1/λ = 1 is the RCF). Already from [BKS] it is clear that in
order to construct the underlying ergodic system for any α-Rosen fraction and the planar
natural extension for the associated interval map Tα , it is fundamental to understand the
orbit under Tα of the two endpoints λ(α − 1) and λα of X = Xα := [λ(α − 1), λα]. Al-
though the situation is in general more complicated than the ‘classical case’ from [BKS],
the natural extension together with the invariant measure can be given, and it is shown
that this dynamical system is weakly Bernoulli.

Using the natural extension, metrical properties of the α-Rosen fractions will be given
in Section 4.

2. Natural extensions

In this section we find the ‘smallest’ domain �α ⊂ R2 on which the map

Tα(x, y) =
(
Tα(x),

1
d(x)λ+ ε(x)y

)
, (x, y) ∈ �α, (5)

is bijective a.e. We will deal with the general case, resembling Nakada’s α-expansions,
i.e., 1/2 ≤ α ≤ 1/λ and λ = λq = 2 cosπ/q for some fixed q ∈ Z, q ≥ 4 (the case
q = 3 is in fact the case of Nakada’s α-expansions; see also [N1]). As in [BKS], we need
to discern between odd and even q’s, but some properties are shared by both cases, and
these are collected here first.
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For x ∈ [λ(α − 1), λα], setting

Ai =

(
0 εi
1 diλ

)
and Mn = A1 · · ·An =

(
Kn Rn
Ln Rn

)
,

it immediately follows from Mn = Mn−1An that Kn = Rn−1, Ln = Sn−1, and

R−1 := 1, R0 := 0, Rn = dnλRn−1 + εnRn−2 for n = 1, 2, . . . ,
S−1 := 0, S0 := 1, Sn = dnλSn−1 + εnSn−2 for n = 1, 2, . . . , (6)

if dn < ∞. For a matrix A =
(
a b
c d

)
with det(A) 6= 0, we define the corresponding

Möbius (or fractional linear) transformation by

A(x) =
ax + b

cx + d
.

Consequently, considering Mn as a Möbius transformation, we find that

Mn(0) =
Rn

Sn
, and Mn(0) = A1 · · ·An(0) = · · · = [ ε1 : d1, . . . , εn : dn ].

It follows that the numerators and denominators of the α-Rosen convergents of x from (3)
satisfy the usual recurrence relations (6); see also [BKS, p. 1279].

Furthermore, since

x = Mn−1

(
0 εn
1 dnλ+ T

n
α (x)

)
(0),

we have

x =
Rn + T

n
α (x)Rn−1

Sn + T nα (x)Sn−1
and T nα (x) =

Rn − Snx

Sn−1x − Rn−1
. (7)

Let `0 = (α− 1)λ be the left endpoint of the interval on which the continued fraction
map Tα was defined in (1), r0 = αλ its right endpoint, and let

1(ε : d) = {x ∈ [(α − 1)λ, αλ] | ε1(x) = ε, d1(x) = d}

be the cylinders of order 1 of numbers with same first digits given by (4). If we set

δd =
1

(α + d)λ

for all d ≥ 1, then the cylinders are given by the following table:

1(−1 : 1) 1(−1 : d), d ≥ 2 1(0 :∞) 1(+1 : d), d ≥ 2 1(+1 : 1)

[`0,−δ1) [−δd−1,−δd ) {0} (δd , δd−1] (δ1, r0]

where we have used the fact that r0 > δ1 since λ ≥
√

2 for q ≥ 4. Note that by definition

Tα(x) = ε/x − λd

for all x ∈ 1(ε, d), x 6= 0.
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Setting `n = T nα (`0), rn = T nα (r0), n ≥ 0, we have

r1 =
1
αλ
− λ = −

αλ2
− 1

αλ
< 0.

In case α = 1/2, we write φn instead of `n, for n ≥ 0. In [BKS], it was shown that

−λ/2 =

{
[(−1 : 1)p−1] if q = 2p,
[(−1 : 1)h,−1 : 2, (−1 : 1)h] if q = 2h+ 3,

from which it immediately follows that

φ0 = −
λ

2
< φ1 < · · · < φp−2 = −

1
λ
< φp−1 = 0 if q = 2p, (8)

and that for q = 2h+ 3,

φ0 = −
λ

2
< φ1 < · · · < φh−2 < φh−1 < −

2
3λ

< φh < −
2

5λ
,

φ0 < φh+1 < φ1, φh+1 = 1− λ, and

φh+1 < φh+2 < · · · < φ2h = −
1
λ
< −

2
3λ

< φ2h+1 = 0;

see also Figure 1.

−λ/2 λ/2−δ1 −δ2 · · · · · · δ2 δ1 −λ/2 λ/2−δ1 −δ2 · · · · · · δ2 δ1

Fig. 1. The map T1/2 and the orbit of −λ/2 (dashed broken line) for q = 8 (left) and q = 7 (right).

Thus we see that the behavior of the orbit of −λ/2 is very different in the even case
compared to the odd case; see also Figure 2, where the relevant terms of (φn)n≥0, (`n)n≥0,
and (rn)n≥0 are displayed for even q.

Direct verification yields the following lemma.
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Lemma 2.1. For q ≥ 4 and 1/2 ≤ α ≤ 1/λ, we have

φ0 = −
λ

2
≤ `0 ≤ r1 < φ1 = −

λ2
− 2
λ

,

with φ0 = `0 if and only if α = 1/2, and `0 = r1 if and only if α = 1/λ.

In [BKS], the sequence (φn)n≥0 plays a crucial role in the construction of the natural
extension of the Rosen fractions. Due to the fact that the orbits of both −λ/2 and λ/2
would become constant 0 after a finite number of steps (depending on q), the natural
extension of the Rosen fraction could be easily constructed. In this paper, the (`n)n≥0 and
(rn)n≥0 play a role comparable to that of the sequence (φn)n≥0 (even though the φn’s are
frequently used as well).

Let x ∈ [λ(α − 1), αλ] be such that (εn(x) : dn(x)) = (−1 : 1) for n = 1, . . . , m.
Then it follows from (6) that the α-Rosen convergents of x satisfy

R−1 = 1, R0= 0, Rn = λRn−1 − Rn−2 for n = 1, . . . , m,
S−1 = 0, S0= 1, Sn = λSn−1 − Sn−2 for n = 1, . . . , m.

As in [BKS], we define the auxiliary sequence (Bn)n≥0 by

B0 = 0, B1 = 1, Bn = λBn−1 − Bn−2 for n = 2, 3, . . . . (9)

This shows, for n = 1, . . . , m, that Rn = −Bn, Sn = Bn+1, and T nα (x) = −
Bn+Bn+1x
Bn−1+Bnx

by (7). It follows that

`n = −
Bn + Bn+1(α − 1)λ
Bn−1 + Bn(α − 1)λ

= −
Bn+1αλ− Bn+2

Bnαλ− Bn+1
if `0 = [(−1 : 1)n, . . .]. (10)

For x = [+1 : 1, (−1 : 1)n−1, . . .] = −[(−1 : 1)n, . . .], we obtain similarly Rn =
Bn, Sn = Bn+1, thus T nα (x) =

Bn−Bn+1x
Bnx−Bn−1

and

rn = −
Bn+1αλ− Bn

Bnαλ− Bn−1
if r0 = [+1 : 1, (−1 : 1)n−1, . . .]. (11)

It is easy to see that Bn = sin nπ
q
/ sin π

q
(see also [W, Equation 15 in Section 144]).

Clearly Bn, n ≥ 0, is a periodic sequence, with period length q.

2.1. Even indices

Let q = 2p, p ∈ N, p ≥ 2. Essential in the construction of the natural extension is the
following theorem.
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Theorem 2.2. Let q = 2p, p ∈ N, p ≥ 2, and let the sequences (`n)n≥0 and (rn)n≥0 be
defined as before. If 1/2 < α < 1/λ, then

`0 < r1 < `1 < · · · < rp−2 < `p−2 < −δ1 < rp−1 < 0 < `p−1 < r0, (12)

dp(r0) = dp(`0)+ 1 and `p = rp. If α = 1/2, then

`0 < r1 = `1 < · · · < rp−2 = `p−2 < −δ1 < rp−1 = `p−1 = 0 < r0. (13)

If α = 1/λ, then

`0 = r1 < `1 = r2 < · · · < `p−2 = rp−1 = −δ1 < 0 < r0. (14)

Proof. If α = 1/2, then `0 = φ0 and r0 = −φ0, hence (13) is an immediate consequence
of (8).

In general, in view of Lemma 2.1 and the fact that φ0 = [(−1 : 1)p−1], we have
the following situation: Tα([`0, φ1)) = [`1, φ2) and Tα([φj−1, φj )) = [φj , φj+1) for
j = 2, . . . , p − 2 (cf. Figure 2). This yields `0 = [(−1 : 1)p−2, . . .].

φ0
ℓ0

r1 φ1
ℓ1

r2 φ2
· · · φp−3

ℓp−3
rp−2 φp−2 −δ1 0 r0

Fig. 2. The relevant terms of (φn)n≥0, (`n)n≥0, and (rn)n≥0 for even q.

Since sin (p−1)π
2p = sin (p+1)π

2p , we obtain

Bp−1 = Bp+1, Bp−1 =
λ

2
Bp, Bp−2 =

(
λ2

2
− 1

)
Bp.

By (10), we have therefore

`p−2 = −
Bp−1αλ− Bp

Bp−2αλ− Bp−1
= −

2− αλ2

λ(1− αλ2 + 2α)
≤ −

1
(α + 1)λ

= −δ1,

with `p−2 = −δ1 if and only if α = 1/λ. For α = 1/λ, we clearly have r0 = 1, thus
r1 = 1− λ = `0 and (14) is proved.

If 1/2 < α < 1/λ, then `p−2 < −δ1, hence `0 = [(−1 : 1)p−1, . . . , (1 : dp), . . . ]
with dp ≥ 1, and again due to (10) we obtain

`p−1 = −
Bpαλ− Bp−1

Bp−1αλ− Bp
=
(2α − 1)λ
2− αλ2 > 0.

Similarly, r0 = [+1 : 1, (−1 : 1)p−2, . . .] and, by (11),

rp−1 = −
Bpαλ− Bp−1

Bp−1αλ− Bp−2
= −

(2α − 1)λ
2− (1− α)λ2 ∈ (−δ1, 0),
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thus (12) is proved. Since ∣∣∣∣ 1
rp−1

∣∣∣∣− ∣∣∣∣ 1
`p−1

∣∣∣∣ = λ,
it follows from the definition of Tα that `p = rp and d1(rp−1) = d1(`p−1) + 1. With
dp(x) = d1(T

p−1
α (x)), the theorem is proved. ut

Remark. The structure of the `n’s and rn’s allows us to determine all possible sequences
of ‘digits’. For example, the longest consecutive sequence of digits (−1 : 1) contains
p − 1 terms if α < 1/λ, since `p−2 < −δ1 and `p−1 ≥ −δ1. In case α = 1/λ, we only
have (−1 : 1)p−2. In particular in case q = 4, α = 1/λ, the cylinder 1(−1 : 1) is empty.

On the other hand, (+1 : 1) is always followed by (−1 : 1)p−2 since rp−2 < −δ1,
with 1(+1 : 1) = {r0} in case α = 1/λ.

Now we construct the domain �α upon which Tα is bijective.

Theorem 2.3. Let q = 2p with p ≥ 2. Then the system of relations
(R1) : H1 = 1/(λ+H2p−1),

(R2) : H2 = 1/λ,
(Rn) : Hn = 1/(λ−Hn−2) for n = 3, . . . , 2p − 1,
(R2p) : H2p−2 = λ/2,

(R2p+1) : H2p−3 +H2p−1 = λ,

admits the (unique) solution

H2n = −φp−n =
Bn

Bn+1
=

sin nπ
2p

sin (n+1)π
2p

for n = 1, . . . , p − 1,

H2n−1 =
Bp−n − Bp+1−n

Bp−1−n − Bp−n
=

cos nπ2p − cos (n−1)π
2p

cos (n+1)π
2p − cos nπ2p

for n = 1, . . . , p,

in particular H2p−1 = 1.
Let 1/2 < α < 1/λ and �α =

⋃2p−1
n=1 Jn × [0, Hn] with J2n−1 = [`n−1, rn), J2n =

[rn, `n) for n = 1, . . . , p − 1, and J2p−1 = [`p−1, r0). Then the map Tα : �α → �α
given by (5) is bijective off a set of Lebesgue measure zero.

Proof. It is easily seen that the solution of this system of relations is unique and valid,
and that Tα is injective. We thus concern ourselves with the surjectivity of Tα; see also
Figure 3.

By (12), we have Jn−2 ⊂ 1(−1 : 1) for n = 3, . . . , 2p − 2, thus

Tα(Jn−2 × [0, Hn−2]) = Jn ×
[

1
λ
,

1
λ−Hn−2

]
= Jn × [H2, Hn],

where we have used (R2) and (Rn). Furthermore, (R2p−1) gives

Tα([`p−2,−δ1)× [0, H2p−3]) = [`p−1, r0)×

[
1
λ
,

1
λ−H2p−3

]
= J2p−1× [H2, H2p−1].
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0

H1

H2

H3

H4

H5

ℓ0 r1 ℓ1 δ1 δ2 r2 δ3 δ2 ℓ2 δ1 r0 r1 ℓ1 r2

H3

H5

0 ℓ2 ℓ3 =r3ℓ0 r0

1/3λ

1/2λ
H1

H2

H4

Fig. 3. The natural extension domain �α (left) and its image under Tα (right) of the α-Rosen
continued fraction (δn = −δn); here q = 6, α = 0.53, dp(`0) = 2, dp(r0) = 3.

For n = 2, . . . , d1(rp−1)− 1 = dp(r0)− 1, we have

Tα([−δn−1,−δn)× [0, H2p−3]) = [`0, r0)×

[
1
nλ
,

1
nλ−H2p−3

]
.

The remaining part of the rectangle J2p−3 × [0, H2p−3] is mapped to

Tα([−δdp(r0)−1, rp−1)× [0, H2p−3]) = [`0, rp)×

[
1

dp(r0)λ
,

1
dp(r0)λ−H2p−3

]
.

Now consider the image of J2p−1 × [0, H2p−1]. If dp(`0) ≥ 2, then it is split into

Tα((`p−1, δdp(`0)−1]× [0, H2p−1]) = [`0, rp)×

[
1

dp(`0)λ+H2p−1
,

1
dp(`0)λ

]
,

Tα((−δn,−δn−1]× [0, H2p−1]) = [`0, r0)×

[
1

nλ+H2p−1
,

1
nλ

]
for n = 2, . . . , dp(`0)− 1,

Tα((δ1, r0)× [0, H2p−1]) = (r1, r0)×
[

1
λ+H2p−1

,
1
λ

]
= (r1, r0)× [H1, H2],

where we have used (R1). Since H2p−3 + H2p−1 = λ and dp(r0) = dp(`0) + 1, the
different parts of Tα([−δ1, rp−1)× [0, H2p−3]) and Tα((`p−1, δ1]× [0, H2p−1]) ‘lie one
under the other’ and ‘fill up like a jig-saw puzzle’ the set(

[`0, rp)×

[
1

dp(r0)λ
,

1
dp(`0)λ

])
∪

(
[`0, r0)×

[
1

dp(r0)λ
,H1

])
.

In case dp(`0) = 1, we simply have

Tα([−δ1, rp−1)× [0, H2p−3]) = [`0, rp)× [1/(2λ),H1],
Tα((`p−1, r0)× [0, H2p−1]) = (r1, rp)× [H1, H2].
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Finally, the image of the central rectangle J2p−2 × [0, H2p−2] is split into

Tα([rp−1,−δdp(r0))× [0, H2p−2]) = [rp, r0)×
[

1
dp(r0)λ

,
1

dp(r0)λ−H2p−2

]
,

Tα([−δn−1,−δn)× [0, H2p−2]) = [`0, r0)×

[
1
nλ
,

1
nλ−H2p−2

]
for n > dp(r0),

Tα((δn, δn−1]× [0, H2p−2]) = [`0, r0)×

[
1

nλ+H2p−2
,

1
nλ

]
for n > dp(`0),

Tα((δdp(`0), `p−1]× [0, H2p−2]) = [rp, r0)×
[

1
dp(`0)λ+H2p−2

,
1

dp(`0)λ

]
.

Since H2p−2 = λ/2 and dp(r0) = dp(`0)+ 1, the union of these images is(
[`0, r0)×

(
0,

1
dp(r0)λ

])
∪

(
[rp, r0)×

[
1

dp(r0)λ
,

1
dp(`0)λ

])
.

Therefore Tα(�α) and �α differ only by a set of Lebesgue measure zero. ut

Remark. If α = 1/2, then the intervals J2n are empty and rp−1 = `p−1 = 0. The proof
of Theorem 2.3 remains valid, with d1(rp−1) = d1(`p−1) = ∞; see also [BKS]. Since
`n = φn for n = 0, 1, . . . , p − 1, we have

�1/2 =

p−1⋃
n=1

([
−
Bn

Bn+1
,−
Bn−1

Bn

)
×

[
0,
Bn − Bn+1

Bn−1 − Bn

])
∪

([
0,
λ

2

)
× [0, 1]

)
.

For α = 1/λ, we just have the intervals J2n, n = 1, . . . , p − 2 and add J2p−2 =

[rp−1, r0) (= [−δ1, 1)). Furthermore, rn =
Bn−Bn+1
Bn−Bn−1

for n = 1, . . . , p − 1 and r0 =
Bp−Bp+1
Bp−Bp−1

= 1. This provides the following theorem.

Theorem 2.4. Let q = 2p with p ≥ 2 and

�1/λ =

p−1⋃
n=1

[
Bn − Bn+1

Bn − Bn−1
,
Bn+1 − Bn+2

Bn+1 − Bn

)
×

[
0,

Bn

Bn+1

]
.

Then T1/λ : �1/λ→ �1/λ is bijective off a set of Lebesgue measure zero.

Proof. By (14), we have `0 = r1 < `1 = r2 < · · · < `p−2 = rp−1 = −δ1, thus

T1/λ

([
Bn − Bn+1

Bn − Bn−1
,
Bn+1 − Bn+2

Bn+1 − Bn

)
×

[
0,

Bn

Bn+1

])
=

[
Bn+1 − Bn+2

Bn+1 − Bn
,
Bn+2 − Bn+3

Bn+2 − Bn+1

)
×

[
1
λ
,
Bn+1

Bn+2

]
for n = 1, . . . , p − 2.
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The different parts of [−rp−1, r0) are mapped to

T1/λ

(
[−δn−1,−δn)×

[
0,
λ

2

])
= [1− λ, 1)×

[
1
nλ
,

2
(2n− 1)λ

]
for n = 2, 3, . . . ,

T1/λ

(
(δn, δn−1]×

[
0,
λ

2

])
= [1− λ, 1)×

[
2

(2n+ 1)λ
,

1
nλ

]
for n = 2, 3, . . . ,

T1/λ

(
(δ1, 1)×

[
0,
λ

2

])
= [1− λ, 1)×

[
2

3λ
,

1
λ

]
and the union of these images is [1− λ, 1)× (0, 1/λ]. ut

Remark. Note that there is a simple relation between �1/2 and �1/λ, which will be
useful in Section 3; reflect �1/2 in the line y = x in case x ≥ 0, and reflect �1/2 in the
line y = −x in case x ≤ 0, to find �1/λ; see also Figure 4.

1

φ1 − 2
3λ

λ−1

0 2
3λ−λ

2
λ
2

H1H1

1−H1 = −1
1+λ

λ
2

0 1
1+λ

1−λ

−φ1

Fig. 4. �1/2 (left) and �1/λ (right); here q = 6.

As in [BKS], a Jacobian calculation shows that Tα preserves the probability measure
να with densityCq,α/(1+ xy)2,whereCq,α is a normalizing constant. For the calculation
of this constant, we need the following lemma.

Lemma 2.5. If m1 −m2 = m3 −m4, then

Bn+m1B−n+m2 − Bn+m3B−n+m4 = Bm1−m3Bm2+m3 for all n ∈ Z.

Proof. With ζ = exp(πi/q), we have

Bn+m1B−n+m2 − Bn+m3B−n+m4

=
(ζ n+m1 − ζ−n−m1)(ζ−n+m2 − ζ n−m2)− (ζ n+m3 − ζ−n−m3)(ζ−n+m4 − ζ n−m4)

(ζ − ζ−1)2

=
ζm1+m2 − ζ−m1−m2 − ζm3+m4 − ζ−m3−m4

(ζ − ζ−1)2
= Bm1−m3Bm2+m3 . ut

Proposition 2.6. For 1/2 ≤ α ≤ 1/λ, the normalizing constant is

Cq,α = 1
/

log
1+ cos π

q

sin π
q

.
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Proof. Similarly to [BKS], integration of the density over �α gives

Cq,α = 1
/

log
(

1+ r0
1+ `p−1

p−1∏
n=1

1+ rnH2n−1

1+ `n−1H2n−1

1+ `nH2n

1+ rnH2n

)
for 1/2 < α < 1/λ, by Theorem 2.3. Using (10), (11) and Lemma 2.5, we find

1+ rnH2n−1

1+ `n−1H2n−1
=
Bn − Bn−1αλ

Bnαλ− Bn−1
,

1+ `nH2n

1+ rnH2n
=
Bnαλ− Bn−1

Bn+1 − Bnαλ

for n = 1, . . . , p − 1, and

1+ r0
1+ `p−1

=
Bp − Bp−1αλ

Bp − Bp−1
.

Putting everything together, we obtain

Cq,α = 1
/

log
1

Bp − Bp−1
= 1

/
log

sin π
q

1− cos π
q

= 1
/

log
1+ cos π

q

sin π
q

.

For α = 1/2, we have the same constant by the remark following Theorem 2.3 and by
[BKS]. Finally, the remark following Theorem 2.4 shows that Cq,1/λ is the same constant
as well. ut

Let µα be the projection of να on the first coordinate, B̄ the restriction of the two-
dimensional σ -algebra on �α , and B the Lebesgue σ -algebra on Iq,α = [λ(α − 1), αλ].
In [Roh], Rohlin introduced and studied the concept of natural extension of a dynamical
system. In our setting, a natural extension of (Iq,α,B, µα, Tα) is an invertible dynam-
ical system (Xα,BXα , ρα,Sα), which contains (Iq,α,B, µα, Tα) as a factor, such that
BXα =

∨
n≥0 Snαπ−1B, where π is the factor map. A natural extension is unique up to

isomorphism.
We have the following theorem.

Theorem 2.7. Let q ≥ 4, q = 2p, and let 1/2 ≤ α ≤ 1/λ. Then the dynamical system
(�α, B̄, να, Tα) is the natural extension of the dynamical system (Iq,α,B, µα, Tα).

Proof. Let π1 : �α → Iq,α be the projection onto the first coordinate. An easy calculation
shows that π1 ◦ Tα = Tα ◦ π1, µα = να ◦ π−1

1 , and π−1
1 B ⊂ B̄ so that π1 is a factor map.

It remains to show that
B̄ =

∨
n≥0

T nα π−1
1 B. (15)

For each admissible block (ε1, d1), . . . , (εn, dn), define

1n((ε1, d1), . . . , (εn, dn)) = 1(ε1, d1) ∩ T
−1
α 1(ε2, d2) ∩ · · · ∩ T

−(n−1)
α 1(εn, dn).
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1
(d+1)λ

1
dλ

1
dλ+1

1
dλ+H2p−2

ℓ0 r0ℓp = rp

T ([ℓp−1, δd−1]× [0,H2p−1])

T ([−δd, rp−1]× [0,H2p−3])

T ([δd, ℓp−1]× [0,H2p−2])

T ([rp−1,−δd+1]× [0,H2p−2])

Fig. 5. ‘Blow-up’ of the relevant part of �α for even q, 1/2 < α < 1/λ.

The intervals 1n defined above are called fundamental intervals of order n. Since Tα is
expanding, the Lebesgue measure of 1n((ε1, d1), . . . , (εn, dn)) tends to 0 as n→∞ for
any admissible sequence (ε1, d1), (ε2, d2), . . . . Thus, the collection

P = {1n((ε1, d1), . . . , (εn, dn)) : n ≥ 1, with (ε1, d1), . . . , (εn, dn) admissible}

generates B, i.e. σ(
∨
n≥0 T

−n
α P) = B. Let Pα = π−1

1 P . To prove (15) it is enough
to show that

∨
n≥0 T nα Pα generates B̄, which is equivalent to showing that

∨
n≥0 T nα Pα

separates points of �α . To do this, we first study the action of T −1
α on �α .

From Theorem 2.3, one sees that T −1
α must take horizontal stripes to vertical stripes,

so we need a partition in the vertical direction. Unfortunately, it is not always possible
to find a uniform partition on the y-axis that works for all x; see Figure 5. Instead, we
partition per fiber. To be more specific, for each x ∈ Iq,α , let D(x) = {y | (x, y) ∈ �α},
so D(x) is the fiber over x. Consider the following partition of D(x):

1#(−1, 1, x) =



[H2, H2p−2] if x ≥ `p−1,

[H2, H2p−3] if rp−1 ≤ x < `p−1,

[H2, H2p−4] if `p−2 ≤ x < rp−2,
...

...

[H2, H3] if `1 ≤ x < r2,

∅ if x < `1,

1#(1, 1, x) =
{

[H1, H2] if x ≥ r1,
∅ if x < r1.

For (ε, d) 6∈ {(−1, dp(r0)), (1, dp(`0))}, set

1#(−1, d, x) =
[

1
dλ
,

1
dλ−H2p−2

]
, 1#(1, d, x) =

[
1

dλ+H2p−1
,

1
dλ

]
.

Finally,

1#(−1, dp(r0), x) =


[

1
dp(r0)λ

,
1

(dp(r0)− 1)λ+ 1

]
if x < `p,[

1
dp(r0)λ

,
1

(dp(r0)− 1)λ+H2p−2

]
if x ≥ `p,
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1#(1, dp(`0), x) =


[

1
dp(`0)λ+ 1

,
1

dp(`0)λ

]
if x < `p,[

1
dp(`0)λ+H2p−2

,
1

dp(`0)λ

]
if x ≥ `p.

One can give T −1
α explicitly:

T −1
α (x, y) =

(
ε

dλ+ x
, ε

(
1
y
− dλ

))
if y ∈ 1#(ε, d, x).

From the definitions of Tα and T −1
α one sees that Tα is expanding in the x-direction, while

T −1
α is expanding in the y-direction.

Now, let (x, y) and (x′, y′) be two distinct elements of �α . If we have x 6= x′,
then there exist two distinct fundamental intervals 1n((ε1, d1), . . . , (εn, dn)) and
1n((ε

′

1, d
′

1), . . . , (ε
′
n, d
′
n)) such that (x, y) ∈ π−1

1 1n((ε1, d1), . . . , (εn, dn)) and
(x′, y′) ∈ π−1

1 1n((ε
′

1, d
′

1), . . . , (ε
′
n, d
′
n)), i.e. they belong to different elements of Pα .

Suppose now that x = x′ but y 6= y′. Since T −1
α is expanding in the y-coordinate, there

exist n ≥ 0 and (ε1, d1), . . . , (εn+1, dn+1), (ε
′

n+1, d
′

n+1) such that

(i) (ε−n, d−n) 6= (ε′−n, d
′
−n),

(ii) T −jα (x, y), T −jα (x, y′) ∈ Tαπ−1
1 1(ε−j , d−j ) for j = 0, . . . , n − 1 (this is void if

n = 0),
(iii) T −nα (x, y) ∈ Tαπ−1

1 1(ε−n, d−n) and T −nα (x, y′) ∈ Tαπ−1
1 1(ε′−n, d

′
−n).

Then

(x, y) ∈ T n+1
α π−1

1 1(ε−n, d−n) ∩ T nα π−1
1 1(ε−n+1, d−n+1) ∩ · · · ∩ Tαπ−1

1 1(ε0, d0),

(x, y′) ∈ T n+1
α π−1

1 1(ε′−n, d
′
−n) ∩ T nα π−1

1 1(ε−n+1, d−n+1) ∩ · · · ∩ Tαπ−1
1 1(ε0, d0).

Thus, (x, y) and (x, y′) belong to different elements of
∨
n∈Z T nα Pα . In all cases, we

see that
∨
n∈Z T nα Pα separates points of �α . Therefore, (�α, B̄, να, Tα) is the natural

extension of (Iq,α,B, µα, Tα). ut

Remark. In case α = 1/2 and α = 1/λ the proof of Theorem 2.7 is a straightforward
application of Theorem 21.2.2 from [Schw]; see also Examples 21.3.1 (the case of the
RCF) and 21.3.2 (the NICF) in [Schw]. However, for 1/2 < α < 1/λ, a lot of extra work
is needed, due to the problem mentioned in the above proof, and illustrated in Figure 5.

2.2. Odd indices

Let q = 2h+ 3, h ∈ N. The `n’s and rn’s are ordered in the following way.

Theorem 2.8. Let q = 2h+ 3, h ∈ N, let the sequences (`n)n≥0 and (rn)n≥0 be defined
as above, and let ρ = (λ− 2+

√
λ2 − 4λ+ 8)/2. Then we have the following cases:
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α= 1/2 : `0<rh+1= `h+1<r1= `1< · · ·<r2h−1= `2h−1<rh−1= `h−1
<r2h= `2h<−δ1<rh= `h<−δ2<r2h+1= `2h+1= 0<r0.

1/2<α<ρ/λ : `0<rh+1<`h+1<r1< · · ·<`h−2<r2h−1<`2h−1<rh−1
<`h−1<r2h<`2h<−δ1<rh<`h<−δ2<r2h+1< 0<`2h+1<r0.

Furthermore, `2h+2= r2h+2 and d2h+2(r0)= d2h+2(`0)+ 1.

α= ρ/λ : `0= rh+1<`h+1= r1< · · ·<`h−1<rh=−δ1<`h<−δ2< 0<r0.

ρ/λ<α< 1/λ : `0<r1< · · ·<`h−1<rh<−δ1<`h< 0<rh+1<r0.

Furthermore, `h+1= rh+2 and dh+1(`0)= dh+2(r0)+ 1.

α= 1/λ : `0= r1< · · ·<`h−1= rh<−δ1<`h= rh+1= 0<r0.

Proof. In [BKS], Section 3.2 (see also the introduction of this section), it was shown that

φ0 = −
λ

2
< φ1 < · · · < φh−2 < φh−1 < −

2
3λ

< φh < −
2

5λ
,

φ0 < φh+1 < φ1, and

φh+1 < φh+2 < · · · < φ2h = −
1
λ
< −

2
3λ

< φ2h+1 = 0.

In view of this and Lemma 2.1, we have φh−1 ≤ `h−1 ≤ rh < φh. An important question
is to know where−δ1 is located. Since 3/2 ≤ 1+α, we have φh−1 < −δ1. For q = 2h+3,
we have sin (h+ 1)π/q = sin (h+ 2)π/q, thus

Bh+1 = Bh+2, Bh = (λ− 1)Bh+1, Bh−1 = (λ
2
− λ− 1)Bh+1.

Hence we obtain, by (10),

`h−1 = −
αλBh − Bh+1

αλBh−1 − Bh
= −

1− αλ(λ− 1)
λ− 1− αλ(λ2 − λ− 1)

< −δ1.

The position of rh with respect to −δ1 leads us to distinguish between the possible cases.
We have

rh = −
Bh+1αλ− Bh

Bhαλ− Bh−1
= −

1− (1− α)λ
1− (1− α)λ(λ− 1)

< −δ1

if and only if α2λ2
+ αλ(2 − λ) − 1 > 0, i.e., αλ > (λ − 2 +

√
λ2 − 4λ+ 8)/2 = ρ.

Note that
1
2
<
λ− 2+

√
λ2 − 4λ+ 8
2λ

<
1
λ

for 0 < λ < 2.

Assume first that α > ρ/λ. Then rh < −δ1, which immediately yields

rh+1 =
Bh+1 − Bh+2αλ

Bh+1αλ− Bh
=

1− αλ
1− (1− α)λ

≥ 0,

`h =
Bh+1αλ− Bh+2

Bh+1 − Bhαλ
= −

1− αλ
1− αλ(λ− 1)

≤ 0.
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If α < 1/λ, then |1/`h| − |1/rh+1| = λ, hence `h+1 = rh+2 and d1(rh+1) = d1(`h)+ 1.
In case α = 1/λ, we have rh+1 = `h = 0. Hence the last two cases are proved.

It remains to consider 1/2 < α ≤ ρ/λ. Now −δ1 ≤ rh (< φh), with −δ1 = rh if and
only if α = ρ/λ. Consequently, we immediately find that

r0 = [+1 : 1, (−1 : 1)h−1,−1 : 2, (−1 : 1)h, . . .].

To see that `h < −δ2, note that this is equivalent to

α2λ2
− αλ2

+ 2αλ− 1 < 2(λ− 1)(1− αλ),

which holds because of the assumption α2λ2
+ αλ(2− λ)− 1 ≤ 0. This assumption also

implies that `h+1 ≤ r1, where again equality holds if and only if α = ρ/λ. This proves
the case α = ρ/λ.

For α < ρ/λ, we have

`0 = [(−1 : 1)h,−1 : 2, (−1 : 1)h, . . .],

hence the convergents of `0 satisfy −Rh−1 = Bh−1 = (λ2
− λ − 1)Bh+1, −Rh =

(λ− 1)Bh+1 and

Rh+1 = 2λRh − Rh−1 = −(λ
2
− λ+ 1)Bh+1.

The recurrence Rh+n+1 = λRh+n − Rh+n−1 for n = 1, . . . , h yields

−Rh+n = (Bn+2 − Bn+1 + 2Bn)Bh+1 for n = 0, 1, . . . , h+ 1.

For the Sn’s, we have similarly Sh−1 = (λ − 1)Bh+1, Sh = Bh+1, thus Sh+1 = 2λSh −
Sh−1 = (λ+ 1)Bh+1 and

Sh+n = (Bn+1 + Bn)Bh+1 for n = 0, 1, . . . , h+ 1.

By (7), we obtain, for n = 0, 1, . . . , h+ 1,

`h+n = −
(Bn+1 + Bn)(α − 1)λ+ Bn+2 − Bn+1 + 2Bn
(Bn + Bn−1)(α − 1)λ+ Bn+1 − Bn + 2Bn−1

. (16)

For the convergents of r0, only the sign of the Rn is different and we get

rh+n = −
(Bn+1 + Bn)αλ− (Bn+2 − Bn+1 + 2Bn)
(Bn + Bn−1)αλ− (Bn+1 − Bn + 2Bn−1)

. (17)

This yields

r2h+1 = −
(2α − 1)λ

αλ2 − 2λ+ 2
(< 0), `2h+1 =

(2α − 1)λ
(1− α)λ2 − 2λ+ 2

(> 0),

hence |1/r2h+1| − |1/`2h+1| = λ, d1(r2h+1) = d1(`2h+1)+ 1, and the theorem is proved.
ut
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For the construction of the natural extension, we have to distinguish between the different
cases of the previous theorem. Consider first α > ρ/λ.

Theorem 2.9. Let q = 2h+ 3 with h ≥ 1. Then the system of relations
(R1) : H1 = 1/(λ+H2h+2),

(R2) : H2 = 1/λ,
(Rn) : Hn = 1/(λ−Hn−2) for n = 3, . . . , 2h+ 2,

(R2h+3) : H2h+1 = λ/2,
(R2h+4) : H2h +H2h+2 = λ,

admits the (unique) solution

H2n = −φ2h+1−n =
Bn

Bn+1
=

sin nπ
q

sin (n+1)π
q

for n = 1, . . . , h+ 1,

H2n−1 =
Bn−1 + Bn

Bn + Bn+1
=

sin (n−1)π
q
+ sin nπ

q

sin nπ
q
+ sin (n+1)π

q

for n = 1, . . . , h+ 1,

in particular H2h+2 = 1.
Let ρ/λ < α ≤ 1/λ and �α =

⋃2h+2
n=1 Jn × [0, Hn] with J2n−1 = [`n−1, rn), J2n =

[rn, `n) for n = 1, . . . , h, J2h+1 = [`h, rh+1) and J2h+2 = [rh+1, r0). Then the map
Tα : �α → �α given by (5) is bijective off a set of Lebesgue measure zero.

Remark. The case q = 3, ρ/λ ≤ α ≤ 1/λ, which is the case of Nakada’s α-expansions
for (
√

5− 1)/2 ≤ α ≤ 1, has been dealt with in [N1]; see also [NIT], [TI], and [K1, K2].

The proof of Theorem 2.9 is very similar to that of Theorem 2.3 and therefore omitted;
see also Figure 6. In case α = 1/λ, the intervals J2n−1 are empty.

H3

0

H1

H2

H4

ℓ0 r1 δ1 δ2 ℓ1 δ3 δ2 r2 δ1 r0 r1

H4

0 r2ℓ0 ℓ1 ℓ2=r3
r0

1/3λ

1/2λ
H1

H2

H3

Fig. 6. The natural extension domain �α (left) and its image under Tα (right) of the α-Rosen
continued fraction (δn = −δn); here q = 5, α = 0.56, dh+1(`0) = 3, dh+2(r0) = 2.

Once more, a Jacobian calculation shows that Tα preserves the probability measure να
with densityCq,α/(1+ xy)2,whereCq,α is a normalizing constant given by the following
proposition.
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Proposition 2.10. If q = 2h+ 3 and ρ/λ < α ≤ 1/λ, then the normalizing constant is

Cq,α = 1
/

log
1+ αλ
√

2− λ
= 1

/
log

1+ 2α cos π
q

2 sin π
2q

.

Proof. Integration gives

Cq,α = 1
/

log
(

1+ r0
1+ rh+1

h+1∏
n=1

1+ rnH2n−1

1+ `n−1H2n−1

h∏
n=1

1+ `nH2n

1+ rnH2n

)
.

Using (10) and (11), we find

1+ rnH2n−1

1+ `n−1H2n−1
=
Bn − Bn−1αλ

Bnαλ− Bn−1
,

1+ `nH2n

1+ rnH2n
=
Bnαλ− Bn−1

Bn+1 − Bnαλ
,

and
1+ r0

1+ rh+1
=
(1+ αλ)(Bh+1αλ− Bh)

Bh+1 − Bh
= (1+ αλ)(Bh+1αλ− Bh)Bh+1,

where we have used

(2− λ)B2
h+1 =

2(1− cos π
q
) sin2 (h+1)π

q

sin2 π
q

=

4 sin2 π
2q cos2 π

2q

4 sin2 π
2q cos2 π

2q

= 1.

Putting everything together, we obtain

Cq,α = 1/ log((1+ αλ)Bh+1) = 1
/

log
1+ αλ
√

2− λ
= 1

/
log

1+ αλ
2 sin π

2q
. ut

Remark. Note that for q = 3 this result confirms Nakada’s result from [N1] for α be-
tween (

√
5− 1)/2 and 1; in this case, the normalizing constant is indeed 1/ log(1+ α).

Now consider α < ρ/λ.

Theorem 2.11. Let q = 2h+ 3 with h ≥ 1. Then the system of relations

(R1) : H1 = 1/(2λ−H4h−1),

(R2) : H2 = 1/(2λ−H4h),

(R3) : H3 = 1/(λ+H4h+3),

(R4) : H4 = 1/λ,
(Rn) : Hn = 1/(λ−Hn−4) for n = 5, . . . , 4h+ 3,

(R4h+4) : H4h+2 = λ/2,
(R4h+5) : H4h+1 +H4h+3 = λ,

admits the (unique) solution

H4n =
Bn

Bn+1
, H4n−2 =

Bn−1 + Bn

Bn + Bn+1
,

H4h+3−4n =
Bn+1ρ − Bn

Bnρ − Bn−1
, H4h+1−4n =

Bn+1ρ − Bn+2

Bnρ − Bn+1
,

in particular H4h+3 = ρ.
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Let 1/2 ≤ α < ρ/λ, and �α =
⋃4h+3
n=1 Jn × [0, Hn] with J4n−3 = [`n−1, rh+n),

J4n−2 = [rh+n, `h+n), J4n−1 = [`h+n, rn), J4n = [rn, `n) for n = 1, . . . , h, J4h+1 =

[`h, r2h+1), J4h+2 = [r2h+1, `2h+1) and J4h+3 = [`2h+1, r0). Then the map Tα : �α →
�α given by (5) is bijective off a set of Lebesgue measure zero.

Proof. The proof of the bijectivity runs along the same lines as the proof of Theorem 2.3
and is therefore omitted; see also Figure 7.

The H4n’s are determined by (R4), (R8), . . . , (R4h). The H4n−2’s are determined
by (R2), (R6), . . . , (R4h+2) and (R4h+4). By (R3), (R7), . . . , (R4h+3), we obtain
H4h+3−4n =

Bn+1H4h+3−Bn
BnH4h+3−Bn−1

and

1
λ+H4h+3

= H3 =
Bh+1H4h+3 − Bh

BhH4h+3 − Bh−1
=

H4h+3 − (λ− 1)
(λ− 1)H4h+3 − (λ2 − λ− 1)

,

thus H 2
4h+3 + (2 − λ)H4h+3 − 1 = 0, i.e. H4h+3 = ρ. Finally, the H4h+1−4n’s are

determined by (R1), (R5), . . . , (R4h+5). For α = 1/2, the intervals J4n and J4n−2 are
empty. ut

H6

0

H2

H4

ρ

H1

H3

H5

ℓ0 r2 ℓ2 δ1r1ℓ1 δ2δ3r3δ4 δ3ℓ3δ2 δ1 r0 r2 ℓ2 r3 ℓ3

ρ

0ℓ0 r1ℓ1 ℓ4 =r4 r0

1/4λ

1/3λ
1/2λ
H1
H2

H3

H4

H5

H6

Fig. 7. The natural extension domain �α (left) and its image under Tα (right) of the α-Rosen
continued fraction (δn = −δn); here q = 5, α = 0.5038, d2h+2(`0) = 2, d2h+2(r0) = 3.

Again, Tα preserves the probability measure να with density Cq,α/(1 + xy)2, where
Cq,α is a normalizing constant given by the following proposition.

Proposition 2.12. If q = 2h+3 and 1/2 ≤ α < ρ/λ, then the normalizing constant is

Cq,α = 1
/

log
1+ ρ
√

2− λ
= 1

/
log

1+ ρ
2 sin π

2q
.

Proof. Integration shows that Cq,α is equal to

1
/

log
(

1+ r0ρ
1+`2h+1ρ

h+1∏
j=1

1+ rh+jH4j−3

1+ j̀−1H4j−3

1+`h+jH4j−2

1+ rh+jH4j−2

h∏
j=1

1+ rjH4j−1

1+`h+jH4j−1

1+ j̀H4j

1+ rjH4j

)
.

Using (10), (11), (16), (17) and Lemma 2.5, we find

1+ rh+jH4j−3

1+ j̀−1H4j−3
=

(λ(1− 2α)ρ + αλ2
− λ2

+ 2λ− 2)(Bj − Bj−1αλ)

((αλ− 1)ρ − αλ+ λ− 1)((Bj + Bj−1)αλ− Bj+1 + Bj − 2Bj−1)
,



Metrical theory for α-Rosen fractions 1277

1+ `h+jH4j−2

1+ rh+jH4j−2
=
(Bj + Bj−1)αλ− Bj+1 + Bj − 2Bj−1

2Bj − Bj−1 + Bj−2 − (Bj + Bj−1)αλ
,

1+ rjH4j−1

1+ `h+jH4j−1
=
((αλ− 1)ρ − αλ+ λ− 1)(2Bj − Bj−1 + Bj−2 − (Bj + Bj−1)αλ)

(λ(1− 2α)ρ + αλ2 − λ2 + 2λ− 1)(Bjαλ− Bj−1)
,

1+ j̀H4j

1+ rjH4j
=
Bjαλ− Bj−1

Bj+1 − Bjαλ
,

1+ r0ρ
1+ `2h+1ρ

=
(1+ αλρ)((2Bh+1 − Bh + Bh−1 − (Bh+1 + Bh)αλ)

((2α − 1)λρ − αλ2 + λ2 + 2λ− 2)Bh+1
.

Putting everything together, we obtain

Cq,α = 1
/

log
(1+ αλρ)

√
2− λ

1+ αλ− λ+ (1− αλ)ρ
= 1

/
log

1+ ρ
√

2− λ
. ut

This confirms again Nakada’s result for q = 3, i.e., C3,α = 1/ log
√

5+1
2 for 1

2 ≤ α <
√

5−1
2 .

The case α = ρ/λ is slightly different from both other cases (similarly to α = 1/λ
for even q).

Theorem 2.13. Let q = 2h+ 3 with h ≥ 1, α = ρ/λ and

�ρ =

h⋃
j=1

(
[ j̀−1, rj )×

[
0,
Bj−1 + Bj

Bj + Bj+1

])
∪

(
[rj , j̀ )×

[
0,

Bj

Bj+1

])
∪

(
[`h, ρ)×

[
0,
λ

2

])
.

Then Tρ : �ρ → �ρ is bijective off a set of Lebesgue measure zero.

The normalizing constant in this case is Cq,ρ/λ = 1/ log 1+ρ
√

2−λ
as above. As in the

even case, we let µα be the projection of να on the first coordinate, B̄ be the restric-
tion of the two-dimensional σ -algebra on �α , and B be the Lebesgue σ -algebra on
Iq,α = [λ(α − 1), αλ]. We have the following theorem, whose proof is similar to the
proof of Theorem 2.7 in the even case.

Theorem 2.14. Let q ≥ 3, q = 2h + 1, and let 1/2 ≤ α ≤ 1/λ. Then the dynamical
system (�α, B̄, να, Tα) is the natural extension of the dynamical system (Iq,α,B, µα, Tα).

ρ

φ2

H5

0 2
3λ−λ

2
−2
3λ

φ1
λ
2

H1

H3

λ/2

0 1
λ+ρ

ρ−λ −1
λ+ρ

ℓ1 ρ

H2

1/λ

1

1−1
λ+1

1/λ

0 1
λ+1

λ−1

Fig. 8. �1/2 (left), �ρ/λ (middle) and �1/λ (right); here q = 5.
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2.3. Convergence of the continued fractions

Now we can prove easily that the α-Rosen continued fractions converge. If T nα (x) = 0
for some n ≥ 0, then this is clear. Therefore assume that T nα (x) 6= 0 for all n ≥ 0.
Setting (tn, vn) = T nα (x, 0), it follows directly from the definition (5) of Tα that vn =
[1 : dn, εn : dn−1, . . . , ε2 : d1]. Furthermore, an immediate consequence of (6) is that
Sn−1/Sn = [1 : dn, εn : dn−1, . . . , ε2 : d1], i.e., vn = Sn−1/Sn.

Theorems 2.3, 2.9 and 2.11 (see also Figures 3, 6 and 7) show that vn ≤ 1, i.e.,
Sn ≥ Sn−1, and that Sn = Sn−1 if and only if q = 2h + 3, n = h + 1, d1 = 1,
(εi : di) = (−1 : 1) for i = 2, . . . , h+1, which is possible only if α > ρ/λ. Furthermore,
vn−1vn ≤ 1/c for some constant c > 1, i.e., Sn ≥ cSn−2. It follows from (7) that∣∣∣∣x − RnSn

∣∣∣∣ = ∣∣∣∣T nα (x)(Rn−1Sn − RnSn−1)

Sn(Sn + T nα (x)Sn−1)

∣∣∣∣ = |tn|

S2
n(1+ tnvn)

≤
αλ

(1+ αλ− λ)S2
n

, (18)

hence the α-Rosen convergents Rn/Sn converge to x as n→∞.

3. Mixing properties of α-Rosen fractions

In case q is even, and α = 1/λ, we saw in the previous section that there is a simple
relation between �1/2 and �1/λ; see also Figure 4. Define in this case the map M :
�1/λ→ �1/2 by

M(x, y) =

{
(−y,−x) if (x, y) ∈ �1/λ, x < 0,
(y, x) if (x, y) ∈ �1/λ, x ≥ 0.

Clearly, M : �1/λ → �1/2 is bijective and bi-measurable, and ν1/λ(M−1(A)) =

ν1/2(A) for every Borel set A ⊂ �1/2. By comparing the partitions of T1/λ (on �1/λ)
and that of T −1

1/2 (on �1/2), we find that

T1/λ(x, y) =M−1(T −1
1/2 (M(x, y))), (x, y) ∈ �1/λ, x 6= 0.

This implies that the dynamical systems (�1/2, B̄, ν1/2, T −1
1/2 ) and (�1/λ, B̄, ν1/λ, T1/λ)

are isomorphic. In [BKS] it was shown that the dynamical system (�1/2, B̄, ν1/2, T1/2)

is weakly Bernoulli with respect to the natural partition, hence (�1/2, B̄, ν1/2, T1/2) and
(�1/2, B̄, ν1/2, T −1

1/2 ) are isomorphic. As a consequence we find that the dynamical sys-
tems (�1/2, B̄, ν1/2, T1/2) and (�1/λ, B̄, ν1/λ, T1/λ) are isomorphic.

In this section, we will show that this result also holds for all q and all α strictly
between 1/2 and 1/λ, using a result by M. Rychlik [Ry]. For completeness, we state
explicitly the hypothesis needed for Rychlik’s result (the reader is referred to [Ry] for
more details).

Let X be a totally ordered order-complete set. Open intervals constitute a base of a
complete topology in X, making X into a topological space. If X is separable, then X is
homeomorphic to a closed subset of an interval. Let B be the Borel σ -algebra on X, and



Metrical theory for α-Rosen fractions 1279

m a fixed regular, Borel probability measure on X (in our case m will be the normalized
Lebesgue measure restricted to X). Let U ⊂ X be an open dense subset of X such that
m(U) = 1. Let S = X \ U ; clearly m(S) = 0.

Let T : U → X be a continuous map, and β a countable family of closed intervals
with disjoint interiors such that U ⊂

⋃
β. Furthermore, suppose that for any B ∈ β the

set B ∩ S consists only of endpoints of B, and T restricted to B ∩U admits an extension
to a homeomorphism of B with some interval in X. Suppose that T ′(x) 6= 0 for x ∈ U ,
and let g(x) = 1/|T ′(x)| for x ∈ U , and g|S = 0. Let P : L1(X,m)→ L1(X,m) be the
Perron–Frobenius operator of T ,

Pf (x) =
∑

y∈T −1x

g(y)f (y).

In [Ry], it was proved (among many other things) that if ‖g‖∞ < 1 and Varg < ∞,
then there exist functions ϕ1, . . . , ϕs of bounded variation such that

(i) Pϕi = ϕi ;
(ii)

∫
ϕi dm = 1;

(iii) there exists a measurable partition C1, . . . , Cs of X with T −1Ci = Ci for i =
1, . . . , s;

(iv) the dynamical systems (Ci, Ti, νi), where Ti = T |Ci and νi(B) =
∫
B
ϕi dm, are ex-

act, and νi is the unique invariant measure for Ti , absolutely continuous with respect
to m|Ci .

Rychlik also showed that if s = 1, i.e., if 1 is the only eigenvalue of P on the unit circle,
and if there exists only one ϕ ∈ L1(X,M) with Pϕ = ϕ and m(ϕ) = 1 (ϕ ≥ 0), then the
natural extension of (X, T , ν) is isomorphic to a Bernoulli shift.

Returning to our map Tα , defined on X = Iq,α = [λ(α − 1), αλ], and using the same
notation as above, we let m be normalized Lebesgue measure on X,

S = {λ(α − 1)} ∪
{
±

1
λ(α + d)

∣∣∣∣ d = 1, 2, . . .
}

and U = X \ S. Note that Tα : U → X is continuous, and that the restriction of Tα to
each open interval is homeomorphic to an interval (in fact to X itself, except for the first
and last interval).

We have g(x) = 1/|T ′α(x)| = x2 on U , hence ‖g‖∞ < 1 (since α 6= 1/λ), and
Varg < ∞. It is easy, but tedious (cf. [DK] for a proof of the regular case), to see that T
is exact, hence s = 1, and we can apply Rychlik’s result to obtain the following theorem.

Theorem 3.1. The natural extension (�α, να, Tα) of (Xα, µα, Tα) is weakly Bernoulli.
Hence, the natural extension is isomorphic to any Bernoulli shift with the same entropy.

4. Metrical properties of ‘regular’ Rosen fractions

An important reason to introduce and study the natural extension of the ergodic system
underlying any continued fraction expansion is that such a natural extension facilitates
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the study of the continued fraction expansion at hand; see e.g. [DK] and [IK, Chapter 4].
The following theorem is a consequence of this; see [BJW], [DK], or [IK, Chapter 4].

Theorem 4.1. Let q ≥ 3, and let 1/2 ≤ α ≤ 1/λ. For almost all Gq -irrational numbers
x, the two-dimensional sequence Tα(x, 0) = (T nα (x), Sn−1/Sn), n ≥ 1, is distributed over
�α according to the density function gα given by

gα(t, v) =
Cq,α

(1+ tv)2

for (t, v) ∈ �α , and gα(t, v) = 0 otherwise. Here Cq,α is the normalizing constant of the
Tα-invariant measure να .

Due to Proposition 4.1, it is possible to study the distribution of various sequences re-
lated to the α-Rosen expansion of almost every x ∈ Xα . Classical examples of these are
the frequency of digits, or the analogs of various classical results by Lévy and Khinchin.
However, these results can already be obtained from the projection (Xα,Bα, µα, Tα) of
(�α, B̄α, να, Tα)—which is also ergodic—and the Ergodic Theorem. For the distribution
of the so-called approximation coefficients, the natural extension (�α, B̄α, να, Tα) is nec-
essary. These approximation coefficients 2n = 2n(x) are defined by

2n = 2n(x) := S2
n

∣∣∣∣x − RnSn
∣∣∣∣, n ≥ 0, (19)

where Rn/Sn is the nth α-Rosen convergent, which is obtained by truncating the α-Rosen
expansion.

With (tn, vn) = T nα (x, 0), it follows from (18) that

2n =
εn+1tn

1+ tnvn
for n ≥ 1. (20)

Similarly, since tn = εn/tn−1 − dnλ and vn = Sn−1/Sn, it follows from (6) that

2n−1 =
vn

1+ tnvn
for n ≥ 1. (21)

In view of (20) and (21), we define the map

F(t, v) =

(
v

1+ tv
,

t

1+ tv

)
=: (ξ, η) for tv 6= −1.

It is now an easy calculation (see e.g. [BKS, p. 1293]) that due to Proposition 4.1, for
almost all x ∈ Xα , the sequence (2n−1(x), εn+12n(x))n≥0 is distributed on F(�α) ac-
cording to the density function Cq,α/

√
1− 4ξη. Setting

0+α = F({(t, v) ∈ �α | t ≥ 0}) and 0−α = F({(t, v) ∈ �α | t ≤ 0}),

we obtain the following theorem.
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Theorem 4.2. Let q ≥ 3, 1/2 ≤ α ≤ 1/λ, and define the functions d+α and d−α by

d±α (ξ, η) =
Cq,α

√
1∓ 4ξη

for (ξ, η) ∈ 0±α , (22)

and d±α (ξ, η) = 0 otherwise. Then the sequence (2n−1(x),2n(x))n≥1 lies in the interior
of 0 = 0+α ∪ 0

−
α for all Gq -irrational numbers x, and for almost all x this sequence is

distributed according to the density function dα , where

dα(ξ, η) = d
+
α (ξ, η)+ d

−
α (ξ, η).

By this last statement we mean that, for almost all x and for all a, b ≥ 0, the limit

lim
N→∞

1
N

#{j | 1 ≤ j ≤ N, 2j−1(x) < a, 2j (x) < b}

exists, and equals ∫ a

0

∫ b

0
dα(ξ, η) dξ dη.

Several corollaries can be drawn from Theorem 4.2; see e.g. [K1], where (for q = 3) for
almost all x the distributions of the sequences (2n)n≥1, (2n−1+2n)n≥1, (2n−1−2n)n≥1
were determined.

Here we only mention the following result for even values of q (it was previously
obtained in [BKS] for both even and odd values of q, and α = 1/2).

Proposition 4.3. Let q ≥ 4 be an even integer, 1/2 ≤ α ≤ 1/λ, and let

Lα := min
{

λ

λ+ 2
,
λ(2− αλ2)

4− λ2

}
.

Then for almost all Gq -irrational numbers x and all c ≥ 1/Lα , we have

lim
N→∞

1
N

#
{
n

∣∣∣∣ 1 ≤ n ≤ N, 2n(x) <
1
c

}
=
λCq,α

c
.

Proof. In view of the expression of 2n−1(x) in (20), we consider curves given by

c =
v

1+ tv
,

where c > 0 is a constant and t ∈ [`0, r0]. Note that these curves are increasing on
[`0, r0], and that the curve given by v = c1

1−c1t
lies ‘above’ the curve given by v = c2

1−c2t
if and only if c1 > c2.

Now let Lα be defined as the largest positive c for which the curve c = v
1+tv lies in

�α for t ∈ [`0, r0], i.e.,

Lα = max
{
c > 0

∣∣∣∣ (t, c

1− ct

)
∈ �α for all t ∈ [`0, r0]

}
.
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It follows from Theorem 4.1 that for all z ≤ Lα , and for almost all Gq -irrationals x,

lim
N→∞

1
N

#{n | 1 ≤ n ≤ N, 2n(x) < z} =

∫ r0

`0

(∫ z
1−zt

0
gα(t, v) dv

)
dt = λCq,αz,

where Cq,α is the normalizing constant of the invariant measure (which has density gα).

So we are left to show that Lα = min
{

λ
λ+2 ,

λ(2−αλ2)
4−λ2

}
.

In the even case we can discern three cases: α = 1/2, 1/2 < α < 1/λ, and α = 1/λ.
Note that the first case has been dealt with in [BKS]; in case α = 1/2 one has Lα = λ

λ+2 .
In case 1/2 < α < 1/λ, first note that the curve c1 =

v
1+tv goes through (r1, H1) =( 1

αλ
− λ, 1

λ+1

)
if and only if c1 =

αλ
αλ+1 . Since in this case

αλ

αλ+ 1
<

1
2
<

1
λ
= H2,

and the curve c1 =
v

1+tv is increasing on [`0, r0], we immediately find that this curve is
in �α for t ∈ [`0, 0], yielding Lα ≤ αλ

αλ+1 .
From Theorem 2.2 we see that `p−2 < 0 < `p−1. Set

c2 =
H2p−2

1+ `p−1H2p−2
=
λ(2− αλ2)

4− λ2 , c3 =
H2p−1

1+ r0Hp−1
=

1
1+ αλ

.

It follows from Theorem 2.3 (see also Figure 3 for q = 6) that Lα = min{c1, c2}, since
c1 < c3. For q (and therefore λ) fixed, and for α ∈ [1/2, 1/λ], one easily shows that c1 =

c1(α) is an increasing function of α, with c1(1/2) = λ/(λ+ 2) and c1(1/λ) = 1/2, while
c2 = c2(α) is a line with slope −λ3/(4− λ2). Since c2(1/2) = λ/2 > 1/2 > λ/(λ+ 2)
and c2(1/λ) = λ/(λ+ 2) = c1(1/2) < c1(1/λ) = 1/2, we find for 1/2 < α < 1/λ that

Lα = min
{

λ

λ+ 2
,
λ(2− αλ2)

4− λ2

}
.

In case α = 1/λ, the point (1, λ/2) yields c = λ/(λ + 2). Since the curve c = v
1+tv is

increasing on [`0, r0], and from the fact that for t = 0 we have v = c = λ/(λ+2) < 1/λ,
where 1/λ is the ‘smallest height’ of �α , we find that

L1/λ =
λ

λ+ 2
.

This proves the theorem. ut

Remark. We only deal with the even case in Proposition 4.3; a result for the odd case is
obtained similarly, but has a more involved expression.
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