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Abstract. We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional
domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates
and show, in particular, that Pólya’s conjecture is not true in the presence of a magnetic field.
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1. Introduction

Let � ⊂ R2 be a domain of finite measure and define the Dirichlet Laplacian H� in
L2(�) as the Friedrichs extension of −1 initially given on C∞0 (�). This defines a self-
adjoint non-negative operator, and by Rellich’s compactness theorem its spectrum is dis-
crete and accumulates at infinity only. The spectrum of H� plays an important role in
many physical models (such as membrane vibration or quantum mechanics) and its de-
termination is a classical problem in mathematical physics.

Let (λn) be the non-decreasing sequence of eigenvalues of H�
= −1 (taking multi-

plicities into account) and letN(λ,H�) := #{n : λn < λ} denote their counting function.
In 1911 H. Weyl [W] (see also [RS, Ch. XIII]) showed the asymptotic formula

λn =
4πn
|�|

(1+ o(1)), n→∞,

which in terms of the counting function is equivalent to

N(λ,H�) =
1

4π
λ|�|(1+ o(1)), λ→+∞. (1.1)

R. L. Frank: Department of Mathematics, Fine Hall, Princeton University, Princeton, NJ 08544,
USA; e-mail: rlfrank@math.princeton.edu
M. Loss: School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA;
e-mail: loss@math.gatech.edu
T. Weidl: Department of Mathematics and Physics, Stuttgart University, Pfaffenwaldring 57, 70569
Stuttgart, Germany; e-mail: weidl@mathematik.uni-stuttgart.de

Mathematics Subject Classification (2000): Primary 35P15; Secondary 35J10



1366 Rupert L. Frank et al.

Integrating the latter formula one finds the asymptotic behavior of the eigenvalue means

tr(H�
− λ)

γ
− :=

∑
n:λ>λn

(λ− λn)
γ
= Lcl

γ,2λ
γ+1
|�|(1+ o(1)), λ→+∞, (1.2)

where γ ≥ 0 and
Lcl
γ,2 := (4π(γ + 1))−1 . (1.3)

Note that the main term on the right hand side of (1.2) equals the classical phase space
average

Lcl
γ,2λ

γ+1
|�| = (2π)−2

∫∫
�×R2

(|ξ |2 − λ)
γ
− dx dξ (1.4)

with |ξ |2 the symbol of the Laplacian.
Pólya [P] found in 1961 that for tiling domains1 � the asymptotic expression (1.1) is

in fact an upper bound on the counting function, namely

N(λ,H�) ≤
1

4π
λ|�|, λ ≥ 0. (1.5)

By (1.1) the constant in this bound is optimal. Moreover, Pólya conjectured that this
bound should hold for arbitrary domains � with the same sharp constant 1/4π .

The fact that the counting function N(λ,H�) can be estimated by

N(λ,H�) ≤ Cλ|�|, λ ≥ 0, (1.6)

with some constant C which does not depend on λ or the shape of the domain, is due
to Rozenblum [R1], Lieb [L2] and Métivier [M]. Results with sharp constants for sums
of eigenvalues have been obtained by Berezin and by Li and Yau. Indeed, Berezin [B1]
proved that

tr(H�
− λ)

γ
− ≤ L

cl
γ,2λ

γ+1
|�| for γ ≥ 1. (1.7)

In view of the Weyl asymptotics (1.2) the constant in this bound is optimal. This estimate
in the case γ = 1 implies after taking the Legendre transform the celebrated result by Li
and Yau [LY]

n∑
j=1

λj ≥
2πn2

|�|
, n ∈ N. (1.8)

Both (1.7) and (1.8) give rise to the best known upper bound C ≤ (2π)−1 on the sharp
constant C in (1.6). However, Pólya’s conjecture, namely that (1.5) holds for general
domains, remains open. In fact, this question is unresolved even in the case where the
domain is a disk.

The main goal of this paper is to disprove the analogous conjecture for the Dirichlet
Laplacian with a constant magnetic field.

Put D = −i∇ and let A be a sufficiently regular real vector field on �. We con-
sider the operator (D − A)2 on L2(�) with Dirichlet boundary conditions defined in the

1 A domain � ⊂ R2 is tiling if one can cover R2 up to a set of measure zero by pairwise disjoint
congruent copies of �.
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quadratic form sense. If |�| has finite measure, the spectrum of (D − A)2 is discrete and
as above, we can introduce the ordered sequence of eigenvalues and the corresponding
counting function. It is well-known that the asymptotic formulae (1.1) and (1.2) remain
true in the magnetic case as well. This is in accordance with the fact that the magnetic
field leaves the classical phase space average unchanged,

(2π)−2
∫∫

�×R2
(|ξ − A(x)|2 − λ)

γ
− dx dξ = (2π)

−2
∫∫

�×R2
(|ξ |2 − λ)

γ
− dx dξ.

Therefore, it seems reasonable to discuss Pólya-type bounds in the magnetic case as well.
In fact, it turns out that the bound (1.6) extends to the magnetic case with a suitable
constant C which does not depend on A, � and λ (see e.g. [R2]).

There are also results concerning magnetic estimates with sharp semi-classical con-
stants. As recalled in the appendix, a result by Laptev and Weidl [LW1] implies the bound

tr((D − A)2 − λ)γ− ≤ L
cl
γ,2λ

γ+1
|�| (1.9)

for arbitrary A and all γ ≥ 3/2. In [ELV] this result was extended to γ ≥ 1 in the special
case of a homogeneous magnetic field, A(x) = (B/2)(−x2, x1)

T . The latter two results
motivate the question whether Pólya’s conjecture could be true in the magnetic case.

In this note we shall show that this intuition is wrong and that the Pólya estimate (1.5)
in the magnetic case can be violated even for tiling domains. More precisely, we consider
a homogeneous magnetic field, A(x) = (B/2)(−x2, x1)

T , and show that for arbitrary
domains � of finite measure the bound

N(λ, (D − A)2) ≤
1

2π
λ|�| = 2Lcl

0,2λ|�| (1.10)

holds true. We prove that the constant in this bound is optimal and that the numerical
factor 2 on the right hand side cannot be improved—not even in the tiling case. A similar
phenomenon occurs for eigenvalue moments of order γ ∈ (0, 1).

In the context of semi-classical spectral inequalities this is the first example where
the presence of a magnetic field has an influence on the constant in the inequality. Recall
that both the sharp Lieb–Thirring inequality for γ ≥ 3/2 and the sharp Berezin–Li–Yau
inequality for γ ≥ 1 remain valid with the same constant when an arbitrary, respectively a
homogeneous magnetic field is added [LW1, ELV]. This remarkable phenomenon cannot
be explained with the diamagnetic inequality, which only implies that exponential sums
of the eigenvalues decrease as a magnetic field is added. While the lowest eigenvalue
certainly goes up, higher eigenvalues may both increase or decrease as a magnetic field
is added. Apart from a result on the lattice [L3] we are not aware that this ‘failure of
diamagnetism’ has been quantified in the literature. Our main result (1.10) gives a sharp
bound on the paramagnetic lowering of eigenvalues and states that the eigenvalues cannot
decrease further than to half of the value that Pólya predicted.

As a consequence of our result we see, in particular, that any attempt to prove Pólya’s
conjecture with a method which extends to constant magnetic fields must necessarily fail.
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2. Main results

Let � ⊂ R2 be a domain of finite measure. For B > 0 we consider the self-adjoint
operator

H�
B := (D − BA)2 in L2(�)

with Dirichlet boundary conditions, i.e., closing the form ‖(D−BA)u‖2 on C∞0 (�). The
magnetic vector potential A is always chosen in the form

A(x) :=
1
2
(−x2, x1)

T ,

and we remark that curlBA ≡ B. In other words, we restrict the vector potential for a
constant magnetic field from R2 to �.2

The operator H�
B has compact resolvent and we denote by N(λ,H�

B ) the number of
its eigenvalues less than λ, counting multiplicities. Our first main result is

Theorem 2.1. Let � ⊂ R2 be a domain of finite measure. Then for all B > 0 and λ > 0

N(λ,H�
B ) ≤ R0L

cl
0,2|�|λ (2.1)

and
tr(H�

B − λ)
γ
− ≤ RγL

cl
γ,2|�|λ

γ+1, 0 < γ < 1, (2.2)

where R0 = 2 and Rγ = 2 (γ /(γ + 1))γ for 0 < γ < 1. One has Rγ > 1 and these
constants cannot be improved, not even if � is tiling. More precisely, for any 0 ≤ γ < 1,
ε > 0 and B > 0 there exists a square � and λ > 0 such that

tr(H�
B − λ)

γ
− ≥ (1− ε)RγL

cl
γ,2|�|λ

γ+1. (2.3)

We emphasize that for linear and superlinear moments one has the semi-classical bound

tr(H�
B − λ)

γ
− ≤ L

cl
γ,2|�|λ

γ+1, γ ≥ 1, (2.4)

without an excess factor. The inequality (2.4) is essentially contained in [ELV] but will
be rederived in Corollary 4.5 below.

Our second main result concerns tiling domains. We shall show that in this case the
inequalities (2.1) and (2.2) can be strengthened if one is willing to allow the right hand
side to depend on B. Let us define

Bγ (B, λ) := (2π)−1B
∑
k∈N0

(λ− B(2k + 1))γ+ . (2.5)

For γ = 0 this is defined to be left-continuous in λ, i.e., 00
− := 0.

2 For simply connected domains � this choice of A is up to gauge invariance unique in the class
of all vector potentials inducing a constant magnetic field in �. If � is not simply connected, then
one has gauge invariant classes of magnetic vector potentials inducing a constant magnetic field
inside �, but which are not restrictions of a vector potential producing a constant magnetic field on
the whole of R2. In this paper we do not consider such vector potentials.
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Theorem 2.2. Let � ⊂ R2 be a tiling domain of finite measure. Then for all B > 0 and
λ > 0,

N(λ,H�
B ) ≤ B0(B, λ)|�| (2.6)

and
tr(H�

B − λ)
γ
− ≤ Bγ (B, λ)|�|, 0 < γ < 1, (2.7)

and these estimates cannot be improved. More precisely, for any 0 ≤ γ < 1, ε > 0,
B > 0, λ > 0 there exists a square � such that

tr(H�
B − λ)

γ
− ≥ (1− ε)Bγ (B, λ)|�|. (2.8)

We emphasize that for γ ≥ 1 one has the bound

tr(H�
B − λ)

γ
− ≤ Bγ (B, λ)|�|, γ ≥ 1, (2.9)

for an arbitrary domain � ⊂ R2 of finite measure. This is again essentially contained in
[ELV]. We give an independent proof in Theorem 4.1 below and show also that (2.9) is
stronger than (2.4). The question whether (2.6) and (2.7) extend to not necessarily tiling
domains is left open.

Remark 2.3. There are estimates intermediate between (2.1) and (2.6) with the right
hand side depending on B but in a simpler way than in (2.6). For example, we mention
the estimate

N(λ,H�
B ) ≤

1
4π
(λ+ B)|�| (2.10)

for� tiling. Note that this estimate is stronger than (2.1) since N(λ,H�
B ) = 0 for λ ≤ B.

In particular, it coincides with the estimate (1.5) for B = 0.

Remark 2.4. There is an essentially equivalent way of stating the estimates (2.1) and
(2.10). Namely denoting the eigenvalues of H�

B by λ�B,j and passing to the limit λ →
λ�B,j+ in these estimates we find

λ�B,N ≥ 2π |�|−1N

and, respectively,
λ�B,N ≥ 4π |�|−1N − B.

Remark 2.5. For the lower bound (2.3) we fix B > 0 and choose� and λ. Alternatively,
one can fix a cube � and choose B and λ. This follows by a simple scaling argument.

Remark 2.6. The magnetic symbol Bγ (B, λ) coincides with an eigenvalue moment of a
one-dimensional harmonic oscillator, reflecting the close connection between the Landau
Hamiltonian in the plane and the harmonic oscillator on the line. Lieb–Thirring inequal-
ities [LT] for harmonic oscillators have been studied in [HR, dB]. However, to prove
sharpness of our constant, i.e., to prove the lower bound (2.3), we need a quantitative
version of the qualitative result in [HR]; see Remark 4.3.
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3. The magnetic density of states

3.1. The magnetic density of states

In this section we shall use a slightly modified notation. When � = (−L/2, L/2)2 we
shall denote the operator H�

B by HD
B (L). Recall that B0(B, λ) was defined in (2.5). Our

goal is to prove

Proposition 3.1. Let B > 0 and λ > 0. Then

lim
L→∞

L−2N(λ,HD
B (L)) = B0(B, λ). (3.1)

Hence B0(B, ·) is the density of states for the Landau Hamiltonian HB := (D − BA)2

in L2(R2). This is certainly well-known, but we include the proof for the sake of com-
pleteness. This will be done in the remaining part of this section. A different proof may
be found in [N]. Alternatively, one can also use the known result that

lim
L→∞

L−2N(λ,HD
B (L)) = lim

L→∞
L−2 tr(χQLχ(0,λ)(HB)).

The RHS can be evaluated using the explicit form of the spectral projections of HB (see
the proof of Theorem 4.1).

3.2. Explicit solution on the torus

In this subsection we consider the case of a square,� = (−L/2, L/2)2 =: QL, and define
an operatorHP

B (L) in L2(QL) which differs fromH�
B by the choice of magnetic periodic

boundary conditions. However, its spectrum will turn out to be explicitly computable.
To define HP

B (L) we shall fix B,L > 0 such that

(2π)−1L2B ∈ N (3.2)

and introduce the ‘magnetic translations’

(T1u)(x) := e−iBLx2/2u(x1 + L, x2), (T2u)(x) := eiBLx1/2u(x1, x2 + L).

(The dependence on B and L is not reflected in the notation.) The assumption (3.2) im-
plies that T1 and T2 commute, and hence any function u on QL has a unique extension to
a function ũ on R2 by means of the operators T1, T2. We introduce the Sobolev spaces

H k
per(QL) := {u ∈ H k(QL) : ũ ∈ H k

loc(R
2)}.

Then the operator HP
B (L) := (D − BA)2 in L2(QL) with domain H 2

per(QL) is self-
adjoint. It is generated by the quadratic form ‖(D−BA)u‖2 with form domainH 1

per(QL).
The spectrum of this operator is described in
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Proposition 3.2. Assume (3.2). Then the spectrum of HP
B (L) consists of the eigenvalues

B(2k + 1), k ∈ N0, with common multiplicity (2π)−1L2B. In particular, for all λ > 0,

N(λ,HP
B (L)) = L

2B0(B, λ). (3.3)

We recall the proof from [CV].

Proof. Consider the closed operator Q := (D1 − BA1) + i(D2 − BA2) with domain
H 1

per(QL). Its adjoint is given by Q∗ := (D1 − BA1) − i(D2 − BA2) with domain
H 1

per(QL) and one has

‖(D − BA)u‖2 = ‖Qu‖2 + B‖u‖2 = ‖Q∗u‖2 − B‖u‖2, u ∈ H 1
per(QL).

Hence HP
B (L) = Q

∗Q+B and QQ∗ −Q∗Q = 2B. By standard arguments using these
commutation relations one computes the spectrum ofHP

B (L) to consist of the eigenvalues
B(2k + 1), k ∈ N0, with a common multiplicity, say m. To determine m we note that

N(λ,HP
B (L)) = m#{k ∈ N0 : B(2k + 1) < λ} ∼ mλ/2B as λ→∞.

On the other hand, the Weyl-type asymptotics on the counting function holds true for the
Dirichlet and the Neumann boundary conditions, and hence also for the periodic operator,

N(λ,HP
B (L)) ∼ λL

2/4π as λ→∞.

Comparing the two asymptotics above one finds that m = L2B/2π .3 ut

3.3. Boundary conditions

In this subsection we shall quantify the intuition that a change of the boundary condi-
tions of a differential operator has only a relatively small effect on the overall eigenvalue
distribution. We shall denote by HN

B (L) the operator (D − BA)2 with (magnetic) Neu-
mann boundary conditions in � = QL = (−L/2, L/2)2, that is, the operator gener-
ated by the quadratic form ‖(D − BA)u‖2 with form domain H 1(QL). We denote by
‖K‖1 = tr (K∗K)1/2 the trace norm of a trace class operator K .

A special case of a result by Nakamura [N] (who also allows for a variable magnetic
field and an electric potential) is

Proposition 3.3. Let m ∈ N and B > 0. Then there exists a constant Cm(B) > 0 such
that for all L ≥ 1,

‖(HD
B (L)+ I )

−2m−1
− (HN

B (L)+ I )
−2m−1

‖1 ≤ Cm(B)L. (3.4)

3 Alternatively, we may determinem using the Aharonov–Casher theorem. Indeed, the multiplic-
ity m is the dimension of the kernel of the Pauli operator (σ · (D−BA))2 acting on the sections of
a complex line bundle over the torus (R/LZ)2.
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3.4. Proof of Proposition 3.1

Throughout the proof, B will be fixed and, for the sake of simplicity, dropped from the
notation. First note that since

N(λ,HD(L′)) ≤ N(λ,HD(L)) ≤ N(λ,HD(L′′))

for L′ ≤ L ≤ L′′ it suffices to prove Proposition 3.1 only for L → ∞ with the flux
constraint (3.2), which we shall assume henceforth. One hasHD(L) ≥ HP (L) and hence
by the variational principle

N(λ,HD(L)) ≤ N(λ,HP (L)).

In view of Proposition 3.2 this proves the upper bound in (3.1).
To prove the lower bound we write

N(λ,HD(L)) = n((λ+ 1)−3, (HD(L)+ I )−3)

where n(κ,K) denotes the number of singular values larger than κ of a compact opera-
tor K . Now by the Ky Fan inequality [BS, Ch. 11 Sec. 1], for any ε > 0,

n((λ+ 1)−3, (HD(L)+ I )−3) ≥ n((1+ ε)(λ+ 1)−3, (HN (L)+ I )−3)

− n(ε(λ+ 1)−3, (HN (L)+ I )−3
− (HD(L)+ I )−3).

We treat the two terms on the RHS separately. The second one can be estimated using
Proposition 3.3 as follows:

n(ε(λ+ 1)−3, (HN (L)+ I )−3
− (HD(L)+ I )−3)

≤ ε−1(λ+ 1)3‖(HN (L)+ I )−3
− (HD(L)+ I )−3

‖1

≤ ε−1(λ+ 1)3C3(B)L.

On the other hand, writing λε := (1 + ε)−1/3(λ + 1) − 1 and applying Proposition 3.2
one finds that for L2

∈ 2πB−1N,

n((1+ ε)(λ+ 1)−3, (HN (L)+ I )−3) = N(λε, H
N (L))

≥ N(λε, H
P (L)) = L2B0(B, λε).

Noting that λε < λ and that B0(B, λ) is left-continuous in λwe see that for all sufficiently
small ε > 0 one has

B0(B, λε) = B0(B, λ).

Collecting all the estimates we find that as L→∞ with L2
∈ 2πB−1N,

lim infL−2N(λ,HD(L)) ≥ B0(B, λ).

This proves the lower bound in (3.1).
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4. Proof of the main results

4.1. Non-convex moments for tiling domains

This subsection is devoted to the proof of Theorem 2.2, following Pólya’s argument [P].
We assume that � is tiling, so we can write

R2
=

⋃
n∈Z2

�n up to measure 0

where �0 = � and all the �n are disjoint and congruent to �. For L > 0 let QL =

(−L/2, L/2)2 and

JL := {n ∈ Z2 : �n ⊂ QL}, �L := int
(

clos
⋃
n∈JL

�n

)
.

We note that
lim
L→∞

L−2#JL = |�|−1. (4.1)

Moreover, one has the operator inequalities

H
QL
B ≤ H�L

B ≤

∑
n∈JL

⊕H
�n
B .

(The first inequality is, of course, understood in terms of the natural embedding L2(�
L)

⊂ L2(QL) by extension by zero.) Noting that all the H�n
B are unitarily equivalent we see

from the variational principle that

N(λ,H�
B ) ≤ (#JL)

−1N(λ,H
QL
B ).

The bound (2.6) now follows from (4.1) and Proposition 3.1 by letting L tend to infinity.
This also implies the sharpness of (2.6). Indeed, by Proposition 3.1 for any ε > 0, B > 0
and λ > 0 there exists a cube � satisfying (2.8) for γ = 0.

To prove (2.7) we write, in the spirit of [AL],

tr(H�
B − λ)

γ
− = γ

∫
∞

0
N(λ− µ,H�

B )µ
γ−1 dµ (4.2)

and

Bγ (B, λ) = γ

∫
∞

0
B0(B, λ− µ)µ

γ−1 dµ. (4.3)

Hence (2.7) follows from (2.6). Moreover, Proposition 3.1, the formulae (4.2), (4.3) and
an easy approximation argument based on (2.6) imply that

limL−2 tr(HD
B (L)− λ)

γ
− = Bγ (B, λ).

As before, this proves the sharpness of the estimate (2.7) and concludes the proof of
Theorem 2.2.
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4.2. Convex moments for arbitary domains

From now on we shall consider arbitrary, not necessarily tiling domains �. Our goal is to
prove

Theorem 4.1. Let � ⊂ R2 be a domain of finite measure and let γ ≥ 1. Then for all
B > 0 and λ > 0,

tr(H�
B − λ)

γ
− ≤ Bγ (B, λ)|�|. (4.4)

As we will explain after Corollary 4.5 this improves slightly the main result of [ELV].

Proof. In the case � = R2 we write HB instead of H�
B . By the variational principle and

the Berezin–Lieb inequality (see [B2], [L1] and also [LS], [L]), for any non-negative,
convex function ϕ vanishing at infinity one has

trϕ(H�
B ) ≤ trχ�ϕ(HB).

Now, if P (k)B denotes the spectral projection ofHB corresponding to the k-th Landau level,

ϕ(HB) =
∑
k∈N0

ϕ(B(2k + 1))P (k)B .

To evaluate the above trace we recall that the integral kernel of P (k)B is constant on the
diagonal (this follows from the translation invariance of the Landau Hamiltonian) and has
the value

P
(k)
B (x, x) =

B

2π
.

(This is easily seen by diagonalizing HB with the help of a harmonic oscillator, see
also [F].) It follows that trχ�P

(k)
B = B|�|/2π .4 This proves that

trϕ(H�
B ) ≤

B|�|

2π

∑
k∈N0

ϕ(B(2k + 1)).

Specializing to the case ϕ(µ) = (µ− λ)γ−, γ ≥ 1, one obtains the estimate (4.4). ut

4.3. Diamagnetic inequalities for the semi-classical symbol

This subsection illustrates on a semi-classical level the effects that appear when passing
from the ‘magnetic symbol’ Bγ (B, λ) appearing in Theorem 2.2 to the ‘non-magnetic
symbol’ Lcl

γ,2λ
γ+1 appearing in Theorem 2.1. The convex case γ ≥ 1 appears to be

different from the non-convex case 0 < γ < 1. We shall prove

4 To justify this, identify the LHS as the square of the Hilbert–Schmidt norm of χ�P
(k)
B

and use

the fact that
∫
|P
(k)
B
(x, y)|2 dy = P

(k)
B
(x, x) since P (k)

B
is a projection.
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Proposition 4.2. Let γ ≥ 0 and B > 0. Then

sup
λ>0

Bγ (B, λ)

Lcl
γ,2λ

γ+1
=


2 if γ = 0,

2
(

γ

γ + 1

)γ
if 0 < γ < 1,

1 if γ > 1.

(4.5)

Moreover, for 0 < γ < 1 the supremum is attained for λ = B(γ + 1) and for γ = 0 the
supremum is attained in the limit λ→ B+.

Remark 4.3. This proposition can be rewritten as a sharp bound on eigenvalue moments
of the one-dimensional harmonic oscillator,

tr
(
−
d2

dx2 + x
2
− λ

)γ
−

≤ RγL
cl
γ,1

∫
R
(λ− x2)

γ+1/2
+ dx, (4.6)

where Rγ denotes the right side of (4.5) and Lcl
γ,1 is the semi-classical constant in one

dimension defined in (A.2). This inequality for γ ≥ 1 was previously proved by de la
Bretèche [dB]. The fact that Rγ > 1 for 0 ≤ γ < 1 was shown by Helffer and Robert
[HR], but the sharp value of the constant seems to be new.

For the proof of Proposition 4.2 we shall need the elementary

Lemma 4.4. Let σ > γ ≥ 0 and µ > λ. Then for all E ≥ 0,

(E − λ)
γ
− ≤ C(γ, σ )(µ− λ)

−σ+γ (E − µ)σ−

with C(0, σ ) := 1 if γ = 0 and C(γ, σ ) := σ−σγ γ (σ − γ )σ−γ if σ > γ > 0.

For the proof of Lemma 4.4 one just has to maximize (λ − E)γ (µ − λ)σ−γ as function
of λ on the interval (E,µ).

Proof of Proposition 4.2. By scaling, we may assume B = 1. First let γ ≥ 1 and note
that the function ϕ(µ) := (λ − µ)

γ
+ is convex. As in [dB] the mean value property of

convex functions implies

ϕ(2k + 1) ≤
1
2

∫ 2k+2

2k
ϕ(µ) dµ.

Summing over k ∈ N0 yields the assertion in the case γ ≥ 1.
Now let 0 ≤ γ < 1. Lemma 4.4 with σ = 1 together with the inequality that we have

already proved implies that for any µ > λ,

Bγ (1, λ) ≤ C(γ, 1)(µ− λ)−1+γB1(1, µ) ≤ C(γ, 1)Lcl
1,2(µ− λ)

−1+γµ2

Applying the lemma again, i.e. optimizing in µ, yields the estimate

Bγ (1, λ) ≤ RγLcl
γ,2λ

2
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where

Rγ =
C(γ, 1)

C(γ + 1, 2)

Lcl
1,2

Lcl
γ,2
= 2

(
γ

γ + 1

)γ
. (4.7)

This proves the claimed upper bound on the supremum in the proposition. Choosing λ as
stated shows that this upper bound is sharp. ut

Combining Theorem 4.1 with Proposition 4.2 we obtain

Corollary 4.5. Let � ⊂ R2 be a domain of finite measure and let γ ≥ 1. Then for all
B > 0 and λ > 0,

tr(H�
B − λ)

γ
− ≤ L

cl
γ,2|�|λ

γ+1. (4.8)

Using an idea from [LW2] we now show that (4.8) implies the inequality

N∑
j=1

λj (H
�
B ) ≥ 2π |�|−1N2 (4.9)

from [ELV] for the eigenvalues λj (H�
B ) of H�

B . For this, we recall the definition of the
Legendre transform of a function f : R+→ R,

f̃ (p) := sup
λ>0
(pλ− f (λ)),

and note that the inequality f ≤ g for convex functions f , g is equivalent to the reverse
inequality f̃ ≥ g̃ for their Legendre transforms. Hence an easy calculation shows that
(4.8) with γ = 1 is equivalent to the inequality

(p − [p])λ[p]+1(H
�
B )+

[p]∑
j=1

λj (H
�
B ) ≥ (4L

cl
1,2|�|)

−1p2, p ≥ 0,

where [p] denotes the integer part of p. Choosing p = N one obtains (4.9).
In passing, we note that by the same argument inequality (4.4) (which is stronger than

(4.8)) is in the case γ = 1 equivalent to the inequality

(p − [p])λ[p]+1(H
�
B )+

[p]∑
j=1

λj (H
�
B ) ≥

B2

2π
((p̃ − [p̃])(2[p̃]+ 1)+ [p̃]2), p ≥ 0,

where we have set p̃ = 2πp/(B|�|). Estimating the RHS from below by B2p̃2/(2π) one
obtains (4.9) again.

4.4. Non-convex moments for arbitrary domains

In this subsection we shall prove Theorem 2.1. We deduce the inequalities (2.1) and (2.2)
from Corollary 4.5 in the case γ = 1. The proof is analogous to that of Proposition 4.2.
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Indeed, Lemma 4.4 and (4.8) imply that for any 0 ≤ γ < 1 and any µ > λ,

tr(H�
B − λ)

γ
− ≤ C(γ, 1)(µ− λ)−1+γ tr(H�

B − µ)− ≤ C(γ, 1)Lcl
1,2|�|(µ− λ)

−1+γµ2.

Applying the lemma again, i.e. optimizing in µ, yields the estimate

tr(H�
B − λ)

γ
− ≤ RγL

cl
γ,2|�|λ

2

with Rγ as in (4.7). This proves (2.1) and (2.2).
To prove sharpness of these bounds we note that if 0 < γ < 1 and λγ = γ + 1 then

Bγ (B, Bλγ ) = RγL
cl
γ,2(Bλγ )

γ+1.

Similarly, if γ = 0 one has

lim
λ→1+

B0(B, Bλ) = 2Lcl
0,2B.

Hence (2.8) implies that for any ε > 0, 0 ≤ γ < 1 and B > 0 there exists a cube �
satisfying (2.3) with λ = Bλγ . This concludes the proof of Theorem 2.1.

5. Additional remarks

5.1. The three-dimensional case

Our proof of semi-classical inequalities for the two-dimensional Dirichlet problem with
constant magnetic field is based on two observations. Firstly, it seems to be appropriate to
estimate eigenvalue sums tr(H�

B −λ)
γ
− in terms of the respective average of the magnetic

symbol Bγ (B, λ). Indeed, the bound

tr(H�
B − λ)

γ
− ≤ Bγ (B, λ)|�|,

which holds true for arbitrary � for γ ≥ 1 and for tiling domains for γ ≥ 0, is sharp,
since the ratio

tr(H�
B − λ)

γ
−

Bγ (B, λ)|�|

can be made arbitrarily close to 1 by a suitable choice of (large) �.
Secondly, the average of the magnetic symbol satisfies a sharp estimate by the stan-

dard non-magnetic phase space average from above

Bγ (B, λ) ≤ L
cl
γ,2λ

γ+1

for γ ≥ 1 only. For γ < 1 this leads in conjunction with the asymptotic argument to the
counterexamples stated above.

As we shall see in this subsection, in the three-dimensional case the asymptotic be-
havior of eigenvalue moments is still governed by the average of a suitable magnetic
symbol. However, this average will not exceed the corresponding classical phase space
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average for all γ ≥ 1/2. Therefore our approach produces counterexamples to inequali-
ties with semi-classical constants only for 0 ≤ γ < 1/2. We shall discuss this below in
more detail.

Let � ⊂ R3 be a domain of finite measure and consider for B > 0 the self-adjoint
operator

H�
B := (D − BA)2 in L2(�)

with Dirichlet boundary conditions where now

A(x) :=
1
2
(−x2, x1, 0)T .

In the three-dimensional case the magnetic symbol is defined as

B(3)
γ (B, λ) := (2π)−1

∫
R

Bγ (B, λ− |ξ |
2) dξ

=
0(γ + 1)
0(γ + 3/2)

B

4π3/2

∑
k∈N0

(λ− B(2k + 1))γ+1/2
+ .

As in Subsection 4.2 one proves that

tr(H�
B − λ)

γ
− ≤ B(3)

γ (B, λ)|�|, γ ≥ 1. (5.1)

Put
Lcl
γ,3 := (2π)−3

∫
{|ξ |<1}

(1− |ξ |2)γ dξ =
1

8π3/2
0(γ + 1)
0(γ + 5/2)

.

By the same argument as in Proposition 4.2 one has

B(3)
γ (B, λ) ≤ L

cl
γ,3λ

γ+3/2, γ ≥ 1/2, (5.2)

and hence
tr(H�

B − λ)
γ
− ≤ L

cl
γ,3λ

γ+3/2
|�|, γ ≥ 1.

Again the quantity B
(3)
0 (B, λ) arises as the density of states. More precisely, ifQL :=

(−L/2, L/2)3 then a three-dimensional version of Proposition 3.3 allows one to prove
that

lim
L→∞

L−3N(λ,H
QL
B ) = B

(3)
0 (B, λ). (5.3)

This implies as in the two-dimensional case

Theorem 5.1. Let � ⊂ R3 be a tiling domain of finite measure. Then for all B > 0 and
λ > 0,

N(λ,H�
B ) ≤ B

(3)
0 (B, λ)|�| (5.4)

and
tr(H�

B − λ)
γ
− ≤ B(3)

γ (B, λ)|�|, 0 < γ < 1, (5.5)

and these estimates cannot be improved. More precisely, for any 0 ≤ γ < 1, ε > 0,
B > 0, λ > 0 there exists a cube � such that

tr(H�
B − λ)

γ
− ≥ (1− ε)B

(3)
γ (B, λ)|�|. (5.6)
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The estimates (5.4), (5.5) and Proposition 4.2 imply that for tiling domains � and for
0 ≤ γ < 1/2,

tr(H�
B − λ)

γ
− ≤ Rγ+1/2L

cl
γ,3λ

γ+3/2 (5.7)

with Rγ as in Theorem 2.1. Moreover, the asymptotics (5.3) implies that this constant
cannot be replaced by a smaller one. However, in contrast to the two-dimensional case
we do not know whether the constant in this estimate has to be further increased if non-
tiling domains are considered.

On the other hand, (5.5) and (5.2) imply that for tiling domains � and for γ ≥ 1/2,

tr(H�
B − λ)

γ
− ≤ L

cl
γ,3λ

γ+3/2. (5.8)

We do not know whether the constant in this estimate has to be increased if 1/2 ≤ γ < 1
and if non-tiling domains are considered.

The method of Appendix allows one to deduce from (5.1) (probably non-sharp) esti-
mates on tr(H�

B − λ)
γ
− for 0 ≤ γ < 1 and arbitrary �. We omit the details.

Another remark concerns domains with product structure.

Proposition 5.2. Let ω ⊂ R2 be a domain of finite measure, I ⊂ R a bounded open
interval and � := ω × I , and let γ ≥ 1/2. Then for all B > 0 and λ > 0,

tr(H�
B − λ)

γ
− ≤ B(3)

γ (B, λ)|�|. (5.9)

It follows from (5.2) that for domains of this form and for γ ≥ 1/2 one also has (5.8).

Proof. We follow Laptev’s lifting idea [L]. By separation of variables we can write

tr(H�
B − λ)

γ
− =

∑
n∈N

tr
(
Hω
B +

(
πn

|I |

)2

− λ

)γ
−

.

Pólya’s estimate on an interval states that

∑
n∈N

((
πn

|I |

)2

− E

)γ
−

≤ Lcl
γ,1|I |E

γ+1/2

where

Lcl
γ,1 :=

1
2
√
π

0(γ + 1)
0(γ + 3/2)

.

Hence
tr(H�

B − λ)
γ
− ≤ L

cl
γ,1|I | tr(H

ω
B − λ)

γ+1/2
− .

Applying Theorem 4.1 and noting that

Lcl
γ,1Bγ+1/2(B, λ) = B(3)

γ (B, λ)

completes the proof. ut
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5.2. The role of the integrated density of states

Our reasoning in Subsection 4.1 has shown that the important idea in Pólya’s proof is
not the high energy limit, but the large domain limit. (In the non-magnetic case these two
limits are equivalent by scaling.) The large domain limit corresponds to the passage to the
density of states.

More generally, one can prove the following. For the sake of simplicity we return to
the two-dimensional case. Assume that � ⊂ R2 is a tiling domain and write

R2
=

⋃
n∈Z2

�n up to measure 0.

Here �0 = � and all the �n are disjoint with �n = Gn� for Gn a composition of
a translation and a rotation. Let V and A be a sufficiently regular real-valued function,
respectively vector field, on� and consider the self-adjoint operatorH� := (D−A)2+V
with Dirichlet boundary conditions in L2(�).

We extend V and A to the whole plane in such a way that V (x) = V (G−1
n x) and

curlA(x) = curlA(G−1
n x) for x ∈ �n. This allows us to define a self-adjoint operator

H := (D−A)2+V inL2(R2). Our main assumption is that this operator has an integrated
density of states at a certain λ ∈ R, i.e., there exists a number n(λ) ≥ 0 such that

lim
L→∞

L−2N(λ,HQL) = n(λ). (5.10)

Here as before, QL = (−L/2, L/2). Under this assumption, for this value of λ, one has
the Pólya estimate

N(λ,H�) ≤ n(λ)|�|.

This is proved in the same way as Theorem 2.2.
A special case is when theGn are translations. If the flux of curlA through� vanishes,

then A can be chosen periodic and one can apply Floquet theory. In this case it is well-
known that the limit (5.10) exists for any λ and defines a non-negative, increasing and
left-continuous function n on R. A more general case is that ofGn’s which correspond to
almost-periodic tilings. The existence of the limit (5.10) in the almost-periodic case under
broad conditions on the coefficients has been proved, e.g., in [S].

Appendix. The case of an arbitrary magnetic field

In this section we consider an arbitrary magnetic field A ∈ L2,loc(�) with � ⊂ Rd in
any dimension d ≥ 2 and define H�(A) = (D − A)2 on � with Dirichlet boundary
conditions. We shall prove the estimate

tr(H�(A)− λ)
γ
− ≤ ργ,dL

cl
γ,dλ

γ+d/2
|�|, 0 ≤ γ < 3/2. (A.1)

Here

ργ,d :=
0(5/2) 0(γ + d/2+ 1)
0((5+ d)/2) 0(γ + 1)

3−3/2(3+ d)(3+d)/2(2γ )γ (2γ + d)−γ−d/2
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and

Lcl
γ,d =

0(γ + 1)
2dπd/20(γ + d/2+ 1)

. (A.2)

Note that for d = 2 the constant ργ,d equals

ργ,2 := (5/3)3/2(γ /(γ + 1))γ ,

and it follows from our main result that this is off at most by a factor (5/3)3/2/2 ≈ 1.0758.
To prove (A.1) we recall the sharp Lieb–Thirring bound on the negative spectrum of

a magnetic Schrödinger operator HRd (A, V ) = (D − A)
2
− V in Rd from [LW1],

tr(HRd (A, V ))
3/2
− ≤ L

cl
3/2,d

∫
Rd
V (x)

(3+d)/2
+ dx.

Here we extend the given magnetic vector potentialA on� by 0 to Rd . Since the negative
eigenvalues of H�(A)−µ are not below those of HRd (A, V ) with V (x) := µ for x ∈ �
and V (x) := 0 for x ∈ R \�, we find

tr(H�(A)− µ)
3/2
− ≤ tr(HRd (A, V ))

3/2
− ≤ L

cl
3/2,d |�|µ

(3+d)/2.

Lemma 4.4 with σ = 3/2 now shows that for 0 ≤ γ < 3/2,

tr(H�(A)− λ)
γ
− ≤ C(γ, 3/2)(µ− λ)−3/2+γ tr(H�(A)− µ)

3/2
−

≤ C(γ, 3/2)Lcl
3/2,d |�|(µ− λ)

−3/2+γµ(3+d)/2

for any µ > λ. Again by this lemma, i.e., optimizing in µ, we get (A.1) with excess factor

ργ,d =
Lcl

3/2,d

Lcl
γ,d

C(γ, 3/2)
C(3/2− γ, (3+ d)/2)

=
Lcl

3/2,d

Lcl
γ,d

(3+ d)(3+d)/2

33/2
(2γ )γ

(2γ + d)γ+d/2
.

Recalling the definition of Lcl
γ,d we obtain the claimed statement.

Besides the case of a homogeneous magnetic field, also the case of a δ-like magnetic
field (Aharonov–Bohm field) has received particular attention. In [FH] the above value of
the excess factor ργ,2 was slightly improved for this case, but it is still unknown whether
or not this factor can be chosen one for 0 ≤ γ < 3/2.
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[M] Métivier, G.: Valeurs propres de problèmes aux limites elliptiques irréguliers. Bull. Soc.
Math. France Mém. 51-52, 125–229 (1977) Zbl 0401.35088 MR 0473578

[N] Nakamura, S.: A remark on the Dirichlet–Neumann decoupling and the integrated density
of states. J. Funct. Anal. 179, 136–152 (2001) Zbl 0970.35084 MR 1807255

http://www.ams.org/mathscinet-getitem?mr=0598768
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0259.47004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0350504
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0271.47011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0300121
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0744.47017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1192782
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0612.35102&format=complete
http://www.ams.org/mathscinet-getitem?mr=0849211
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0938.35148&format=complete
http://www.ams.org/mathscinet-getitem?mr=1686426
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0957.35104&format=complete
http://www.ams.org/mathscinet-getitem?mr=1779898
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:005507104&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0728.35078&format=complete
http://www.ams.org/mathscinet-getitem?mr=1079775
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0892.35115&format=complete
http://www.ams.org/mathscinet-getitem?mr=1491551
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0868.47016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1402917
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1142.35531&format=complete
http://www.ams.org/mathscinet-getitem?mr=1756570
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1135.81337&format=complete
http://www.ams.org/mathscinet-getitem?mr=1775696
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0554.35029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0701919
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1125.82305&format=complete
http://www.ams.org/mathscinet-getitem?mr=0349181
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0445.58029&format=complete
http://www.ams.org/mathscinet-getitem?mr=0573436
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0342.35044&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0401.35088&format=complete
http://www.ams.org/mathscinet-getitem?mr=0473578
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0970.35084&format=complete
http://www.ams.org/mathscinet-getitem?mr=1807255
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