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Abstract. The object of this paper is the theta divisor of the compactified jacobian of a nodal curve.
We determine its irreducible components and give it a geometric interpretation. A characterization
of hyperelliptic irreducible stable curves is appended as an application.
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1. Introduction

Let X be a connected, projective curve of arithmetic genus g and Picd X its degree-d Pi-
card variety, parametrizing line bundles of degree d . IfX is smooth, Picd X is isomorphic
to an abelian variety and it is endowed with a principal polarization: the theta divisor. If
d = g− 1 the theta divisor can be intrinsically defined as the locus of L ∈ Picg−1X such
that h0(X,L) 6= 0.

If X is singular, Picd X may fail to be projective, so one often needs to replace it with
some projective analogue, a so-called “compactified jacobian”, or “compactified Picard
variety”. We shall always assume that X is reduced, possibly reducible, and has at most
nodes as singularities.

Although there exist several different constructions of compactified jacobians in the
literature, recent work of V. Alexeev shows that in case d = g − 1, there exists a “canon-
ical” one. More precisely, in [Al04] the compactifications of T. Oda and C. S. Seshadri
[OS79], of C. Simpson [Si94], and of [C94] are shown to be isomorphic if d = g−1, to be
endowed with an ample Cartier divisor, the theta divisor2(X), and to behave consistently
with the degeneration theory of principally polarized abelian varieties.

Some first results on the theta divisor of the (non-compactified) generalized jacobian
of any nodal curve were obtained by A. Beauville [B77]. Years later, A. Soucaris [S94]
and E. Esteves [E97] independently constructed the theta divisor (as a Cartier, ample
divisor) on the compactified jacobian of an irreducible curve. The case of a reducible,
nodal curve was handled in [Al04]. As a result, today we know that, in degree g − 1, the

L. Caporaso: Dipartimento di Matematica, Università Roma Tre, L.go S. L. Murialdo 1,
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compactified Picard variety of any nodal curve has a polarization, the theta divisor, such
that the pair (compactified jacobian, theta divisor) is a semiabelic stable pair in the sense
of [Al02]. Furthermore, the above holds in the relative setting, i.e. for families of nodal
curves.

These recent developements revive interest in the theory of Brill–Noether varieties for
singular curves, of which the theta divisor is one of the principal objects.

The purpose of this paper is to investigate the geometry and the modular meaning of
2(X)more closely. Our first result (Theorem 3.1.2) describes its irreducible components,
establishing that every irreducible component of the compactified jacobian contains a
unique irreducible component of the theta divisor, unless X has some separating node
(see 4.2.1); in particular, we characterize singular curves whose theta divisor is irreducible
(in 4.2.2). In more technical terms, we prove that for every fixed “stable” multidegree (cf.
Definition 1.3.1) the theta divisor has a unique irreducible component. This result is sharp
in the sense that irreducibility fails for non-stable multidegrees (see Examples 3.1.4). The
idea and the strategy of the proof are described in 1.3.8.

We prove the irreducibility Theorem 3.1.2 using the Abel map, namely, the rational
map from Xg−1 to Picg−1X, sending (p1, . . . , pg−1) to [OX(

∑
pi)]. As a by-product,

the theta divisor is shown to be the closure of the image of the Abel map, for every stable
multidegree. This fact, albeit trivial for smooth curves, fails if the multidegree is not stable
(see Proposition 1.3.7 for a non-semistable multidegree, and Example 3.1.4 for a strictly
semistable one).

In the second part of the paper we concentrate on the geometric interpretation of
2(X) and precisely describe the objects it parametrizes. In Theorem 4.2.6 we exhibit a
stratification by means of the theta divisors of the partial normalizations ofX. We wish to
observe that very similar stratifications have been proved to exist for several other com-
pactified spaces, associated to singular curves (see 4.1.5, or Theorem 7.9 in [C05], for
example). It is thus quite natural to ask whether all compactified moduli spaces associ-
ated to a singular curve admit an analogous stratification, or whether some general rules
governing such a phenomenon exist. These questions are open at the moment.

Our stratification of2(X) yields a description in terms of effective line bundles on the
partial normalizations of X, or (which turns out to be the same) in terms of line bundles
on semistable curves stably equivalent to X.

In the final part, we apply our techniques to generalize to singular curves the charac-
terization of smooth hyperelliptic curves via the singular locus of their theta divisor; recall
that 2(C)sing = W

1
g−1(C) for every smooth curve C of genus g ≥ 3. Furthermore, C is

hyperelliptic if dimW 1
g−1(C) = g−3, and non-hyperelliptic if dimW 1

g−1(C) = g−4; we
prove that the same holds ifX is an irreducible singular curve (Theorem 5.2.4), but fails if
X is reducible (see 5.2.5). On the other hand, the relation between2(X)sing andW 1

g−1(X)

(and more generally W r
g−1(X)), i.e. a Riemann Singularity Theorem for singular curves,

is not known and it would be very interesting to establish it.
The paper consists of five sections. The first contains preliminaries and basic defini-

tions; the second mostly consists of technical results. In the third section we prove the
irreducibility theorem and study the dimension of the image of the Abel map (Propo-
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sition 3.2.1). In the fourth section we describe the compactification of the theta divisor
inside the compactified jacobian. The fifth section contains the application to singular
hyperelliptic curves.

1.1. Notation and conventions

1.1.1. We work over an algebraically closed field k. By a “curve” we mean a reduced,
projective curve over k.

Throughout the paper,X will be a connected nodal curve of arithmetic genus g, having
γ irreducible components and δ nodes. We let ν : Y → X be the normalization of X, so
that Y =

∐γ

i=1 Ci with Ci smooth of genus gi , and X =
⋃
Ci with Ci = ν(Ci). Recall

that g =
∑γ

i=1 gi + δ − γ + 1. Observe that this formula holds regardless of whether X
is connected or not.

We denote by Xsing the set of nodes of X. For any set of nodes of X, S ⊂ Xsing, set
#S = δS and S = {n1, . . . , nδS }. The normalization of X at exactly the nodes in S will be
denoted νS : YS → X and γS will be the number of connected components of YS ; thus
YS =

∐γS
i=1 Yi with Yi a connected curve of arithmetic genus gYi . We have

g =

γS∑
i=1

gYi + δS − γS + 1 (1)

and, denoting gYS = pa(YS),

gYS = g − δS =

γS∑
i=1

gYi − γS + 1. (2)

For every j = 1, . . . , δS (or for every n ∈ S) we set

ν−1
S (nj ) = {q

j

1 , q
j

2 } (or ν−1
S (n) = {q1, q2}). (3)

1.1.2. The dual graph of a nodal curve Y , denoted 0Y , has vertices the irreducible com-
ponents of Y and edges the nodes of Y . A node lying in a unique irreducible component
Ci is a loop of 0Y based at the vertex Ci ; a node lying in Ci ∩ Cj is an edge joining the
vertices Ci and Cj .

1.1.3. The degree-d Picard variety Picd X has a decomposition into connected/irreducible
components: Picd X =

∐
d∈Zγ : |d|=d Picd X, where Picd X is the variety of isomorphism

classes of line bundles of multidegree d.
Let νS : YS → X be as in 1.1.1. Consider the pull-back map

PicX
ν∗S
−→ PicYS ∼=

γS∏
i=1

PicYi → 0.

We shall usually identify PicYS ∼=
∏

PicYi without mentioning it.
Let M ∈ PicYS . Then the fiber over M will be denoted

FM(X) := {L ∈ PicX : ν∗SL = M} ∼= (k
∗)δS−γS+1. (4)
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1.1.4. We shall now describe the isomorphism FM(X) ∼= (k∗)δS−γS+1 explicitly to fix
some conventions. Let us simplify the notation by omitting the subscript S (so, δ = δS ,
Y = YS , etc.). Assume first that Y is connected.

Let c = (c1, . . . , cδ) ∈ (k
∗)δ; c determines a unique L ∈ PicX such that ν∗L = M as

follows. For every j = 1, . . . , δ consider the two fibers of M over qj1 and qj2 (recall that
ν(q

j

1 ) = ν(q
j

2 ) = nj ), and fix an isomorphism between them. We define a line bundle
L = L(c) on X which pulls back to M , by gluing M

q
j

1
to M

q
j

2
via the isomorphism

M
q
j

1

·cj
−→ M

q
j

2

given by multiplication by cj . Conversely, every L ∈ FM(X) is of type L(c).
Now let Y have γ connected components; note that, since X is connected, we always

have γ −1 ≤ δ. There exist some subsets T ⊂ S with #T = γ −1 such that if we remove
from 0X every node that is not in T , the remaining graph is a connected tree (a so-called
spanning tree of 0X).

Let us fix one such T and order the nodes in S so that the last γ − 1 are in T , i.e.
S = {n1, . . . , nδ} = {n1, . . . , nδ−γ+1} ∪ T . Now factor ν as

ν : Y
νT
−→ Y ′

ν′

→ X

so that ν′ is the partial normalization of X at Sr T and νT the normalization at the nodes
of Y ′ preimages of the nodes in T . For example, if S = Xsing (i.e. if Y is smooth) then Y ′

is a curve of compact type. The pull-back map ν∗T induces an isomorphism PicY ′ ∼= PicY,
i.e. different gluing data determine isomorphic line bundles on Y ′.

Now, to construct the fiber of PicX→ PicY ′ over M ′ we proceed as in the previous
part.

Summarizing, to every c ∈ (k∗)δ−γ+1 we associate a unique L(c) ∈ PicY ; since the
gluing data over the nodes in T is irrelevant, we shall fix cj = 1 if j ≥ δ− γ and use that
as gluing constant over T .

Finally, observe that a section s ∈ H 0(Y,M) descends to a section s ∈ H 0(X,L(c))

if and only if for every j = 1, . . . , δ we have

s(q
j

2 ) = cj s(q
j

1 ). (5)

1.2. Brill–Noether varieties and Abel maps

1.2.1. We recall some basic facts about Brill–Noether varieties for smooth curves, fol-
lowing the notation of [ACGH] to which we refer for details.

Let C be a smooth connected curve of genus g ≥ 0, and let d and r be non-negative
integers. The set W r

d (C) := {L ∈ Picd C : h0(C,L) ≥ r + 1} has an algebraic structure
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and is called a Brill–Noether variety. It is closely related to the Abel map in degree d
of C, that is, the map

αdC : Cd → Picd C, (p1, . . . , pd) 7→ OC
( d∑
i=1

pi

)
. (6)

Then ImαdC ⊆ W
0
d (C) for all d ≥ 0 (see 1.2.3 for when equality occurs). Note thatW r

d (C)

may fail to be irreducible, so when talking about its dimension we will mean the maxi-
mum dimension of its components. The following is well known ([ACGH, Lemma 3.3,
Ch. IV]).

Fact 1.2.2. If r ≥ d − g then every irreducible component of W r
d (C) has dimension at

least
ρ(g, r, d) := g − (r + 1)(r − d + g).

If r ≤ d − g then W r
d (C) = W

d−g
d (C).

There is also a simple upper bound

dimW r
d (C) ≤ min{d − r, g}. (7)

Indeed, if d − r ≤ g, it suffices to look at the Abel map of degree d to obtain
dimW r

d (C) ≤ d − r (cf. [ACGH, Prop. 3.4, Ch. IV]). If d − r ≥ g then, by Riemann–
Roch, dimW r

d (C) = g.

Remark 1.2.3. Denote by r(d) the dimension of a general (non-empty) complete linear
system of degree d. i.e. if d ≤ g set r(d) = 0, if d ≥ g set r(d) = d − g. Note that
W
r(d)
d (C) = ImαdC . Now, min{d − r(d), g} = min{d, g} and

dimW r
d (C)

{
= min{d, g} if r ≤ r(d),
< min{d, g} if r > r(d).

To see that, assume first that r ≤ r(d). Then W r
d (C) = W

r(d)
d (C) by Riemann–Roch, so

we may assume that r = r(d). Now computing gives ρ(d, g, r(d)) = min{d, g}, so by
Fact 1.2.2 and (7) we get dimW r

d (C) = min{d, g}. The case r > r(d) follows from (7)
and the fact that min{d − r, g} < min{d − r(d), g}.

1.2.4. For a nodal curve X of genus g having γ irreducible components, for any d ∈ Zγ
and r ≥ 0, we set W r

d (X) = {L ∈ Picd X : h0(X,L) ≥ r + 1} and for any d ∈ Z,
W r
d (X) :=

∐
|d|=d W

r
d (X). In case r = 0 the superscript r = 0 is usually omitted. In

particular

Wg−1(X) := {L ∈ Picg−1X : h0(X,L) ≥ 1} =
∐
|d|=g−1

Wd(X).

With the notation of 1.1.3, if νS : YS → X is a partial normalization and M ∈ PicYS , the
fiber of W r

d (X) over M will be denoted (recall (4))

W r
M(X) := {L ∈ FM(X) : h0(X,L) ≥ r + 1} (8)

and WM(X) := {L ∈ FM(X) : h0(X,L) ≥ 1}.
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Remark 1.2.5. The above definitions make sense also for non-connected curves. Con-
sider a disconnected curve, Y =

∐γ

i=1 Ci , where Ci is smooth and connected (or more
generally Ci irreducible) of genus gi . For any d ∈ Zγ , the variety Wd(Y ) is easily de-
scribed in terms of the Ci :

Wd(Y ) =

{∏γ

i=1 Picdi Ci if ∃i : di ≥ gi,⋃γ

j=1(Wdj (Cj )×
∏
i 6=j,i=1,...,γ Picdi Ci) if ∀i : di ≤ gi − 1.

We shall need the following very simple

Lemma 1.2.6. Let S ⊂ Xsing, νS : YS → X the normalization of X at S and p ∈ Xr S.
Let M ∈ PicYS and assume that M has no base point in ν−1

S (S ∪ p). Then there exists
L ∈ WM(X) such that L has no base point in p. In particular, if M has no base point
over S then WM(X) is non-empty.

Proof. To say that M has no base point in ν−1
S (S ∪ p) is to say that there exists s ∈

H 0(YS,M) such that s(q) 6= 0 for every q ∈ ν−1
S (S ∪p). We can use s to construct a line

bundle L ∈ WM(X) by identifying the two fibers over pairs of corresponding branches.
More precisely, with the notation of 1.1.4(5) for every nj ∈ S let qj1 , q

j

2 be the branches
over nj . Then set cj := s(qj2 )/s(q

j

1 ) and define L = L(c). It is clear that s descends to a
nonzero section s of L and that s(p) 6= 0. ut

1.2.7. Abel maps. We now introduce the Abel maps of a singular curve. Recall (see 1.1.1)
that X = C1 ∪ · · · ∪ Cγ denotes the decomposition of X into irreducible components.

For every d = (d1, . . . , dγ ) such that di ≥ 0 we set Xd = C
d1
1 × · · · × C

dγ
γ . Now denote

Ẋ = XrXsing, the smooth locus of X. The normalization map Y =
⋃
Ci

ν
→ X =

⋃
Ci

induces an isomorphism of Ẋ with Yrν−1(Xsing). We shall identify Ẋ = Yrν−1(Xsing)

and denote Ċi := Ci ∩ Ẋ. Finally, set

Ẋd := Ċd1
1 × · · · × Ċ

dγ
γ ⊂ X

d

so that Ẋd is a smooth irreducible variety of dimension |d|, open and dense in Xd . Set
d = |d|. Then we have a regular map

α
d

X : Ẋd → Picd X, (p1, . . . , pd) 7→ OX
( d∑
i=1

pi

)
, (9)

which we call the Abel map of multidegree d. We denote

Ad(X) := αdX(Ẋ
d) ⊂ Picd X.

Lemma 1.2.8. Let X be a (connected, nodal) curve of genus g ≥ 0. For every d ≥ 1 and
every multidegree d on X such that d ≥ 0 and |d| = d we have
(i) Ad(X) is irreducible and dimAd(X) ≤ min{d, g};

(ii) Ad(X) ⊂ Wd(X).

Proof. Obvious. ut

We shall see that strict inequality in (i) does occur (cf. Proposition 3.2.1).
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1.3. Stability and semistability

As we said in the introduction, there exist various modular descriptions for a compact-
ified Picard variety, and they are equivalent if d = g − 1. We shall give the complete
description later, in 4.1.1. For now it is enough to recall that, for every nodal curve X,

the compactified Picard variety in degree g − 1, P g−1
X , is a union of (finitely many) irre-

ducible g-dimensional components each of which contains as an open subset a copy of
the generalized jacobian of X. To study the irreducible components of the theta divisor

of P g−1
X there is no need to consider its boundary points. This explains why we chose to

postpone the complete description of P g−1
X ; see 4.1.1.

So, now only the open smooth locus of P g−1
X will be described, using line bundles of

“stable” multidegree on the normalization of X at its separating nodes.
There exist two different, equivalent definitions of semistability and stability (1.3.1

and 1.3.2 below); the simultaneous use of the two is a good tool to overcome technical
difficulties of combinatorial type.

1.3.1. Stability: Definition 1. Let Y be a nodal curve of arithmetic genus g having γ
irreducible components. Let d ∈ Zγ be such that |d| = g − 1.

(a) We call d semistable if for every subcurve (equivalently, every connected subcurve)
Z ⊂ Y of arithmetic genus gZ we have

dZ ≥ gZ − 1 (10)

where dZ := |dZ|. The set of semistable multidegrees on Y is denoted

6ss(Y ) := {d ∈ Zγ : |d| = g − 1, d is semistable}.

(b) Assume Y is connected. If Y is irreducible, or if strict inequality holds in (10) for
every (connected) subcurve Z ( Y , then d is called stable. If Y is not connected, we
say that d is stable if its restriction to every connected component of Y is stable. We
define

6(Y) := {d ∈ Zγ : |d| = g − 1, d is stable} ⊂ 6ss(Y ).

We shall also use the following equivalent definition, originating from [B77].

1.3.2. Stability: Definition 2. Fix Y and d as in 1.3.1.

(A) d is semistable if the dual graph 0Y of Y (cf. 1.1.2) can be oriented in such a way
that, denoting by bi the number of edges pointing to the vertex corresponding to the
irreducible component Ci of Y , we have

di = gi − 1+ bi

where gi is the geometric genus of Ci (so that gi = pa(Ci)− # (Ci)sing).
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(B) Assume Y is connected. Then d is stable if 0Y admits an orientation satisfying (A)
and such that there exists no proper subcurve Z ( Y such that the edges between 0Z
and 0ZC go all in the same direction, where ZC := Y r Z.

The equivalence of definitions 1.3.2 and 1.3.1 is Proposition 3.6 in [Al04]. The version
given in (A) is due to A. Beauville, who used it in [B77] to define and study the theta
divisor of a generalized jacobian. (In [B77, Lemma (2.1)] the dual graph is without loops
by definition, whereas we need to include loops. This explains the difference between our
definition and that of [B77].)

Version 1.3.1 actually extends to all degrees (other than degree g − 1); it originates
from D. Gieseker’s construction of Mg and is crucial in [C94] (where (10) is generalized
by the so-called “Basic Inequality”). V. Alexeev proved that the Basic Inequality yields
the modular description of the compactified jacobians constructed by Oda–Seshadri and
by C. Simpson using different approaches (see [Al04, 1.7(5)]). More details about this
definition and its connection with Geometric Invariant Theory will be given in Section 4.

Remark 1.3.3. (i) Applying inequality (10) to all subcurves, we find that d is semi-
stable if and only if for every connected Z ⊂ Y ,

pa(Z)− 1 ≤ dZ ≤ pa(Z)− 1+ #Z ∩ ZC . (11)

If X is connected, d is stable if and only if strict inequalities hold in (11) for all Z.
(ii) If d ∈ 6ss(X) and V ⊂ X is a subcurve such that dV = gV − 1, then dV is

semistable on V .
(iii) If d is stable, then d ≥ 0.

Remark 1.3.4. The following convention turns out to be useful. Given a graph 0 (e.g.
0 = 0Y ), every edge n determines two half-edges, denoted qn1 and qn2 (corresponding to
the two branches of the node n of Y ). If 0 is oriented we call qn1 the starting half-edge of
n and qn2 the ending one.

6ss(X) is never empty (by [C05, Prop. 4.12]). On the other hand, we have

Lemma 1.3.5. 6(X) = ∅ if and only if X has a separating node.

Proof. If X has a separating node, n, then X = X1 ∪ X2 with X1 ∩ X2 = {n}. Let
d ∈ 6ss(X). Using (11) we have pa(Xi)− 1 ≤ dXi ≤ pa(Xi), so that strict inequalities
cannot simultaneously occur. Hence d is not stable.

Conversely, assume that X has no separating node. We shall use Definition 1.3.2, and
prove that the dual graph of X, 0 = 0X, admits a “stable orientation” (i.e. an orientation
satisfying (B)). We use induction on the number δ of nodes that lie in two different irre-
ducible components (the only nodes that matter), i.e. induction on the number of edges
that are not loops. If δ = 1 there is nothing to prove (the edge is necessarily separating);
if δ = 2 then 0 has two vertices so the statement is clear.

Let δ ≥ 2, pick an edge n and let 0′ = 0 − n; thus 0′ is connected. If 0′ has no
separating edge, by induction 0′ admits a stable orientation, hence so does 0, of course.
Denote by n1, . . . , nt the separating edges of 0′. The graph

0′ − {n1, . . . , nt } = 0 − {n0, n1, . . . , nt },
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where n = n0, has t + 1 connected components, 00, . . . , 0t , each of which is free from
separating edges.

We claim that the image 0i ⊂ 0 of each 0i contains exactly two of the edges
n0, n1, . . . , nt .

Indeed, if (say) 01 contains only one ni with i ≥ 1, call it n1 and let 02 be the other 0i
containing n1. Then n0 connects 01 to 02 (for otherwise n1 would be a separating node
of 0, which is not possible). Hence 01 contains n0 and n1.

If 01 contains two ni with i ≥ 1, say n1 and n2, let 02 and 03 be such that ni ∈
01 ∩ 0i+1, i = 1, 2. Then n0 connects 02 and 03, thus n0 6∈ 01. Therefore 01 contains
only n1 and n2.

If 01 contains three ni , i ≥ 1, say n1, n2 and n3, let 02, 03 and 04 be such that
ni ∈ 01 ∩ 0i+1. Now n0 is contained in at most two 0i , so say n0 /∈ 04; but then n3 is a
separating node of 0, which is a contradiction. Therefore, up to reordering the 0i , we can
assume that

ni ∈ 0i ∩ 0i−1, i = 1, . . . , t, t + 1 = 0.

We now define an orientation on 0 by combining the stable orientation on each 0i with
each edge ni oriented from 0i−1 to 0i . It suffices to prove that this is a stable orientation
on 0.

Indeed, let Z ⊂ X and 0Z ⊂ 0 the corresponding graph. If for some i we have
∅ 6= 0Z ∩ 0i ( 0i , then inside 0i there are edges both starting from and ending in 0Z .
So the same holds in 0 and we are done. Hence we can assume that for every i either
0i ⊂ 0Z or 0Z ∩ 0i = ∅. Therefore

0Z ∩ 0ZC ⊂ {n0, n1, . . . , nt }.

We can thus reduce ourselves to considering the graph obtained by contracting every 0i to
a point. This is of course a cyclic graph with t+1 vertices and t+1 edges {n0, n1, . . . , nt },
oriented cyclically. This is a stable orientation, so we are done. ut

Example 1.3.6. Let X be a nodal connected curve of genus g, Xsep ⊂ Xsing the set of its
separating nodes and X̃→ X the normalization ofX atXsep. Assume #Xsep = c−1 ≥ 1
so that X̃ has c connected components X1, . . . , Xc and Xi is free from separating nodes
for every i = 1, . . . , c. Thus 6(Xi) 6= ∅ and

6(X̃) = 6(X1)× · · · ×6(Xc).

Indeed, set gi := pa(Xi). Then pa(X̃) − 1 = (g − c + 1) − 1 =
∑c
i=1(gi − 1), and

d ∈ 6(X̃) if and only the restriction of d to Xi is stable on Xi .

Proposition 1.3.7 (Beauville). LetX be a (connected, nodal) curve of genus g ≥ 1, and
let d ∈ Zγ be such that |d| = g − 1.

(i) d is semistable iff there exists L ∈ Picd X such that h0(X,L) = 0.
(ii) If d is semistable then every irreducible component of Wd(X) has dimension g − 1.

(iii) If d is not semistable then Wd(X) = Picd X.

See Lemma (2.1) and Proposition (2.2) in [B77].
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1.3.8. Our first theorem (Theorem 3.1.2) states that, if d is stable, then Wd(X) is irre-
ducible and equal to Ad(X). The proof’s strategy is the following. We know, by the above
Proposition 1.3.7, that every irreducible component of Wd(X) has dimension g − 1; we
also know thatAd(X) is irreducible. We shall prove that ifW is an irreducible component
of Wd(X), not dominated by the image of the Abel map, then dimW ≤ g − 2, and hence
W must be empty.

To do that we consider the normalization ν : Y → X and the pull-back map ν∗ :
PicX→ PicY . The dimension ofW is then studied by fiberingW using ν∗, and bounding
the dimensions of the image and the fibers.

An important point is to show that, on the one hand, the divisors on Y supported over
the nodes ofX impose independent conditions on the general line bundleM ∈ Picd Y ; see
Lemma 2.3.3. On the other hand, if M ∈ PicY has this property (i.e. divisors supported
in ν−1(Xsing) impose independent conditions on it), then the dimension of the locus of
L ∈ WM(X) which do not lie in the image of the Abel map is small, hence the dimension
of the fiber of W over M is small; see Proposition 2.3.5 and Corollary 2.3.7.

2. Technical groundwork

2.1. Basic estimates

Recall the set-up of 1.1.1.

Proposition 2.1.1. Fix νS : YS → X and let M ∈ PicYS .

(i) For every L ∈ PicX such that ν∗SL = M we have

h0(YS,M)− δS ≤ h
0(X,L) ≤ h0(YS,M). (12)

(ii) Let h0(YS,M) ≥ δS . Assume that for some h : {1, . . . , δS} → {1, 2},

h0
(
YS,M

(
−

δS∑
j=1

q
j

h(j)

))
= h0(M)− δS . (13)

Then WM(X) is of pure dimension

dimWM(X) =

{
δS − γS if h0(M) = δS,

δS − γS + 1 if h0(M) ≥ δS + 1.

Moreover, the general element L ∈ WM(X) satisfies

h0(X,L) = max{h0(YS,M)− δS, 1}. (14)

Proof. Throughout the proof we shall simplify the notation by omitting the index S, i.e.
set Y = YS , δ = δS , ν = νS and γ = γS .

Let L ∈ FM(X). Then we have the exact sequence

0→ L→ ν∗M →
∑
n∈S

kn→ 0 (15)
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and the associated long cohomology sequence

0→ H 0(X,L)
α
→ H 0(Y,M)

β
→ kδ → H 1(X,L)→ H 1(Y,M)→ 0 (16)

from which we immediately get the upper bound on h0(X,L) stated in (12).
FixM ∈ PicY and recall the description of the fiber of ν∗ overM given in 1.1.4. Thus

every L ∈ FM(X) is of the form L = L(c) for some c ∈ (k∗)δ−γ+1. For convenience, we
use the same set-up of 1.1.4, in particular we set cj = 1 for δ − γ + 2 ≤ j ≤ δ.

To compute H 0(X,L), set l = h0(Y,M) and pick a basis s1, . . . , sl for H 0(Y,M).
Let s ∈ H 0(Y,M), so s =

∑l
i=1 xisi where xi ∈ k. Now s descends to a section of L

(i.e. s lies in the image of α in (16)) if and only if

l∑
i=1

xi(si(q
j

2 )− cj si(q
j

1 )) = 0 ∀j = 1, . . . , δ. (17)

The above is a linear system of δ homogeneous equations in the l unknowns x1, . . . , xl .
The space of its solutions, 3(c), is identified with H 0(X,L(c)). Now, 3(c) is a linear
subspace of H 0(Y,M) of dimension at least l − δ. Hence h0(X,L) = dim3(c) ≥ l − δ,
proving (12).

For (ii) assume l = h0(Y,M) ≥ δ; denote by A(c) the δ× l matrix of the system (17).
By what we said

h0(X,L(c)) = dim3(c) = l − rankA(c) (18)

and
WM(X) ∼= {c : 3(c) 6= 0} = {c : rankA(c) < l}. (19)

We shall prove that A(c) has rank δ unless c lies in a proper closed subset of (k∗)δ .
For that, we apply the assumption (13) to choose the basis forH 0(Y,M) as follows. First,
up to renaming each pair of branches we can assume that h(j) = 1 for every j . By (13)
we can pick δ linearly independent s1, . . . , sδ ∈ H 0(M) such that

si(q
j

1 ) =

{
1 if i = j,
0 if j 6= i, (j = 1, . . . , δ).

If l > δ we choose the remaining basis elements however we like. Set bji := si(q
j

2 )

∈ k. Then the matrix A(c) contains a δ × δ minor B(c), (given by the first δ columns),
whose diagonal is (c1 − b

1
1, . . . , cδ − b

δ
δ), and such that the cj do not appear anywhere

else in B(c). Therefore the determinant of B(c) is a non-zero polynomial in the cj . This
proves that the locus where the matrix has maximal rank (equal to δ) is open, non-empty.

Suppose δ = l. Then B(c) = A(c). By (19), WM(X) is naturally identified with the
locus of points of FM(X) where detA(c) vanishes. We conclude that WM(X) has pure
dimension dimWM(X) = δ − γ , proving (ii).

Moreover, for a general L(c) ∈ WM(X), the rank of A(c) is equal to δ− 1. Indeed, by
(19), WM(X) is identified to the hypersurface, W , of kδ where detA(c) vanishes. Denote
by Aij (c) the minor of A(c) obtained by removing the i-th row and the j -th column,
and set U ij = {c ∈ k

δ : detAij (c) 6= 0}. We must prove that W ∩ U ij 6= ∅ for some
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1 ≤ i, j ≤ δ. Suppose c1 appears in detA(c). On the other hand, c1 does not appear in
detA1

1(c), as A1
1(c) does not contain c1. Hence W ∩ U1

1 6= ∅.
Therefore by (18) we get h0(X,L) = 1, proving (14).
If l > δ, then WM(X) = FM(X) by (12). Furthermore, by (18),

h0(X,L(c)) = l − rankA(c) ≥ l − δ.

By looking at the matrix A(c), we see that h0(X,L(c)) = l − δ on the non-empty open
subset where detB(c) does not vanish; this proves (14). ut

Lemma 2.1.2. Let ν : Y → X be the normalization of X and let d ∈ 6ss(X). For a
general M ∈ Picd Y we have

(i) h0(Y,M) = δ;
(ii) M satisfies condition (13) with respect to a suitable h : {1, . . . , δ} → {1, 2};

(iii) dimWM(X) = δ − γ ;
(iv) the general L in WM(X) satisfies h0(X,L) = 1.

Proof. Using the notation of 1.1.1, Y =
∐
Ci with Ci smooth of genus gi , and X =⋃

Ci . The fact that d is semistable implies that di ≥ pa(Ci) − 1 ≥ gi − 1 for every
i = 1, . . . , γ . Therefore for M general in Picd Y ,

h0(Y,M) =
∑
i

(di − gi + 1) = g − 1−
∑
i

gi + γ = δ.

Let us prove (ii). We use definition 1.3.2 (A) of a semistable multidegree; 0X of X can be
oriented so that, if bi denotes the number of edges pointing atCi , then for all i = 1, . . . , γ ,

di = gi − 1+ bi . (20)

Any such orientation gives us a choice of branches over each node. Namely, for every
nj ∈ Xsing we denote by qj2 the branch corresponding to the ending half-edge of nj . We
claim that (13) holds with respect to the map h(j) = 2 for every j . Indeed

h0
(
Y,M

(
−

δ∑
j=1

q
j

2

))
=

γ∑
i=1

h0
(
Ci,M

(
−

δ∑
j=1

q
j

2

)
|Ci

)
.

Now by (20),

degCi M
(
−

δ∑
j=1

q
j

2

)
= di − bi = gi − 1, (21)

hence (M being general) h0(Ci,M(−
∑δ
j=1 q

j

2 )|Ci ) = 0 for every i. We conclude that,
by part (i),

h0
(
Y,M

(
−

δ∑
j=1

q
j

2

))
= 0 = h0(Y,M)− δ

so that (13) is satisfied. Now, applying 2.1.1(ii), we get dimWM(X) = δ − γ and
h0(X,L) = 1 for a general L ∈ WM(X). So (iii) and (iv) are proved. ut
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Corollary 2.1.3. Let d ∈ 6ss(X) and let L be a general line bundle in Picd X. For every
subcurve Z ⊆ X we have h0(Z,LZ) = dZ − gZ + 1.

Proof. It suffices to assume Z is connected (by (2)). Consider the normalization ν : Y =⋃
Ci → X of X and ν∗L = M = (L1, . . . , Lγ ) with Li ∈ Picdi Ci . Then Li is general

in Picdi Ci (as L is general in Picd X); since di ≥ gi − 1 (as d is semistable) we get
h0(Ci, Li) = di − gi + 1. Now, denote by Zν → Z the normalization of Z, order the
irreducible components of X so that the first γZ are the irreducible components of Z, and
set S = Zsing, so that gZ =

∑γZ
i=1 gi + δS − γZ + 1. Let MZν be the restriction of M

to Zν . Then

h0(Zν,MZν ) =

γZ∑
i=1

h0(Ci, Li) =

γZ∑
i=1

(di − gi + 1) = dZ − gZ + δS + 1.

Now, since d is semistable, dZ ≥ gZ − 1 hence h0(Zν,MZν ) ≥ δS . Moreover, recall that
by 2.1.2(ii), M satisfies condition (13); it is straightforward to check that the analogue
holds for MZν , i.e. for a suitable choice of branches,

h0
(
Zν,MZν

(
−

δS∑
j=1

q
j

h(j)

))
= h0(MZν )− δS = 0.

This enables us to apply 2.1.1(14) to Zν → Z, thus getting

h0(Z,LZ) = h
0(Zν,MZν )− δS = dZ − gZ + δS + 1− δS = dZ − gZ + 1. ut

2.2. Basic cases

Recall the notation of 1.1.1, in particular (3). The following simple fact will be used
several times.

Remark 2.2.1. Let νS : YS → X be the normalization of X at one node (i.e. S = {n}).
Let M ∈ PicYS be such that h0(M) ≥ 2. If h0(M(−q1 − q2)) = h0(M) − 2, every
L ∈ FM(X) satisfies h0(X,L) = h0(YS,M)− 1.

To prove it, pick L ∈ FM(X) and consider the cohomology sequence

0→ H 0(X,L)
α
→ H 0(YS,M)

β
→ k→ H 1(X,L)→ H 1(YS,M)→ 0 (22)

(associated to (15)). It suffices to show that β is non-zero. The assumption h0(M(−q1 −

q2)) = h
0(M) − 2 implies that h0(M(−qh)) = h

0(M) − 1 for h = 1, 2; hence M has a
section s vanishing at q1 but not at q2; but then β(s) 6= 0.

2.2.2. Let S ⊂ Xsing and consider the partial normalization YS → X. Fix a finite set S′

of points of X (usually S′ ⊆ S). For any M ∈ PicYS set

WM(X, S
′) := {L ∈ WM(X) : ∀s ∈ H 0(X,L) ∃n ∈ S′ : s(n) = 0} (23)
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or equivalently (since S′ is finite)

WM(X, S
′) := {L ∈ WM(X) : ∃n ∈ S′ : s(n) = 0 ∀s ∈ H 0(X,L)}. (24)

If S = Xsing then WM(X, S) is equal to the set of points in WM(X) which do not lie in
α
d

X(Ẋ
d), where d = degM .

Lemma 2.2.3. Fix νS : YS → X and let M ∈ Picd YS be such that h0(YS,M) = 1.

(1) If there exists nj ∈ S such that h0(YS,M(−q
j

1 )) 6= h
0(YS,M(−q

j

2 )), then WM(X)

= ∅.
(2) If h0(YS,M(−q

j

1 )) = h
0(YS,M(−q

j

2 )) for every j , there are two cases.
(a) If h0(YS,M(−q

j
h)) = 0 for every j and h, then YS is connected and there exists

an LM ∈ FM(X) such that WM(X) = {LM} and h0(LM) = 1. Moreover,
WM(X, S) = ∅ (hence LM ∈ αdX(Ẋ

d)).
(b) If there exists j for which h0(YS,M(−q

j

1 )) = h0(YS,M(−q
j

2 )) = 1, then
WM(X, S) = WM(X). Moreover, if h0(YS,M(−q

j
h)) = 1 for every j then

WM(X) = FM(X); otherwise WM(X) = {LM}.

Proof. Let s ∈ H 0(M) be a non-zero section. In case (1) we are assuming that (up to
switching the branches over nj ) s(qj1 ) = 0 while s(qj2 ) 6= 0, so obviously s does not
descend to a section of any L ∈ FM(X).

For case (2a) suppose, by contradiction, that YS =
∐γ

i=1 Zi is not connected. Then
h0(Y,M) =

⊕
h0(Zi,MZi ) = 1 so that there is only one component, say Z1, such that

h0(Z1,MZ1) 6= 0. Pick q = q
j
h ∈ Z2. Then (as h0(Z2,MZ2) = 0) every s ∈ H 0(M)

vanishes at q so that h0(M(−q)) = h0(M) = 1, contradicting the hypothesis. So Y is
connected. Now any nonzero s ∈ H 0(Y,M) satisfies s(qjh) 6= 0 for j = 1, . . . , δ and
h = 1, 2. Let cj := s(qj2 )/s(q

j

1 ) ∈ k
∗ and c = (c1, . . . , cδ); then c does not depend on

the choice of s, as h0(M) = 1. Using the construction of 1.1.4 set LM = L(c); we get
WM(X) = {LM} and obviously s descends to a section of LM that does not vanish at
any nj . So, WM(X, S) is empty, and by construction, h0(X,LM) = 1.

In case (2b), it is clear that for every L ∈ WM(X) and s ∈ H 0(L) we have s(nj ) = 0,
hence WM(X, S) = WM(X). The last sentence is proved similarly. ut

Lemma 2.2.4. Let νS : YS → X be the normalization of X at one node (i.e. S = {n}).
Let M ∈ Picd YS be such that h0(YS,M) ≥ 2. Then WM(X) = FM(X) and the following
cases occur.

(1) If h0(M(−q1 − q2)) = h
0(M)− 2 then WM(X, S) = ∅ and h0(L) = h0(M)− 1 for

every L ∈ FM(X).
(2) If h0(M(−q1− q2)) = h

0(M(−qh)) = h
0(M)− 1 for h = 1, 2 then YS is connected

and WM(X, S) = WM(X)r {LM} for a uniquely determined LM ∈ WM(X) (hence
LM ∈ α

d
X(Ẋ

d)). Moreover, h0(LM) = h
0(M) while for every L ∈ WM(X) − {LM}

we have h0(L) = h0(M)− 1.
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(3) If h0(M(−q1)) = h
0(M)−1 and h0(M(−q2)) = h

0(M) then FM(X) = WM(X, S).
Moreover, h0(L) = h0(M)− 1 for every L ∈ FM(X).

(4) If h0(M(−q1)) = h0(M(−q2)) = h0(M) then FM(X) = WM(X, S). Moreover,
h0(L) = h0(M) for every L ∈ FM(X).

Proof. Pick L ∈ FM(X) and consider the cohomology sequence (22). It implies that
α(H 0(X,L)) has codimension at most 1, i.e. that h0(L) ≥ h0(Y,M) − 1 ≥ 1 so that
WM(X) = FM(X). We shall omit the subscript S during the proof.

In case (1), H 0(Y,M(−q1 − q2)) has codimension 2, hence α(H 0(X,L)) cannot be
contained in it. ThereforeH 0(X,L) contains sections that do not vanish at n. The rest has
been proved in Remark 2.2.1.

For the remaining cases, note that every section of H 0(M(−q1 − q2)) descends to a
section of every L ∈ FM(X).

In case (2), to show that Y is connected, suppose by contradiction that Y = Y1 q Y2.
Then (say) q1 ∈ Y1 and q2 ∈ Y2 and h0(M) = h0(Y1,M1) + h

0(Y2,M2) (denoting
Mi = MYi ). Furthermore,

h0(M1)+ h
0(M2)− 1 = h0(M)− 1 = h0(M(−q1)) = h

0(M1(−q1))+ h
0(M2),

hence h0(M1(−q1)) = h0(M1) − 1. Similarly, h0(M2(−q2)) = h0(M2) − 1. But then
h0(M(−q1−q2)) = h

0(M1(−q1))+h
0(M2(−q2)) = h

0(M)−2, which is a contradiction.
Now, there exists s ∈ H 0(M) such that s(qh) 6= 0 for h = 1, 2. Thus

H 0(M) = H 0(M(−q1 − q2))⊕ ks. (25)

Set c = s(q2)/s(q1) and let LM = L(c) (as in 1.1.4). The s descends to a section s ∈
H 0(LM) such that s(n) 6= 0. Hence LM 6∈ WM(X, S) and h0(LM) = h

0(M). Now, LM
is uniquely determined: indeed, if s′ ∈ H 0(M) is another section such that s′(qh) 6= 0 for
h = 1, 2, then by (25), s′ = at + bs for t ∈ H 0(M(−q1 − q2)) and a, b ∈ k with b 6= 0.
Thus c = s′(q2)/s

′(q1). This proves that for every L ∈ WM(X) such that L 6∈ WM(X, S)

we have L = LM .
In case (3), H 0(M(−q1 − q2)) = H

0(M(−q1)) and these are the only sections that
can be pull backs of sections of any L ∈ FM(X). Case (4) is obvious. ut

Corollary 2.2.5. W(0,...,0)(X) = {OX} for every connected, nodal curve X.

2.3. Divisors imposing independent conditions

Let YS → X be some partial normalization of X and let M ∈ PicYS . The goal of this
subsection is to bound the dimension of the locus of L ∈ WM(X) which are not contained
in the image of the Abel map (i.e. with the notation of 2.2.2 the dimension ofWM(X, S)).
The easy cases, h0(YS,M) = 1 or #S = 1, are dealt with by Lemmas 2.2.3 and 2.2.4. To
treat the general case we introduce the following.

Definition 2.3.1. Let Y be a nodal curve (possibly not connected). LetM ∈ PicY and let
E be a Cartier divisor on Y .
(A) We say that E is admissible for M if for every subcurve V ⊆ Y we have 0 ≤

degV E ≤ h
0(V ,MV ) (in particular, E is effective).
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(B) We say that E imposes independent conditions on M if E is admissible for M and if
h0(V ,M(−E)V ) = h

0(V ,MV )− degV E for every subcurve V ⊆ Y .
(C) For R ⊂ Y r Ysing, we denote by A(M,R) the set of all admissible divisors for M

with support contained in R.

Remark 2.3.2. If R in part (C) is finite, then the set A(M,R) is also finite.

If C is a smooth irreducible curve, Definition 2.3.1 coincides with the classical one.
Fix a finite subsetR ⊂ C; then every admissible divisorE such that SuppE ⊂ R imposes
independent conditions on the general L ∈ Picd C. More generally:

Lemma 2.3.3. Let ν : Y → X be the normalization of X and R ⊂ Y a finite subset. Let
d ∈ 6ss(X) and M ∈ Picd Y a general point. Then every divisor E ∈ A(M,R) imposes
independent conditions on M .

Proof. By Remark 2.3.2, it suffices to prove that a fixed E imposes independent condi-
tions on the general M ∈ Picd Y .

Set as usual Y =
∐γ

i=1 Ci . Given M and E as in the statement, define Mi := MCi ,
Ei := ECi and ei = degCi E. Now, for any line bundle N on Y and any subcurve
V ⊂ Y we have H 0(V ,N) =

⊕
Ci⊂V

H 0(Ci, NCi ). Therefore it suffices to prove that
h0(Ci,M(−E)Ci ) = h0(Ci,Mi) − ei for every i = 1 . . . , γ . Since M is general in
Picd Y =

∏
Picdi Ci , every Mi is general in Picdi Ci . The fact that d is semistable im-

plies that di ≥ pa(Ci)−1 ≥ gi−1 (gi is the genus ofCi), hence h0(Ci,Mi) = di−gi+1.
Now by (A) of 2.3.1 we have ei ≤ di − gi + 1, hence

degCi M(−E) = di − ei ≥ gi − 1. (26)

At this point, observe that Mi(−Ei) is a general point in Picdi−ei Ci (Ei is fixed and Mi

is general in Picdi Ci) and hence (by (26))

h0(Ci,Mi(−Ei)) = di − ei − gi + 1 = h0(Ci,Mi)− ei

as claimed. ut

Example 2.3.4. Let ν : Y → X the normalization of X and d ∈ 6ss(X). Then there
exists a choice of branches h : {1, . . . , δ} → {1, 2} such that the divisor E =

∑δ
j=1 q

j

h(j)

is admissible for everyM ∈ Picd Y . In fact, the construction of such an admissible divisor
E has appeared in the proof of 2.1.2. Recall that degCi M(−E) = gi − 1 for every
i = 1, . . . , γ (see (21)).

For the next result we need some notation. Recall that νS : YS → X denotes the
normalization of X at S. Let Z ⊂ X be a subcurve. We denote by ZS := ν−1

S (Z) the
corresponding subcurve in YS , so that ZS is the normalization of Z at S∩Zsing. Obviously
every subcurve of YS is of the form ZS for a unique Z ⊂ X. We shall often simplify the
notation by setting H 0(ZS,M) := H 0(ZS,MZS ).
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Proposition 2.3.5. Fix νS : YS → X as above. Let M ∈ PicYS be such that h0(YS,M)

≥ δS , and assume that for every ZS ( YS ,

h0(ZS,MZS ) ≥ 1+ #S ∩ Zsing. (27)

If every E ∈ A(M, ν−1
S (S)) imposes independent conditions on M , then

dimWM(X, S) ≤

{
δS − γS − 1 if h0(M) = δS,

δS − γS if h0(M) ≥ δS + 1.

Proof. We set l = h0(YS,M). By hypothesis, for every q ∈ ν−1(S),

h0(YS,M(−q)) = l − 1, (28)

indeed by (27) every such q is admissible for M . Let n ∈ S and set ν−1(n) = {q1, q2}.
Suppose l = 1; then δS = 1. By (28) applied to q1 and q2, we are in case (2a) of
Lemma 2.2.3. Hence WM(X, S) = ∅ and we are done.

From now on, we assume l ≥ 2. Let E = q1 + q2. Then E is admissible, i.e.
degZS E ≤ h0(ZS,MZS ) for every subcurve ZS ⊂ YS . Indeed, for every ZS , we have
h0(ZS,MZS ) ≥ 1 by (27). On the other hand, degZS E ≤ 2 and equality holds iff ZS con-
tains both q1 and q2, i.e. if and only if Z is singular at n. In this case, h0(ZS,MZS ) ≥ 2
by (27). Therefore, by hypothesis, for every ZS ,

h0(ZS,M(−q1 − q2)) = h
0(ZS,MZS )− 2. (29)

Assume δS = 1. By (29) we are in case (1) of Lemma 2.2.4. ThusWM(X, S) is empty
and we are done. We continue by induction on δS .

For every j = 1, . . . , δ set Sj := S r {nj }. For any {j1, j2} ⊂ {1, . . . , δS},

WM(X, S) =

δ⋃
j=1

WM(X, Sj ) = WM(X, Sj1) ∪WM(X, Sj2), (30)

therefore it suffices to bound the dimension of WM(X, Sj ) for a chosen pair of values
of j = 1, . . . , δ. We pick one of them and simplify the notation by setting n = nj and
T = Sj = S r {n}. We factor νS as

νS : YS
ν1
−→ YT

νT
−→ X

where νT is the normalization ofX at T and ν1 the normalization at the remaining node n.
We abuse notation by using the same names for points in YS , YT andX whenever the maps
are local isomorphisms (e.g. n denotes a node in YT and in X). The following is the basic
diagram to keep in mind:

PicX
ν∗T
−→ PicYT

ν∗1
−→ PicYS

WM(X, T ) → WM(YT ) → M

WN (X, T ) → N 7→ M

(31)
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where N ∈ FM(YT ); since l ≥ 2, FM(YT ) = WM(YT ). By (29) and 2.2.1,

h0(YT , N) = l − 1. (32)

Case 1: The node n lies in two different irreducible components ofX. By Lemma 2.3.6(i)
(applied with R = ν−1

S (S r n)) every admissible divisor ET on YT such that SuppET ⊂
ν−1
T (T ) imposes independent conditions on N . Therefore we can use induction (#T =

#S − 1) and obtain

dimWN (X, T ) ≤

{
δS − 1− γT − 1 if h0(YT , N) = δS − 1,
δS − 1− γT if h0(YT , N) ≥ δS,

i.e. using (32),

dimWN (X, T ) ≤

{
δS − γT − 2 if l − 1 = δS − 1,
δS − γT − 1 if l − 1 ≥ δS .

If n is not a separating node for X, then FM(YT ) = WM(YT ) ∼= k
∗ and γS = γT . There-

fore, from diagram (31), dimWM(X, T ) ≤ dimWN (X, T ) + 1. So, using the equality
δS − γT − 1 = δS − γS , we are done.

If n is separating, then γS = γT + 1. On the other hand, dimFM(YT ) = 0, hence
dimWM(X, T ) ≤ dimWN (X, T ). Again, we are done.

Case 2: The node n lies in only one irreducible component of X. Denote by C ⊂ X the
component containing n, and by C ⊂ YS the component containing both q1 and q2. We
are in the situation of Lemma 2.3.6(ii). Therefore there exists a finite set P ⊂ FM(YT )

such that for every N ∈ PicYT r P , every admissible E supported on ν−1
T (T ) imposes

independent conditions on N . We can use induction on every N ∈ WM(YT ) such that
N 6∈ P . We obtain

dimWN (X, T ) ≤

{
δS − 1− γT − 1 if h0(YT , N) = δS − 1,
δS − 1− γT if h0(YT , N) ≥ δS .

Consider diagram (31) and note that now dimWM(YT ) = dimFM(YT ) = 1. Hence, away
from the fibers over P , the dimension of every irreducible component of WM(X, T ) is at
most

dimWM(YT )+ dimWN (X, T ) ≤

{
1+ δ − γ − 2 if l = δ,
1+ δ − γ − 1 if l ≥ δ + 1,

(using (32)) as wanted.
It remains to bound the dimension of the fibers over every N ∈ P . Now, set n = n1

and T = {n2, . . . , nδS }.
If l ≥ δS + 1, i.e. if h0(YT , N) ≥ δT + 1, then

dimWN (X) = dimFN (X) = δT − γT + 1 = δS − γS .

The fiber of WM(X, T ) → WM(YT ) over N is obviously contained in WN (X), hence it
has dimension at most δS − γS and we are done.



Geometry of the theta divisor of a compactified jacobian 1403

Assume δS = l. If

h0(YT , N(−q
2
1 − · · · − q

δS
1 )) = 0, (33)

then, by 2.1.1(ii),WN (X) has pure dimension equal to δT − γS = δS − γS − 1. Hence the
dimension of the fiber of WM(X, T ) over N is at most δS − γS − 1 and we are done.

We shall complete the proof by showing that (33) holds for some choice of branches.
Assume h0(YT , N(−q

2
1 − · · · − q

δS
1 )) ≥ 1.

Observe that E :=
∑δS
j=2 q

j

1 + q
δS
2 is admissible for M . Indeed, we have degZS E ≤

1+ #T ∩ Zsing for every ZS ⊂ YS ; hence, by (27),

degZS E ≤ 1+ #T ∩ Zsing ≤ 1+ #S ∩ Zsing ≤ h
0(ZS,M).

As E is admissible, we have

h0
(
YS,M

(
−

δS∑
j=2

q
j

1 − q
δS
2

))
= 0, (34)

also, by Lemma 2.2.4,

h0(YT , N(−q
2
1 − · · · − q

δS−1
1 − q

δS
2 )) ≤ 1 and h0(YT , N(−q

2
1 − · · · − q

δS
1 )) = 1.

If h0(YT , N(−q
2
1 − · · · − q

δS−1
1 − q

δS
2 )) = 1 then, of course,

h0
(
N
(
−

δS∑
j=2

q
j

1 − q
δS
2

))
= 1, (35)

which is impossible, by (34). Therefore h0(YT , N(−q
2
1 − · · · − q

δS−1
1 − q

δS
2 )) = 0, i.e.

(33) holds for some choice of branches. The proof is complete. ut

In the proof of Proposition 2.3.5 we used the following

Lemma 2.3.6. Let ν1 : YS → YT be the partial normalization of YT at a unique node n.
Let M ∈ PicYS be such that for every subcurve ZS ⊂ YS ,

h0(ZS,M)

{
≥ 2 if ν−1

1 (n) ⊂ ZS,

≥ 1 otherwise.

Let R be a finite set of smooth points of YS . Assume that every divisor in A(M, ν−1
1 (n)

∪ R) imposes independent conditions on M .

(i) If n lies in two irreducible components of YT , then for any N ∈ FM(YT ), every
divisor in A(N, ν1(R)) imposes independent conditions on N .

(ii) If n lies in only one irreducible component of YT , there exists a finite subset P ⊂
FM(YT ) such that for everyN ∈ FM(YT )rP , every divisor inA(N, ν1(R)) imposes
independent conditions on N .
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Proof. Let ν−1(n) = {q1, q2}. Then formula (29) holds (with the same proof). For every
ZS ⊂ YS , denote ZT := ν1(ZS). By (29) and 2.2.1 we have

{q1, q2} ⊂ ZS ⇒ h0(ZT , NZT ) = h
0(ZS,MZS )− 1, (36)

{q1, q2} 6⊂ ZS ⇒ h0(ZT , NZT ) = h
0(ZS,MZS ), (37)

because in the latter case ZS ∼= ZT via ν1. Thus for any N ∈ FM(YT ), the num-
ber h0(ZT , NZT ) depends only on M , and not on the choice of N . Therefore the set
A(N, ν1(R)) depends only on M .

Pick ET ∈ A(N, ν1(R)). Denote ES := ν∗1 (ET ), and observe that ν1 is an isomor-
phism locally at every point in SuppES . Hence

degZS ES = degZT ET ≤ h
0(ZT , N) ≤ h

0(ZS,M). (38)

Therefore ES imposes independent conditions on M , i.e.

h0(ZS,M(−ES)) = h
0(ZS,M)− degZS ES . (39)

If {q1, q2} 6⊂ ZS , ν1 induces an isomorphism ZS ∼= ZT , hence by (38) and (39) we get
h0(ZT , N(−ET )) = h0(ZS,M(−ES)) = h0(ZT , N) − degZT ET , as wanted. So we
need only consider the case {q1, q2} ⊂ ZS .

For (i), let q1 ∈ C1 and q2 ∈ C2. Set ei := degCi E and li := h0(Ci,MCi ) =

h0(Ci, NCi ). Consider the usual sequence

0→ H 0(ZT , N(−ET ))→ H 0(ZS,M(−ES))
β
→ k→ · · · . (40)

If ET is such that ei ≤ li − 1 for i = 1, 2 then ES + q1 + q2 imposes independent
conditions on M . We get h0(ZS,M(−ES − q1 − q2)) = h0(ZS,M(−ES)) − 2, hence
h0(ZT , N(−ET )) = h

0(ZS,M(−ES))− 1. By (38) and (39) we get

h0(ZT , N(−ET )) = h
0(ZS,M)− degZT ES − 1 = h0(ZT , N)− degZT ET ,

as wanted. Now, ET is admissible, hence li ≥ ei ; so only two cases remain.
Case 1: e1 = l1 and e2 = l2− 1. Then H 0(C1,M(−ES)) = 0, h0(C2,M(−ES)) = 1

and h0(C2,M(−ES−q2)) = 0. Then all sections inH 0(ZS,M(−ES)) vanish at q1 while
there exist sections that do not vanish at q2. Hence β is surjective and we are done.

Case 2: li = ei for i = 1, 2. Let ZT := ν1(C1 ∪ C2) ⊂ YT . By (36),

e1 + e2 = degZT ET ≤ h
0(ZT , N) = h

0(ZS,M)− 1 ≤ l1 + l2 − 1,

which is possible only if at least one ei is less than li . So Case 2 does not occur and (i) is
proved.

For (ii), denote by Call C ⊂ YS the component of YS containing both q1 and q2, and
D := ν1(C). Set eD = degD ET = degC ES ; and (by (36))

lD := h0(C,M) = h0(D,N)+ 1 (41)
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so that eD ≤ lD − 1. If eD ≤ lD − 2 then ES + q1 + q2 is admissible for M . Hence
for every ZS ⊂ YS we have h0(ZS,M(−ES − q1 − q2)) = h

0(ZS,M(−E))− 2 so that
(using Remark 2.2.1)

h0(ZT , N(−ET )) = h
0(ZS,M(−ES))− 1 = h0(ZT , N)− degZT ET . (42)

We are left with the case eD = lD − 1. Then h0(C,M(−ES)) = 1 and part (2a) of
Lemma 2.2.3 applies. We conclude that there exists a unique line bundle in PicD which
pulls back to M(−ES)C and has h0

= 1. This in turn determines a (unique) line bundle
ND on D which pulls back to MC , and finally a unique line bundle on YT which pulls
back to M and restricts to ND on D. This last line bundle on YT is uniquely determined
by ET ; denote it by NET . Set P := {N ∈ FM(YT ) : N = NET for some ET }. We just
showed that for any N ∈ FM(YT ) r P , every ET ∈ A(N, ν1(R)) imposes independent
conditions on N . The finiteness of the set P follows at once from the finiteness of the set
of ET ’s. ut

Corollary 2.3.7. Let Y → X be the normalization of X and S = Xsing. If d ∈ 6(X) and
M ∈ Picd Y is a general point then dimWM(X, S) ≤ δ − γ − 1.

Proof. If M is general, h0(Y,M) = δ by 2.1.2. Moreover, as d is stable, (27) holds.
Indeed, for every Z ⊂ X, Zν = ZS is the normalization of Z and we have dZ ≥ pa(Z) =
pa(Z

ν)+ #Zsing; hence h0(Zν,MZν ) ≥ #Zsing+ 1. Finally, by Lemma 2.3.3,M satisfies
the assumption of Proposition 2.3.5. ut

3. Irreducibility and dimension

3.1. Irreducible components

We are ready to prove that Wd(X) is irreducible for every stable multidegree d. This im-

plies that, if X is free from separating nodes, the theta divisor 2(X) ⊂ P
g−1
X has one

irreducible component for every irreducible component of P g−1
X . If X has some separat-

ing node this is false (see 3.1.4 and 4.2.7). The stability assumption on d is also essential,
as one can see from counterexample 3.1.4.

If |d| ≥ 1 we shall use the Abel map αdX. If |d| ≤ 0, i.e. if g = 0, 1 the Abel map is
not defined so we need to treat this case separately, which will be done in the following

Lemma 3.1.1. Let X have genus g ≤ 0, 1; let d ∈ 6(X). Then

Wd(X) =

{
∅ if d 6= (0, . . . , 0),
{OX} if d = (0, . . . , 0) (hence g = 1).
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Proof. By hypothesis, for each d ∈ 6(X) we have |d| = −1, 0 depending on whether
g = 0, 1. Recall that X =

⋃
Ci denotes the decomposition of X into irreducible com-

ponents. Let L ∈ Picd X and suppose that there exists a non-zero section s ∈ H 0(X,L).
Set

Z− :=
⋃

i : di<0

Ci, Z0 :=
⋃

i : di=0

Ci, Z+ :=
⋃

i : di>0

Ci .

Note thatZ− = ∅ ⇔ d = (0, . . . , 0). By contradiction, assumeZ− 6= ∅. Then s vanishes
along a non-empty subcurve Z ⊂ X which contains Z−. Let ZC be the complementary
curve of Z, so that s does not vanish along any subcurve of ZC . Since for every n ∈
Z ∩ ZC we have s(n) = 0, the degree of s restricted to ZC satisfies

dZC ≥ #Z ∩ ZC . (43)

On the other hand, g ≤ 1 implies pa(ZC) ≤ 1, hence the stability of d yields

dZC ≤ pa(Z
C)+ #Z ∩ ZC < #Z ∩ ZC

(cf. 1.3.3), a contradiction with (43). Therefore Z− = ∅; we see that if Wd(X) 6= ∅ then
d = (0, . . . , 0); in particular, g = 1. Now we conclude by Corollary 2.2.5. ut

Recall that for d such that d ≥ 0 and |d| ≥ 1 we denote by Ad(X) ⊂ Picd X the closure
of the image of the Abel map αdX (see 1.2.7). If d ∈ 6(X) is such that |d| = −1, 0, we
denote Ad(X) := Wd(X).

Theorem 3.1.2. Let X be a connected, nodal curve of arithmetic genus g. Let d be a
stable multidegree on X such that |d| = g − 1. Then

(i) Wd(X) = Ad(X), hence Wd(X) is irreducible of dimension g − 1;
(ii) the general L ∈ Wd(X) satisfies h0(X,L) = 1.

Proof. If g = 0, 1 the theorem follows from Lemma 3.1.1; so we assume g ≥ 2.
(ii) follows from (i) and from 2.1.2(iv).

Let W be an irreducible component of Wd(X). By 1.3.7 we know that dimW =

g − 1. We shall prove the theorem by showing that if Ad(X) is not dense in W , i.e. if

W 6= W ∩ Imα
d

X, then dimW ≤ g − 2, and hence W must be empty.
Up to removing a proper closed subset of W , we can and will assume that W ∩

Imα
d

X = ∅. Consider the normalization ν : Y → X of X with Y =
∐γ

i=1 Ci and let
gi be the genus of Ci . Recall that g =

∑γ

i=1 gi + δ − γ + 1.
We let ρ denote the restriction to W of the pull-back map ν∗, so that

Picd X ⊃ W
ρ
→ ρ(W) ⊂ Picd Y =

γ∏
i=1

Picdi Ci . (44)

We shall bound the dimension of W by analyzing ρ.



Geometry of the theta divisor of a compactified jacobian 1407

To say that L ∈ Picd X does not lie in the image of αdX : Ẋd → PicX is to say that
L does not admit any section whose zero locus is contained in Ẋ. In other words, setting
S = Xsing, we have L ∈ WM(X, S) (cf. 2.2.2). Therefore for every M in ρ(W) we have

ρ−1(M) ⊂ WM(X, S) ⊂ WM(X).

From now on, M is a general point in ρ(W). The proof is divided into four cases.

Case I: dim ρ(W) ≤
∑γ

i=1 gi − 2. It suffices to use the inequalities dim ρ−1(M) ≤

dimFM(X) = δ − γ + 1. Then

dimW ≤ dim ρ(W)+ dimFM(X) ≤

γ∑
i=1

gi − 2+ δ − γ + 1 = g − 2.

Case II: dim ρ(W) =
∑γ

i=1 gi . Now ρ is dominant, so that M is general in Picd Y =∏γ

i=1 Picdi Ci . Then we can apply Corollary 2.3.7, which yields dimWM(X, S) ≤ δ −

γ − 1, and hence

dimW ≤ dim ρ(W)+ dimWM(X, S) ≤

γ∑
i=1

gi + δ − γ − 1 = g − 2.

Remark 3.1.3. From now on we shall assume dim ρ(W) =
∑γ

i=1 gi − 1.

Denote by πi :
∏γ

i=1 Picdi Ci → Picdi Ci the projection and ρi := πi ◦ ρ,

ρi : W → ρ(W)→ ρi(W) ⊂ Picdi Ci .

As dim
∏γ

i=1 Picdi Ci =
∑γ

i=1 gi and dim ρ(W) =
∑γ

i=1 gi − 1, we get

dim ρi(W) ≥ gi − 1, ∀i,

and there can be at most one index i for which dim ρi(W) = gi − 1.

Case III: dim ρ(W) =
∑γ

i=1 gi − 1 and h0(Y,M) ≥ δ+ 1. We claim that we can apply
2.3.5 to the general M ∈ ρ(W). This would yield dimWM(X, S) ≤ δ − γ so that we
could conclude as follows:

dimW ≤ dim ρ(W)+ dimWM(X, S) ≤ gY − 1+ δ − γ = g − 2.

To prove that the hypotheses of 2.3.5 hold, observe that (27) follows from the fact that d is
stable (see the proof of 2.3.7). To prove the remaining assumption we argue by contradic-
tion. Assume that for some admissible divisor E with SuppE ⊂ ν−1(S) and e := degE
we have

h0(Y,M(−E)) ≥ h0(Y,M)− e + 1

for M general in ρ(W). As Y is the disjoint union of the Ci , we get

h0(Y,M(−E)) =

γ∑
i=1

h0(Ci,Mi(−Ei)) ≥

γ∑
i=1

(h0(Ci,Mi)− ei)+ 1
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where Ei = E|Ci , ei := degEi and Mi = M|Ci . Therefore there exists at least one index,
say i = 1, such that

h0(C1,M1(−E)) ≥ h
0(C1,M1)− e1 + 1. (45)

The fact that E is admissible implies that e1 ≤ h
0(C1,M1). Now, as d1 ≥ g1, there are

two possiblities:

(a) h0(C1,M1) = d1 − g1 + 1;
(b) h0(C1,M1) ≥ d1 − g1 + 2.

If (a) occurs, ρ1 : W → Picd1 C1 is dominant. In fact, by the assumption h0(M) ≥

δ+1, there exists an index i 6= 1 (say i = 2) such that h0(C2,M2) ≥ d2−g2+2, i.e.M2
is a special line bundle on C2. Therefore ρ2(W) cannot be dense in Picd2 C2. By 3.1.3,
ρ1(W) is dense in Picd1 C1. Therefore we can apply Lemma 2.3.3 (with Y = X = C1 and
d = d1) to deduce that E1 imposes independent conditions on M1, a contradiction with
(45).

In case (b) we can assume e1 = h
0(C1,M1) = d1 − g1 + 2. So M1 is not a general

point in Picd1 C1; by 3.1.3, dim ρ1(W) = g1 − 1. Now (45) is h0(C1,M1(−E1)) ≥ 1.
Consider the map

uE1 : W 0
d1−e1

(C1)→ Picd1 C1, N 7→ N(+E1). (46)

By what we said, Im uE1 dominates ρ1(W), hence the variety W 0
d1−e1

(C1) has dimension
at least g1 − 1. This is impossible, since (by (7))

dimW 0
d1−e1

(C1) ≤ min{d1 − e1, g1} ≤ min{d1 − (d1 − g1 + 2), g1} = g1 − 2.

Case IV: dim ρ(W) =
∑γ

i=1 gi − 1 and h0(Y,M) = δ. If Proposition 2.3.5 applies,
we can argue as for Case II and we are done. Observe that in order for 2.3.5 to apply, it
suffices to show that for every i = 1, . . . , γ , every divisor Ei ∈ A(Mi, ν

−1(S) ∩ Ci) im-
poses independent conditions on Mi . Indeed, this implies that every E ∈ A(M, ν−1(S))

imposes independent conditions on M . By 3.1.3 there are two possibilities.

(a) ρi(W) is dense in Picdi Ci for every i.
(b) There exists a unique index, say i = 1, such that dim ρ1(W) = g1 − 1, whereas for

i ≥ 2, ρi(W) is dense.

In case (a), Mi is general in Picdi Ci , hence by 2.3.3 and by what we observed above
we can use 2.3.5 and we are done.

In case (b), we may assume that 2.3.5 cannot be applied. Let E :=
∑δ
j=1 q

j

h(j) be an
admissible divisor for M of the same type constructed in 2.3.4 (with the same notation).
Recall from 2.3.4 that degCi M(−E) = gi − 1 for all i.

If E imposes independent conditions, i.e. if h0(Y,M(−E)) = h0(M) − δ = 0, we
can apply 2.1.1(ii) to obtain dimWM(X) = γ − δ. This is enough to conclude:

dimW ≤ dim ρ(W)+ dimWM(X) =

γ∑
i=1

gi − 1+ δ − γ = g − 2. (47)
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So, assume that h0(Y,M(−E)) ≥ 1. We have h0(Ci,Mi(−Ei)) = 0 if i ≥ 2, whereas
h0(C1,M1(−E1)) ≥ 1. As we said, degM1(−E1) = g1 − 1; we claim that

h0(C1,M1(−E1)) = 1. (48)

To prove it we argue as for Case III(b). Consider the map analogous to (46):

u1
E1

: W 1
g1−1(C1)→ Picd1 C1

mappingN toN(E1). Now dimW 1
g1−1(C1) ≤ g1−3 (well known); therefore, u1

E1
cannot

dominate ρ1(W), whose dimension is g1 − 1. So (48) is proved.
It is trivial to check that we can assume, for a suitable q ∈ SuppE1, that E1 = E

′

1+q

with E′1 imposing independent conditions on M1, i.e.

h0(C1,M1(−E
′

1)) = 1

so that q is a base point of M1(−E
′

1). Therefore

h0(Y,M(−E)) = 1

and there exists a point q ∈ E1 such that, setting E′ = E − q1, the divisor E′ imposes
independent conditions on M . Now let n be the node of X of which the point q1 is a
branch, and let S′ = S r n; thus E′ is supported on ν−1(S′). Let νn : X′ → X be the
normalization of X at n, so that we can factor ν as

Y
ν′

→ X′
νn
−→ X

and ν′ is the normalization of X′. Of course, X′ has δ′ = δ − 1 nodes and h0(Y,M) =

δ′ + 1. As E′ imposes independent conditions on M , we can apply 2.1.1 with respect to
ν′ : Y → X′. This gives us that WM(X

′) = FM(X
′) and, for a general L′ ∈ WM(X

′),

h0(X′, L′) = h0(Y,M)− δ′ = 1. (49)

Consider the following diagram:

PicX
ν∗n
−→ PicX′

(ν′)∗

−−→ PicY
WM(X) → FM(X

′) → M.
(50)

Observe that n is not a separating node of X (otherwise, by 1.3.5, 6(X) is empty and
there is nothing to prove). Hence ν∗n is a k∗-fibration and

dimFM(X
′) = δ′ − γ + 1 = δ − γ.

We now claim that the fiber WL′(X) of WM(X) over the general point L′ ∈ FM(X′) has
dimension ≤ 0. By (49) we are in the situation of Lemma 2.2.3, which tells us that the
only case when dimWL′(X) = 1 is when L′ has a base point in each of the two branches
of n. Now this does not happen. Indeed, if i ≥ 2, Mi is general and hence has no base
point over Xsing; on the other hand, M1 varies in a codimension 1 subset of Picd1 C1,
hence it has at most one base point over Xsing; therefore we can apply Lemma 1.2.6.

Concluding: dimWM(X) ≤ δ − γ . Arguing as in (47) we are done. ut
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Example 3.1.4. The conclusion of Theorem 3.1.2 fails if we only assume d to be semi-
stable. The simplest instance of d ∈ 6ss(X) with Wd(X) reducible is that of a curve
of compact type, X = C1 ∪ C2, where Ci is smooth of genus gi , #C1 ∩ C2 = 1 and
d = (g1 − 1, g2) (note that d is strictly semistable by 1.3.5). Then

Wd(X) = (Wg1−1(C1)× Picg2 C2) ∪ (Picg1−1 C1 ×2q2(C2))

where q2 ∈ C2 is the point over the node and 2q2(C2) :={L∈Picg2 C2 : h0(C2, L(−q2))

6= 0}. The interested reader will easily construct similar, more interesting, examples on
curves not of compact type.

3.2. Dimension of the image of the Abel map

Proposition 3.2.1. Let X be a curve of genus g ≥ 2. Let d ∈ Zγ be a non-negative
multidegree such that |d| = g − 1. If d is semistable, then

(a) the general L ∈ Ad(X) satisfies h0(X,L) = 1;
(b) dimAd(X) = g − 1.

Conversely, if d is not semistable, then

(A) for every L ∈ Ad(X) we have h0(X,L) ≥ 2;
(B) dimAd(X) ≤ g − 2.

Proof. If d is stable, by Theorem 3.1.2 we know that Ad(X) = Wd(X), dimAd(X) =

g − 1 (by 1.3.7) and that the general point L ∈ Ad(X) has h0(X,L) = 1. So, for the first
half of the statement, we need to consider the case where X is reducible and d semistable
but not stable. Thus, there exists a decomposition X = V ∪ Z, where V and Z are
subcurves of respective arithmetic genus gV and gZ , such that V is connected,

dV = gV − 1 and dZ = gZ + δS − 1, (51)

where S := V ∩ Z and δS := #S.
Observe that, since d ≥ 0, we get gV ≥ 1. By (1) we have

g = gV + gZ + δS − 1. (52)

LetL be a general point inAd(X); we can assume thatL is a line bundle onX of typeL =
OX(D) where D is an effective divisor of multidegree d supported on the smooth locus
of X. Consider the restrictions LV and LZ of L to V and Z; we have h0(V , LV ) ≥ 1.
On the other hand, h0(Z,LZ) ≥ dZ − gZ + 1 = δS (by Riemann–Roch and (51));
moreover, equality holds for a general LZ ∈ PicdZ Z, by Corollary 2.1.3. Denote the
partial normalization of X at S by

νS : YS = V q Z→ X
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and note that Picd YS = PicdV V × PicdZ Z. Set M = ν∗SL = (LV , LZ). Then for L
general

h0(YS,M) = h
0(V , LV )+ h

0(Z,LZ) = δS + 1, (53)

hence by Proposition 2.1.1 (14), which we can apply by Lemma 2.1.2(ii), we obtain
h0(X,L) = h0(YS,M)− δS = 1.

Now we compute dimAd(X) using induction on the number of irreducible compo-
nents ofX. The case ofX irreducible has already been settled. AssumeX is reducible; by
what we said above, the pull-back map ν∗S restricted to Ad(X) gives a dominant rational
map (denoted by ρ)

Ad(X)
ρ
→ AdV (V )× PicdZ Z.

Now recall that |dV | = gV − 1 ≥ 0 by (51) and dV is semistable on V because d is
semistable on X (cf. 1.3.3). Furthermore, V has fewer components than X, hence we can
use induction to conclude that dimAdV (V ) = dV = gV − 1.

If M is a general point in the image of the above map ρ, then by (53) and 2.1.1(ii),
we see thatWM(X) = FM(X). We claim thatWM(X) ⊂ Ad(X). Indeed, recall thatM =
ν∗SOX(D) with SuppD ⊂ Ẋ, hence there exists an L ∈ WM(X) (namely, L = OX(D))
admitting a section that does not vanish at any node of X. Therefore the same holds for
every line bundle in a dense open subset of WM(X) (which is irreducible, being equal to
FM(X)). This shows that WM(X) ⊂ Ad(X). Therefore ρ−1(M) = FM(X) and

dimAd(X) = gV − 1+ gZ + δS − γS + 1 = g − 1.

Conversely, assume that d is not semistable. Then there exists a decomposition X =
V ∪ Z, where (as before) V and Z are subcurves of genus gV and gZ such that

dV ≤ gV − 2 and dZ ≥ gZ + δS (54)

where S := V ∩ Z and δS := #S. Notice that gV ≥ 2 (as d ≥ 0).
We use the same notation as before. Let L be a general point in Ad(X), so L is of type

L = OX(D) with D ≥ 0 supported on Ẋ. We have h0(V , LV ) ≥ 1 and h0(Z,LZ) ≥

dZ − gZ + 1 ≥ δS + 1.
Consider νS : YS = V q Z→ X and set M = ν∗SL = (LV , LZ). We have

h0(YS,M) = h
0(V , LV )+ h

0(Z,LZ) ≥ δS + 2, (55)

hence by 2.1.1 (12), h0(X,L) ≥ 2, proving part (A). To compute dimAd(X) consider
again the rational map

Ad(X)
ρ
→ AdV (V )× PicdZ Z.

Since dimAdV (V ) ≤ dV (by Lemma 1.2.8) we get

dimAd(X) ≤ dV + gZ + dimWM(X) ≤ gV − 2+ gZ + dimWM(X),

using (54) for the last inequality. Thus

dimAd(X) ≤ gV − 2+ gZ + δS − γS + 1 = g − 2.

This proves (B) and we are done. ut



1412 Lucia Caporaso

From the proof, it is clear that the farther d is from being semistable, the smaller the
dimension of Ad(X) is. The following fact will be useful later on.

Corollary 3.2.2. Let R ⊂ X be a finite set of non-singular points of X and d ∈ 6ss(X).
Then the general L ∈ Ad(X) has no base point in R.

Proof. It obviously suffices to assume #R = 1, so let R = {q}. If L is general in Ad(X)
we can assume that L ∈ Imα

d

X. Set L′ = L(−q) and d ′ := degL′. If q is a base point

of L, then L′ ∈ Imα
d ′

X . Therefore, if the general L ∈ Ad(X) has a base point in q, the
map

Imα
d ′

X → Ad(X), L′ 7→ L′(q), (56)
must be dominant. But this is not possible, as dimAd(X) = g − 1 by 3.2.1, whereas

obviously dim Imα
d ′

X ≤ |d
′
| = g − 2. ut

4. The compactified theta divisor

4.0.1. Let X be a connected nodal curve, S ⊂ Xsing, δS := #S and νS : YS → X the
normalization of X at S. Let

X̂S = YS ∪

δS⋃
i=1

Ei (57)

be the connected, nodal curve obtained by “blowing up” X at S, so that Ei ∼= P1 for all i
and Ei is called an exceptional component of X̂S → X (where this map is the contraction
of all the exceptional components of X̂S). We shall usually denote by M̂ a line bundle on
X̂S and by M ∈ PicYS its restriction to YS .

4.1. The compactified Picard variety

4.1.1. In what follows we shall recall what the points of P g−1
X parametrize, and give a

stratified description of it (in 4.1.5); our notation is that of [C05]. There is more than
one place where details and proofs can be found, even though some terminology may be
different from ours. We refer to [Al04] for a unifying account and other references.

To begin with, using the notation of 4.0.1, the compactified Picard variety, or com-

pactified jacobian, P g−1
X , in degree g − 1, parametrizes equivalence classes of stable line

bundles of degree g − 1 on the curves X̂S as S varies among all subsets of Xsing.
Let us define stable line bundles and the equivalence relation among them. For every

S ⊂ Xsing consider the blow-up of X at S, X̂S = YS ∪
⋃δS
i=1 Ei (cf. (57)). A stable line

bundle M̂ ∈ Picd X̂S is such that, if we set M := M̂YS , properties (1) and (2) below hold:

(1) degM ∈ 6(YS);
(2) degEi M̂ = 1 for i = 1, . . . , δS .

We call M̂ ∈ Picd X̂S semistable if it satisfies (2) as well as (1′), where

(1′) degM ∈ 6ss(YS).
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In other words, a line bundle on X̂S is semistable (resp. stable) if its restriction to the
complement of all the exceptional components of X̂S → X has semistable (resp. stable)
multidegree. Two stable line bundles M̂ and M̂ ′ on X̂S are defined to be equivalent iff
their restrictions, M and M ′, to YS coincide.

4.1.2. Thus, the points in P
g−1
X are in one-to-one correspondence with equivalence

classes of stable line bundles. Any such class is uniquely determined by S and by

M ∈ PicYS (provided that 6(YS) is not empty), therefore points of P g−1
X will be de-

noted by pairs [M,S], where S ⊂ Xsing and M ∈ Picd YS with d ∈ 6(YS).

4.1.3. Although P g−1
X is constructed as a GIT-quotient, our terminology “stable/semi-

stable line bundles” does not precisely reflect the GIT stability/semistability. More pre-

cisely, denote by qX : HX → P
g−1
X the GIT quotient defining P g−1

X (so that HX is a
closed subset in the GIT-semistable locus of some Hilbert scheme). Note thatHX contains
strictly GIT-semistable points, unlessX is irreducible. Our stable line bundles correspond
to GIT-semistable points in HX having closed orbit.

4.1.4. For technical reasons we need to consider semistable multidegrees that are not
stable. Let d ∈ 6ss(YS) be a semistable multidegree of YS ; a node n of YS is called
destabilizing for d if there exists a connected subcurve Z ⊂ YS such that n ∈ Z∩ZC and
dZ = pa(Z)− 1 (ZC = Y r Z). We set

S(d) := {n ∈ (YS)sing : n is destabilizing for d}. (58)

Observe that
S(d) = ∅ ⇔ d ∈ 6(YS). (59)

We denote by YS(d) the normalization of YS at S(d), so that we have

YS(d) = YS∪S(d)
νd
→ YS

νS
→ X (60)

where νd is the normalization map.
Assume that d is strictly semistable, i.e. S(d) is not empty. Then the dual graph of YS

has an orientation such that for every subcurve Z ⊂ YS such that dZ = pa(Z) − 1, all
the edges between 0Z and 0ZC go from 0Z to 0ZC (by 1.3.2). Therefore, if we consider
YS(d) and use the convention of 1.3.4, for every destabilizing node n ∈ Z ∩ZC , we have
qn1 ∈ Z and qn2 ∈ Z

C (abusing notation by denoting Z = ν−1
d (Z) and ZC = ν−1

d (ZC)).
We now introduce a divisor on YS(d):

T (d) :=
∑
n∈S(d)

qn2 and t(d) := deg T (d). (61)

By construction, d − t(d) is a stable multidegree for YS(d). Set

dst := d − t(d) ∈ 6(YS(d)). (62)

The following statement summarizes various known facts about P g−1
X . The only novelty

is that we use line bundles on the partial normalizations of X, rather than torsion free
sheaves on X (as in [AK80], [OS79], [Si94]) or line bundles on the blow-ups of X (as in
[C94]).
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Fact 4.1.5. P g−1
X is a connected, reduced, projective scheme of pure dimension g. It has

a stratification

P
g−1
X =

∐
∅⊆S⊆Xsing
d∈6(YS )

P
d

S

such that the following properties hold:

(i) For every S ⊂ Xsing and every d ∈ 6(YS) there is a canonical isomorphism
(notation in 4.1.2)

Picd YS
ε
d

S
−→ P

d

S , M 7→ [M,S]. (63)

In particular, if P dS 6= ∅, then dimP
d

S = g − δS + γS − 1.
(ii) More generally, for every S ⊂ Xsing and every d ∈ 6ss(YS) there is a canonical

surjective morphism ε
d

S : Picd YS → P
dst

S(d) (notation in 4.1.4) which factors as
follows:

ε
d

S : Picd YS
τ
→ Picd

st
YS(d)

ε
dst

S(d)
−−→ P

dst

S(d)

L 7→ ν∗dL⊗OYS (d)(−
∑
n∈S(d) q

n
2 )

(64)

where τ is surjective with fibers (k∗)b, b = δS(d) − γS(d) + 1, and εd
st

S(d) is an iso-
morphism.

(iii) If P d
′

S′
⊂ P

d

S then S ⊂ S′ and d ≥ d ′ (i.e. di ≥ d ′i for all i = 1, . . . , γ ). In such a
case, #((S′ r S) ∩ Ci) = di − d

′

i (recall that X =
⋃γ

i=1 Ci).

(iv) Denote by P g−1
X the smooth locus of P g−1

X . Then

P
g−1
X =

∐
d∈6(X̃)

P
d

Xsep
∼=

∐
d∈6(X̃)

Picd X̃

where X̃ → X is the normalization at the separating nodes (cf. 1.3.6) and the
isomorphism is the canonical one described in part (i).

Given the normalization ofX at all of its separating nodes, X̃→ X, recall from 1.3.6 that
X̃ =

∐c
i=1Xi denotes the decomposition of X̃ into connected components.

Corollary 4.1.6. P g−1
X is irreducible if and only if for every i = 1, . . . , c either Xi is

irreducible, or every irreducible component C of Xi meets Xi r C in exactly two points.

Proof. Assume first X = X̃. Then P g−1
X is irreducible if and only if #6(X) = 1. If X is

irreducible, then 6(X) = {g − 1} so P g−1
X is irreducible. If every irreducible component

Ci of X meets its complementary curve in two points, calling gi the arithmetic genus

of Ci , we have g − 1 =
∑γ

i=1 gi . Therefore 6(X) = {(g1, . . . , gγ )}, hence P g−1
X is

irreducible.
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Conversely, assume that X is reducible and has an irreducible component, Ci , such
that δi := #X r Ci ≥ 3. Then X may be obtained as the special fiber of a family of
nodal curves Xt having exactly two irreducible components intersecting in δi points.

Then #6(Xt ) = δi − 1 ≥ 2 (cf. 4.2.8), hence P g−1
Xt

has at least two irreducible com-

ponents. Since P g−1
Xt

specializes to P g−1
X we find that P g−1

X has at least two irreducible
components. So, if X has no separating node we are done.

In general, denote b̃ := #6(X̃). Then P g−1
X is irreducible if and only if b̃ = 1; by

1.3.6 this is equivalent to #6(Xi) = 1 for every i = 1, . . . , c. Then the result follows by
applying the first part to each Xi . ut

Remark 4.1.7. In combinatorial terms, consider the graph 0̃X obtained from 0X by re-

moving every loop and every separating edge. Then P g−1
X is irreducible if and only if

every vertex of 0̃X has valency (or degree) equal to either 0 or 2.

4.2. Stratifying the theta divisor

We shall now define the theta divisor of P g−1
X using the stratification given above. A

natural thing to do is to consider the irreducible strata, P dS , of dimension g of P g−1
X ,

consider Wd(X) in such strata and then take their closure. Recalling Lemma 1.3.5, the
g-dimensional strata are easily listed. First, denote by Xsep ⊂ Xsing the set of separating
nodes of X and let X̃→ X be the normalization of X at Xsep (as in 4.1.5(iv)). Thus X̃ is
a nodal curve having c = #Xsep + 1 connected components. Finally, set b̃ = #6(X̃). We
have

Lemma-Definition 4.2.1. Let X be a connected nodal curve. Using εdS of 4.1.5(i) as an

identification, we define the theta divisor 2(X) of P g−1
X as

2(X) :=
⋃

d∈6(X̃)

Wd(X̃) ⊂ P
g−1
X .

2(X) has cb̃ irreducible components, all of dimension g − 1.

Proof. If X is free from separating nodes (i.e. c = 1) the statement follows trivially from
Theorem 3.1.2. Otherwise, let X̃ = X1 q · · · q Xc be the decomposition into connected
components. Then g =

∑c
i=1 pa(Xi) and

Wd(X̃) =

c⋃
i=1

(
Wd i

(Xi)×
∏
j 6=i

j=1,...,c

Picdj Xj
)

where d i denotes the restriction of d to Xi . Since Xi is connected and d i is stable,
Wd i

(Xi) is irreducible of dimension pa(Xi)− 1, hence we are done (cf. 1.3.6). ut

Corollary 4.2.2. 2(X) is irreducible if and only if either X is irreducible, or every irre-
ducible component of X meets its complementary curve in exactly two points.
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Proof. By 4.2.1, 2(X) is irreducible if and only if c = 1 (i.e. X is free from separating
nodes) and b̃ = 1.

Assume 2(X) is irreducible; then X has no separating nodes and b̃ = #6(X) = 1.

Hence P g−1
X is irreducible, by 4.1.5. Applying Corollary 4.1.6 we are done.

Conversely, if X is irreducible, then 2(X) is irreducible by Theorem 3.1.2. If X is
reducible and satisfies the hypothesis, obviously c = 1. Moreover, arguing as in the proof
of Corollary 4.1.6 we conclude thatX has only one stable multidegree: d = (g1, . . . , gγ ),
hence 2(X) is irreducible. ut

Remark 4.2.3. In combinatorial terms, let 0∗X be the graph obtained from 0X by remov-
ing every loop. Then 2(X) is irreducible if and only if either 0∗X is a point, or every
vertex of 0∗X has valency (i.e. degree) 2.

Remark 4.2.4. Definition 4.2.1 coincides with the one given in [E97] or (which is the
same) in [Al04], by Theorem 4.2.6 below. In particular, 2(X) is Cartier and ample.

For the following simple lemma we use the notation in 4.0.1.

Lemma 4.2.5. Let S ⊂ Xsing and M ∈ PicYS . Pick M̂ ∈ Pic X̂S such that M̂|YS =
M and M̂E = OE(1) for every exceptional component E of X̂S . Then h0(X̂S, M̂) =

h0(YS,M).

Proof. (Cf. [P07, 2.1] for an analogous statement.) For any pair of points p1, p2 ∈ P1

choose a trivialization of OP1(1) locally at such points; now for any pair a1, a2 ∈ k there
exists a unique section s ∈ H 0(P1,OP1(1)) such that s(p1) = ai for i = 1, 2. So, every
section sY ∈ H 0(Y,M) extends to a unique section of H 0(X̂S, M̂) determined by sY and
by the gluing data defining M̂ . Conversely, of course any section in H 0(X̂S, M̂) restricts
to a section of M . ut

Theorem 4.2.6. Let X be a connected nodal curve. The stratification of P g−1
X given by

4.1.5 induces the following canonical stratification:

2(X) =
∐

∅⊆S⊆Xsing
d∈6(YS )

2
d

S with canonical isomorphisms 2dS ∼= Wd(YS). (65)

Equivalently, 2(X) = {[M,S] ∈ P g−1
X : h0(X̂S, M̂) 6= 0}.

Proof. The equivalence of the two descriptions follows immediately from 4.1.5 and Lem-
ma 4.2.5. Furthermore, it is clear that

2(X) ⊂ {[M,S] ∈ P g−1
X : h0(X̂S, M̂) 6= 0}

(by upper semicontinuity of h0). So we need to prove the other inclusion.

Part 1: Proof assuming X is free from separating nodes. In this case, by definition,

2(X) =
⋃

d∈6(X)

Wd(X).
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We shall use Abel maps (see 1.2.7): recall that αdYS is the d-th Abel map of YS and the
closure of its image in Picd YS is denoted by Ad(YS).

Step 1. Assume #S = 1 and let d ∈ 6ss(YS). Then there exists e ∈ 6(X) such that (using
Theorem 3.1.2 for the equality below)

ε
d

S (Ad(YS)) ⊂ ε
e

∅
(We(X)) = ε

e

∅
(Ae(X)).

In particular, if [M,S] ∈ P g−1
X (so that degM ∈ 6(YS)) satisfies #S = 1 and h0(X̂S, M̂)

6= 0, then [M,S] ∈ 2(X).

Let M ∈ Picd(YS) with M ∈ Ad(YS) and degM = d ∈ 6ss(YS). As X is free from
separating nodes, YS is connected.

Observe that, by 4.1.5(iv), P g−1
X is the closure of its open subset

P
g−1
X =

∐
e∈6(X)

P
e

∅
∼=

∐
e∈6(X)

Pice X.

Therefore there exists an e ∈ 6(X) such that εdS (M) ∈ P
e

∅
= Pice X.

Since #S = 1, |d| = pa(YS)−1 = g−2 = |e|−1. Furthermore, d ≤ e (by 4.1.5(iii)).
Therefore there exists a unique index i ∈ {1, . . . , γ }, say i = 1, such that d1 = e1 − 1
and di = ei for i ≥ 2.

Set S = {n}, let νS : YS → X be the normalization at n, and let C1 be the first
component of YS . Since d1 = e1 − 1, by 4.1.5(iii) C1 contains one of the two branches
of n; call it q1. Let now pt ∈ C1 be a moving point specializing to q1.

We can assume thatM is a general point inAd(YS) (which is irreducible of dimension
pa(YS) − 1), in particular that M is in the image of the Abel map, that h0(YS,M) = 1,
and that M has no base point lying over n (by 3.2.1 and 3.2.2). Therefore there exists
L ∈ PicX such that ν∗SL = M and L ∈ Imα

d

X (by 2.2.3(2a)). Set Lt := L(pt ); then

degLt = d + (1, 0, . . . , 0) = e ∈ 6(X)

and Lt ∈ Imα
e

X, in particular h0(X,Lt ) 6= 0. As pt specializes to q1, it follows that
ε
e

∅
(Lt ) specializes to εdS (M), so we are done with Step 1.

Step 2. For every S such that #S ≥ 2 and d ∈ 6ss(YS), there exist S′ ⊂ S such that
#S′ = #S − 1, and a d ′ ∈ 6ss(YS′) such that

ε
d

S (Ad(YS)) ⊂ ε
d ′

S′
(Ad ′(YS′)).

Let d be a semistable multidegree for YS . Consider the dual graph 0YS and an orientation
on it inducing d. Note that 0YS is the subgraph of 0X obtained by removing the edges
corresponding to S. It is clear that if we add to 0YS any edge n of 0 (so that n ∈ S),
oriented however we like, we obtain a new oriented graph 0′ such that 0YS ⊂ 0

′
⊂ 0X.

Set S′ = S r {n}, thus 0′ is the dual graph of the curve YS′ obtained by normalizing X
at S′. Thus we have a map YS → YS′ which is the normalization of YS′ at n.
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The given orientation on 0′ corresponds to a semistable multidegree d ′ such that
|d ′| = |d| + 1 and d ′ ≥ d.

From now on we can argue as for Step 1, with YS′ playing the role of X. More pre-
cisely, if YS is connected, then the argument is exactly the same: start from a general
M ∈ Ad(YS) and construct a family of line bundles Lt = L(pt ) ∈ Ad ′(YS′) such that pt
is a smooth point of YS′ specializing to n, and L ∈ Ad(YS′) such that L pulls back to M .

Then εd
′

S′
(Lt ) specializes to εdS (M).

If YS is not connected, then the general M ∈ Ad(YS) has h0(M) ≥ 2, and it has no
base point over n (by 3.2.2). We now apply 2.2.4 to obtain L ∈ Imα

d

YS′
which pulls back

to M . The rest of the argument is the same as before.
This concludes the proof of Step 2.

Step 3. End of proof of Part 1. To prove the theorem, we pick [M,S] ∈ P g−1
X such that

M ∈ Wd(YS); since d is stable, we have Wd(YS) = Ad(YS) by 3.1.2 (applied to every
connected component of YS).

Using Step 2 we can decrease the cardinality of S at the cost of passing from a stable
multidegree to a semistable one (which is why the assumption for Step 1 is that d is
semistable, rather than stable). Iterating Step 2 finitely many times, we reduce the proof
of the theorem to Step 1. So the theorem is proved for X free from separating nodes.

Part 2: Proof assuming Xsep is not empty. Recall that X̃→ X is the normalization of X
at Xsep and X̃ =

⋃c
i=1Xi denotes the decomposition of X̃ into connected components;

set gi = pa(Xi). By Fact 4.1.5 we have a canonical isomorphism

P
g−1
X
∼=

c∏
i=1

P
gi−1
Xi

(66)

and, by Definition 4.2.1, another canonical isomorphism

2(X) ∼=

c⋃
j=1

(
2(Xj )×

∏
i 6=j

1≤i≤c

P
gi−1
Xi

)
. (67)

Let [M,S] ∈ P g−1
X be such that h0(YS,M) 6= 0. Now S ⊃ Xsep, hence we can factor

νS : YS
ν̃S
−→ X̃→ X

and denote Yi = ν̃S
−1(Xi), so that YS is the disjoint union of Y1, . . . , Yc. Note that

Yi is the normalization of Xi at a certain set of nodes, Si , of Xi . Therefore, under the
isomorphism (66), the point [M,S] corresponds to the point ([M1, S1], . . . , [Mc, Sc]) ∈∏c
i=1 P

gi−1
Xi

where Mi = MYi .
Furthermore, h0(YS,M) =

∑c
i=1 h

0(Yi,Mi), hence there exists an index, say i = 1,
such that h0(Y1,M1) 6= 0. Now, X1 is free from separating nodes, therefore by the first
part of the proof we obtain [M1, S1] ∈ 2(X1). By (67), this implies [M,S] ∈ 2(X),
finishing the proof. ut
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Example 4.2.7. Let X = C1 ∪ C2 with #C1 ∩ C2 = 1; then 6(X) is empty, while

6(Y) = {(g1− 1, g2− 1)} (Y is the normalization of X). The points of P g−1
X correspond

to line bundles of multidegree (g1 − 1, g2 − 1) on Y or to equivalence classes of line
bundles on the curve X̂ obtained by blowing up the unique node of X. More precisely, if

we order the components of X̂ so that X̂ = C1 ∪ E ∪ C2 (where E ∼= P1), then P g−1
X

bijectively parametrizes line bundles of multidegree (g1 − 1, 1, g2 − 1) on X̂. There is a
canonical isomorphism

P
g−1
X
∼= Picg1−1 C1 × Picg2−1 C2.

Now, 2(X) is canonically isomorphic to W(g1−1,g2−1)(Y ), which we can easily de-
scribe by means of 1.2.5. We obtain three different cases.

Case 1: gi 6= 0, i = 1, 2. Then 2(X) has two irreducible components:

2(X) = (Wg1−1(C1)× Picg2−1 C2) ∪ (Picg1−1 C1 ×Wg2−1(C2)). (68)

Case 2: g1 = 0 and g2 6= 0. Then the first component in (68) is empty and we get
2(X) ∼= Wg2−1(C2) ∼= 2(C2).

Case 3: g1 = g2 = 0. Then 2(X) is empty.

Example 4.2.8. Let X = C1 ∪ C2 with #C1 ∩ C2 = δ ≥ 2; assume Ci is smooth (this
assumption can easily be removed) of genus gi . Then g − 1 = g1 + g2 + δ − 2. We have

6(X) = {(g1, g2+δ−2), (g1+1, g2+δ−1), . . . , (g1+δ−2, g2)}, so that P g−1
X has δ−1

irreducible components of dimension g. There is a canonical isomorphism (cf. 4.1.5(iv))

P
g−1
X =

δ−2∐
i=0

P
(g1+i,g2+δ−i−2)
∅

∼=

δ−2∐
i=0

Pic(g1+i,g2+δ−i−2)X.

For every set S ⊂ Xsing such that #S = k with 1 ≤ k ≤ δ − 2, we have

6(YS) = {(g1, g2 + δ − k − 2), . . . , (g1 + δ − k − 2, g2)};

so that P g−1
X has a total of (δ − k − 1)

(
δ
k

)
strata of codimension k, each of which is

isomorphic to Picd YS . If k = δ−1 then for any choice of δ−1 nodes, the curve obtained
by blowing up X at such nodes has a separating node, hence 6(YS) is empty. Finally, the
last stratum corresponds to S = Xsing and d = (g1 − 1, g2 − 1), and it has codimension
δ − 1. We have

P
(g1−1,g2−1)
Xsing

∼= Picg1−1 C1 × Picg2−1 C2.

Now, 2(X) contains δ − 1 irreducible strata of dimension g − 1, one for every com-

ponent of P g−1
X . Indeed, for every d ∈ 6(X) we have2d

∅
∼= Wd(X), which is irreducible

of dimension g − 1, by Theorem 3.1.2.
For every set S ⊂ Xsing such that #S = k with 1 ≤ k ≤ δ − 2, YS is connected and

free from separating nodes, so that for every d ∈ 6(YS) we get an irreducible stratum of
dimension g − k − 1 isomorphic to Wd(YS). If k = δ − 1 there are no strata (as before).
If k = δ we get a stratum isomorphic to the theta divisor computed in Example 4.2.7
(cf. (68)).
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5. Characterizing hyperelliptic stable curves

We conclude the paper with a characterization of hyperelliptic irreducible curves, Theo-
rem 5.2.4, extending a well known one for smooth curves. The irreducibility assumption
is truly needed, as shown in counterexample 5.2.5.

5.1. Irreducible curves

If we restrict our interest to irreducible singular curves, not only does the description of
the compactified jacobian simplifies substantially, but also the same description is valid
for all degrees.

5.1.1. Let X be an irreducible curve. Then the definitions of stable and semistable mul-
tidegrees (given for d = g − 1) coincide and are trivial. Thus, for every normalization
YS → X at a set S of δS nodes, we have6(YS) = 6ss(YS) = {pa(YS)−1} = {g−1−δS}.
So, that definition generalizes to all d, as follows. With the notation of 4.0.1, a line bundle
M̂ ∈ Picd X̂S is stable if (1) and (2) hold, where (1) degYS M̂ = d − δS , (2) degEi M̂ = 1
for all i = 1, . . . , δS .

The equivalence relation is the same as for d = g − 1: two stable line bundles on X̂S
are equivalent iff their pull-backs to YS coincide. An equivalence class is thus uniquely
determined by S and by the restriction, M , of M̂ to YS ; we shall maintain the notation of
4.0.1 and 4.1.2.

Exactly as in the case d = g − 1, we have the following. The variety P dX is reduced
and irreducible. It bijectively parametrizes the equivalence classes of stable line bundles
on the curves X̂S associated to X as S varies among all subsets of Xsing.

Moreover, as in 4.1.5, P dX has a canonical stratification into disjoint strata, called PS ,
indexed by the subsets S ofXsing. Every PS has a canonical isomorphism (usually viewed

as an identification) εS : Picd−δS YS
∼=
→ PS ⊂ P

d
X. We have

P dX =
∐

S⊂Xsing

PS ∼=
∐

S⊂Xsing

Picd−δS YS . (69)

5.1.2. Given a family of irreducible curves, f : X → B, up to a finite base change there
exists the compactified Picard scheme πd : P df → B which contains the relative degree-d
Picard scheme of f , denoted Picdf , as an open subset (see [C05] for details). The fiber of

πd over a point b ∈ B is P dXb .

In the next lemma we use the notation of 1.2.4, in particular (8).

Lemma 5.1.3. Let ν : YS → X be the normalization of X at a non-separating node n
of X, and set ν−1(n) = {q1, q2}. Let M ∈ W r

d (YS). Then

(1) W r
M(X) = ∅ iff h0(YS,M) = r + 1 and one of the two cases below occurs: either

(a) h0(YS,M − q1 − q2)) = h
0(YS,M)− 2, or

(b) up to interchanging q1 with q2,

h0(YS,M) = h
0(YS,M − q1) 6= h

0(YS,M − q2).
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(2) dimW r
M(X) = 0 iff h0(YS,M) = r + 1 and

h0(YS,M − q1 − q2) = h
0(YS,M − qh) = r, h = 1, 2.

In this case W r
M(X) = {LM} with h0(X,LM) = r + 1.

(3) dimW r
M(X) = 1 iff one of the two cases below occurs:

(a) h0(YS,M) = h
0(YS,M(−qh)) for h = 1, 2,

(b) h0(Y,M) ≥ r + 2,

Proof. It is a straightforward consequence of Lemma 2.2.4. ut

5.1.4. We recall a construction due to E. Arbarello and M. Cornalba (cf. [AC81, Sec-
tion 2]). Let h : T → U be family of connected smooth projective curves and assume
that h has a section. Then for every pair (d, r) of integers, there exists a U -scheme
ρ : W r

d,h → U such that for every u ∈ U , the fiber of ρ over u is the Brill–Noether
variety W r

d (h
−1(u)) of the corresponding fiber of h. Moreover there is a natural injective

morphism of U -schemes, W r
d,h ↪→ Picdh, viewed here as an inclusion.

Now let f : X → B be a one-parameter family of smooth curves specializing to
an irreducible curve X, let b0 ∈ B be the point over which the fiber is X, and assume
that the restriction of f to U = B r b0 is smooth. Up to making a finite étale base
change, we may asume that f has a section (this will not affect our conclusion). Denote
by h the restriction of f to U and introduce the scheme W r

d,h → U described above.
Consider the Picard scheme Picdf → B, which is integral, separated and of finite type. Let

W r
d,h ⊂ Picdf denote the closure ofW r

d,h in Picdf . ThusW r
d,h is a scheme overB; we denote

by W r
d,X := W r

d,h ∩ Picd X the fiber over b0. Then, by upper semicontinuity of h0, we
have W r

d,X ⊂ W
r
d (X). Therefore, if X is the specialization of a family of smooth curves

Xb such that every irreducible component of W r
d (Xb) has dimension at least c (for some

number c), then dimW r
d (X) ≥ c (i.e. W r

d (X) has a component of dimension at least c).
In particular: If r ≥ d − g, then dimW r

d (X) ≥ ρ(g, r, d) = g − (r + 1)(r − d + g).

5.2. Hyperelliptic stable curves

Some of the subsequent results are probably known to experts, but an exhaustive reference
has not been found.

Let Hg ⊂ Mg be the locus of smooth hyperelliptic curves and Hg its closure in Mg .
We call a singular curve X hyperelliptic if it is contained in Hg (cf. [HM]).

Some parts of the following proposition can be found in, or easily derived from, [CH]
and [HM]. We here need a unified statement.

Proposition 5.2.1. Let X be an irreducible nodal curve of genus g ≥ 3 with δ nodes and
ν : Y → X its normalization. For every node nj set ν−1(nj ) = {q

j

1 , q
j

2 }. The following
are equivalent.

(i) There exists a line bundle HX ∈ Pic2X such that h0(X,HX) = 2.
(ii) [X] ∈ Hg ⊂ Mg (i.e. X is hyperelliptic).
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(iii) There exists a family of smooth hyperelliptic curves Xt specializing to X and such
that the hyperelliptic class of Xt specializes to a line bundle, HX, on X.

(iv) There exists a g1
2 ,3, on Y such that qj1 +q

j

2 is a divisor in3 for every j = 1, . . . , δ
(in particular, h0(Y, q

j

1 + q
j

2 ) ≥ 2).

If the above hold, for every j = 1, . . . , δ we have ν∗HX = OY (qj1 + q
j

2 ) and 3 ⊂
P(H 0(Y, q

j

1 + q
j

2 )
∗). Furthermore, W 1

2 (X) = {HX}; HX will be called the hyperelliptic
class of X.

Remark 5.2.2. The implications (iii)⇔(ii) and (iii)⇒(i) also hold if X is reducible.

Proof. The implications (iii)⇒(i) and (iii)⇒(ii) are obvious.
(i)⇒(iv). Let ν1 : Y1 → X be the normalization of exactly one node n1 of X. Let

M = ν∗HX. Then (gY ≥ 2) h0(Y1,M) = 2 = h0(X,HX). Furthermore, M is base-
point-free, hence we are in case (2) of Lemma 5.1.3. We obtain M = OY1(q

1
1 + q

1
2 ) and

HX is uniquely determined (with the notation of 5.1.3(2), HX = LM ). Finally, 31 :=
P(H 0(Y1,M)

∗); set H1 = M .
If Y1 is smooth we are done, otherwise we iterate this procedure as follows. Let ν2 :

Y2 → Y1 be the normalization of one node, n2, of Y1. Set

ν1,2 : Y2
ν2
−→ Y1

ν1
−→ X

and abuse the notation by using the same symbols for points inX, Y1 and Y2 whenever the
normalization maps are local isomorphisms. Then ν∗1,2HX = ν

∗

2H1 = ν
∗

2OY1(q
1
1 + q

1
2 ) =

OY2(q
1
1 + q

1
2 ). Set H2 = ν∗2H1 = OY2(q

1
1 + q

1
2 ). Note that the pull-back of the linear

series31 to Y2 is a g1
2 containing q1

1 +q
1
2 ; denote it32 = ν

∗

231. Now we distinguish two
cases.

Case 1: δ ≤ g − 1, i.e. Y 6= P1. In this case we certainly have pa(Y2) ≥ 1, hence
h0(Y2, H2) = 2; thus we can argue as in the previous part to obtain H2 = OY2(q

2
1 + q

2
2 )

and 32 = P(H 0(Y2, q
j

1 + q
j

2 )
∗) for j = 1, 2. This procedure can be repeated so we are

done.
Case 2: Y = P1. We can argue as for Case 1 only for δ − 1 steps, arriving at

ν : Y = P1 νδ
−→ Yδ−1 → X

where Yδ−1 has only one node and all the above morphisms are birational. Furthermore,
for every j = 1, . . . , δ − 1 the pull-back to Yδ−1 of HX is OYδ−1(q

j

1 + q
j

2 ) and 3δ−1 =

P(H 0(Yδ−1, q
j

1 + q
j

2 )
∗).

Now let 3 := ν∗δ3δ−1 ⊂ P(H 0(Y,O(2))∗). For every j = 1, . . . , δ − 1 the divisor
q
j

1 + q
j

2 belongs to 3 by construction. To prove that also qδ1 + q
δ
2 belongs to 3 we repeat

the same construction with respect to a different ordering of the nodes of X, for example
by switching nδ with n1. As3 is uniquely determined by HX, and as δ ≥ 3, we are done.

(iv)⇒(i). Set M = OY (qj1 + q
j

2 ) (for all j ). If Y 6= P1 we have h0(Y,M) = 2
and h0(Y,M − q

j

1 − q
j

2 ) = 1, so the proof is a straightforward iterated application of
Lemma 5.1.3(2).
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If Y = P1 we have h0(Y,M) = 3 and M has no base point. Let ν1 : Y → X1 be the
map that glues only one pair of branches, say qδ1, q

δ
2 , so that pa(X1) = 1. Then for any

M1 ∈ PicX1 such that ν∗1M1 = M we have h0(X1,M1) = 2. Pick M1 = OX1(q
1
1 + q

1
2 )

(abusing notation); we claim that for every j = 2, . . . , δ−1 we haveOX1(q
j

1+q
j

2 )
∼= M1.

This follows from the fact that, on Y , the divisors qj1 + q
j

2 all belong to the same g1
2 , 3.

Indeed, recall that a line bundle on X1 is uniquely determined by its pull-back to Y , M ,
and by the constant c ∈ K∗ gluing the two fibersMqδ1

·c
→ Mqδ2

via the multiplication by c.

Furthermore, if s ∈ H 0(Y,M) does not vanish at qδ1 and qδ2 , set c(s) = s(qδ2)/s(q
δ
1); then

c(s) determines a unique line bundle Ls which pulls back to M and such that the section
s descends to a section s ∈ H 0(X,Ls). Now, for every j = 1, . . . , δ, let sj ∈ H 0(Y,M)

be such that div(sj ) = q
j

1 +q
j

2 . ThenM1 is uniquely determined by c(s1). By hypothesis,
the δ sections sj span a two-dimensional subspace ofH 0(Y,M) and sδ(qδ1) = sδ(q

δ
2) = 0;

therefore we have c(sj ) = c(s1) for every j ≤ δ − 1, proving that OX1(q
j

1 + q
j

2 )
∼= M1

if j ≤ δ − 1 (indeed, div(sj ) = q
j

1 + q
j

2 ).
The claim enables us to complete the argument, again by Lemma 5.1.3(2).
(ii)⇒iii). If X ∈ Hg there exists a family of hyperelliptic curves specializing to X.

Up to a finite base change, we get a family f : X → B where B is some smooth curve
with a marked point b0 ∈ B such that the fiber Xb, b 6= b0, is smooth and hyperelliptic,
and the fiber over b0 is X. Moreover, we get a line bundle H on X rX whose restriction
to Xb is the hyperelliptic line bundle on Xb. The data (X → B,H) induce a canonical
map µ from B r b0 to Pic2

f such that µ(b) ∈ Pic2Xb is the hyperelliptic class of Xb

for all b ∈ B r b0. As B is a smooth curve, µ extends to a regular map µ : B → P 2
f

(see 5.1.2).

We claim that µ(b0) ∈ Pic2X ⊂ P 2
X ⊂ P 2

f . By contradiction, suppose µ(b0) is a

boundary point of P 2
X. Then µ(b0) = [M,S] where S ⊂ Xsing with δS = #S ≥ 1 and

M ∈ Pic2−δS YS . Since degM ≤ 1 we have h0(YS,M) ≤ 1. By Lemma 4.2.5 we get
h0(X̂S, M̂) ≤ 1 for any representative M̂ for [M,S]. But M̂ is the specialization of line
bundles having h0

≥ 2, so this is impossible. The claim is thus proved, and so is the
implication (ii)⇒(iii).

Finally, we prove that (iv)⇒(ii). Let us denote by G ⊂ Mg the locus of curves
satisfying (iv). We claim that G is irreducible of dimension 2g − δ − 1. Assume first
δ ≤ g − 1; then G is the locus of irreducible curves X with δ nodes such that on the
normalization Y we have h0(Y, q

j

1 + q
j

2 ) = 2 and if δ = g − 1 we need to impose also

q
j

1 + q
j

2 ∼ q
j ′

1 + q
j ′

2 . Thus a curve in G is determined by its normalization Y and by the
choice of δ linearly equivalent divisors of degree 2 on Y . As dimHg−δ = 2(g− δ)−1 we
get dimG = dimHg−δ+ δ = 2g− δ−1.Moreover,G is irreducible because so isHg−δ .
If δ = g, i.e. Y = P1, an element in G is determined by a g1

2 on P1 and by δ divisors in
it, everything up to automorphisms. This yields dimG = 2+ δ − 3 = δ − 1.

Now denote by 1δ0 the closure in Mg of the locus of irreducible curves with δ nodes.
It is well known that codimMg

1δ0 = δ. Therefore dim(Hg ∩ 1δ0) ≥ 2g − 1 − δ (as



1424 Lucia Caporaso

dimHg = 2g− 1). Note that (ii)⇒(iv) (we proved (ii)⇒(iii)⇒(i)⇒(iv)), hence Hg ∩1δ0
⊆ G. As dimHg ∩1

δ
0 ≥ dimG, this inclusion is an equality and we are done. ut

The next lemma is easy to prove for smooth curves (cf. [ACGH, p. 13]); our proof of the
generalization is elementary and maybe known, we include it for completeness.

Lemma 5.2.3. Let X be a hyperelliptic irreducible curve of genus g ≥ 3; let d and r be
such that 2 ≤ d ≤ g and 0 < 2r ≤ d . Then dimW r

d (X) = d − 2r .

Proof. By definition, X is the specialization of some family of smooth hyperelliptic
curves. The variety W r

d (C) of a smooth hyperelliptic curve C is irreducible of dimension
d − 2r . Therefore, by the construction of 5.1.4, W r

d (X) has dimension at least d − 2r .
So, it suffices to prove that every component of W r

d (X) has dimension at most d − 2r
and that there exists one component for which equality holds. Furthermore, using the
“residuation” isomorphism

W r
d (X)

∼=
→ W

g−d+r−1
2g−2−d (X), L 7→ KX ⊗ L

−1, (70)

we can reduce ourselves to proving the result for d ≤ g − 1.
Consider the partial normalization νn : Yn → X of one node n of X and let ρr :

W r
d (X)→ W r

d (Yn) be the pull-back map. By Proposition 5.2.1 we have ν∗HX = HYn =
OYn(q1 + q2), where ν−1

n (n) = {q1, q2}.
We use induction on δ. Suppose δ = 1. We omit the subscript n (i.e. Y = Yn); now

gY = g − 1 and Y is a smooth hyperelliptic curve. W r
d (Y ) is irreducible of dimension

d−2r . Let U ⊂ W r
d (Y ) be the open dense subset U = W r

d (Y )rW
r+1
d (Y ). PickM ∈ U .

Then ([ACGH, p. 13]) M = H⊗rY (
∑d−2r
i=1 pi) with h0(Y, pi + pj ) = 1 for all i 6= j .

By Lemma 5.1.3, W r
M(X) is either empty or a single point; more precisely, W r

M(X) is
not empty exactly when neither q1 nor q2 appear among the pi (as h0(M − q1 − q2) =

h0(M ⊗ H−1
Y ) = h0(M) − 1). In this case every ν(pi) is a smooth point of X, which

we call again pi ; observe that h0(X,H⊗rX (
∑d−2r
i=1 pi)) = r + 1, therefore we necessarily

have W r
M(X) = {H

⊗r
X (

∑d−2r
i=1 pi)}. We conclude that ρr dominates U ; more precisely,

W r
d (X) has a unique irreducible component of dimension equal to d − 2r dominating U .

We have also found that ρ−1
r (U) consists of line bundles of the formH r

X(
∑d−2r
i=1 pi) with

h0(X, pi + pj ) = 1 for all i 6= j .
The complementW r+1

d (Y ) of U has dimension d − 2r − 2 and the generic fiber of ρr
over it is a k∗. Hence dim ρ−1

r (W r+1
d (Y )) = d − 2r − 1, so we are done.

Now assume δ ≥ 2. By the induction hypothesis, W r
d (Yn) is irreducible of dimension

d−2r andW r+1
d (Yn) is either empty or irreducible of dimension d−2r−2. We proceed

as for δ = 1; set U = W r
d (Yn)rW r+1

d (Yn) so that U is irreducible of dimension d − 2r .
By what we proved before, U contains a non-empty open subset Un consisting of line
bundles M of the form M = H⊗rYn (

∑d−2r
i=1 pi) with h0(Yn, pi + pj ) = 1 for all i 6= j . By

a trivial dimension count we can disregard U r Un and concentrate on Un.
Let U ′n ⊂ Un be the open subset of M having neither q1 nor q2 as base points; by

Lemma 5.1.3, W r
M(X) is a single point for every M ∈ U ′n, and W r

M(X) = ∅ if M 6∈ U ′n.
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Therefore W r
M(X) has a unique irreducible component of dimension d − 2r dominat-

ing Un. The rest of the proof is the same as for δ − 1. ut

The next result is well known if X is non-singular.

Theorem 5.2.4. Let X be irreducible of genus g ≥ 3. Then

dimW 1
g−1(X) =

{
g − 3 if X is hyperelliptic,
g − 4 otherwise.

Proof. If X is hyperelliptic this is a special case of Lemma 5.2.3, so we will assume X
is not hyperelliptic. Now, for every smooth curve C of genus g ≥ 3, every irreducible
component of W 1

g−1(C) has dimension at least g − 4 (and equality holds if and only if C
is not hyperelliptic). Therefore by 5.1.4, dimW 1

g−1(X) ≥ g−4, hence it suffices to prove
that

dimW 1
g−1(X) ≤ g − 4 (71)

(i.e. every irreducible component has dimension at most g − 4).
If g = 3 then W 1

2 (X) is empty; this follows immediately from Proposition 5.2.1
(namely, from the fact that if W 1

2 (X) 6= ∅ then X is hyperelliptic). So we shall assume
g ≥ 4 from now on. Since X is not hyperelliptic, by Proposition 5.2.1 there exists a
node n of X such that, denoting by ν : Y → X the normalization of X at only n and
{q1, q2} = ν

−1(n), we have
h0(Y, q1 + q2) = 1. (72)

Let us fix such a normalization, denote by gY = g − 1 the genus of Y and consider the
pull-back map

ρ1 : W 1
g−1(X)→ W 1

g−1(Y ) = W
1
gY
(Y )

defined by ρ1(L) = ν
∗L. Recall that W 1

gY
(Y ) ∼= W 0

gY−2(Y ) (by (70)), hence

dimW 1
gY
(Y ) = dimW 0

gY−2(Y ) = gY − 2 = g − 3. (73)

The fibers of ρ1 have obviously dimension at most 1. Set Im ρ1 = I0 ∪̇ I1 where

Ij = {M ∈ Im ρ1 : dim ρ−1
1 (M) = j}, j = 0, 1.

We shall prove (71) by showing that

dim I0 ≤ g − 4, (74)
dim I1 ≤ g − 5. (75)

To prove (74) we begin by observing that (72) is equivalent to

h0(Y, ωY (−q1 − q2)) = gY − 2. (76)

Now it is easy to check that there exists a dense open subset U ⊂ W 0
gY−2(Y ) such that

h0(Y, ωY (−q1 − q2)⊗N
−1) = 0 for all N ∈ U (using 2.2.5). Equivalently

h0(Y,N(q1 + q2)) = 1, ∀N ∈ U. (77)
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This implies that the map

u : W 0
gY−2(Y )→ PicgY Y, N 7→ N(q1 + q2), (78)

satisfies
dim

(
u(W 0

gY−2(Y )) ∩W
1
gY
(Y )

)
< dimW 0

gY−2(Y ) = gY − 2. (79)

Now by Lemma 5.1.3 we have

I0 = {M ∈ W
1
gY
(Y ) : h0(M − q1 − q2) = h

0(M − qh) = 1, h = 1, 2}. (80)

Therefore I0 ⊂ u(W
0
gY−2(Y )) ∩W

1
gY
(Y ); by (79) we obtain dim I0 ≤ gY − 3 = g − 4,

proving (74). To prove (75) we apply Lemma 5.1.3 to get

I1 = {M ∈ W
1
gY
(Y ) : h0(M − q1) = h

0(M − q2) = h
0(M)} ∪W 2

gY
(Y ); (81)

so we set I1 = Ja ∪ Jb where Ja := {M : h0(M − qh) = h0(M) ≥ 2, h = 1, 2} and
Jb := W 2

gY
(Y ).

The residuation isomorphism (70) gives

W 1
gY−2(Y )

∼= W
2
gY
(Y ) = Jb. (82)

Assume Y is hyperelliptic. Then by Lemma 5.2.3 we get dim Jb = gY − 4 = g − 5 as
wanted. Furthermore, we have an injective map

Ja ↪→ W 1
gY−2(Y ), M 7→ M(−q1 − q2), (83)

hence again by Lemma 5.2.3 we derive dim Ja ≤ dimW 1
gY−2(Y ) = gY − 4 = g − 5,

finishing the proof when Y is hyperelliptic. To conclude, observe that if (75) holds in
the special case of Y hyperelliptic, it necessarily holds in the generic case when Y is not
hyperelliptic, so we are done. ut

Example 5.2.5. The irreducibility hypothesis on X cannot be removed from Theo-
rem 5.2.4. To see that, let X = C1 ∪ C2 be the union of two smooth curves meeting
in one node n of X; let qi ∈ Ci be the point corresponding to that node. Recall that X is
hyperelliptic if and only if h0(Ci, 2qi) = 2 for i = 1, 2 (cf. [CH]).

For any such X, a description of P g−1
X and of its theta divisor has been given in

Example 4.2.7. We identify P g−1
X = Pic(g1−1,g2−1) C1 ∪̇ C2 = Picg1−1 C1 × Picg2−1 C2

and2(X) = (Wg1−1(C1)× Picg2−1 C2)∪ (Picg1−1 C1×Wg2−1(C2)). Thus we naturally
define

W 1
(g−1)(X) = W

1
(g1−1,g2−1)(C1 ∪̇ C2) ⊂ 2(X).

Let us pick C1 hyperelliptic of genus g1 ≥ 3 and C2 non-hyperelliptic of genus
g2 ≥ 3. Hence X is not hyperelliptic. Now we claim W 1

g−1(X) has a component of
dimension g − 3. Indeed, consider W 1

g1−1(C1) × Picg2−1 C2. Since C1 is hyperelliptic,
dimW 1

g1−1(C1) = g1 − 3, hence

dim(W 1
g1−1(C1)× Picg2−1 C2) = g1 − 3+ g2 = g − 3.
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On the other hand, it is clear that W 1
g1−1(C1) × Picg2−1 C2 ⊂ W 1

(g−1)(X) (indeed, for
every M ∈ W 1

g1−1(C1)× Picg2−1 C2 we have h0(C1 ∪̇ C2,M) ≥ 2).

Acknowledgments. I wish to thank Juliana Coelho and the referee for several useful remarks.
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