
DOI 10.4171/JEMS/187

J. Eur. Math. Soc. 12, 1–22 c© European Mathematical Society 2010

Filippo Callegaro · Davide Moroni ·Mario Salvetti

The K(π, 1) problem for the affine Artin group
of type B̃n and its cohomology

Received January 12, 2007 and in revised form July 31, 2007

Abstract. We prove that the complement to the affine complex arrangement of type B̃n is aK(π, 1)
space. We also compute the cohomology of the affine Artin group G

B̃n
(of type B̃n) with coeffi-

cients in interesting local systems. In particular, we consider the module Q[q±1, t±1], where the
first n standard generators ofG

B̃n
act by (−q)-multiplication while the last generator acts by (−t)-

multiplication. Such a representation generalizes the analogous 1-parameter representation related
to the bundle structure over the complement to the discriminant hypersurface, endowed with the
monodromy action of the associated Milnor fibre. The cohomology of G

B̃n
with trivial coefficients

is derived from the previous one.
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1. Introduction

Let (W, S) be a Coxeter system, so a presentation for W is

〈s ∈ S | (ss′)m(s,s′) = 1〉
where m(s, s′) ∈ N≥2 ∪ {∞} for s 6= s′ and m(s, s) = 1 (see [Bou68], [Hum90]).

The Artin group GW associated to (W, S) is the extension of W given by the presen-
tation (see [BS72])

〈gs, s ∈ S | gsgs′gs · · · = gs′gsgs′ . . . (s 6= s′, m(s, s′) factors)〉.
One says that an Artin group GW is of finite type when W is finite. We are interested
in finitely generated Artin groups, that is, when S is finite. In this case, W can be geo-
metrically represented as a linear reflection group in Rn (for example, by using the Tits
representation of W, see [Bou68]). Let AR be the arrangement of hyperplanes given by
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the mirrors of the reflections inW and let its complement be Y(AR) := Rn\⋃HR∈AR HR.
The connected components of the complement Y(AR) are called the chambers of AR.

Consider (for finite type) the arrangement A in Cn obtained by complexifying the
hyperplanes of AR and let Y(A) be its complement. We have an induced action of W
on Y(A) and it turns out that the orbit space Y(A)/W has the Artin group GW as fun-
damental group (see [Bri73]). Moreover, it follows from a theorem by Deligne ([Del72])
that Y(A)/W is a K(π, 1) space. Indeed, the theorem concerns a more general situation.
Recall that a real arrangement AR is said to be simplicial if all its chambers consist of
simplicial cones; reflection arrangements are known to be simplicial [Bou68].

Theorem 1.1 ([Del72]). Let AR be a finite central arrangement, and Y(A) the comple-
ment of its complexification. If AR is simplicial, then Y(A) is a K(π, 1) space. ut
Infinite type Coxeter groups are represented (by the Tits representation; see also [Vin71]
for more general constructions) as groups of linear, not necessarily orthogonal, reflections
with respect to the walls of a polyhedral cone C of maximal dimension in V = Rn. It can
be shown that the union U = ⋃w∈W wC of W -translates of C is a convex cone and that
W acts properly on the interior U0 of U . We may now rephrase the construction used in
the finite case as follows. Let A be the complexified arrangement of the mirrors of the
reflections in W and consider I := {v ∈ V ⊗ C | <(v) ∈ U0}. Then W acts freely on
Y = I \⋃H∈AH and we can form the orbit space X := Y/W . It is known ([vdL83];
see also [Sal94]) that GW is indeed the fundamental group of X, but in general it is only
conjectured that X is aK(π, 1). This conjecture is known to be true for: 1) Artin groups of
large type ([Hen85]); 2) Artin groups satisfying the FC condition and “two-dimensional”
Artin groups ([CD95]); 3) affine Artin groups of type Ãn, C̃n ([Oko79]). In this note, we
extend this result to the affine Artin group of type B̃n, showing:

Theorem 1.2. Y(B̃n), and hence X(B̃n), are K(π, 1) spaces.

The idea of proof can be described in few words: up to a C∗ factor, the orbit space is
presented (through the exponential map) as a covering of the complement to a finite sim-
plicial arrangement, so we apply Theorem 1.1.

We just digress a bit on the peculiarity of affine Artin groups. In this case the asso-
ciated Coxeter group is an affine Weyl group Wa and, as such, it can be geometrically
represented as a group generated by affine (orthogonal) reflections in a real vector space.
This geometric representation and that given by the Tits cone are linked in a precise man-
ner; indeed, it turns out that U0 for an affine Weyl group is an open half-space in V and
that Wa acts as a group of affine orthogonal reflections on a hyperplane section E of U0.
The representation on E coincides with the geometric representation and Y(Wa) is ho-
motopic to the complement of the complexified affine reflection arrangement.

Our second main result is the computation of the cohomology of the group GB̃n (so,
by Theorem 1.2, of X(B̃n)). We consider cohomologies with interesting local coefficients,
deriving from these the cohomology with trivial rational coefficients (Theorem 4.6). We
take the 2-parameter representations of GB̃n over the ring Q[q±1, t±1] and over the mod-
ule Q[[q±1, t±1]] defined by sending the standard generator corresponding to the last
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node of the Dynkin diagram to (−t)-multiplication and the other standard generators to
(−q)-multiplication (the minus sign is only for technical reasons). Such representations
are quite natural, as we briefly explain here.

First, take any finite irreducible Coxeter groupW and the corresponding arrangement
A = {H ⊂ Cn} of complexified reflection hyperplanes. Consider the polynomial map
defining the arrangement

δ : Cn→ C

given by the product
∏

H∈A l2H, where lH is a linear functional defining H. The map δ is
invariant with respect to the action of the group W so it induces a map 1 on the orbit
space Cn/W (an affine space in this case) such that the discriminant 6 := 1−1(0) is
the image of the arrangement A under the projection π : Cn → Cn/W. The map 1
induces a fibering over C∗ with total space the complement X(W) of the discriminant,
and Milnor fibre F1 := 1−1(1). It follows from the associated homotopy sequence that
F1 is a K(π, 1) space (when X(W) is a K(π, 1)); also, π1(F1) is the commutator sub-
group of the Artin group GW when the rank of the abelianization of GW is one (cases
An, Dn, Ei , Hi , I2(2p + 1)). It turns out that F1 is homotopy equivalent to an infinite
cyclic covering of X(W). Let Q[q±1] be the GW -module where standard generators act
by (−q)-multiplication. From standard results in group cohomology it follows that the
cohomology of X(W) with coefficients in the module Q[q±1] equals the cohomology of
F1 with rational coefficients, where the q-action here corresponds to the natural action
of the monodromy over the cohomology (for several computations in these cases see for
example [Fre88], [CS98], [DPSS99], [DPS01], [Cal05]).

One can generalize this construction to 2-parameter representations when the roots
have two different lengths (even in the affine case). In general, one obtains a fibration
only up to homotopy: the cohomology of the orbit space X(W) with coefficients in
Q[[q±1, t±1]] equals the cohomology with rational coefficients both of the homotopy
Milnor fibre F and of the corresponding abelian covering of X(W). When X(W) is a
K(π, 1) space, such cohomology equals also that of the fundamental group of F: in our
case, this is the commutator subgroup of GW .

The main tool to perform computations is an algebraic complex which was discov-
ered in [Sal94], [DS96] by using topological methods (and independently, by algebraic
methods in [Squ94]). The cohomology factorizes into two parts (see also [DPSS99]): the
invariant part reduces to that of the Artin group of finite type Bn, whose 2-parameter
cohomology was computed in [CMS06]; for the anti-invariant part we use suitable filtra-
tions and the associated spectral sequences.

Let ϕd be the d-th cyclotomic polynomial in the variable q. We define the quotient
rings

{1}i = Q[q±1, t±1]/(1+ tqi),
{d}i = Q[q±1, t±1]/(ϕd , 1+ tqi),

{{d}}j = Q[q±1, t±1]/
(
ϕd ,

d−1∏
i=0

1+ tqi
)j
.
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The final result is the following:

Theorem 1.3. The cohomology H n−s(GB̃n ,Q[[q±1, t±1]]) is given by

Q[[q±1, t±1]] for s = 0,

⊕
h>0

{{2h}}f (n,h) for s = 1,⊕
h>2

i∈I (n,h)

{2h}c(n,h,s)i ⊕
⊕
d|n

0≤i≤d−2

{d}i ⊕ {1}n−1 for s = 2,

⊕
h>2

i∈I (n,h)

{2h}c(n,h,s)i ⊕
⊕
d|n

0≤i≤d−2
d≤n/(j+1)

{d}i for s = 2+ 2j,

⊕
h>2

i∈I (n,h)

{2h}c(n,h,s)i ⊕
⊕
d-n

d≤n/(j+1)

{d}n−1 for s = 3+ 2j,

where c(n, h, s) = max(0, bn/2hc − s), f (n, h) = b(n + h − 1)/2hc and I (n, h) =
{n, . . . , n+h−2} if n ≡ 0, 1, . . . , hmod(2h) and I (n, h) = {n+h−1, . . . , n+2h−1}
if n ≡ h+ 1, h+ 2, . . . , 2h− 1 mod(2h).

The paper is organized as follows. In Section 2 we recall some results and notations about
Coxeter and Artin groups, including a 2-parameter Poincaré series which we need in the
boundary operators of the above mentioned algebraic complex. In Section 3 we prove
Theorem 1.2. In Section 4 we use a suitable filtration of the algebraic complex, reducing
computation of the cohomology mainly to:

• calculation of generators of certain subcomplexes for the Artin group of type Dn
(whose cohomology was known from [DPSS99], but we need explicit suitable gen-
erators);
• analysis of the associated spectral sequence to deduce the cohomology of B̃n with local

coefficients;
• use of some exact sequences for the cohomology with costant coefficients.

In this paper we prove that the complement to the affine complex arrangement of type
B̃n is a K(π, 1) space. We also compute the cohomology of the affine Artin group GB̃n
(of type B̃n) with coefficients in several interesting local systems. In particular, we con-
sider the module Q[q±1, t±1], where the first n standard generators of GB̃n act by (−q)-
multiplication while the last generator acts by (−t)-multiplication. Such a representation
generalizes the analogous 1-parameter representation related to the bundle structure over
the complement to the discriminant hypersurface, endowed with the monodromy action
of the associated Milnor fibre. The cohomology ofGB̃n with trivial coefficients is derived
from the previous one.
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2. Preliminary results

In this section we fix the notation and recall some preliminary results. We will use classi-
cal facts ([Bou68], [Hum90]) without further reference.

2.1. Coxeter groups and Artin braid groups

A Coxeter graph is a finite undirected graph, whose edges are labelled with integers ≥ 3
or with the symbol∞.

Let S, E be respectively the vertex and edge set of a Coxeter graph. For every edge
{s, t} ∈ E let ms,t be its label. If s, t ∈ S (s 6= t) are not joined by an edge, set by
convention ms,t = 2. Let also ms,s = 1.

Two groups are associated to a Coxeter graph (as in the Introduction): the Coxeter
group W defined by

W = 〈s ∈ S | (st)ms,t = 1 ∀s, t ∈ S such that ms,t 6= ∞〉
and the Artin braid group GW defined by (see [BS72], [Bri73], [Del72]):

G = 〈s ∈ S | stst . . .︸ ︷︷ ︸
ms,t terms

= tsts . . .︸ ︷︷ ︸
ms,t terms

∀s, t ∈ S such that ms,t 6= ∞〉.

There is a natural epimorphism π : GW → W and, by Matsumoto’s Lemma [Mat64],
π admits a canonical set-theoretic section ψ : W → GW .

2.2. Some reflection arrangements

In this paper, we are primarily interested in Artin braid groups associated to Coxeter
graphs of type Bn, B̃n and Dn (see Table 1).

The associated Coxeter groups can be described as reflection groups with respect to
an arrangement of hyperplanes (or mirrors). Let x1, . . . , xn be the standard coordinates
in Rn. Consider the linear hyperplanes:

Hk = {xk = 0}, L±ij = {xi = ±xj },
and, for an integer a ∈ Z, their affine translates:

Hk(a) = {xk = a}, L±ij (a) = {xi = ±xj + a}.
The Coxeter group Bn is identified with the group of reflections with respect to the

mirrors in the arrangement

A(Bn) := {Hk | 1 ≤ k ≤ n} ∪ {L±ij | 1 ≤ i < j ≤ n}.
As such, it is the group of signed permutations of the coordinates in Rn. Notice that Bn
is generated by n basic reflections s1, . . . , sn having respectively as mirrors the n − 1
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Bn 18?9>:=;< 28?9>:=;< 38?9>:=;< 48?9>:=;<.... .... n−28?9>:=;< n−18?9>:=;< n8?9>:=;<4

B̃n

18?9>:=;<
38?9>:=;< 48?9>:=;<.... .... n−18?9>:=;< n8?9>:=;< n+18?9>:=;<

28?9>:=;<
oooooo

4OOO
OOO

Dn

18?9>:=;<
38?9>:=;< 48?9>:=;<.... .... n−28?9>:=;< n−18?9>:=;< n8?9>:=;<

28?9>:=;<
oooooo

OOO
OOO

Table 1. Coxeter graphs of type Bn, B̃n, Dn.

hyperplanes L+i,i+1 (1 ≤ i ≤ n − 1) and the hyperplane Hn. This numbering of the
reflections is consistent with the numbering of the vertices of the Coxeter graph for Bn
shown in Table 1.

The affine Coxeter group B̃n is the semidirect product of the Coxeter group Bn and the
coroot lattice, consisting of integer vectors whose coordinates add up to an even number.
The arrangement of mirrors is then the affine hyperplane arrangement:

A(B̃n) := {Hk(a) | 1 ≤ k ≤ n, a ∈ Z} ∪ {L±ij (a) | 1 ≤ i < j ≤ n, a ∈ Z}. (1)

It is generated by the basic reflections for Bn plus an extra affine reflection s̃ having
L−12(1) as mirror. The latter commutes with all the basic reflections of Bn but s2, for
which (̃ss2)3 = 1. This accounts for the Coxeter graph of type B̃n in the table, where,
however, we chose for our convenience a somewhat unusual vertex numbering.

Finally, the group Dn has reflection arrangement

A(Dn) := {L±ij | 1 ≤ i < j ≤ n}
and it can be regarded as the group of signed permutations of the coordinates which
involve an even number of sign changes. In particular, Dn is a subgroup of index 2 in Bn.
The group is generated by n basic reflections with respect to the hyperplanes L−12 and
L+i,i+1 (1 ≤ i ≤ n− 1).

2.3. Generalized Poincaré series

For future use in cohomology computations, we will need some analog of ordinary Poin-
caré series for Coxeter groups. Consider a domain R and let R∗ be the group of units
of R. Given an abelian representation

η : GW → R∗
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of the Artin groupGW and a finite subset U ⊂ W , we may consider the η-Poincaré series

U(η) =
∑
w∈U

(−1)`(w)η(ψw) ∈ R

where ` is the length in the Coxeter group and ψ : W → GW is the canonical section.
In particular, when W is finite, we say that W(η) is the η-Poincaré series of the group.
Notice that for R = Q[q±1] we may consider the representation ηq that sends the stan-
dard generators ofGW into (−q)-multiplication; in this situation we recover the ordinary
Poincaré series:

W(ηq) = W(q).
Further, for the Artin group of type W = Bn, B̃n we are interested in the representation

ηq,t : GW → Q[q±1, t±1]

defined by sending the last standard generator (the one lying in the tree leaf labelled 4)
to (−t)-multiplication and the remaining ones to (−q)-multiplication. The associated
Poincaré series Bn(q, t) := Bn(ηq,t ) will be called the (q, t)-weighted Poincaré series
for Bn.

In order to recall closed formulas for Poincaré series, we first fix some notations that
will be adopted throughout the paper. We define the q-analog of a positive integer m to
be the polynomial

[m]q := 1+ q + · · · + qm−1 = qm − 1
q − 1

.

It is easy to see that [m]q =
∏
i|m ϕm(q). Moreover, we define the q-factorial and double

factorial inductively as:

[m]q ! := [m]q · [m− 1]q !, [m]q !! := [m]q · [m− 2]q !!,

where it is understood that [1]! = [1]!! = [1] and [2]!! = [2]. A q-analog of the binomial(
m
i

)
is given by the polynomial [

m

i

]
q

:= [m]q !
[i]q ![m− i]q !

.

We can also define the (q, t)-analog of an even number

[2m]q,t := [m]q(1+ tqm−1)

and of the double factorial

[2m]q,t !! :=
m∏
i=1

[2i]q,t = [m]q !
m−1∏
i=0

(1+ tqi).
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Notice that specializing t to q, we recover the q-analogue of an even number and of its
double factorial. Finally, we define the polynomial[

m

i

]′
q,t

:= [2m]q,t !!
[2i]q,t !![m− i]q !

=
[
m

i

]
q

m−1∏
j=i

(1+ tqj ). (2)

With this notation the ordinary Poincaré series for Dn and Bn may be written as

Dn(q) :=
∑
w∈Dn

q`(w) = [2(n− 1)]q !! · [n]q , (3)

Bn(q) :=
∑
w∈Bn

q`(w) = [2n]q !!, (4)

while the (q, t)-weighted Poincaré series for Bn is given by (see e.g. [Rei93])

Bn(q, t) = [2n]q,t !!. (5)

3. The K(π, 1) problem for the affine Artin group of type B̃n

Using the explicit description of the reflection mirrors in (1), the complement of the com-
plexified affine reflection arrangement of type B̃n is given by

Y := Y(B̃n) = {x ∈ Cn | xi ± xj /∈ Z for all i 6= j, xk /∈ Z for all k}.
On Y we have, by standard facts, a free action by translations of the coweight lattice 3,
identified with the standard lattice Zn ⊂ Cn.

Proof of Theorem 1.2. We first explicitly describe the covering Y → Y/3 applying the
exponential map y = exp(2π ix) componentwise to Y:

Y π→ Y/3 ' {y ∈ Cn | yi 6= y±1
j , yk 6= 0, 1},

(x1, . . . , xn) 7→ (exp(2π ix1), . . . , exp(2π ixn)).

Notice now that the function

C \ {0, 1} 3 y 7→ g(y) = 1+ y
1− y ∈ C \ {±1}

satisfies g(y−1) = −g(y). Further, g is invertible, its inverse being given by z 7→ z−1
z+1 .

Therefore applying g componentwise to Y/3, we have

Y/3 ' {z ∈ Cn | zi 6= ±zj , zk 6= ±1}
Consider now the arrangement A in Rn+1 consisting of the hyperplanes L±ij for 1 ≤

i < j ≤ n+ 1 and H1, and let Y(A) be the complement of its complexification. We have
a homeomorphism

η : C∗ × Y/3→ Y(A)
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defined by

η
(
λ, (z1, . . . , zn)

) = (λ, λz1, . . . , λzn).

To show that Y/3 is a K(π, 1), it is then sufficient to show that Y(A) is a K(π, 1). We
will show in Lemma 3.1 below that A is simplicial, and therefore the result follows from
Deligne’s Theorem 1.1. ut
Remark. By the same exponential argument one may recover the results of [Oko79] for
the affine Artin group of type Ãn, C̃n (for further applications we refer to [All02]).

Lemma 3.1. Let A be the real arrangement in Rn+1 consisting of the hyperplanes L±ij
for 1 ≤ i < j ≤ n+ 1 and H1. Then A is simplicial.

Proof. Notice that A is the union of the reflection arrangement A(Dn+1) of type Dn+1
and the hyperplane H1 = {x1 = 0}. Hence we study how the chambers of A(Dn+1) are
cut by the hyperplane H1. Since the Coxeter groupDn+1 acts transitively on the collection
of chambers, it is enough to consider how the fundamental chamber C0 of A(Dn+1) is
cut by the Dn+1-translates of the hyperplane H1, i.e. by the coordinate hyperplanes Hk

for k = 1, . . . , n+ 1.
We may choose

C0 = {−x2 < x1 < x2 < · · · < xn < xn+1}

as fundamental chamber. Of course, this is a simplicial cone. Notice that the coordinates
of a point in C0 are all positive except (possibly) the first. Thus it is clear that for k ≥ 2
the hyperplanes Hk do not cut C0.

A quick check shows instead that H1 cuts C0 into two simplicial cones C1, C2 given
precisely by

C1 = {0 < x1 < x2 < · · · < xn < xn+1},
C2 = {0 < −x1 < x2 < · · · < xn < xn+1}. ut

4. Cohomology

In this section we will compute the cohomology groups

H ∗(GB̃n ,Q[[q±1, t±1]]q,t )

where Q[[q±1, t±1]]q,t is the local system over the module of Laurent series
Q[[q±1, t±1]] and the action is (−q)-multiplication for the standard generators associ-
ated to the first n nodes of the Dynkin diagram, while it is (−t)-multiplication for the
generator associated to the last node.



10 Filippo Callegaro et al.

4.1. Algebraic complexes for Artin groups

As a main tool for cohomological computations we use the algebraic complex described
in [Sal94] (see the Introduction); the algebraic generalization of this complex by De
Concini–Salvetti [DS96] provides an effective way to determine the cohomology of the
orbit space X(W) with values in an arbitrary GW -module. When X(W) is a K(π, 1)
space, of course, we get the cohomology of the group GW .

For simplicity, we restrict ourselves to the abelian representations considered in Sec-
tion 2.3. Let (W, S) be a Coxeter system. Given a representation η : GW → R∗, let Mη

be the induced structure of GW -module on an arbitrary (even non-free) R-module M .
We may describe a cochain complex C∗(W) for the cohomology H ∗(X(W);Mη) as fol-
lows. The cochains in dimension k form the free R-module indexed by the finite parabolic
subgroups of W :

Ck(W) :=
⊕

0 : |0|=k
|W0 |<∞

M.e0 (6)

and the coboundary maps are completely described by the formula

d(e0) =
∑
0′⊃0

|0′|=|0|+1
|W0′ |<∞

(−1)α(0,0
′)W0′(η)

W0(η)
e0′ (7)

where W0(η) is the η-Poincaré series of the parabolic subgroup W0 and α(0, 0′) is an
incidence index depending on a fixed linear order of S. For 0′ \ 0 = {s′} it is defined as

α(0, 0′) := |{s ∈ 0 | s < s′}|.
We identify (consistently with Table 1) the generating reflections set S for B̃n with the

set {1, . . . , n + 1}. It is useful to represent a subset 0 ⊂ S by its characteristic function.
For example the subset {1, 3, 5, 6} for B̃6 may be represented as the binary string

0
1 10110

To determine the cohomology of GB̃n , it will be necessary to give a close look at the
cohomology of GDn . It is convenient to number the vertices of Dn as in Table 1 and to
regard parabolic subgroups as binary strings as before.

4.2. Change of coefficients

Let R be the ring of Laurent polynomials Q[q±1, t±1] and M be the R-module of Lau-
rent series Q[[q±1, t±1]] and let Rq,t , Mq,t be the corresponding local systems, with ac-
tion ηq,t . Our main interest is to compute the cohomology with trivial rational coefficients
of the group

ZB̃n = ker(GB̃n → Z2)
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that is the commutator subgroup of GB̃n (see the Introduction for some motivations). By
the Shapiro Lemma (see [Bro82]) we have the following isomorphism:

H ∗(ZB̃n ,Q) ' H ∗(GB̃n ,Mq,t )

and the second term of the equality is computed by the Salvetti complex C∗(B̃n) over the
moduleMq,t . Notice that the finite parabolic subgroups ofWB̃n

are in 1-1 correspondence
with the proper subsets of the set S of simple roots.

We can define an augmented Salvetti complex Ĉ∗(B̃n) as follows:

Ĉ∗(B̃n) = C∗(B̃n)⊕ (Mq,t ).eS .

We need to define the boundary map for the n-dimensional generators. Let us first define
a quasi-Poincaré polynomial for GB̃n . We set

ŴS(q, t) = ŴB̃n
(q, t) = [2(n− 1)]!! [n]

n−1∏
i=0

(1+ tqi).

It is easy to verify that ŴB̃n
(q, t) is the least common multiple of all W0(q, t) for 0 ⊂ S

with |0| = n. This allows us to define the boundary map for the generators e0 with
|0| = n:

d(e0) = (−1)α(0,S)
ŴB̃n

(q, t)

W0(q, t)
eS,

and it is straightforward to verify that Ĉ∗(B̃n) is still a chain complex. Moreover, we have
the following relations between the cohomologies of C∗(B̃n) and Ĉ∗(B̃n):

H i(C∗(B̃n)) = H i(Ĉ∗(B̃n))

for i 6= n, n+ 1 and we have the short exact sequence

0→ H n(Ĉ∗(B̃n),Mq,t )→ H n(C∗(B̃n),Mq,t )→ Mq,t → 0.

Finally, one can prove that the complex Ĉ∗(B̃n) with coefficients in the local system Rq,t
is well filtered (as defined in [Cal05]) with respect to the variable t and so it gives the same
cohomology, modulo an index shifting, of the complex with coefficients in the module
Q[t±1][[q±1]]. Another index shifting can be proved with a slight improvement of the
results in [Cal05], allowing one to pass to the module M . Hence we have the following

Proposition 4.1.

H i(ZB̃n ,Q) ' H i(Ĉ∗(B̃n),Mq,t ) ' H i+2(Ĉ∗(B̃n), Rq,t ) ' H i+2(GB̃n , Rq,t )

for i 6= n, n+ 1 and

H n(ZB̃n ,Q) ' H n(GB̃n ,Mq,t ) ' M, H n+1(ZB̃n ,Q) ' H n+1(GB̃n ,Mq,t ) ' 0. ut
From now on we deal only with the complex Ĉ∗(B̃n) with coefficients in the local sys-
tem Rq,t .
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4.3. Splitting of the complex

For Coxeter groups of typeW = Dn, B̃n the Salvetti complex C∗W exhibits an involution
σ defined by

0
0A 7→

0
0A,

1
1A 7→ −

1
1A,

0
1A 7→

1
0A,

1
0A 7→

0
1A.

Let I ∗W be the module of σ -invariants and K∗W the module of σ -anti-invariants. We
may then split the complex into

C∗W = I ∗W ⊕K∗W.
In particular, the computation of the cohomology ofC∗W may be performed by analyzing
separately the two subcomplexes.

4.4. Cohomology of K∗Dn

The cohomology of the anti-invariant subcomplex for Dn was completely determined in
[DPSS99]. However, we will need generators for the cohomology groups, which are not
easily deduced from the argument in the original paper. So we briefly recall this result.

Let G1
n be the subcomplex of C(Dn) generated by the strings of type 0

1A and 1
1A. It

is easy to see that G1
n is isomorphic (as a complex) to K(Dn).

Define the set

Sn = {h ∈ N | 2h | n, or h | n− 1 and 2h - (n− 1)}.
Note that h appears in Sn if and only if n = 2λh (i.e. n is an even multiple of h) or
n = (2λ+ 1)h+ 1 (n is an odd multiple of h incremented by 1).

We introduce the following notation, similar to the one given in the first section: we
write

{h}
without a subscript for the module

Q[q±1]/(ϕh).

Proposition 4.2 ([DPSS99]). The top cohomology of G1
n is

H nG1
n =

⊕
h∈Sn
{2h},

whereas for s > 0 one has

H n−2sG1
n =

⊕
h∈Sn

1<h<n/2s

{2h}, H n−2s+1G1
n =

⊕
h∈Sn

1<h≤n/2s

{2h}. ut
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We need a description of the generators for these modules. First we define the following
basic binary strings:

oµ[h] =


0
1 1h−1 for µ = 0,

1
1 12µh−201h for µ ≥ 1,

eµ[h] = 1
1 1(2µ−1)h−101h−2 for µ ≥ 1,

sh = 01h−2, lh = 01h.

A set of candidate cohomology generators is given by the following cocycles:

oµ,2i[h] = 1
ϕ2h

d(oµ[h](shlh)i),

oµ,2i+1[h] = 1
ϕ2h

d(oµ[h](shlh)ish),

eµ,2i[h] = 1
ϕ2h

d(eµ[h](lhsh)i),

eµ,2i+1[h] = 1
ϕ2h

d(eµ[h](lhsh)i lh).

Indeed, these cocycles account for all the generators:

Proposition 4.3. (1) Let n = 2λh. Then for 0 ≤ s < λ the summand of H n−2s(G1
n)

isomorphic to {2h} is generated by eλ−s,2s[h]. Similarly for 0 ≤ s < λ the summand
of H n−2s−1(G1

n) is generated by oλ−s−1,2s+1[h].
(2) Let n = (2λ+ 1)h+ 1. Then for 0 ≤ s ≤ λ the summand of H n−2s(G1

n) isomorphic
to {2h} is generated by oλ−s,2s[h]. For 0 ≤ s < λ the summand of H n−2s−1(G1

n) is
generated by eλ−s,2s+1[h].

Proposition 4.3 is best proven by induction on n, recovering in particular the quoted result
from [DPSS99].

Proof. We filter the complex G1
n from the right and use the associated spectral sequence.

Let
FkG

1
n = 〈A1k〉

be the subcomplex generated by binary strings ending with at least k ones. We have a
filtration

G1
n = F0G

1
n ⊃ F1G

1
n ⊃ · · · ⊃ Fn−2G

1
n ⊃ Fn−1G

1
n−1 ⊃ 0

in which the subsequent quotients for k = 1, . . . , n− 3,

FkG
1
n

Fk+1G1
n

= 〈A01k〉 ' G1
n−k−1[k],

are isomorphic to the complex for G1
n−k−1 shifted in degree by k, while

Fn−2G
1
n

Fn−1G1
n

=
〈

0
1 1n−2

〉
' R[n− 1], Fn−1G

1
n =

〈
1
1 1n−2

〉
' R[n].
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Therefore the columns of the E1 term of the spectral sequence are either the module R or
are given by the cohomology of G1

n′ with n′ < n. Reasoning by induction, we may thus
suppose that their cohomology has the generators prescribed by the proposition. Since
there can be no non-zero maps between the modules {2h}, {2h′} for h 6= h′, we may
separately detect the ϕ2h-torsion in the cohomology.

Fix an integer h > 1. Then the relevant modules for the ϕ2h-torsion in the E1 term
are suggested in Table 2. We will call a column even if it is relative to G1

2µh, and odd
if it is relative to G1

(2µ+1)h+1 for some µ. The differential d1 is zero everywhere but

o2,0

e2,1

o1,2

e1,3

o0,4 e2,0

o1,1

e1,2

o0,3

o1,0

e1,1

o0,2

e1,0

o0,1

o0,0

R R

G1
5h+1 G1

4h G1
3h+1 G1

2h G1
h+1

dh+1

##
##
##
## 00

00

dh−1
00

dh+1

##
##

dh−1
00

d1

//

//

OO

Table 2. Spectral sequence for G1
n.

d1 : E(n−2,1)
1 → E

(n−1,1)
1 where it is given by multiplication by [2(n − 1)]!!/[n − 1]!.

Thus the E2 term differs from the E1 only in positions (n− 2, 1) and (n− 1, 1), where

E
(n−2,1)
2 = 0, E

(n−1,1)
2 = R

[2(n− 1)]!!/[n− 1]!
.

Then all other differentials are zero up to dh−2.
It is now useful to distinguish among four cases according to the remainder of n

mod(2h):

(a) n = 2λh+ c for 1 ≤ c ≤ h,
(b) n = (2λ+ 1)h+ 1,
(c) n = (2λ+ 1)h+ 1+ c for 1 ≤ c ≤ h− 2,
(d) n = 2λh.

In case (a), note the first column relevant for ϕ2h-torsion is even (see also Table 3).
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......

......

......

......

......

......

R

(ϕ2h)λ

G1

2λh
G1

(2λ−1)h+1
G1

4h
G1

3h+1
G1

2h
G1

h+1

dh−1

dh−1

dh−1

Table 3. Eh−1 term of the spectral sequence for G1
n in case (a).

The differential dh−1 maps the modules of positive codimension of an even column
G1

2µh (1 ≤ µ ≤ λ) to those in the odd column G1
(2µ−1)h+1. Using the suitable generators

of type e·,·[h], o·,·[h], the map dh−1 may be identified with multiplication by[
n− (2µ− 1)h− 1

h− 1

]
=
[

2(λ− µ)+ c + h− 1
h− 1

]
. (8)

Since this polynomial is not divisible by ϕ2h, the restriction of dh−1 to positive codi-
mension elements in even columns is injective. It follows that in the Eh term the only
survivors are in positions (c + 2(λ− µ)h− 1, 2µh), generated by eµ,0[h] and

E
(n−1,1)
h ' E(n−1,1)

2 = R

[2(n− 1)]!!/[n− 1]!
.

Note that in E(n−1,1)
h the only torsion of type ϕl2h is given by the summand

R

(ϕ2h)λ

The setup is summarized in Table 4. In the table the survivors are in dark grey boxes while
annihilated terms are in light grey.

Further, using the generators and up to an invertible, we may identify the differential
d2µh : E(c+2(λ−µ)h−1,2µh)

2µh → E
n−1,1
2µh with multiplication by ϕλ−µ2h (1 ≤ µ ≤ λ). Thus,

for example, in the E2h+1 term the module in position (c + 2(λ− 1)h− 1, 2h) vanishes
and the ϕ2h-torsion in E(n−1,1)

2h+1 is reduced to R/(ϕ2h)
λ−1. Continuing in this way, all ϕ2h-

torsion vanishes. In summary there is no ϕ2h-torsion in the cohomology of G1
n; this ends

case (a).
For case (b), the first column in the spectral sequence relevant for ϕ2h is still even.

The differential dh−1 may be identified again as multiplication as in formula (8), but now
it vanishes, since the polynomial is divisible by ϕ2h.
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......

......

......

......

......

......

R

(ϕ2h)λ

G1

2λh
G1

(2λ−1)h+1
G1

4h
G1

3h+1
G1

2h
G1

h+1

d2λh

d4h

d2h

Table 4. Setup for the higher degree terms in the spectral sequence for G1
n in case (a).

......

......

......

......

......

......

R

(ϕ2h)λ+1

G1

2λh
G1

(2λ−1)h+1
G1

2(λ−1)h G1

3h+1
G1

2h
G1

h+1

dh+1

dh+1

dh+1

Table 5. Eh−1 term of the spectral sequence for G1
n in case (b).

The next non-vanishing differential is dh+1. See Table 5. It takes the module in posi-
tive codimension in an odd column G1

(2µ+1)h+1 to the elements in the even column G1
2µh

(for 1 ≤ µ ≤ λ− 1). Via generators, it may be identified with multiplication by[
n− 2µh
h+ 1

]
=
[

2(λ− µ)h+ h+ 1
h+ 1

]
(9)

and it is therefore injective when restricted to modules in positive codimension in odd
columns. Further, dh+1 is also non-zero as a map E(2λh−1,h+1)

h+1 → E
(n−1,1)
h+1 . Actually, the

term
E
(n−1,1)
h+1 ' E(n−1,1)

2 ' R

[2(n− 1)]!!/[n− 1]!

has R/(ϕ2h)
λ+1 as the only summand with torsion of type ϕl2h. It is easy to check that the

relative map can be identified with multiplication by ϕλ2h.
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......

......

......

......

......

......

R

(ϕ2h)λ

G1

2λh
G1

(2λ−1)h+1
G1

2(λ−1)h G1

3h+1
G1

2h
G1

h+1

d(2λ−1)h+1

d3h+1

Table 6. Setup for the higher degree terms in the spectral sequence for G1
n in case (b).

Thus, the only survivors in the E2h term are the first even column, the top modules
in the odd columns, generated in positions (2(λ − µ)h − 1, (2µ + 1)h + 1) by oµ,0 for
1 ≤ µ ≤ λ− 1, as well as E(n−1,1)

2h which has R/(ϕ2h)
λ as summand.

Note that the higher differentials vanish when restricted to the first even column. Ac-
tually we may lift the generators of type eλ−s,2s[h] to global generators eλ−s,2s+1[h] for
0 ≤ s < λ. Similarly for 0 ≤ s < λ we may lift oλ−s−1,2s+1[h] to the global gener-
ator oλ−s−1,2s+2[h]. Finally, as in case (a), the modules in positions (2(λ − µ)h − 1,
(2µ + 1)h + 1) for 1 ≤ µ ≤ λ − 1 vanish in the higher terms of the spectral sequence
while the module in position (n − 1, 1) has eventually R/ϕ2h as summand. Clearly the
coboundary oλ,0[h] projects onto a generator of the latter.

Cases (c) and (d) present no new complications and are omitted. ut

4.5. Spectral sequence for GB̃n

We can now compute the cohomology H ∗(GB̃n , Rq,t ). We will do this by means of the
Salvetti complex Ĉ∗B̃n.

As in Section 4.3, let Î B̃n be the module of σ -invariant elements and K̂B̃n the module
of σ -anti-invariant elements. We can split our module Ĉ∗B̃n into the direct sum

Ĉ∗B̃n = Î B̃n ⊕ K̂B̃n.
Using the map β : C∗Bn→ Ĉ∗B̃n defined by

0A 7→ 0
0A, 1A 7→ 1

0A+
0
1A,

one can see that the submodule Î B̃n is isomorphic (as a differential complex) to C∗Bn.
Its cohomology has been computed in [CMS06]. We recall the result:
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Theorem 4.4 ([CMS06]).

H i(GBn , Rq,t ) =


⊕

d|n, 0≤i≤d−2{d}i ⊕ {1}n−1 if i = n,⊕
d|n, 0≤i≤d−2, d≤n/(j+1){d}i if i = n− 2j,⊕
d-n, d≤n/(j+1){d}n−1 if i = n− 2j − 1. ut

Hence we only need to compute the cohomology of K̂B̃n. In order to do this we make
use of the results of Section 4.4. First consider the subcomplex of Ĉ∗B̃n defined as

L1
n =

〈
0
1A,

1
1A
〉
.

We define the map κ : L1
n→ K̂B̃n by

0
1A 7→

0
1A−

1
0A,

1
1A 7→ 2

1
1A.

It is easy to check that κ gives an isomorphism of differential complexes. Now we define
a filtration F on the complex L1

n:

FiL1
n =

〈
0
1A1i,

1
1A1i

〉
.

The quotientFiL1
n/Fi+1L

1
n is isomorphic to the complex (G1

n−i[t
±1])[i] (see Proposition

4.2) with trivial action on the variable t . Hence we use the spectral sequence defined by
the filtration F to compute the cohomology of the complex L1

n.
The E0 term of the spectral sequence is given by

E
i,j

0 =
(FiL1

n)
(i+j)

(Fi+1L1
n)
(i+j) = ((G1

n−i)
(i+j)[t±1])[i] = (G1

n−i)
j [t±1]

for 0 ≤ i ≤ n− 2. Finally,

E
n−1,1
0 = R, E

n,1
0 = R,

and all the other terms are zero. The differential d0 : Ei,j0 → E
i,j+1
0 corresponds to the

differential on the complex G1
n−i . It follows that the E1 term is given by the cohomology

of the complexes G1
n−i :

E1
i,j = H j (G1

n−i)[t
±1] for 0 ≤ i ≤ n− 2, E

n−1,1
1 = R, E

n,1
1 = R.

As in Section 4.4, we can separately consider, in the spectral sequence E∗, the mod-
ules with torsion of type ϕl2h for an integer h ≥ 1.

For a fixed integer h > 0, let c ∈ {0, . . . , 2h−1} be the congruence class of nmod(2h)
and let λ be an integer such that n = c + 2λh. We consider the two cases:

(a) 0 ≤ c ≤ h;
(b) h+ 1 ≤ c ≤ 2h− 1.
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In case (a) the modules of ϕ2h-torsion are:

E
c+2µh,2(λ−µ)h−2i
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by eλ−µ−i,2i[h]01c+2µh;

E
c+2µh,2(λ−µ)h−2i−1
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by oλ−µ−i−1,2i+1[h]01c+2µh;

E
c+2µh+h−1,2(λ−µ)h−h+1−2i
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by oλ−µ−i−1,2i[h]01c+2µh+h−1;

E
c+2µh+h−1,2(λ−µ)h−h+1−2i−1
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 2, 0 ≤ i ≤ λ− µ− 2,

generated by eλ−µ−i−1,2i+1[h]01c+2µh+h−1.
In case (b) the modules of ϕ2h-torsion are:

E
c+2µh,2(λ−µ)h−2i
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by eλ−µ−i,2i[h]01c+2µh;

E
c+2µh,2(λ−µ)h−2i−1
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by oλ−µ−i−1,2i+1[h]01c+2µh;

E
c+2µh−h−1,2(λ−µ)h+h+1−2i
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by oλ−µ−i,2i[h]01c+2µh−h−1;

E
c+2µh−h−1,2(λ−µ)h+h+1−2i−1
1 ' {2h}[t±1] with 0 ≤ µ ≤ λ− 1, 0 ≤ i ≤ λ− µ− 1,

generated by eλ−µ−i,2i+1[h]01c+2µh−h−1.
In the E1 term of the spectral sequence, the only non-trivial map is d1 : En−1,1

1 →
E
n,1
1 , corresponding to multiplication by the polynomial

ŴB̃n
[q, t]

WBn [q, t]
=
n−1∏
i=1

(1+ qi) =
∏
h≤n

ϕ
b(n−1)/hc−b(n−1)/2hc
2h .

Then in E2 we have

E
n−1,1
2 = 0 and E

n,1
2 =

⊕
R/(ϕ

b(n−1)/hc−b(n−1)/2hc
2h ).

Notice that the integer f (n, h) = b(n − 1)/hc − b(n − 1)/2hc corresponds to λ in case
(a) and to λ+ 1 in case (b).
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Now we consider the higher differentials in the spectral sequence. The first possibly
non-trivial maps are dh−1 and dh+1. In case (a) the map dh−1 is given by multiplication
by

n+h−2∏
i=n

(1+ tqi)

and dh+1 is the null map. The maps

d2(λ−µ)h : {2h}[t±1] = Ec+2µh,2(λ−µ)h
2(λ−µ)h → E

n,1
2(λ−µ)h,

where µ goes from λ−1 to 0, correspond, up to invertibles, modulo ϕ2h, to multiplication
by

ϕ
µ
2h

(2h−1∏
i=0

(1+ tqi)
)λ−µ

.

Moreover, they are all injective and the term E
n,1
2(λ)h+1 is given by the quotient

R/
(
ϕλ2h, ϕ

λ−1
2h

2h−1∏
i=0

(1+ tqi), . . . ,
(2h−1∏
i=0

(1+ tqi)
)λ) = R/(ϕ2h,

2h−1∏
i=0

(1+ tqi)
)λ
.

In case (b) the map dh−1 is null and dh+1 is multiplication by the polynomial

n+2h−1∏
i=n+h−1

(1+ tqi).

The maps

d2(λ−µ)h+h+1 : {2h}[t±1] = Ec+2µh+h−1,2(λ−µ)h−h
2(λ−µ)h+h+1 → E

1,n
2(λ−µ)h+h+1,

where µ goes from λ to 0, correspond, up to invertibles, modulo ϕ2h, to multiplication by

ϕ
µ
2h

(2h−1∏
i=0

(1+ tqi)
)λ−µ+1

.

Hence they are all injective and the term E
n,1
2(λ)h+h+2 is given by the quotient

R/
(
ϕ2h,

2h−1∏
i=0

(1+ tqi)
)λ+1

.

Since all the generators lift to global cocycles, it turns out that all the other differentials
are null. Hence we have proved the following:
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Theorem 4.5.
H n+1(K̂B̃n) '

⊕
h>0

{{2h}}f (n,h),

and for s ≥ 0,
H n−s(K̂B̃n) '

⊕
h>2

i∈I (n,h)

{2h}⊕max(0,bn/2hc−s)
i

with I (n, h) = {n, . . . , n+h−2} if n ' 0, 1, . . . , hmod(2h), f (n, h) = b(n+h−1)/2hc
and I (n, h) = {n+h− 1, . . . , n+ 2h− 1} if n ' h+ 1, h+ 2, . . . , 2h− 1 mod(2h). ut
Putting together the results of Theorems 4.4 and 4.5, we get Theorem 1.3.

As a corollary, we use the long exact sequences associated to

0→ Q[[t±1]]
m(q)−→ M

1+q−→ M → 0

and
0→ Q m(t)−→ Q[[t±1]]

1+t−→ Q[[t±1]]→ 0

to get the constant coefficients cohomology for GB̃n . Here m(x) is multiplication by the
series ∑

i∈Z
(−x)i .

We give only the result, omitting the details which come from non-difficult analysis of
the above mentioned sequences and recalling that the Euler characteristic of the complex
is 1 for n even, and −1 for n odd.

Theorem 4.6.

H i(GB̃n ,Q) =


Q if i = 0,
Q2 if 1 ≤ i ≤ n− 2,
Q2+bn/2c if i = n− 1, n,

where the t and q actions correspond to multiplication by −1. ut
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